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By definition, biochemical engineers are concerned with biochemi-
cal systems, often with systems employing growing cells. Even the
simplest living cell is a system of such forbidding complexity that any
mathematical description of it is an extremely modest approximation.

James E. Bailey
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Abstract

In this thesis an attempt is made to show the advantages of applying dynamical
analysis and control techniques in the field of modern engineering of biochemi-
cal reactions. In this sense, we identify two main problems at two different scales
which from a top bottom perspective are the following: the dynamical behavior of
bioreactors and the gene regulation processes. With respect to the first subject, we
tackle three important issues: i) the dynamical behavior of controlled enzymatic re-
actors, ii) the following of optimal batch operation models in fed-batch bioreactors,
and iii) the possibility to infer mixed culture growth from a total biomass signal.
With regard to the bottom subject (gene regulation), the potential usage of a soft-
ware sensor for monitoring these fundamental processes is developed in detail. It
is worth mentioning that the latter development was included in the selected list of
contemporary topical areas in biological physics studies of the Virtual Journal of
Biological Physics Research in August 2005 (Vol. 10, Issue 3).

Keywords: Bioreactors, Gene regulation, Dynamical analysis, Control

Resumen

Este documento de tesis pretende mostrar las ventajas del uso del análisis dinámico
y las técnicas de control automático en el campo de la moderna ingeniería de las
reacciones bioquímicas. Es en este sentido que identificamos dos problemas cen-
trales a dos escalas distintas, los cuales pueden ser clasificados desde una perspec-
tiva de arriba-abajo como: el comportamiento dinámico de bioreactores y el pro-
ceso de regulación genética. Con respecto al primer tema, nosotros afrontamos
tres cuestiones: i) el comportamiento dinámico de un biorreactor enzimático con-
trolado, ii) el seguimiento de modelos de lote óptimos en biorreactores de tipo lote
alimentado, iii) la posibilidad de inferir crecimientos mixtos a partir de una señal de
biomasa total. Con respecto al tema de regulación genética, se muestra en detalle el
potencial uso de sensores computacionales en el monitoreo de estos procesos fun-
damentales. Cabe mencionar, que este último trabajo fue escogido para aparecer en
la seleccionada lista de publicaciones de áreas de actualidad deVirtual Journal of
Biological Physics Researchen agosto del 2005 (Vol. 10, Issue 3).

Palabras claves: Biorreactores, Regulación genética , Análisis dinámico, Control
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1
Preface and General Introduction

Recently, the concept of industrial biotechnology is strongly emphasized and developed by
many scientists, chemical companies, as well as governments. From the technological point
of view, this is not a new concept but its recent impetus is mainly due to biocatalysis and fer-
mentation in combination with recent breakthroughs in the forefront of molecular biology and
metabolic engineering of industrially useful microorganisms.

Moreover, bioprocesses are ubiquitous – they range from the production of food in a kitchen to
the synthesis of sophisticated and extremely valuable therapeutics–. In addition, bioprocesses
involve the use of cells (or cellular molecules) as micro-factories to manufacture the product of
interest. Natural cellular products can be directly utilized or, alternatively, the cells can be en-
gineered to generate products of interest. In either case, the production levels can be improved
by employing several strategies for processing and/or control. However, to get an enhanced
profit from those micro-factories the analysis and understanding of the transcriptome and pro-
teome is of extreme importance, because we can infer the underlying reaction mechanisms
between genotype and phenotype. Such type of knowledge provides substantial information for
controlling the metabolism at the biochemical level. Accurate metabolic models could be the
background for monitoring and even controlling indirectly the cellular metabolism.

However, it is fair to mention that the majority of biologists use the termmodelas a formal
description of connections and dependencies between different parts of a metabolic pathway.
In addition, they commonly use verbal descriptions, instead of mathematical equations, and
their models usually are limited to qualitative descriptions of the connections, without includ-
ing quantitative relationships. On the other hand, for systems theorists,modelmeans a system
of equations, with initial and/or boundary conditions, that (ideally) describes the qualitative and
quantitative behavior of a system, including its dynamics over a full range of values. Therefore,
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Preface and General Introduction

the fundamental differences between mathematical models of molecular biologists and systems
theorists lie in the range of dynamical behavior that they expect to be able to represent by means
of their model. In the case of biology, most models still only cover steady-state properties of a
system. Nevertheless, recently, the mathematical dynamical models based on ordinary differen-
tial equations are a very useful abstraction because they can provide qualitative and quantitative
predictions. In this thesis, we use the models and their dynamical analysis to gain insight into
the mechanisms underlying the observed phenomena, predict patterns of behavior and design
strategies for their automatic control. As most of the real life problems the biological processes
involve nonlinear behavior. Thus, the dynamical analysis of nonlinear systems is quite valuable
in the field of biochemical engineering, especially from the point of view of design and control.
This was the main task in our research.

From our point of view, it is possible to develop a framework using dynamic analysis and
control techniques to qualitatively gain insight on the link between the genomic level and the
physiology of whole organisms. We are particularly interested in the analysis, monitoring and
control of biological dynamical processes. We think that a good procedure is to start with a
genomically detailed model of a subsystem of interest. Next, insert this detailed submodel into
a cellular model with some pseudo-molecular details, and then employ such a cellular model in
the whole process system model.

For instance, it is well known that mixing is an important natural as well as technological
process in chemical engineering. This is even more relevant when biochemical reactions get
involved. We will refer to the case of continuous stirred tank reactors (CSTRs), for which Lo
and Cholette [2] developed a nonideal isothermal mixing model using a Haldane type chemical
reaction rate (which is similar to the Monod function for low concentrations but includes the
inhibitory effect at high concentrations). In this thesis, we will show that the study of such a
model under closed loop condition by means of a proportional and integral controller is rele-
vant. This will be the topic treated in the first chapter.

Another interesting problem is how to follow an optimal batch operations model for a bioreac-
tor in the presence of uncertainties. The optimal batch bioreactor operation model (OBBOM)
refers to the bioreactor trajectory that is required to be followed such that the nominal cultiva-
tion be optimal. In that sense, this thesis presents an original idea to solve this type of problem.
We consider the optimal operations model as the master system which has the optimal culti-
vation trajectory for the feed flow rate and the substrate concentration. On the other hand, the
“real" bioreactor, the one with unknown dynamics and perturbations, is considered as the slave
system. Then, we design a control law that ensures the synchronization of both systems.

Other important biochemical processes are microbial growths; their modeling is a problem of
special interest in mathematical biology and theoretical ecology, biotechnology and bioengi-
neering. A significant class of such processes is the traditional fermented foods and beverages
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Preface and General Introduction

in which either endemic microorganisms or inocula with selected microorganisms are used.
However, the phenomenological details and the theory of the time evolution of the fermentation
are as yet poorly understood. Here, we present for the very first time a wavelet singularity ap-
proach to infer such type of growth.

Besides, historically, biologists have tried to understand organisms by investigating progres-
sively smaller details within them in order to gain a better understanding of the general concepts.
Recently, there is a trend to look for properties that emerge when groups of such elementary
components interact. For instance, the gene expression is a complex dynamic process with
intricate regulation networks. Currently, it is well accepted that the expression of genes may
be regulated at several levels, from transcription to RNA, and even as post-translational mod-
ification of protein activity. We do think that the techniques of nonlinear dynamical analysis
have tremendous potential in the investigations focusing on gene expression processes. Unfor-
tunately, the control and in general the dynamic terminology and the whole set of mathematical
methods are poorly known to the majority of biochemists. Therefore, one of the aims of this
work is to put forth the diffusion and understanding of such mathematical techniques in this
area. This is one of the goals of the last chapter of this document.

The thesis is organized as follows. In the next chapter, we tackle the mathematical problem of
identifying limit cycles in a continuous bioreactor. Then, the third chapter treats the problem
of inducing optimal trajectories in a fed-batch bioreactor. The fourth chapter deals with the
problem of identifying mixed growth from total biomass data. Finally, in the fifth chapter, we
attempt to go deeper in the biological processes governing the cell cycle, i.e., the gene regulation
process.
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Preface and General Introduction

The present thesis has been structured is base of the following papers:

• Chapter 2
V. Ibarra-Junquera & H.C. Rosu, (2006),PI-Controlled Bioreactor as a Generalized Lié-
nard System.Accepted in Computers & Chemical Engineering. (arXiv: nlin.CD/0502049
v2).

• Chapter 3
V. Ibarra-Junquera, & S.B. Jørgensen, (2006),Following the Optimal Batch Bioreactor
Operations Model.To be submitted to Computers & Chemical Engineering.

• Chapter 4
V. Ibarra-Junquera, P. Escalante-Minakata, J.S. Murguía-Ibarra, & H.C. Rosu, (2006),
Inferring mixed-culture growth from total biomass data in a wavelet approach.Accepted
in Physica A. (arXiv.org:physics/0512186).

• Chapter 5
V. Ibarra-Junquera, L.A. Torres, H.C. Rosu, G. Argüello, & J. Collado-Vides, (2005),
Nonlinear software sensor for monitoring genetic regulation processes with noise and
modeling errors.Phys. Rev. E 72, 011919. (arXiv: physics/0410096).
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2
PI-Controlled Bioreactor

2.1 Proportional and Integral (PI) Controlled Bioreactor as
a Generalized Liénard System

This work was performed in collaboration with Professor Dr. Haret C. Rosu [1]. Here we shown
that periodic orbits can emerge in Cholette’s bioreactor model working under the influence of
a PI-controller. We find a diffeomorphic coordinate transformation that turns this controlled
enzymatic reaction system into a generalized Liénard form. Furthermore, we give sufficient
conditions for the existence and uniqueness of limit cycles in the new coordinates. We also
perform numerical simulations illustrating the possibility of the existence of a local center
(period annulus). A result with possible practical applications is that the oscillation frequency
is a function of the integral control gain parameter.

2.2 Introduction

Mixing, understood as interpenetration of particles in different zones of a given volume, is an
important natural as well as technological process. This is even more so when biochemical
reactions get involved. For the case of continuous stirred tank reactors (CSTRs), Lo and
Cholette [2] developed a nonideal isothermal mixing model using a Haldane type chemical
reaction rate (which is similar to the Monod function for low concentrations but includes the
inhibitory effect at high concentrations). This model has been studied extensively later by many
authors ([3], [4], [5], [6], [7]). In particular, Sree and Chidambaram [5], [6] focused on the
control problem by means of a proportional integral (PI) control for this case. Indeed, the PI
controller is broadly used in the chemical and biochemical industry. Therefore its closed-loop
behavior is of much interest. In this chapter, we present a novel mathematical feature of this
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2.2 Introduction PI-Controlled Bioreactor

closed-loop enzymatic reaction system, namely the possibility to be represented as a dynamical
system corresponding to a non polynomial Liénard oscillator. That means that given a PI-
controlled CSTR governed by the usual two-dimensional smooth dynamical system

Ẋ = P(X,Y), Ẏ = Q(X,Y), (2.1)

we are able to find a diffeomorphic coordinate transformation (Eq. (2.7) below) that allows us
to put it into the well-known generalized Liénard form

Ẋ = φ(Y)−F(X) (2.2)

Ẏ = −g(X), (2.3)

whereg(X) is continuous on an open interval(a1,b1), the functionsF(X) andφ(Y) are con-
tinuously differentiable on the open intervals(a1,b1) and(a2,b2), respectively. In fact, these
intervals can be extended to−∞ < ai < 0 < bi < ∞, i = 1,2.

In this chapter, we show that the PI-controlled Cholette’s CSTR model belongs to this class of
generalized Liénard systems. Once doing this, we make use of the results encountered in this
research area to study the periodic solutions near stationary points for this particular application.
On the other hand, the Hopf bifurcation is an efficient way to study the existence of periodic
orbits. In this case, a pair of complex eigenvalues of the jacobian matrix, evaluated at the unique
equilibrium point, exist and to cross transversally the imaginary axis. Nevertheless, the fact that
a Hopf bifurcation guarantees the existence of a limit cycle does not imply its uniqueness [8]
within the state space. It is here where the uniqueness result for Liénard systems comes into
play.

Thus, we extend the area of application of the Liénard-type system to the case of PI-controlled
bioreactors for which we present results on the existence of limit cycles and its uniqueness as
a function of the control gains. The study of oscillatory behavior in bioreactors is might be
important issue since it is generated by the coupled dynamics of the most common controller in
industry (the PI one) and the kinetics of the biochemical reactions. In addition, we shed light
here on an explicit example of a closed-loop system which is of Liénard-type. Since the most
direct way to influence the PI-controlled Cholette’s CSTR is through the gain of the controller,
the present analysis provide the users with definite conditions for inducing oscillatory behav-
iors. Such conditions could be instructive from the pedagogical standpoint as well.

The chapter is organized as follows. In Section 2.3, we discuss the PI-controlled Cholette’s
bioreactor model and its basic assumptions. In Section 2.4, we present the coordinate
transformation that leads to the Liénard representation of this type bioreactor. The existence of
limit cycles is discussed in Section 2.5, and the uniqueness consideration is included in Section
2.6. The section 2.7 shown the case studied. The numerical simulation that we performed
indicating the possible presence of the period annulus is shortly described in Section 2.8.
Finally, we end up the chapter with several concluding remarks.
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2.3 Cholette’s Dynamical Model PI-Controlled Bioreactor

2.3 Cholette’s Dynamical Model

The dynamical behavior without control actions (i.e., open-loop operation) is governed by a
unique nonlinear ordinary differential equation (see Eq. (2.4)) [3]. The nonideal mixing can
be described by the Cholette model [3]. This model was studied by Chidambaram [5], who
proposed a tuning method for a PI-controller. Examples, where this kind of kinetics occurs, can
be found in [7]. The reactor model is given by the following equations

dζ
dt

=
(
ζ f −ζ

)[
nF
mV

]
− K1ζ

(1+K2ζ )2 , (2.4)

where the parameters and variables meaning is given Table 2.1.

Table 2.1:Variables and parameters of Cholette’s model.

Symbol Meaning Units

ζ Substrate concentration [Kmol/m3]
Y Integrated error [Kmol s/m3]
F Feed flow rate [m3/s]
V Volume [m3]
ζF Substrate feed concentration[Kmol/m3]
K1 Maximal kinetic rate [1/s]
K2 Inhibition parameter [m3/Kmol]
n Mixing parameter [dimensionless]
m Mixing parameter [dimensionless]
Kc Proportional gain controller [dimensionless]
Ki Integral gain controller [dimensionless]
u Control input [dimensionless]

The following assumptions hold in Eq. (2.4): (i) all model parameters and physicochemical
properties are constant (ii) the reaction occurs in a nonideal mixed CSTR, operated under
isothermal conditions. The fraction of the reactant feed that enters the region of perfect mixing
is denoted byn, whereasmdenotes the fraction of the total volume of the reactor where perfect
mixing is achieved. Form andn both equal to 1, the system is ideally mixed. The values of the
parametersmandn can be obtained from the residence time distribution [3]. Fig. 2.1 shows the
schematic diagram of the bioreactor configuration modeled by Eq. (2.4).

Following the previous works ([3] [5]), we considerζ f as the manipulated variable (i.e.ζ f = u)
and letζ be the controlled variable [5]. We are especially interested in the conditions that induce

7 IPICYT



2.4 Transformation to the Liénard form PI-Controlled Bioreactor

(1−m)V

ζ f

nF

ζ f

F
-

(1−n)F
ζ f

ζ
mV

-ζ ′
F

ζ
nF

?

?

A

-

Figure 2.1:Schematics of a classical continuous stirred tank bioreactor with imperfect mixing
corresponding to Cholette’s model.

oscillatory behavior in the bioreactor. The common control law in this case is of the proportional
integral type, that requires an error dynamical extension in order to build the closed-loop system
of two dimensions. Thus, the control law is given by

u ,
(
−Kc ·Error−Ki

∫
Errordt

)
,

whereKc andKi are the control gain values. For the sake of simplicity, the closed-loop system
is written as:

Ẋ = −X

(
C+

K1

(1+K2X)2

)
+C(−Kc(X−Re f)−KiY) (2.5)

Ẏ = X−Re f , (2.6)

where

C =
n F
m V

, X = ζ .

Eq. (2.5) describes the dynamical behavior of the concentration, while Eq. (2.6) refers to the
dynamical behavior of the integrated error.

2.4 Transformation to the Liénard form

In this section, we show that the system given by Eqs. (2.5)-(2.6) can be rewritten as a system
of the form (2.2)-(2.3), i.e., in the Liénard generalized form. This is one of the main results of
this work.

IPICYT 8



2.5 Existence of Limit Cycles PI-Controlled Bioreactor

Proposition 1. Under the transformation

[
x
y

]
= Ψ(X,Y) =

[
X−Xp

−Y +Yp

]
, (2.7)

where

Yp = −Ref (C+K1 +RefCK2(K2Ref+2))
CKi (1+K2Ref)2

Xp = Re f,

system given by Eqs. (2.5)-(2.6) can be written in the generalized Liénard form with the following
properties

[A1] g(0) = 0 andxg(x) > 0 for x 6= 0;

[A2] φ(0) = 0 andφ ′(x) > 0 for a2 < x < b2;

[A3] The curveφ(y) = F(x) is well defined for allx∈ (a1,b1).

Proof. If we substituteX = x+Xp andY =−y+Yp in Eqs. (2.5) and (2.6), and we choose

F(x) = x


C(1+Kc)+K1

(
1− K2Ref(2+K2(x+2Ref))

(1+K2Ref)2

)

(1+K2(x+Ref))2


 (2.8)

φ(y) = CKi y (2.9)

g(x) = x , (2.10)

we get the generalized Liénard form of the PI-controlled Cholette system. The properties [A1], [A2] and
[A3] are straightforwardly checked in Eqs. (2.8)-(2.10).2

ForΨ(X,Y) to be a local diffeomorphism on the regionΩ, it is necessary and sufficient that the
JacobiandΨ(X,Y) be nonsingular onΩ. SinceΨ(X,Y) is linear and, in this case, the determi-
nant of the Jacobian matrix is constant, then is nonsingular in the regionΩ = [−∞,∞]× [−∞,∞].

In the literature, the properties [Ai] are standard properties assumed for Liénard systems [11].
We point out that the huge existing literature on Liénard systems deals mainly with cases in
whichF(x) is polynomial [15], [13], [14], whereas we are in a case in whichF(x) is a nonlinear
rational function. Such cases are far less studied and there are still many open problems.

2.5 Existence of Limit Cycles

We briefly recall some basic results of the theory of bifurcations of vector fields. Roughly
speaking, a bifurcation is a change in equilibrium points, periodic orbits, or in their stability
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properties, when varying a parameter known as bifurcation parameter. The values of the para-
meter at which the changes occur are called bifurcation points. A Hopf bifurcation is charac-
terized by a pair of complex conjugate eigenvalues crossing the imaginary axis. Now, suppose
that the dynamical systeṁX = f (X,µ) with X ∈Rn andµ ∈R has an equilibrium point atXeq,

for someµ = µH ; that is f
(
Xeq,µH

)
= 0. Let A(µ) =

∂ f(XH ,µ)
∂X be the Jacobian matrix of the

system at the equilibrium point.

Assume thatA
(
µH

)
has as single pair of purely imaginary eigenvaluesS

(
µH

)
= ±ı̇ωH with

ωH > 0 and that these eigenvalues are the only ones with the propertiesℜ(S) = 0. If the

following condition is fulfilled dℜ(S(µ))
dµ

∣∣∣
µ=µH

6= 0 the Hopf bifurcation theorem states that

at least one limit cycle is generated at
(
Xeq,µH

)
(see [9]). The condition (2.5) is known

as the transversality hypothesis. Considering now thenth degree characteristic polynomial
λ (S) = Sn + a1Sn−1 + a2Sn−2 + . . . + an, where all the realai coefficients are positive allows
the construction of a Hurwitz matrixHn×n. Then one has the basic result that the character-
istic polynomial is stable if and only if the leading principal minors ofHn×n are all positive [10].

To search the Hopf bifurcation we have to calculate the equilibrium points of the system
(2.2)-(2.3) making equal to zero the right-hand-side of the equation, and taking as bifurcation
parameters the values of the PI-control gains. Then, finding the solution with respect to the
state vectorx we notice that the closed-loop system has a unique equilibrium point located at
the origin.
Proposition 2. If the parameterKc is such that

KH
c −2

√
CKi

C
< Kc < KH

c ,

then the Liénard system (2.2) and (2.3) with the functions given in Eqs. (2.8)-(2.10) has at least one limit
cycle. The upper limitKH

c is defined in Eq. (2.15).
Proof. If we use the Hurwitz criterion to guarantee that the unique equilibrium point is unstable, we
evaluate the Jacobian of the system at the origin

J (0,Kc) =


 −C− K1

(1+K2Ref)2 +2 RefK2K1

(1+K2Ref)3 −CKc CKi

−1 0


 . (2.11)

Then, from the determinantIS−J (0,Kc), we get the characteristic polynomialλ (S) = S2 +a1S+a2,
where

a1 = C(1+Kc)− K1(K2Ref−1)
(1+K2Ref)3 (2.12)

a2 = CKi . (2.13)

Then, the Hurwitz matrix is given by

H =
[

a1 0
1 a2

]
, (2.14)
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and its principal minors areH1(Kc) = a1 andH2(Kc) = a1a2. From this formulas, we can note that
the stability of the unique equilibrium point depends on the sign of Eq. (2.12). Since all the parameters
in the Eqs. (2.12) and (2.13) are positive, we can induce the local stability as a function of the values
of the controller gains involved in these equations and then we obtain the bifurcation point as the trivial
solution of Eq. (2.12) forKc and restrictingKi > 0

Kc
H =−1+

K1(K2Ref−1)
C(1+K2Ref)3 . (2.15)

In order to test the transversality condition, the behavior of the eigenvalues ofJ (0,Kc) in the neighbor-
hood ofKH

c should be analyzed. Thus, we takeKc asKH
c + ε, with ε ∈ R. The transversality condition

will be fulfilled if the sign of the equationsH1 andH2 changes when the sign ofε changes. Substitution
of Eq. (2.15) in the principal minor expressions givesH1

(
KH

c

)
= ε (C) andH2

(
KH

c

)
= ε

(
KiC2

)
.

From the above equations we can appreciate that if we want to have a positive real part of the eigenvalues
of the Jacobian matrix (2.11), we need thatε be negative. In other words, it is below the value given by
Eq. (2.15) where the limit cycles are generated. UsingKH

c , the eigenvalues of the matrix (2.11) are given
by the roots of the characteristic polynomialλ (S), which are

S1 = −ε C
2

+

√
ε2C2−4CKi

2
(2.16)

S2 = −ε C
2
−

√
ε2C2−4CKi

2
, (2.17)

where we can notice that the eigenvalues are complex with positive real parts, when0 > ε > −2
√

CKi
C

andKi > 0.2

Eq. (2.15) is of main importance, because it corresponds to the Hopf bifurcation and therefore
lies in a neighborhood of the value of the parameter where at least one limit cycle is generated.
Note, that the Hopf bifurcation by itself can not guarantee the uniqueness of the limit cycle,
because more than one limits cycle could appear [8]. Then we need to use additional constraints
in order to find the condition for uniqueness.

2.6 Uniqueness of Limit Cycles

Xiao and Zhang [11] gave an interesting theorem on the uniqueness of limit cycles for
generalized Liénard systems, under the conditions [A1], [A2] and [A3] that allows us to prove
a novel property of PI-controlled Cholette bioreactors.
Theorem 1. Using the notationsG(x) =

∫ x
0 g(x)dx and f (x) = F

′
(x), suppose that the system (2.2) -

(2.3) satisfies the following conditions:

(i) there existx1 and x2, a1 < x2 < 0 < x1 < b1 such thatF(x1) = F(0) = 0, F(x2) > 0 and
G(x2)≤G(x1); xF(x)≤ 0 for x2≤ x≤ x1, F ′(x) > 0 for a1 < x < x2 or x1 < x < b1, andF(x) 6= 0
for 0 <| x |¿ 1.
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(ii ) F(x) f (x)/g(x) is nondecreasing forx1 < x < b1.

(iii ) φ ′(y) is nonincreasing as| y | increases.

Then the system given by Eqs. (2.2)-(2.3) has at most one limit cycle, and it is stable if it exists.¥ Note
that the above result does not guarantee the existence of limit cycles by itself.

Proposition 3. System (2.2) and (2.3) with the functions given by the Eqs. (2.8)-(2.10) and with
Re f> 2/K2 andKc = Kc

H + ε∗, where

ε∗ =− K1(−2+K2Ref)
2C(1+K2Ref)3 , (2.18)

has a unique limit cycle.

Proof. The existence is given by the Proposition 2, and the uniqueness will be proved by showing that
the system fulfills the conditions of Theorem 1. Let us takeRe f∗ = 2κ/K2 with κ > 1 which agrees with
the condition stated in Proposition 3. Then

Kc
H(ε∗,Re f∗) =−1+

K1κ
C(1+2κ)3 .

For these values of the parameters, the functionF(x) is simplified to the form

F∗(x) =
xK1

(
3κ +κ K2

2x2−4κ3 +1
)

(1+2κ)3(1+K2x+2κ)2 . (2.19)

The real roots ofF∗(x) are0, x1, and−x1, where

x1 =

√
κ (−1+κ)(1+2κ)

κ K2
,

which fulfill the propertyF(x1) = F(0) = 0. Moreover, takingx2 =−ξx1, where0< ξ < 1, one can see
thatx2 < 0< x1. To evaluateF∗(x) in the intervalsx2 < x < 0 and0< x < x1, it is sufficient to substitute
in Eq. (2.19)x = β xi , wherei = 1,2 and0 < β < 1. Then we can easily verify that

0 > F∗(β x1) =
(−1+κ)

(
β 2−1

)
κ K1β

√
κ (−1+κ)

(1+2κ)2
(

κ +β
√

κ (−1+κ)
)2

K2

(2.20)

0 < F∗(β x2) = −ξ
(−1+κ)

(
β 2 −1

)
κ K1 β

√
κ (−1+κ)

(1+2κ)2
(
−κ + β

√
κ (−1+κ)

)2
K2

. (2.21)

Consequently,xF∗(x)≤ 0 for x2≤ x≤ x1. Moreover,G(x) = x2/2 and thenG(x2)≤G(x1). Besides, for
θ > 1 we have

0 < F∗
′
(θx1) =

(−1+κ)
(
(−1+3θ 2)κ +(θ +θ 3)

√
κ (−1+κ)

)
K1κ2

(1+2κ)3
(

κ +θ
√

κ (−1+κ)
)3 .
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In other words,F∗
′
(x) > 0 for x1 < x < b1. From Eq. (2.8) we can see thatF∗(x) 6= 0 for 0 <| x |¿ 1. In

addition, sinceφ ′(y) = CKi , no matter how| y | increases,φ ′(y) remains constant. Finally, we can write
Ψ(x)≡ F∗(x) f (x)/g(x) = (A +B)/C , where

A = 2+κ
(
16κ2 +K2

3x3)−κ (1+2κ)(xK2(3K2x+8κ +4)−12) (2.22)

B = 2 ln(1+K2x+2κ)(1+2κ)3(1+K2x+2κ) (2.23)

C =
K1

2

2(1+2κ)6K2
2(1+K2x+2κ)3 . (2.24)

Performing the derivative ofΨ(x), evaluating it atx = x1α for α > 1, and plottingϑΨ′(x1α), where

ϑ =
(1+2κ)5

(
κ +α

√
κ (−1+κ)

)4
K2

K1
2κ3

, (2.25)

we get the positive function displayed in Fig. 2.2. Thus,F∗(x) f (x)/g(x) is nondecreasing forx1 < x< b1.
In this way, we checked each of the three conditions of Theorem 1. The unique limit cycle can be seen
in Fig. 2.3 that illustrates the numerical simulation corresponding to the results obtained until now.

2.7 Case Study

With the goal of illustrating the results given in the previous sections, we perform numerical simulation
using the values of the parameters given by Chidambaram [6]. All our calculations are performed for a
flow characterized by the value of the Damköhler number(Da = K1V/F) equal to 300, as reported by
Sree and Chidambaram [5].

Table 2.2:The values of the parameters of Cholette’s model [5].

Symbol Value Units

F 3.333×10−5 [m3/s]
V 10−3 [m3]
K1 10 [1/s]
K2 10 [m3/Kmol]
n 0.75 [dimensionless]
m 0.75 [dimensionless]

In Fig. 2.4 a plot of the evolution in time of the variablex is given for two values of the integral parameter
Ki . It indicates that the oscillation frequency can be manipulated through this control parameter.
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Figure 2.2:The functionϑΨ′(αx1), for α > 1, andκ > 1. We see that this is a strictly positive
function.

Figure 2.3:The phase portrait of the PI-controlled Cholette model subjected to the uniqueness
conditions. The employed values of the parameters are those given in Table 2.2.
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Figure 2.4:Time evolution of the variablex. The upper plot corresponds toKi = 0.5, while the
lower plot corresponds toKi = 10. This is a graphical representation of the fact that
oscillation frequency is a function of the control gain parameterKi .

2.8 A Local Center of the Generalized Liénard System ?

We begin this section by recalling that alimit cycle is an isolated closed orbit, while a critical
point is acenterif all orbits in its neighborhood are closed. To the best of our knowledge the
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literature on period annuli for Liénard systems is well developed only for polynomial cases and
moreover it focuses on Hamiltonian type systems [12], [16], [17].
Notice that forKc(Re f∗) = KH

c (Re f∗) + ε and ε in the following intervalε∗ < ε < 0 the
existence of limit cycles is proved but without guaranteeing uniqueness. It is precisely in
this interval where our numerical simulations point to the existence of a local center in a
neighborhood of the origin. Fig. 2.5 shows the phase portrait of the PI-controlled generalized
Liénard system with a value ofKc in the same interval and close toKH

c .

2.9 Conclusions

The main result of this chapter is that the Cholette CSTR model under PI control can be mapped
into a generalized Liénard dynamical system of nonpolynomial type. Thus, we establish a new
important application of this class of nonlinear oscillators that allows us to make a detailed
study of the oscillatory dynamical behavior of these interesting bioreactors.

Sufficient conditions for the existence and uniqueness of limit cycles of this generalized Liénard
system are stated in this chapter together with numerical simulations that indicate the possibility
of the existence of a local center (period annulus) when the gain proportional parameterKc of
the control law is close to the valueKH

c corresponding to the existence condition of limit cycles.
We also notice that the oscillation frequency is a function of the integral control gain parameter
Ki , a result that could have practical applications. We mention that similar results have been
obtained by Albarakati, Lloyd, & Pearson [18] for the polynomial case.

Our work also shows that the Liénard representation of dynamical systems and its associated
results could have a remarkable potential as an effective tool in the control theory for the closed-
loop dynamical analysis in the plane.
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Figure 2.5:The phase portrait of the PI-controlled generalized Liénard system with a value of
KH

c (Re f∗)+ε in the intervalε∗ < ε < 0 and close toKH
c . The upper plot shows the

state space with the limit cycle and the possible annulus in the neighborhood of the
origin, while the lower plot displays the configuration of the vector field close to the
origin.
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3
Optimal Batch Operation Models

3.1 Following the Optimal Batch Bioreactor Operations
Model

This work was performed in collaboration with Professor Dr. Sten Bay Jørgensen. Here, we
study the problem of following an optimal batch operation model for a bioreactor in the pres-
ence of uncertainties. The optimal batch bioreactor operation model (OBBOM) refers to the
bioreactor trajectory for the nominal cultivation to be optimal. A multiple-variable dynamic op-
timization of fed-batch reactor for biomass production is studied using a differential geometry
approach. The performance index is optimized at the final operation time. The maximization
problem for the production of cell mass is solved by finding the optimal filling policy and the
optimal substrate concentration in the inlet stream.

In order to follow the OBBOM a master-slave synchronization is used. The OBBOM is con-
sidered as the master system which has the optimal cultivation trajectory for the feed flow rate
and the substrate concentration. On the other hand, the “real" bioreactor, the one with unknown
dynamics and perturbations, is considered as the slave system. The advantage of this idea is that
the optimization can easily be performed for a simplified model. Finally, the controller is de-
signed such that the real bioreactor is synchronized with the optimized one in spite of bounded
unknown dynamics and perturbations.

As an example, the scheme is applied to a nonlinear fed-batch fermentation process. In addition,
this work shows the advantages of using two actuators for control purposes. It is formally proven
that the inclusion of the extra input is the solution to the controllability problems pointed out by
Szerderkényi et al. [39].
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3.2 Introduction

From a process systems point of view, the key feature that differentiates continuous processes
from batch and semi-batch processes is that the first have a steady state, whereas the latter ones
do not. In semi-batch operations, a reactant may be added with no product removal, or the
product maybe removed with no reactant addition, or a periodic combination of both. Due to
the batch dynamics, the process variables need to be adjusted over time to maximize the amount
of products and/or quality of interest at the end of the fed-batch cycle. Consequently, this step
involves the difficult task of determining time-varying profiles through dynamic optimization.

In general terms, semi-batch processes typically produce low-volume-high-cost products, thus
optimal operation is extremely important. Every small improvement in the process may result
in considerable reduction in production costs. In addition, it is well known that before a contin-
uous reactor reaches steady state operation, there is a transient period in which it is filled up to
the working volume. This period is called the start-up of the reactor and refers to the sequence
of operations that leads it from an initial state to a state of continuous operation. The modes of
operation usually used for the start-up are sequences of batch and fed-batch modes. Therefore,
determining an efficient start-up strategy is important as it saves time. Biochemical reactions
are usually slow and an inappropriate start-up may cause the reactor to waste time to reach the
desired steady state conditions.

For many chemical and biochemical processes, it is difficult to develop reasonably accurate
mathematical models with reliably estimated parameters. This is essential for optimization and
design of a high-performance control systems. Especially in biochemical reactors uncertainties
are due to the poor process knowledge, nonlinearities, unmodeled dynamics, unknown inter-
nal and external noises, environmental influences and time-varying parameters. The presence
of such uncertainties causes a mismatch between the formulated optimized model and the true
process, which may degrade the performance and can lead to serious control stability problems,
especially when the process in nonlinear. Therefore, it is a challenge of significant importance
for control engineers to design robust controllers for nonlinear biochemical processes subject to
model uncertainties.

Thus, the problem is to design a controller that forces the process measurements to follow an
optimal batch operation model in spite uncertainties. For this purpose a master-slave synchro-
nization scheme is used. That is, the optimal operations model is considered as the master
system which provides the trajectory that the feed flow and the substrate concentration should
follow in order to achieve an optimal cultivation. On the other hand, the “real" bioreactor (the
one with unknown dynamics and perturbations) is considered as the slave. The advantages of
this idea are that the optimization can easily be performed for a simplified model and the con-
troller can be designed such that the real bioreactor is synchronized with the master in spite of
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bounded unknown dynamics and perturbations. Moreover, sometimes it is not possible to ob-
tain an explicit solution even for simplified models and therefore the synchronization approach
allows the possibility to design robust controllers even for those cases.

In order to study this idea, a relatively simple mathematical model is employed. The system
consists of a mixing tank, where two streams are fed, one with nutrients at high concentration
and the other with a solvent including supplementary components. The reactor is assumed to
be perfectly stirred. An unstructured biomass growth rate equation with substrate inhibition
kinetics is chosen. Moreover, this work attempts to show the advantages using two actuators for
control purposes of the fed-bach cultivations. The structure mentioned above allows the study
also of this control problem.

The chapter is organized as follows. In Section 3.3, we discuss the methodology to find the
Optimal Batch Operation Model and its basic assumptions. In Section 3.4, the OBBOM for
simplified fed-batch bioreactor is founded. In Section 3.5, we present a realistic model of a
fed-batch process. An analysis of the realistic system and the methodology for robust track of
the OBBOM is discussed in Section 3.6. The concluding remarks are in Section 3.7. Finally,
in the appendix we give a few basic preliminaries regarding differential geometry and also the
proof of the main statement is addressed.

3.3 Finding the Optimal Batch Operation Model

Since [19], the classical linear quadratic regulator techniques in optimal control theory have
been successfully applied to linear problems. However, for nonlinear systems some problems
still unsolved. This situation is certainly true also for nonlinear control of batch processes.

An interesting work in which the exact solution for a batch bioreactor is derived appears in [20]
in which the objective was to maximize the cell productivity. Using the Pontryagin maximum
principle for the constant yield case an explicit substrate feeding policy was found for a single
feed flow rate case.

In the work [21] a method has been proposed to get an optimal nonlinear control law. They pro-
posed the elimination of the adjoint vector from the repeated time derivatives of the Hamiltonian
involving for the first time the Lie brackets of vector fields. The advantage of this method lies in
the introduction of a differential operator, a fact that allows obtaining an implicit analytic feed-
back law expression. Later, in the work [22], the optimal state feedbacks has been characterized
in the singular operation region in a analytical manner using tools of differential geometry. The
state feedback laws are obtained as a differential operator for invariant-time systems and also
extended to time-varying systems. Additionally, the notion of degree of singularity was used,
allowing a more transparent characterization of the necessary condition for optimality for the
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affine single input case.

Another nonlinear approach was introduced in [23] and later in [26], where an optimal adaptive
scheme for a fed-batch fermentation processes involving multiple substrates was investigated.
The optimization was achieved using the classical Pontryagin’s principle in which the optimal
input is obtained as a function of the adjoint variables.

In [24] the state feedback law for on-line optimization problem for single input non-affine sys-
tems. Next in[25], it was shown that with a neural network is capable to calculate the switching
times for affine single input cases. In [27], the optimal nonlinear input is derived in terms of
the states of the system and is independent of the adjoint states. The necessary conditions for
optimality are given in terms of the systems Lie brackets and the adjoint states. In addition, the
main result is presented in terms of a differential operator.

Using this differential operator in [28] the 2-inputs case was studied. where a nonlinear state
feedback laws for on-line optimization of batch processes with one affine and one non-affine
input has been introduce. Later, in [30] the multiple-variable dynamic optimization was studied.
In the latter work only one affine input and multiple non-affine inputs has been considered. It is
stated that the multiple affine inputs case could be treated by transforming the additional affine
inputs into non-affine inputs.

In [31], the fed-batch operation of a biochemical reactor is analyzed for a single input case. The
feed rate of the substrate is chosen as the control variable. The entire duration of the operation
is divided into different subintervals. The system was optimized by approximating the feed flow
rate using discrete pulses and a constant flow rate over different subintervals. In the first strategy
the equations, lend themselves to an analytical solution. For the second case a shooting method
coupled with a sequential quadratic programming technique to obtain the constant flow rates
in the different subintervals was used. The method was analyzed for both equal and unequal
duration of subintervals.

Another interesting approach appears in [33] for the single input case in which the rate of bio-
mass production was optimized for a predefined feed exhaustion using the residue ratio as a
degree of freedom. The analytical expressions of these transitions for variable bioreaction ki-
netic parameters were determined. In fed-batch operation, the proposed constant feed policy
approximates the optimal feed policy closely.

Recently, in [35], the first paper of a two part work, the structure of the optimal solution of a
multi-input batch process is characterized in the absence of modeling error. While in the second
part, [36], the role of measurements is analyzed to handle uncertainty in the computation of the
optimal solution of a multi-input batch process.
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An overview of optimal adaptive control of chemical and biochemical reactors is is given by
Smets et al. [37]. Following the Minimum Principle of Pontryagin the derivation of optimal
control sequences for fed-batch production processes is revisited. Extensions towards fermen-
tation processes with multiple substrates and non-monotonic kinetics are also included. In
analogy to the work of Vam Impe and Bastin [26] the input is obtained as a function of the ad-
joint variables. However despite these attempts a robust solution to following the optimal batch
operation model is still not available. Therefore this problem is addressed in this chapter.

Taking into account the ever increasing industrial competition, process optimization provides a
unified framework for reducing production cost, meeting safety requirements and environmental
regulations and also improving product quality, and reducing product variability.

3.3.1 The optimal batch operation model

The objective is to optimize a function at the end of the semi-batch cycle. Such problems are
called end-point optimization problems and for multi-input affine nonlinear systems can be for-
mulated as follows:

Find an admissible control which minimize the performance index:

J = φ(X(t f )) (3.1)

subject to the dynamics

Ẋ = F (X,u) = f (X)+
m

∑
i=1

gi(X)ui (3.2)

and

S(X,u)≤ 0, (3.3)

whereX ∈ Rn, S is aς -dimensional vector of path constraints andf andgi are smooth vector
functions,u∈Rm, φ is a smooth scalar function representing the terminal cost. In others words,
the admissible control should enable the given system to follow an admissible trajectory which
at the same time minimizes the performance index.

3.3.2 Pontryagin’s formulation

By Pontryagin´s principle, the problem formulation (3.1)-(3.2) is equivalent to minimizing the
Hamiltonian:

H = 〈λ ,F 〉+ 〈γ,S〉= λ T

(
f (X)+

m

∑
i=1

gi(X)ui

)
+ γTS(X,u) , (3.4)
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whereλ ∈ Rn is the vector of adjoint variables defined by

λ̇ =−∂H
∂X

; λ (t f ) =
∂φ(X)

∂X

∣∣∣∣
t f

; γTS= 0. (3.5)

A necessary condition for minimizing the Hamiltonian is:

∂H
∂ui

= λ T ∂F

∂ui
+ γT ∂S

∂ui
= 0, ∀t ∈ (0, t f ), ∀i ∈ (1. . .m). (3.6)

It is said that the solution to the optimization problem is singular in the cases where the
maximum principle does not lead to a well-defined relation between the state and the control
variable. From the Eq. (3.4), we come to the conclusion that

∂H
∂ui

= λ Tgi(X)+ γT ∂S
∂ui

= 0, ∀i ∈ (1. . .m). (3.7)

3.3.3 Active path constraints

When the inputui is computed from an active path constraints, this part of the optimal solution
does not depend on the adjoint variables. Each path constraintsSj(X,u) is differentiated along
the trajectories of Eq. (3.2)

d
dt

(
Sj(X,u)

)
= L f Sj(X,u)+

m

∑
i=1

Lgi Sj(X,u)ui +
m

∑
i=1

∂
∂ui

(
Sj(X,u)

)
u̇i

dk

dtk

(
Sj(X,u)

)
= L f

(
dk−1

dtk−1

(
Sj(X,u)

))
+

m

∑
i=1

Lgi

(
dk−1

dtk−1

(
Sj(X,u)

))
ui

+
m

∑
i=1

n

∑
α=0

∂

∂u(α)
i

(
dk−1

dtk−1

(
Sj(X,u)

))
u(α+1)

i ,

wherek ∈ N and the time differentiation ofSj(X,u) is continued until the inputui appears

explicitly. And thisui obtained fromdk

dtk

(
Sj(X,u)

)
= 0 represents the optimal input in zone of

active path constraints. Ifk→ ∞, thenui does not influence the constraintSj , and, thusui can
not be obtained fromSj .

3.3.4 Solution inside the feasible region

When the optimal solution is inside the feasible region, i.e. no constraints are active, the optimal
solutions can be obtained from

λ T ∂F

∂ui
= 0, ∀t ∈ (0, t f ), ∀i ∈ (1. . .m) (3.8)
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whose time derivatives lead to an infinite number of necessary conditions, that is

dk

dtk

(
∂H
∂ui

)
=

dk

dtk

(
λ Tgi(X)

)
= 0, ∀i ∈ (1. . .m). (3.9)

Now, an operation between vector fields is introduced with the aim of building an algorithmic
solution to the optimization problem.

Definition: This operation involves two vector fields, the dynamics of the system,F =
f +∑m

i=1giui andg j , both defined in a subsetU ∈ Rn. From these, a new smooth vector field is
constructed, denoted byAd(F ,g j)(X) and defined as

Ad(F ,g j)(X) =
[

f ,g j
]
+

m

∑
i=1

[
gi ,g j

]
ui +

m

∑
i=1

n

∑
α=0

∂

∂u(α)
i

(
g j

)
u(α+1)

i

(3.10)

whereF is used instead off +∑m
i=1giui , and[·, ·] denotes the standard Lie bracket. Moreover,

ui
(k) = dkui

dtk . The recursive usage of this bracket is interpreted as the bracketing of vector field
F with the same vector fieldg j , and is denoted by

Adk(F ,g j) =
[

f ,Adk−1(F ,g j)
]
+

m

∑
i=1

[
gi ,Adk−1(F ,g j)

]
ui

+
m

∑
i=1

n

∑
α=0

∂

∂u(α)
i

(
Adk−1(F ,g j)

)
u(α+1)

i

(3.11)

with Ad0(F ,g j) = g j .

Proposition: Consider the systems governed by Eq. (3.2) with a performance index in the
form of Eq. (3.1). The first order necessary conditions of optimality Eq. (3.9) can be rewritten
as:

dk

dtk

(
∂H
∂u j

)
= λ T

(
Adk(F ,g j)

)
(X); k∈ {0,1, . . .}. (3.12)

2

It is clear that the first-order necessary conditions for optimality are linear functions of the ad-
joint states and moreover linear functions of the inputs and their time derivatives.

Remark: Notice that

d
dt

(
λ Tg j(X)

)
= λ T

(
[

f ,g j
]
(X)+

m

∑
i=1

[
gi ,g j

]
(X)ui

)
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with {i = j}=⇒ {[
gi ,g j

]
(X) = 0

}
. Then, the first time derivative of the necessary conditions

cannot provide the explicit form ofu j . ♦
Proposition: Consider the system governed by Eq. (3.2) with a performance index in the form
of the Eq. (3.1). The optimal state feedback which minimizes the objective function is given by:

detΛ j(X,u) = 0, (3.13)

where

Λ j(X,u) =
[
Ad0(F ,g j)

... Ad1(F ,g j)
... . . .

... Adn−1(F ,g j)
]
.

2

Thus, the Eq. (3.13) results in a state feedback law. Notice that the rank of the matrix generated
by the first order necessary conditions allow the characterization of the nature of this state
feedback law (dynamic or static). Eq. (3.13) allows three possible cases:

ı̇) rank
(
Λ j(X,u)

)
< n

ı̇ı̇) rank
(
Λ j(X,u)

)
= n andu j appears explicitly in Eq. (3.13).

ı̇ı̇ı̇) rank
(
Λ j(X,u)

)
= n andu j do not appear explicitly in Eq. (3.13).

3.3.5 The caseı̇) and ı̇ı̇)

Caseı̇) implies that the number of states needed to obtain the optimal inputu j is equal to the
rank

(
Λ j(X,u)

)
. And then an adequate choice of the control variables and/or a state can make

the analytical solution of this multi-variable optimization problem possible.
Case ı̇ı̇) implies that it is possible to obtain the inputu j just by solving the Eq. 3.13.
Additionally, from the Eq. 3.11 note that ifk ≥ 2, in general, the optimal control law will
have a dynamic nature. Then, it is necessary to find the initial conditions for this dynamic
state feedback law. These initial conditions could be obtained from the off-line solution of the
first-order necessary conditions of optimality.

3.3.6 The caseı̇ı̇ı̇)

Caseı̇ı̇ı̇) implies that a singular extremal evolves on the surfaceSj(X,u) = det
(
Λ j(X,u)

)
= 0

where the linear independence of

Ad0(F ,g j)
... Ad1(F ,g j)

... . . .
... Adn−1(F ,g j)

is lost. Then, the optimal solution is equivalent to controlling the system given by the Eq. 3.2
using the inputu j to the surfaceSj(X,u) = 0. In others words, the optimal problem become a
tracking problem.
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Feedback linearization is a versatile control technique for nonlinear systems which converts a
nonlinear system into a linear system using a nonlinear coordinate transformation and feedback
control. Controllers that allowy j(t) to track a smooth (at leastn-times differentiable) desired
trajectorySj = yd j (t) can be designed by writing the error dynamics,ej(t) = y j(t)− yd j (t). It
can be seen easily that

dne
dtn =

dny
dtn −

dnyd

dtn = v j −yd j
(n)(t) (3.14)

whereyd j
(n)(t) is then-th times derivative ofyd j (t). Therefore, a tracking controller can be

designed to be:

v j(t) = y(n)
d j

(t)−a j0

(
zj1−yd j

)−a j1

(
zj2− ẏd j

)− . . .−a jn

(
zjn−yd j

(n−1)
)

wheresjn +a jn−1sjn−1 +a jn−2sjn−2 + . . .+a j0 has all the roots on the left half plane.
Consider now the relative degree for each outputy j . Let r j be the smallest relative degree with
respect to any inputui , i = 1, . . . ,m. We assume that eachy j has such a degree. This means that

y j
(r j ) = Lr j

f h j(X)+LgLr j−1h j(X)u (3.15)

whereLgLr j−1h j(X)∈R1×m with at least one zero element. We can combine thesemequations,

[y1,y2,
...,ym]T = A(X)+B(X)u where

A(X) =




Lr1 f h1(X)
Lr2 f h2(X)

...
Lrm f hm(X)


 ; B(X) =




LgLr1−1h1(X)
LgLr2−1h2(X)

...
LgLrm−1hm(X)




Notice thatA(X) ∈ Rm andB(X) ∈ Rm×m. The feedback linearization can be easily extended
to MIMO systems ifB(X) is invertible. In that case, we can design

u = B(X)−1[−A(X)+v] (3.16)

wherev(t) ∈ Rm is an auxiliary input. This generate a set of decoupled and linear input-output
systems, fork = 1, . . . ,m, y j

(r j ) = v j . A MIMO system is said to have a vector relative degree
(r1 r2 . . . rm) is the individual outputsy j have a relative degreer j and B(x) is invertible. It turns
out that if B(x) is invertible, then the output functions and the derivatives of the output functions
can be used as independent coordinate functions. If

m

∑
j=1

r j = n (3.17)
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then, there will not be any internal dynamics. Note, that it is important to choose an appropriate
outputy j = h j(X).

The functionλ T gi(X) is called the switching function. This function vanishes over the singular
time interval. Outside the singular interval, the manipulated input,ui , takes either its maximin
value,uimax, or its minimum value,uimin, depending on the sign of the switching function. When
λ T gi(X) < 0, ui = uimax andλ T gi(X) > 0, ui = uimin. The times at which the input switches
from singular to nonsingular interval andvice versais called the switching time. The necessary
condition for optimality can be verified by integrating the adjoint equation (λ Tgi(X) = 0)
backwards in time. Note that the final condition for the backward integration is given by the
Eq. (3.5), which involves the performance index.

3.4 The Ideal Model

Biomass production is necessary in many biochemical plants, for example the production of
baker’s yeast and as a prerequisite for production of food additives and recombinant proteins.
For biomass production three basic modes of operation are possible: continuous, batch or fed-
batch. Continuous operation is usually not the most productive option as sufficient exhaustion
of the enriched feed can only be realized at rather low feed rates. In batch and fed-batch modes,
a part of the culture biomass can be left in the reactor for the next batch, enabling a cyclic oper-
ation of repeated batches or fed-batches.

F
SF

Figure 3.1:Schematic of the culture vessel for cell production

This chapter considers the problem of following an OBBOM for a bioreactor in the presence
of parametric uncertainties associated with the feed substrate concentration and the cell death
rate. The optimal operations model is the optimal trajectory that the feed flow and the substrate
concentration should have for the nominal cultivation to be optimal.

In order to study the scheme for bioreactors, a relatively simple mathematical model is selected.
The system consists of a mixing tank, where two streams are fed, one with nutrients at high
concentration and the other with a solvent including supplementary components. The reactor is
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assumed perfectly stirred. An unstructured biomass growth rate equation with substrate inhibi-
tion kinetics is chosen. Only a limited set of states is available for measuring.

In the fed-batch fermenter for cell production the substrate is converted by biomass into
additional biomass. It is assumed that the reactor is ideally mixed. The biomass and substrate
are represented by their concentration in the culture, denoted byX1 andX2, respectively. The
general unstructured mass balances for the well-mixed bioreactor can be represented by the
following equations for cells, substrate and reactor volume (X3):

Ẋ1 = X1 µ (X2)− X1F
X3

(3.18)

Ẋ2 = −X1

Y
µ (X2)+

F
X3

(SF −X2) (3.19)

Ẋ3 = F (3.20)

whereY is the biomass yield andµ (X2) is the specific growth rate. The growth rate relates
the change in biomass concentration to the substrate concentration. Two types of relationships
for µ (X2) are commonly used: the substrate saturation model (Monod Equation) and substrate
inhibition model (Haldane Equation). The substrate inhibited growth can be described by

µ (X2) =
µmax X2

K1 +X2 +K2X2
2

(3.21)

whereK1 is the saturation or Monod constant,K2 is the inhibition constant andµmax is the max-
imum specific growth rate. The value ofK1 expresses the affinity of biomass for substrate. The
Monod growth kinetics can be considered as an special case of the substrate inhibition kinetics
with K2 = 0 when the inhibition term is vanished.

The problem is to maximize the production of cell mass for the above dynamic system by
finding the optimal filling policyF(t) and the optimal substrate concentration in the inlet
streamSF(t). In order to apply the results developed in this chapter the optimization problem is
formulated as follows. Minimize the performance index

J = −X1|t=t f
(3.22)

subject to the dynamiċX = f (X)+g1(X,u2)u1 whereẊ = [X1 X2 X3],

f (X) =




X1 µ (X2)
−X1

Y µ (X2)
0


 , g1(X,u[2]) =



−X1

X3
u2−X2

X3

1


 (3.23)
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u1 = F andu2 = SF .And we can setg2(X,u1) = ∂ (g1(X,u2)u1)
∂u2

. It is important to remark the
possibility to choose a different performance index. As it is mentioned before the performance
index will be used to find the switching time, therefore the analysis is exactly the same and only
the condition for the backward integration of the adjoint equation,λ Tgi(X). Also notice, that
for this particular case we haven = 3 and therefore

rank
[
Ad0(F ,g1)

... Ad1(F ,g1)
... Ad2(F ,g1)

]
= 2 (3.24)

rank
[
Ad0(F ,g2)

... Ad1(F ,g2)
... Ad2(F ,g2)

]
= 2 (3.25)

The previous conditions could be interpreted as the existence of redundant equation in the sys-
tem given by the Eqs. 3.18-3.20. from the point of view of the optimization problem.

An alternative to avoid this inconvenience was pointed out by [29] for the single input case. That
is, taking the dilution rate as one of the control variable reduces the dimension of the system
by making use of the total mass balance which therefore is unnecessary for the solution of the
optimization problem. Thus, the model given by the Eqs. 3.18-3.20 can be rewritten as

Ẋ1 = X1 µ (X2)−X1D (3.26)

Ẋ2 = −X1

Y
µ (X2)+D(SF −X2) (3.27)

Ẋ3 = X3D. (3.28)

Hence, it is possible to consider just the two first equations by taking as the control inputs
u1 = D andu2 = SF . This leads to the following reduced modelẊ = f (X)+g1(X,u2)u1, where
now Ẋ = [X1 X2] and

f (X) =
[

X1 µ (X2)
−X1

Y µ (X2)

]
, g1(X,u2) =

[ −X1

u2−X2

]
. (3.29)

We can again defineg2(X,u1) = ∂ (g1(X,u2)u1)
∂u2

. Thus, the necessary conditions for optimality are
given by

λ T
[
g1

... [ f ,g1]
]

= λ TΛ1(X,u) (3.30)

λ T
[
g2

... [ f ,g2]
]

= λ TΛ2(X,u). (3.31)

The Eqs. (3.30)-(3.31) are related to the necessary condition for the inputu1 andu2, respectively.
Neither of the two equations provides an explicit function for the corresponding inputs.
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Λ1(X,u) =

[
−X1 −X1

∂ µ(X2)
∂X2

(u2−X2)

u2−X2
X1
Y

∂ µ(X2)
∂X2

(u2−X2)

]
(3.32)

Λ2(X,u) =

[
0 −X1

∂ µ(X2)
∂X2

u1

u1
X1
Y

∂ µ(X2)
∂X2

u1

]
. (3.33)

As discussed in the previous section under caseı̇ı̇ı̇), in this case, the optimal state trajectories
must lie on the surfaces:

S1 = det(Λ1(X,u)) =
X1

Y
∂ µ(X2)

∂X2
(u2−X2)(−X1 +Y(u2−X2))) = 0

(3.34)

S2 = det(Λ2(X,u)) = X1
∂ µ(X2)

∂X2
u1

2 = 0. (3.35)

In general, the optimization problem becomes a tracking problem. SinceX1(t) 6= 0 and
X2(t) 6= u2(t), from the Eq. (3.34) we can note thatS1 = 0 implies

∂ µ(x2)
∂x2

=− µmax
(
K2X2

2−K1
)

(
K2X2

2 +X2 +K1
)2 = 0. (3.36)

The value ofX2 that fulfils the previous equation is clearly:

X2
? =

√
K1

K2
. (3.37)

Now, the problem is to find an admissible control lawu1 such thatX2 = X2
?. Ii is very important

to note that the control lawu1 that keepsS1 = 0 also will ensure the second necessary condition
S2 = 0 for all admissible value ofu2.
In [41] it is shown that, if the dilution rate is constant, this simplified model has three
equilibrium points. The expression for the substrate values at the equilibrium points are given
by:

X2Eq1 = SF ; X2Eq2 =−ω; X2Eq3 =−φ ; (3.38)

where

φ =
D−µmax

2DK2
+

√(
D−µmax

2DK2

)2

− K1

K2
(3.39)

ω =
D−µmax

2DK2
− 2

√(
D−µmax

2DK2

)2

− K1

K2
. (3.40)
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As the dilution rate increases the two equilibrium pointsXEq2 andXEq3 collide. This kind of
bifurcation is called a fold bifurcation. The value of the bifurcation parameter at which the
two equilibria collide is called the dilution rate bifurcation point and is given by the following
expression:

D∗ =
µmax

1+2
√

K1K2
(3.41)

In other words, the above dilution rate value makeω = φ and therefore

X2Eq2 = X2Eq3 = X2
? =

√
K1

K2
(3.42)

This point is locally stable. Then, when we achieve the value ofX2 = X2
?, the biomass

concentration is given by:

X1
? =−Y

(−u2
(
2K1K2 +

√
K1K2

)
+2

√
K1K2K1 +K1

)

2K1K2 +
√

K1K2

X1
? = u2

Y
(
2K1K2 +

√
K1K2

)

2K1K2 +
√

K1K2
−Y

(
2
√

K1K2K1 +K1
)

2K1K2 +
√

K1K2

X1
? = u2 Y− K1Y√

K1K2
= u2 Y−Y

√
K1

K2
. (3.43)

From the latter expression we can note that

u2
⊕ =

√
K1

K2
= X2

?

is the value of the substrate concentration that produces zero biomass concentration. That is
clear in the sense that the inlet substrate concentration would be equal to the outlet substrate
concentration. On the other hand, once given this constraint on the biomass, the Eq. (3.43)
provides the optimal substrate concentration.

u2
? =

X1max

Y
+

√
K1

K2
. (3.44)
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The previous results show that it is possible to achieve the control goal for allu2 > X2
?. Then

a proper initial condition and open-loop operation can provide the necessary condition for opti-
mality. To avoid be limitated to a set of initial conditions, we can design a closed-loop control
law.

The Tracking Problem

In the previous subsection it was shown that it is only sufficient to design a control law for
u1, andu2 is given by the constraint on biomass and Eq. (3.43). Consider the nonlinear time
invariant system:

Ẋ = f (X)+g(X)u
y = h(X)

where the output that allows the exact feedback linearization is given by

h(X) =
X2−SF

X1

Notice that under this output, we have the relationships

Lgh(X) = 0

LgL f h(X) = h(X)
∂ µ(X2)

∂X2

(
1
Y

+h(X)
)

X1

L2
f h(X) =

(
µ2(X)

X1
+

µ(X)
Y

∂ µ(X2)
∂X2

)(
1
Y

+h(X)
)

X1

implying that the relative degree of the outputh(X) is r = 2. Therefore, the controller is given
by

u1 = α(−β +v1), (3.45)

where

α =
1

LgL f h(X)
(3.46)

β = L2
f h(X) (3.47)
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andv1 is the dynamics that is desirable to be imposed.

v1 = −a10(h(X)−Λ)−a20(z2) ;

and

Λ =
X2

?−u2
?

X1
? , z2 = −µ(X2)

(
h(X)+

1
Y

)
.

The feedback law given by the Eq. (3.45) guarantees the first-order necessary condition for op-
timality. Since, in general, a bioreactor starts with a high substrate concentration, there will be
an initial nonsingular phase where no substrate is fed. The switch to the singular phase occurs
whenX2 reaches the valueX2

?. Therefore, the closed-loop system is that one which has the tra-
jectory of the feed flow and the substrate concentration should track in order to get the optimal
cultivation. Thus, hereafter this system will be considered as the master system.

In the next section a moreRealistic Modelis considered, by means of which a perturbed fed-
batch bioreactor model will be studied and taken as the slave system.

3.5 The Realistic Model

The configuration studied here for the fed-batch bioreactor of cell production is shown schemat-
ically in Figure 3.2.

F2

F1

SF

Bioreactor

Z1

Z2

Z3

Figure 3.2:The figure shows the system, which consists of a tank reactor, where two streams
are fed. F1 with substrate at high concentration andF2 with a solvent including
supplementary components. The reactor is assumed perfectly stirred.

The assumptions for the analysis are: (i) open-loop operation, (ii) all model parameters and
physicochemical properties are real and finite, but unknown, (iii) the fermentation occurs in
a perfectly mixed continuous bioreactor operated isothermally. Under such assumptions, the
model is given by the following differential equations:
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dZ1

dt
= Z1(µ (Z2)− rd)− Z1

Z3
F1− Z1

Z3
F2 (3.48)

dZ2

dt
= −Z1

Y
µ (Z2)+

Sf −Z2

Z3
F1− Z2

Z3
F2 (3.49)

dZ3

dt
= F1 +F2 (3.50)

whereZ1 represent the Biomass conc.[g/l ], Z2 is the Substrate conc.[g/l ], Z3 is the volume[l ]
in the Bioreactor.F1 is the feed flow rate[l/h] with the limiting substrate, andF2 is the second
feed flow rate[l/h] free of the limiting substrate.

Table 3.1:Operating variables and parameters of the fermentation process model.
Symbol Meaning Value Units

Sf Substrate feed conc. 20 [g/l ]
Y Yield coefficient 0.5 −
µmax Maximal growth rate 1 [l/h]
K1 Saturation parameter 0.03 [g/l ]
K2 Inhibition parameter 0.5 [l/g]
F1 Feed Flow rate (input 1)− [l/h]
F2 Feed Flow rate (input 2)− [l/h]

The inlet substrate concentration and the cell death rate will be considered unknown. There-
fore, a robust control structure should be designed to make that this model to follow the master
system in spite of exogenous disturbances.

For the sake of simplicity, the model given by the Eqs. (3.48)-(3.50) can be rewritten as

dZ
dt

= f̂ (Z)+
2

∑
i=1

ĝi(Z)ûi

where

f̂ (Z) =




Z1(µ (Z2)− rd)
−Z1

Y µ (Z2)
0


 , g1(Z) =



−Z1

Z3
Sf−Z2

Z3

1


 , g2(Z) =



−Z1

Z3

−Z2
Z3

1


 .

In the next section, the strategy to follow the Optimal Batch Operation Model will be designed.
The main idea is based on a master slave synchronization using a robust control law based
on differential geometry. Additionally, a reachability analysis will be performed and the exact
feedback linearization will be studied in order to show the advantages of using two inputs.
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3.6 Following the Optimal Batch Operation Model

3.6.1 Reachability Analysis

Reachability analysis is an important tool in analysis and synthesis of control systems. It refers
to the problem of knowing if it is possible to steer a dynamical system from the pointz0 to z1. If
this steering is possible, we say thatz1 is reachable fromz0. Reachability analysis of the SISO
fed-batch bioreactor has received some attention previously ([39]). In this section, we consider
the reachability analysis of the MIMO case where both feed concentration and flow rate are
inputs. The aim is to provide an understanding of the advantages of employing two inputs.

The reachability can be investigated (at least locally) by means of the differential geometric
methods. The methodology to determine, locally, the reachability properties from a given affine
systems was clearly established in [38]. The following algorithm constructs the reachability
distribution givenm+1 vector fields{τ1,τ2, . . . ,τq}= { f , ĝ1, . . . , ĝm}.

∆0 = span{ĝ1 . . . ĝm}

∆i = ∆k−1 +
q

∑
i=1

[τi ,∆k−1]

for i = 0,1, . . . ,n−1, wheren is the number of states. The application of the above methodology
to the systems given by the Eqs. (3.48)-(3.50), for whichn = 3, constructs the following
sequence

∆0 = span{ĝ1, ĝ2}
∆1 = span

{
ĝ1, ĝ2,

[
f̂ , ĝ1

]
,
[

f̂ , ĝ2
]
, [ĝ1, ĝ2] , [ĝ2, ĝ1]

}

and

∆2 = ∆1 +span
{[

f̂ , ĝ1
]
,
[

f̂ , ĝ2
]
,
[

f̂ ,
[

f̂ , ĝ1
]]

,
[

f̂ ,
[

f̂ , ĝ2
]]

,
[

f̂ , [ĝ1, ĝ2]
]
,
[

f̂ , [ĝ2, ĝ1]
]

, [ĝ1, ĝ2] ,
[
ĝ1,

[
f̂ , ĝ1

]]
,
[
ĝ1,

[
f̂ , ĝ2

]]
, [ĝ1, [ĝ1, ĝ2]] , [ĝ1, [ĝ2, ĝ1]]

, [ĝ2, ĝ1] ,
[
ĝ2,

[
f̂ , ĝ1

]]
,
[
ĝ2,

[
f̂ , ĝ2

]]
, [ĝ2, [ĝ1, ĝ2]] , [ĝ2, [ĝ2, ĝ1]]

}

f̂ (Z) =




Z1(µ (Z2)− rd)
−Z1

Y µ (Z2)
0


 , ĝ1(Z) =




ĝ21
Sf
Z3
− ĝ22

1


 , ĝ2(Z) =




ĝ21

ĝ22

1


 (3.51)

whereĝ21 andĝ22 represent the first and second input of the vectorĝ2 respectively, and̂g2 was
previously defined in Eq. (3.51). From the above representation ofg1 andg2 it is clear that

rank(∆0) = rank[ ĝ1, ĝ2] = 2

(3.52)
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and it is possible prove that

∂ ĝ1(Z)
∂Z

=




−Z3
−1 0 Z1

Z3
2

0 −Z3
−1 −Sf−Z2

Z3
2

0 0 0


 ;

∂ ĝ2(Z)
∂Z

=




−Z3
−1 0 Z1

Z3
2

0 −Z3
−1 Z2

Z3
2

0 0 0


 .

Therefore

∂ ĝ2(Z)
∂Z

ĝ1(Z) =
∂ ĝ1(Z)

∂Z
ĝ2(Z) =

[
2

Z1

Z3
2 ,−Sf −Z2

Z3
2 +

Z2

Z3
2 ,0

]T

. (3.53)

On the other hand, we have

∂ f̂ (Z)
∂Z

=




µ(Z2)− rd
∂ µ(Z2)

∂Z2
Z1 0

µ(Z2)
Ys

−∂ µ(Z2)
∂Z2

(
Z1
Ys

)
0

0 0 0


 . (3.54)

Then

[ f , ĝ1] =
[

∂ µ(Z2)
∂Z2

(
Z1(Z2−Sf )

Z3

)
,−∂ µ(Z2)

∂Z2

(
Z1Z2

Ys Z3

)
,0

]

[ f , ĝ2] =
[

∂ µ(Z2)
∂Z2

(
Z1Z2

Z3

)
,−∂ µ(Z2)

∂Z2

(
Z1Z2

Ys X3

)
,0

]

yielding

rank(∆1) = rank
[

ĝ1, ĝ2,
[

f̂ , ĝ1
]
,
[

f̂ , ĝ2
]]

= 3.

Since the systems has 3 states, to prove thatrank(∆2) = 3 is trivial.

In [39] it is shown that the difficulties for controlling fed-batch fermentation processes are pri-
marily caused by the fact that the rank of the reachability distribution is always less than the
number of state variables. In practical terms this means that if we want to reach a predefined
state at the end of a batch and only the inlet flow rate of the substrate solution of a given con-
centration is manipulated then it is necessary to choose an appropriate initial state in order to
achieve the goal of matching the desired set of states.
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Here it is shown that the usage of two inputs overcomes the aforementioned problems. The
inclusion of the extra input variable guarantees the rank of the reachability distribution. The
rigorous nonlinear analysis presented above provides a formal explanation for the advantages
of employing an additional input.

3.6.2 Studying the Exact Feedback Linearization Problem

The exact linearization ([45]) with the corresponding geometric approach ([38]) is one of the
most effective and fundamental techniques in the field of nonlinear control. This technique is
widely used for actual nonlinear plants and plays an important role in nonlinear control systems
theory.

Exact linearization is a method to transform a nonlinear system into a linear one, and it is usu-
ally used for stabilization and tracking control of nonlinear systems with a linear compensator
for the linearized system. In this design procedure, a solution of a set of partial differential
equations is used to obtain the linearizing transformation.

The necessary and sufficient condition to achieve the exact linearization are given in the
Theorem 3.6.2. To present the theorem the following distributions are defined:

G0 = span{ĝ1 . . . ĝm}
G1 = span

{
ĝ1 . . . ĝm,adf ĝ1 . . .adf ĝm

}

. . .

Gi = span
{

adk
f ĝ j : 0≤ k≤ i,1≤ j ≤m

}

for i = 0,1, . . . ,n−1.
Theorem suppose that the matrixg(z0) has rankm. Then, the state space exact linearization is
solvable if and only if

(i) for each0≤ i ≤ n−1, the distributionGi has constant dimension nearz0;

(ii ) the distributionGn−1 has dimensionn;

(iii ) for each0≤ i ≤ n−2, the distributionGi is involutive.

i.e., there existm real-valued functionλ1(x),λ1(z), . . . ,λm(z) defined on a neighborhoodU of
z0, such that the system of the form

ẋ = f (x)+
m

∑
i=0

gi(x)ui

yi = λi(x)
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has a vector relative degree{r1, . . . , rm} atx0, with r1 + r2 + . . .+ rm = n. ¥

In others words, the main issue, in order to achieve the exact feedback linearization, is to find
the solutionsλ1(Z),λ1(Z), . . . ,λm(Z) of equations of the form

Lg j L
k f λi(Z) = 0 for all 0≤ k≤ r i−2,1≤ j ≤m. (3.55)

In the case treated here the previous equations have the following explicit form:

−∂λ1(Z)
∂Z1

(
Z1

Z3

)
+

∂λ1(Z)
∂Z2

(
Sf −Z2

Z3

)
+

∂λ1(Z)
∂Z3

= 0 (3.56)

−∂λ1(Z)
∂Z1

(
Z1

Z3

)
− ∂λ1(Z)

∂Z2

(
Z2

Z3

)
+

∂λ1(Z)
∂Z3

= 0 (3.57)

In this case, their solutions are given by

λ1(Z) = `

(
Z3

Z1

)
(3.58)

λ2(Z) = `(Z2) (3.59)

where` : R→ R could be any function.
Therefore,r1 + r2 = 3 and the relative degree matrix is given by

Rdm(X) =

[
X3X1

∂ µ(X2)
∂X2

(Sf −X2) X3X1
∂ µ(X2)

∂X2
X2

X3 X3

]
. (3.60)

Following Eq. (3.15), the system in the new coordinates is given by

[
ÿ1

ẏ2

]
=

[
L2

f h1(X)
L f h2(X)

]
+

[
Lg1L f h1(X) Lg2L f h1(X)h1(X)
Lg1h2(X) Lg2h2(X)

] [
u1

u2

]

and we can appreciate that

B−1(X) =




1
X1X3Sf

(
∂ µ(X2)

∂X2

)−1
X2

Sf X3

− 1
X1X3Sf

(
∂ µ(X2)

∂X2

)−1 Sf−X2
Sf X3


 . (3.61)

Thus, the conditions imposed by Theorem 3.6.2 are fulfilled.

IPICYT 38



3.6 Following the Optimal Batch Operation Model Optimal Batch Operation Models

In the two previous works of [40], the expression for the output that achieves the exact lin-
earization is a function of the states and the inlet substrate concentration (SF ). But if we take
into account the fact that to know the exact value ofSF with high precision is very difficult and
moreover this value could be also subject to continuous perturbations. Therefore, we can note
that the application of the exact linearization in the SISO case is practically impossible.

In general terms, we can say that this is an additional advantage in the usage of two input
for control purposes. This is due to the fact that the outputs of the system that achieve the
exact linearization only depend on the states and not on the parameters, see Eqs. (3.58)-(3.59).
Although, for the particular control objectives here treated we can note that the inversion of the
matrixB−1(X) depends on the inverse of∂ µ(X2)

∂X2
, equations that we know will be equal to zero at

the final time. Therefore, the exact linearization is not an alternative to follow the optimal batch
operation model. However, this problem could be also relevant for others control purposes.

3.6.3 Robust Nonlinear Synchronization

Synchronization

Synchronization is often categorized on the basis of whether the coupling mechanism is unidi-
rectional or bidirectional. Stable synchronization with unidirectional coupling has been called
master-slave synchronization (although [44] shows that unidirectionally and bidirectionally
coupled synchronized systems are locally equivalent).

Here, a master-slave configuration is used to follow an optimal batch operations model for a
Bioreactor. That is, the optimal operations model is consider as the master system which de-
fines the trajectory that the feed flow rate and the substrate concentration should follow in order
to achieve an optimal cultivation, whereas the “real" bioreactor (the one with unknown dynam-
ics and perturbations) is considered as the slave. The advantages of this idea are that we can
easily perform the optimization for a simplified model, and then just design the controller such
that the real bioreactor is synchronized with the optimized one in spite of unknown dynamics
and perturbations. Hereafter both the master and the slave will be considered as deterministic
finite dimensional dynamical system.

In order to allow a rigorous treatment of this idea, it is necessary to introduce a very clear
definition of synchronization. Colloquially, synchronization is the concurrence of events
or motions with respect to time. From this intuitive definition Ref. [43] points out that
synchronization requires the following tasks:

• Separating the dynamics of a large dynamical system into the dynamics of subsystems.

• Measuring properties of the subsystems.
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• Comparing properties of the subsystems.

• Determining whether the properties agree in time.

If the properties agree then the systems are synchronized. To introduce a rigorous definition
of Synchronization, assume that a large stationary deterministic finite-dimensional dynamical
system is divided into two subsystems

dX
dt

= F1(X,Z) ;
dZ
dt

= F2(X,Z) , (3.62)

whereX ∈Rd1 andY ∈Rd2 are vectors which may have different dimensions. The phase space
and vector field of the large system is formed from the product of the two smaller phase spaces
and vector fields.

Let us consider the trajectory of the large dynamical system, given by Eq. (3.62), with the initial
conditionY0 = [X0,Z0] ∈ Rd1⊗Rd2. And the curvesφX(Z0) andφY(Z0) are the projections of
the componentsX andZ respectively. We say thatφX(Y0) andφZ(Y0) are trajectories of the first
and second subsystem of Eq. (3.62).

Let χ denote the space of all trajectories of the first subsystem, and consider the function
GX : χ⊗R→ Rk which is not identically zero. The firstR represent the time, and is included
such thatGX may make explicit reference to time. The functionGX is considered apropertyof
the first subsystem. The image of[φX(Y0), t] ∈ χ ⊗R underGX is the result ofmeasuring the
propertyof the first subsystem, and will be denoted byG(X) ∈ Rk. Similar definitions can be
made for the second subsystem.

Here, it is assumed that this property phase belongs to the space of the subsystem, therefore
measuring the property means determining the values for the coordinates. Therefore the prop-
erty depends on time; In particular the property being measured, andG(X) = X(t) provides
the values of the measurement. Two measurements agree in time if and only if the time in-
dependent functionH : Rk⊗Rk → Rk that compares the measurement properties is such that
H[G(X),G(Y)] = 0.

Definition ([43]) The subsystems in Eq. 3.62 are synchronized with respect to the properties
GX andGY if there is a time independent mappingH : Rk⊗Rk → Rk such that

‖H[G(X),G(Z)]‖= 0 (3.63)

holds on all trajectories.2
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Here‖·‖ is any norm. Based upon the previous definition the following practical definition is
introduced.

Definition[Practical Synchronization] The subsystems in Eq. 3.62 are synchronized with
respect to the propertiesGX andGY if there is a time independent mappingH : Rk⊗Rk → Rk

such that

‖H[G(X),G(Z)]‖ ≤ ε (3.64)

holds on all trajectories.2

Here,ε is the maximum tolerable separation between the subsystem trajectories. In particular,
the following comparison function here used:

H[G(X),G(Z)] = G(X)−G(Z). (3.65)

3.6.4 Robust Control Law

Here we consider a robust control problem for a class of MIMO nonlinear systems which are
minimum phase and of relative degree{1,1, . . . ,1}. First we consider the problem of design-
ing ahigh gain feedback nonlinear controllerthat will render the system asymptotically stable
under any unknown dynamics and perturbations. Next we pay attention to thesliding mode
control approachfor the same problem. With the differential geometric method of nonlinear
systems, [42] reviewed some important results about the passivity of nonlinear systems and ob-
tained that, under mild regularity assumptions, an affine nonlinear system is locally feedback
equivalent to a passive system if, and only if, the system has relative degree:{1, . . . ,1} and is
weakly minimum phase [[42], Theorem 4.7].

Let us consider the following uncertain MIMO process system as

ż = f (z)+∆ f (z)+

(
m

∑
i=1

gi(z)+
m

∑
i=1

∆gi(z)

)
u (3.66)

y = h(z) (3.67)

wherez∈Rn, u∈Rm, y∈Rm, and f (·), ∆ f (·), gi(·), ∆gi(·) are smooth vector fields on an open
setU ∈ Rn.
It is assumed that the state vector is measured or estimated from available measurements.
Moreover, let us take the unperturbed form of Eqs. (3.66-3.67) as thenominal systemi.e.:

ż = f (z)+
m

∑
i=1

gi(z)ui (3.68)

y = h(z) (3.69)
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Consider the so calledstrong relative degreefor each outputyi . Let ρi be the smallest relative
degree with respect to any inputui , in the nominal system. This means that

yρi
i = Lρi

f hi(z)+LgLρi−1
f hi(z)u (3.70)

whereLgLρi−1
f hi(z) ∈ Rm. That is, the row vector given by the Eq. (3.70) is nonzero (i.e., has

at least a nonzero element). The existence of strong relative degree for each output such make
possible combine thesem equations,




yρ1
i

yρ2
2
...

yρm
m


 = A(z)+B(z)u

whereA(z) ∈ Rm andB(z) ∈ Rm×m. The nonlinear state feedback control law that provides
input-output linearization of the nominal system can be expressed as

u = B(z)−1(−A(z)+v(t)) , (3.71)

wherev(t) ∈Rm is an auxiliary input. The nominal system has astrong vector relative degree
(ρ1, . . . ,ρm) if the individual outputyi has strong relative degreeρi and B(z) is invertible.
Considering the tracking problem, it is desired thatyi(t) → ydi(t), whereydi(t) is the smooth
(at leastρi-times differentiable) desired trajectory. In order to design the control structure we
define the error dynamics asei(t) = yi(t)−ydi(t). Therefore




e(ρi)
1 (t)

...

e(ρi)
2 (t)


 =




y(ρ1)
1 (t)−y(ρ1)

d1
(t)

...

y(ρm)
m (t)−y(ρm)

dm
(t)




In this case, it is possible to prove thatρ1 = . . . = ρm = 1, therefore

ėi(t) = L f hi(z)+Lghi(z)u+L∆ f hi(z)+L∆ghi(z)u− ẏdi(t)

Consequently, by applying the control law given by the Eq. (3.71), we have an uncertain
dynamic system as follows:

ė(t) =




ė1(t)
...

ėm(t)


 = F̃(z) +

(
I + B̃(z)

)
v− ẏd(t), (3.72)

where
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B̃(z) =




L∆g1h1(z) . . . L∆gmh1(z)
...

. ..
...

L∆g1hm(z) . . . L∆gmhm(z)







Lg1h1(z) . . . Lgmh1(z)
...

. ..
...

Lg1hm(z) . . . Lgmhm(z)




−1

F̃(z) =




L∆ f h1(z)
...

L∆ f hm(z)


 − B̃(z)




L f h1(z)
...

L f hm(z)


 ,

whereI ∈ Rm×m is the identity matrix.
Taking

v = ẏd(t)− 1
ε

e(t)−a e(t) (3.73)

the system becomes:

ė(t) = F̃(z)+
(

I + B̃(z)
)[

ẏd(t)− 1
ε

e(t)−a e(t)
]
− ẏd

or equivalently

ė(t) =−
(

1
ε

+a

)(
I + B̃(z)

)
e(t)+

(
F̃(z)+ B̃(z) ẏd

)
(3.74)

In order to achieve the Robust Practical Synchronization a high gain mode control law is de-
signed such that trajectories of the closed-loop system are attracted to a ball of radiusε and with
center at the origin.

Proposition 3.1. If ‖ fi(z)‖ > ‖∆ fi(z)‖ and‖gi, j(z)‖ > ‖∆gi, j(z)‖ given by Eq. 3.67, for all
i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}, the dynamic system given by the Eq. (3.74) converges asymp-
totically to a ball of radiusε and with center at the origin.♦

Notice that although the conditions‖ fi(z)‖> ‖∆ fi(z)‖ and‖gi, j(z)‖> ‖∆gi, j(z)‖ are restrictive
in general terms, from a practical point of view, if such conditions are not fulfilled implies that
we do not have a sufficiently accurate model of the system. Moreover, note that the previous
proposition automatically fulfills the requirements for practical synchronization according to
its definitions. Thus, the control law guarantees the robust synchronization of the master and
slave systems and therefore ensures that the the real systems follow the optimal batch operation
model. In order to illustrate the important issues we display in the following section the
numerical simulation performed using the method here developed.
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Numerical Simulations

In order to apply the aforemention scheme, the MIMO Fed-batch Reactor studied in the section
3.5 and given by the Eqs. (3.48)-(3.50) is rewritten as follows.

f (Z) =
[

Z1 µ (Z2)
−Z1

Y µ (Z2)

]
, g1(Z) =

[ −Z1

Sf −Z2

]
, g2(Z) =

[ −Z1

−Z2

]

∆ f (Z) =
[ −Z1 rd

0

]
, ∆g1(Z) =

[
0
δ

]
, ∆g2(Z) =

[
0
0

]

h1(z) = z1, h2(z) = z2. (3.75)

According to the proposed approach, it is possible to show that the dynamic error is given by
the following equations

[
ė1(t)
ė2(t)

]
=




−rdz1 +w1

δ z2µmax(z2Y+z1)
Sf (K2z2

2+z2+K1)Y
− δ z2w1

z1Sf
+

(
1+ δ

Sf

)
w2


−

[
ẏd1(t)
ẏd2(t)

]
. (3.76)

In order to examine the robustness of the approach, various perturbation were imposed to the
bioreactor that are presented graphically in the Figure 3.3.

time

(a)

r d S F

(b)

Figure 3.3:The numerical simulation – blue solid lines represent the perturbation imposed over
the bioreactor. Plot (a) represents the evolution of dead cell rate (rd) in time and
plot (b) the variation of fed substrate concentration (SF ) in time.

Figures 3.4-3.5 shows the performance of the scheme proposed in this chapter under the
conditions mentioned before. As one can see the scheme does a very good job.
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Sliding Control Law

In this section, another alternative to achieve the practical synchronization is presented. This
alternative is the sliding mode control, which is characterized by a control law containing the
discontinuous nonlinearitysgn(·). This discontinuity causes some theoretical as well as practi-
cal problems (the chattering). The approach used in this section is based on the work of Behtash
[47]. In the following figures, we present the numerical results of the application of the sliding
control to the same problem treated in previously.

To achieve the practical synchronization the system given by the Eq. (3.72) should converge to
a neighborhood of zero. According to Behtash [47], using the control structure it is possible to
achieve the task.

v = ẏd(t)−sgn(e(t))−a e(t) (3.77)

From the graphics given in the Fig. 3.6-3.7, it is possible to conclude that although the sliding
controller achieves the synchronization the presence of chattering could be very damaging for
the actuators. On the other hand, the high gain controllers could be quite sensitive to noise.

Sliding Control Law and Sliding Observer

Taking into account not only the robustness against noise, but also in the sense of state
estimation, in this section a sliding control based on sliding state observer is proposed. The
approach used in this section is based on the work of Wang et al.[46].
From the Fig. 3.8, it is possible to conclude that although the general performance in this case
is bad in comparison with the two previous cases, in this case is much more robust in the sense
that we need less outputs, i.e, we estimate one of the states of the system.

3.7 Concluding Remarks

In this chapter, the problem of following an optimal batch operation model for a Bioreactor in
the presence of uncertainties was tackled through a master-slave synchronization approach. The
advantages of this idea are that we can easily perform the optimization for a simplified model
and then design the controller such that the real bioreactor is synchronized with the optimized
one in spite of unknown dynamics and perturbations.

This general method can also be used for transition from batch and fed-batch to continuous
culture or for repeated fed-batch operations. It is possible also to note that our scheme is very
general allowing the possibility of following the optimal batch operation model under any un-
known dynamics. Moreover, this method represents a new application field for many of the
system synchronization results.
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In addition, the reachability of a simple nonlinear fed-batch fermentation process model and the
exact feedback linearization are investigated in this chapter. It is shown that the inclusion of the
extra input variable guarantees the rank of the reachability distribution and make plausible the
usage of the exact linearization technique. This type of results complement the work developed
by Szerderkényi et al.[39] in the understanding of the controllability properties of the fed-batch
fermentation process.

3.8 Notation and Definitions

In this section, we briefly recall some basic concepts from differential geometry.

Definition[Lie derivative]: This operation involves a real-valued functionΛ and a vector field
ζ , both defined in a subsetU ∈ Rn. From these, a new smooth real-valued function is defined,
denotedLζ

Λ(X), and defined as

Lζ Λ(X) =
∂Λ
∂X

ζ (X) =
n

∑
i=1

∂Λ
∂Xi

ξi(X).

The repeated use of this operation is possible. Thus, it is possible to construct thejth Lie
derivative. This can be expressed asLζ

j (Λ)(X(t)) and is defined inductively by

Lζ
0Λ(X) = Λ(X)

Lζ
jΛ(X) =

∂
∂X

(
Lζ

j−1Λ(X)
)

ζ (X).

2

Proposition[Lie bracket]: This operation involves two vector fieldsζ andξ , both defined in a
subsetU ∈ Rn. From these ones, a new smooth vector field is constructed, denoted[ζ ,ξ ](X)
and defined as

[ζ ,ξ ] =
∂ξ
∂X

ζ (X)− ∂ζ
∂X

ξ (X)

where∂ξ
∂X and ∂ζ

∂X stand for the jacobian matrices ofξ andζ , respectively. Repeated bracketing
of vector fieldξ with the same vector fieldζ is possible. Whenever this is required, in order to
avoid a notation of the form[ζ , [ζ , . . . , [ζ ,ξ ]]], we define such operation recursively, as

adζ
kξ (X) =

[
ζ ,adζ

k−1xi(X)
]
.

for anyk≥ 1, settingadζ
0ξ (X) = ξ (X). 2
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This operation is characterized by three basic properties that are summarized in the following
statement.
Proposition: The Lie Bracket of a vector field has the following properties:

i) it is bilinear overR, i.e., if ζ1, ζ2, ξ1, ξ2 are vectors fields andr i , r2 real numbers, then

[r1ζ1 + r2ζ2,ξ1] = r1 [ζ1,ξ1]+ r2 [ζ2,ξ1]
[ζ1, r1ξ1 + r2ξ2] = r1 [ζ1,ξ1]+ r2 [ζ1,ξ2]

ii) it is skew commutative, i.e.

[ζ1,ξ1] = − [ξ1,ζ1]

iii ) it satisfies the Jacobi identity

♦

3.9 Proof of proposition 3.1

Consider the following Lyapunov function

V(e) =
1
2

eT I e⇒ V̇(e) = eT I ė (3.78)

(3.79)

V̇(e) = eT I

(
−

(
1
ε

+a

)(
I + B̃(z)

)
e+

(
F̃(z)+ B̃(z) ẏd

))

V̇(e) = −
(

1
ε

+a

)
eTe−

(
1
ε

+a

)
eT B̃(z)e+eT

(
F̃(z)+ B̃(z) ẏd

)
.

Let

ε1 =
∥∥∥F̃(z)

∥∥∥
∞

; ε2 =
∥∥∥B̃

∥∥∥
∞

; d = ‖ẏd‖∞

Note that
∣∣eTe

∣∣ ≤ |e|21 ;
∥∥∥eT

(
F̃(z)+ B̃(z) ẏd

)∥∥∥
∞
≤ (ε1 + ε2 d) |e|
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when it is assumed that
∣∣∣eT B̃(z) e

∣∣∣ ≤
∥∥∥B̃(z)

∥∥∥ |e|21 . (3.80)

Therefore

V̇(e) ≤ −
(

1
ε

+a

)
|e|21−

(
1
ε

+a

) ∥∥∥B̃(z)
∥∥∥ |e|21 +(ε1 + ε2 d) |e|1

V̇(e) ≤ −(1+ εa)(1+ ε2) |e|21 + ε (ε1 + ε2 d) |e|1
Let

c1 = (1+ εa)(1+ ε2) ; c2 = (ε1 + ε2 d) (3.81)

then

V̇(e) ≤ −c1 |e|21 + ε c2 |e|1

V̇i(e) ≤ −c1 |ei |21 + ε c2 |ei |1 .

Therefore

(ε → 0)⇒ (
V̇(e) < 0

)
.

This complete the proof.2
Proposition The inequality given by the Eq. 3.80 stand in our case.

∣∣∣eT B̃(z) e
∣∣∣ ≤

∥∥∥B̃(z)
∥∥∥

∞
|e|21

♦
Note that

∣∣∣eT B̃(z) e
∣∣∣ =

∣∣∣∣∣
n

∑
i=1

n

∑
j=1

[
B̃(z)

]
i, j

ei ej

∣∣∣∣∣

|e|21 =

(
n

∑
j=1
|ei |

)2

=
n

∑
i=1

n

∑
j=1

αi, j |ei |
∣∣ej

∣∣
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where
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This completes the proof.2
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Figure 3.4:The numerical simulation – blue solid lines represent the master system, red dotted
lines represent slave withε = 0.01and grey dash-dotted lines represent slave with
ε = 0.001. Plot (a) represents the evolution of biomass concentration in time and
plot (b) the variation of substrate concentration in time. Plot (c) represents a detail
of the initial evolution of biomass concentration in time and plot (d) a detail of the
evolution of biomass concentration when the perturbation over the dead cell rate
occurs. Plot (e) represents evolution of bioreactor’s volume in time and plot (f) the
difference in the evolution between the control laws withε = 0.01andε = 0.001,
respectively.
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Figure 3.5:The numerical simulation – blue solid lines represent the master system, red dotted
lines represent slave withε = 0.01and grey dash-dotted lines represent slave with
ε = 0.001. Plot (a) represents the evolution of inputu1 in time and plot (b) a detail
of the evolution of inputu1 when the perturbation over the dead cell rate occurs. Plot
(c) represents the evolution of inputu2 in time and plot (d) a detail of the evolution
of inputu2 when the perturbation over the dead cell rate occurs.
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Figure 3.6:The numerical simulation – blue solid lines represent the master system and red
dash-dotted lines represent Slave System under the sliding control law. Plot (a)
represents the evolution of biomass concentration in time and plot (b) a detail of
the evolution of biomass concentration when the perturbation over the dead cell rate
occurs. Plot (c) represents the evolution of substrate concentration in time and plot
(d) represents evolution of bioreactor’s volume in time.

IPICYT 52



3.9 Proof of proposition 3.1 Optimal Batch Operation Models

time

(e)

u 1 u 1

(f)

time

(g)

u 2 u 2
(h)

Figure 3.7:The numerical simulation – blue solid lines represent the master system and red
dash-dotted lines represent slave system under the sliding control law. Plot (e)
represents the evolution of inputu1 in time and plot (f) a detail of the evolution
of inputu1 where it is possible to appreciate the chattering effect.
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Figure 3.8:The numerical simulation – blue solid lines represent the master system and red
dash-dotted lines represent slave system under the sliding control law and coupled
with a sliding observer. Plot (a) represents the evolution of substrate and biomass
concentration in time and plot (b) a detail of the evolution of biomass concentration.
Plot (c) represents the evolution of inputu1 concentration in time and plot (d) a detail
of the evolution of inputu2.
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4
Inferring Mixed Culture Growth

4.1 Inferring mixed-culture growth from total biomass data
in a wavelet approach

This work was performed in collaboration with the Ph.D. student Pilar Escalante-Minakata,
Dr. Jose Salome Murguía Ibarra and Professor Dr. Haret C. Rosu [48]. Here, we shown that
the presence of mixed-culture growth in batch fermentation processes can be very accurately
inferred from total biomass data by means of the wavelet analysis for singularity detection. This
is accomplished by considering simple phenomenological models for the mixed growth and the
more complicated case of mixed growth on a mixture of substrates. The main quantity provided
by the wavelet analysis is the Hölder exponent of the singularity that we determine for our
illustrative examples. The numerical results point to the possibility that Hölder exponents can
be used to characterize the nature of the mixed-culture growth in batch fermentation processes
with potential industrial applications. Moreover, the analysis of the same data affected by the
common additive Gaussian noise still lead to the wavelet detection of the singularities although
the Hölder exponent is no longer a useful parameter.

4.2 Introduction

The growth of microbial species in media containing two or several growth-limiting substrates
is of great importance in biotechnology and bioengineering. The mixed-culture growth oc-
curs in many industrial processes. A first significant class of such processes is the traditional
fermented foods and beverages in which either endemic microorganisms or an inoculum with
selected microorganisms are used, see for instance [49]. Some beverages get two or more dif-
ferent microorganisms in the inoculum with the purpose to provide a desired flavor. Evidence of
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this influence are presented in the recent paper of [50], in which the role of different yeast inter-
actions on the wine flavor is discussed. However, the phenomenological details and the theory
of the time evolution of the fermentation are as yet poorly understood. We can also mention
the interesting case of the bioethanol production, in which the substrates used for fermentation
typically consist of a mixture of glucose and fructose. Bioethanol is the product obtained from
the metabolism of microbe mixtures feeding with this combination of hexoses and pentoses, see
e.g., [51]. The last relevant example we give is bioremediation, in which gasoline and chemi-
cal spills generally yield a complex mixture of water-soluble organic compounds. In gasoline
spills, for instance, the four basic compounds are benzene, toluene, ethylbenzene, and xylene.
The consumption of this mixture by microorganisms is what is defined as the bioremediation
process.

In all the aforementioned cases, the presence of different populations of microorganisms and
substrates is a key factor in the quality and quantity of the final product. Therefore, it is quite
useful to detect the presence or lacking of process of mixed-culture growth type. Their presence
could be used as an estimate of the right evolution of the process in its early stage. In addition,
a rapid and reasonably accurate test is always useful for saving time and helping to take quick
decisions. It is quite clear then that the biomass concentration is one of the most needed quan-
tity that should be measured in fermentation monitoring. The most popular method to get the
biomass concentration is by means of the measurement of the optical density of centrifugalized
samples. However, this procedure has limited usefulness because it cannot distinguish neither
the living cells from the dead ones, nor the different types of microorganisms involved in the
process. In some cases it is also possible to correlate the total biomass concentration with the
values of the redox potential of the fermentation.

Recently, new techniques have emerged to quantify the biomass and distinguish the different
microorganisms present in a mixed-culture. Some of them based on sophisticated equipment
([53], [54] and [55]) and others resides on molecular biology techniques ([51] and [52]). All
these techniques are very promising in the study of the dynamics of the mixed-culture growth,
although, they require expensive or complicated procedures. In this chapter, we show that it is
possible to infer mixed-culture growth of microorganisms from their total biomass data, without
using such complicated techniques. The alternative procedure that we put forth here is based on
treating the total biomass data by means of the wavelet approach for detection of singularities
in the growth curves. The idea is to treat the mixed growth curves as more or less regular sig-
nals that can nevertheless display singularities due to their compound structure. In the wavelet
literature there exist fundamental papers in which it has been shown that the wavelet techniques
are very efficient in detecting any type of singularities.

The rest of the chapter is organized as follows. In Section 4.3 and 4.4, we introduce the
dynamics of the mixed-growth type and discuss its basic assumptions. Next, in Section 4.5,
the method of the wavelet singularity analysis is briefly presented, whereas its application to
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the mixed type dynamical curves is enclosed in Section 4.6. A conclusion section ends up the
chapter. An appendix containing the standard definitions of Hölder exponents of singularities
of functions is included as well.

4.3 A simple mixed-growth model

The technology of batch processes is well developed and numerous products are obtained in this
way. Some products such as food, beverages, and pharmaceutical ones require precise tracking
of the batch information for safety and regulatory purposes. The primary objective of moni-
toring batch processes is to ensure that significant and sustained changes in the quality of the
product (caused by disturbances and/or faults) are detected as soon as possible. In that sense,
the rapid detection of singularities in the output of the batch processes offers an interesting so-
lution. The wavelet analysis for singularity detection is by now well established but there was
no direct application to infer mixed-growth in the case of batch biochemical processes.

In order to achieve this task we will consider here a fermentation process consisting of a
perfectly stirred tank, where no streams are fed into it. In the batch fermenter the substrate
is converted by biomass into additional biomass and products. The general unstructured mass
balances for the well-mixed bioreactor can be represented by the following equations for the
concentrations of the cells and substrates:

dx1,i

dt
= x1,i µi (x2,i) (4.1)

dx2,i

dt
= −x1,i

Yi
µi (x2,i) (4.2)

where x1,i represent the biomass concentrations,x2,i substrate concentrations andYi is the
biomass yield,µi (x2,i) is the specific growth rate andi ∈Z+ represent thei-th species, allowing
for the possibility of multiple kinds of substrates and microorganisms. The growth rate relates
the change in biomass concentrations to the substrate concentrations. Two types of relationships
for µi (x2,i) are commonly used: the substrate saturation model (Monod Equation) and the
substrate inhibition model (Haldane Equation). Both cases will be treated here. The substrate
inhibited growth can be described by

µi (x2,i) =
µmaxi x2,i

K1i +x2,i +K2i x
2
2,i

(4.3)

whereK1i is the saturation (or Monod) constant,K21 is the inhibition constant andµmaxi is
the maximum specific growth rate. The value ofK1i expresses the affinity of biomass for
substrate. The Monod growth kinetics can be considered as a special case of the substrate
inhibition kinetics withK2i = 0 when the inhibition term vanishes. For the sake of simplicity,
we will consider only two species and two substrates. Moreover, we consider that it is possible
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to measure only the total biomass concentration. That means that the output of the system (y)
will be given by

y =
m

∑
i=1

x1,i (4.4)

wherem is the number of species of microorganisms growing in the bioreactor (in this work
m= 2). We focus on the following four cases:

I The microorganism and substrate concentrations have the same initial conditions, but
different growth rates, one with a Haldane type and one with a Monod type. In addition,
quite different values of the Monod constant will be taken into account.

II The microorganism and substrate concentrations have different initial conditions, but the
same growth rates.

III The microorganism and substrate concentrations have different initial conditions and
different growth rates, one with a Haldane type and one with a Monod type.

IV The microorganism and substrate concentrations have the same initial conditions and the
same growth rates, but with different values of the maximal growth rate.

Table 4.1:The initial conditions and the values of the employed parameters of the mixed-growth
process model.

Symbol Meaning Values Units
Case I Case II Case III Case IV

µmax1 Maximal growth rate 1 1 1 0.9 [l/h]
K11 Saturation parameter 0.03 0.03 0.03 0.03 [g/l ]
K21 Saturation parameter 0.5 0.5 0.02 0.5 [g/l ]
Y1 Yield coefficient 0.5 0.5 0.5 0.5 −
x0

11
Initial biomass conc. 0.1 0.1 0.1 0.25 [g/l ]

x0
21

Initial substrate conc. 10 10 10 10 [g/l ]
µmax2 Maximal growth rate 1 1 1 1 [l/h]
K12 Saturation parameter 0.3 0.03 0.03 0.03 [g/l ]
K22 Inhibition parameter 0 0.5 0 0.5 [l/g]
Y2 Yield coefficient 0.5 0.5 0.5 0.5 −
x0

12
Initial biomass conc. 0.1 0.2 0.1 0.25 [g/l ]

x0
22

Initial substrate conc. 10 5 6 10 [g/l ]

Table 4.1 shows the variables and parameter values used to simulated the two species growing
in the two different substrates, under the four cases under consideration.
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4.4 Mixed cultures on mixtures of substrates

When microbes are grown in a batch reactor containing a surplus of two substrates, one of the
substrates is generally exhausted before the other, leading to the appearance of two successive
exponential growth phases. This phenomenon could be noticeable at simple view in the bio-
mass signal or unnoticed due to its nature or due to additive noise present in the signal. In
general, such type of phenomenon is known as growth of mixed cultures on mixtures of sub-
strates (MCMS).

The growth of MCMS is a phenomenon of practical and theoretical interest. The fundamen-
tal understanding of this problem has impact on many practical fields such as food processing,
production of ethanol from renewable resources, bioremediation and microbial ecology, among
many others. To study the usage of the wavelet approach in the detection of MCMS growth, we
consider the recent model proposed by Reeves 2004 [56], which takes into account such type
of growth.

Within this section, the indexi will denote the species number, and the indexj will stand
for the substrate number. Thus,ci denotes the concentration of theith species,sj denotes
the concentration of thejth substrate,ei j denotes the concentration of the lumped system of
inducible enzymes catalyzing the uptake and peripheral catabolism ofsj by ci . Here,ci andsj

are based on the volume of the chemostat, and expressed in the units gdw/l and g/l, respectively.
ei j is based on the dry weight of the biomass, and expressed in the units g/gdw.

rs
i j = Vs

i j ei j
sj

Ks
i j +sj

(4.5)

rx
i j = kx

i j xi j (4.6)

re
i j = Ve

i j
xi j

Ke
i j +xi j

(4.7)

rast
i j = kast

i j (4.8)

rd
i j = Kd

i j ei j (4.9)

d sj

d t
= D

(
sf

j −sj

)
− rs

1 j c1− rs
2 j c2 (4.10)

d ei j

d t
= Ve

i j
ei j σi j

K̄e
i j +ei j σi j

+kast
i j −kd

i j ei j − rg
i ei j (4.11)

d ci

d t
=

(
rg
i −D

)
ci , (4.12)
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where

K̄e
i j =

Ke
i j kx

i j

Vs
i j

, σi j =
sj

Ks
i j +sj

(4.13)

rg
i = Yi1 rs

i1 +Yi2 rs
i2 (4.14)

Reeves et al [56] comment that a plausible experimental situation is the case ofEscherichia coli
andPseudomonas aeruginosa, in which, E. coli prefers a sugar over an organic acid, andP.
aeruginosaprefers the organic acid over the sugar.

Table 4.2:Parameter values used in the MCMS growth model [56]
Vs

11 = 1000 Vs
12 = 1000 Vs

21 = 1000 Vs
22 = 1000 g/g h

Ks
11 = 0.01 Ks

12 = 0.01 Ks
21 = 0.01 Ks

22 = 0.01 g/l
Ve

11 = 0.0025 Ve
12 = 0.0020 Ve

21 = 0.0006 Ve
22 = 0.0036 g/gdw h

K̄e
11 = 0.0017 K̄e

12 = 0.0032 K̄e
21 = 0.0013 K̄e

22 = 0.0030 g/gdw
kd

11 = 0.01 kd
12 = 0.01 kd

21 = 0.01 kd
22 = 0.01 l/h

k∗11 = 10−2V11 k∗12 = 10−2V12 k∗21 = 10−2V21 k∗22 = 10−2V22 g/gdw h
Y11 = 0.41 Y12 = 0.24 Y21 = 0.35 Y22 = 0.20 g/g

In order to have the batch regime in the bioreactor we set parameterD = 0 and also employ
Reeves’ parameterssf

1 = 1 andsf
2 = 2. Table 4.2 shows the rest of the parameter values used to

simulate the growth of the two species on the two different substrates in the MCMS conditions.

4.5 Measuring regularity with the wavelet transform

Let us think of the total biomass of the mixed-growth curves as a signal. In general, performing
the analysis of a signal means to find the regions of its regular and singular behavior. Usually
the singularities are very specific features for signal characterization. As it has been pointed in
the seminal paper of [62], the regularity of a signal treated as a function can be characterized
by Hölder exponents. The wavelet transform has been demonstrated to be a tool exceptionally
well suited for the estimation of Hölder exponents (for their definitions see the Appendix).

4.5.1 The wavelet transform

Let L2(R) denote the space of all square integrable functions onR. In signal processing
terminology,L2(R) is the space of functions with finite energy. Letψ(t) ∈ L2(R) be a fixed
function. The functionψ(t) is said to be a wavelet if and only if its Fourier transform,
ψ̂(ω) =

∫
eiωtψ(t)dt, satisfies

Cψ =
∫ ∞

0

|ψ̂(ω)|2
|ω| dω < ∞. (4.15)
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The non-divergent relation given by Eq. (4.15) is called theadmissibility conditionin wavelet
theory, see for instance [60] and [62]. It implies that the wavelet must have a zero average on
the real line

∫ ∞

−∞
ψ(t)dt = ψ̂(0) = 0, (4.16)

and therefore it must be oscillatory. In other words,ψ must be a sort ofwave([60, 62]). Based
on ψ(t), one defines the functionsψa,b as follows

ψa,b(t) =
1√
a

ψ
(

t−b
a

)
, (4.17)

whereb∈ R is a translation parameter, whilea∈ R+ (a 6= 0) is a dilation or scale parameter.
The factora−1/2 is a normalization constant such thatψa,b has the same energy for all scalesa.
One notices that the scale parametera in Eq. (4.17) is a measures of the dilations of the spatial
variable(t −b). In the same way the factora−1/2 measures the dilations of the values taken
by ψ . Because of this, one can decompose a square integrable functionf (t) in terms of the
dilated-translated waveletsψa,b(t). We define the wavelet transform (WT) off (t) ∈ L2(R) by

Wf (a,b) = 〈 f ,ψa,b〉=
∫ ∞

−∞
f (t)ψ̄a,b(t)dt =

1√
a

∫ ∞

−∞
f (t)ψ̄

(
t−b

a

)
dt, (4.18)

where〈 , 〉 is the scalar product inL2(R) defined as〈 f ,g〉 :=
∫

f (t)ḡ(t)dt, and the bar symbol
denotes complex conjugation. The WT given by Eq. (4.18) measures the variation off in a
neighborhood of size proportional toa centered on pointb. In order, to reconstructf from its
wavelet transform (4.18), one needs a reconstruction formula, known as the resolution of the
identity ([60, 62]).

f (t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wf (a,b)ψa,b(t)

da db
a2 . (4.19)

From the above equation we can see why the condition given by Eq. 4.15 should be imposed.
One fundamental property that we require in order to analyze singular behavior is thatψ(t) has
enough vanishing moments as argued in the works of [57] and [61]. A wavelet is said to haven
vanishing moments if and only if it satisfies

∫ ∞

−∞
tkψ(t)dx = 0, for k = 0,1, . . . ,n−1 (4.20)

and
∫ ∞

−∞
tkψ(t)dt 6= 0, for k≥ n. (4.21)
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This means that a wavelet withn vanishing moments is orthogonal to polynomials up to order
n−1. In fact, the admissibility condition given by Eq. (4.15) requires at least one vanishing
moment. So the wavelet transform off (t) with a waveletψ(t) with n vanishing moments is
nothing but a “smoothed version” of then–th derivative off (t) on various scales. In fact, when
someone is interested to measure the local regularity of a signal this concept is crucial (see for
instance [60, 62]).

4.5.2 Wavelet singularity analysis

The local regularity of a functionf at a pointt0 is often measured by its Hölder exponent. The
Hölder exponentα measures the strength of a singularity at a particular pointt0, wheret0 be-
longs to the domain off , see the Appendix. It is important to point out that if the singular part
of a function f in the neighborhood oft0 is of the type|t− t0|α , then it corresponds to acusp
and in this case the singular behavior is fully characterized by its Hölder exponent. However,
there exists functions that involve oscillating singularities which have to be described by an
additional quantity: an oscillating exponent ([58, 59]). In such a case, the oscillation has to be
analyzed carefully. Such functions can not be fully characterized only by the Hölder exponent.
In this work, we will only consider functions whose singularities are not oscillating.

One classical tool to measure the regularity of a functionf (t) is to look at the asymptotic decay
of its Fourier transformf̂ (ω) at infinity. However, the Fourier transform is not well adapted to
measure the local regularity of functions, because it is global and provides a description of the
overall regularity of functions ([61, 62]). Consequently, we need another way to characterize
local signal regularity.

In the works [57, 60, 61, 62] it is shown that the WT provides a way of doing a precise analysis
of the regularity properties of functions. This is made possible by the scale parameter. Due to its
ability to focus on singularities in the signals, the WT is sometimes referred to as ’mathematical
microscope’ ([57, 60, 61, 62]), where the wavelet used determines the optics of the microscope
and its magnification is given by the scale factora.

The WT modulus maxima (WTMM) decomposition introduced by [61] provides a local analy-
sis of the singular behavior of signals. In the works of Mallat [61, 62] it has been shown that
for cusp singularities the location of the singularity can be detected and the related exponent
can be recovered from the scaling of the WT along the so-calledmaxima line(WTMML for
short), which is convergent towards the singularity. This is a line where the WT reaches local
maximum with respect to the position coordinate. Connecting such local maxima within the
continuous WT ’landscape’ gives rise to the entire tree of maxima lines. Restricting oneself to
the collection of such maxima lines provides a particularly useful representation of the entire
WT. It incorporates the main characteristics of the WT: the ability to reveal thehierarchyof
(singular) features, including the scaling behavior.
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An other key concept, in addition to vanishing moments, used to characterize the regularity
of a function in terms ofWTMM is given next. Suppose thatψ has compact support[−C,C].
The cone of influenceof ψ at point t0 is the set of points(a,b) in the scale-space plane or
domain, such thatt0 is in the support ofψa,b(t). We will denote the scale–space plane or
domain of the WT as the(a,b)-plane or the(a,b)-domain. Since the support ofψ((t−b)/a) is
[b−Ca,b+Ca], the point(a,b) belongs to the cone of influence oft0 if

|b− t0| ≤Ca. (4.22)

The functionf (t) has a Hölder exponentα ∈ (k,k+1) att0, if and only if there exists a constant
A > 0 such that at each modulus maxima(a,b) in the cone defined by Eq. (4.22) one has

|Wf (a,b)| ≤ Aaα+1/2, a→ 0, (4.23)

(see [61, 62]). Here it is assumed that the wavelet has at leastn> α vanishing moments. Iff (t)
is regular att0 or, if the number of vanishing moments is too small, i.e.,n < α, one obtains for
a→ 0 a scaling behavior of the type

|Wf (a,b)| ≤ Aan+1/2. (4.24)

The scaling behavior of theWTMML is given in Eq. (4.23) and can be rewritten as follows

log|Wf (a,b)| ≤ logA+
(

α +
1
2

)
loga. (4.25)

The global Hölder regularity att0 is thus the maximum slope−1
2 of log|Wf (a,b)| as a function

of loga along the maxima line converging tot0.

4.6 Results and discussion

In this section, we present the results we obtained using the singularity detection procedure
described in the previous section. The signal to be analyzed,f (t) = y, represents the evolution
in time of the total biomass concentration for the fermentation processes described in Sections
4.3 and 4.4 that includes different cases as specified therein. In all the wavelet-related calcula-
tions we employed as mother wavelets the first and second derivative of the Gaussian function,
having one and two vanishing moments, respectively. The final goal is always to calculate the
Hölder exponent of the singularities for such processes because it is a direct measure of the
irregularity of a signal (function) at the singular pointt0, in the sense that higher values of it
correspond to more regular functions than the lower values.
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Figure 1a,b,cshows the performance of the wavelet singularity analysis as applied to Case I
(same initial conditions but different kinetic rates). We obtain a Hölder exponent of quite high
value.
The following figure shows the performance of the scheme applied to Case II (same growth
rates but different initial conditions). In this case, the Hölder exponent of the mixed growth
singularity is lower than in Case I.
Similarly to the previous cases, Fig. (3) presents the graphical results for Case III (different
initial conditions and different growth rates). Although, the singularity looks very mild in the
time evolution of the total biomass concentration the wavelet analysis is able to detect it with
high precision.
Finally, Case IV (same initial conditions, same growth rates but with different values of their
maximal growth rates) is graphically analyzed in Fig. (4). For this case we obtained the lowest
Hölder exponent.
Although the latter two cases seem to correspond to almost overlapping of the WTMML
pointing to bifurcation phenomena we are still not at the threshold of a completely different
behavior of the log plots generated by bifurcations. This could be explained by the fact that the
strength of the first singularity is bigger with respect to the second one.

4.6.1 Wavelet analysis for the MCMS case

The MCMS case is the most interesting case that we discuss here because we will show that
it is possible to infer in a very accurate manner by means of WT the moment in which the
microorganisms switch their carbon source. In order to understand the detailed dynamics of
this combined growth, we first apply separately the WT approach to the two biomass signals
y = c1 (Fig. 5) andy = c2 (Fig. 6) and then to the total signaly = c1 +c2 (Fig. 7).
It is worth noting that the Hölder exponent is bigger than one, a quite interesting feature which
means that the singularity lies in the second derivative of the biomass signal. This result gives
further opportunities to characterize the nature of the singularity because it suggests that the
type of growth can be inferred from the order of the derivative in which the singularity occurs
directly given by the value of the Hölder exponent. The latter fact is a great simplification
with respect to the analytical search of the singularities which implies obtaining the analytical
solution of the given dynamical growth model. Moreover, even in such fortunate cases, the
analytical solutions could be subject to fixed parameter values of the model. On the other hand,
the WT numerical approach allows the singularity analysis even in the case of time-varying
parameters.

4.6.2 Wavelet analysis for the noisy data case

It is well known that in some cases the amplitude of the Gaussian noise affecting the on-line
signals can be an important annoying factor. Therefore, a good analysis should be robust in such
cases. Thus, we provide here the WT analysis for the MCMS biomass signals in the presence
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of white noise, that is, in the next figures (8-10) we consider signals of the formyi = ci + ε(t)
and their sum, whereε(t) stands for the functional form of the noise.

We notice from the corresponding plots that the noisy data do not allow to obtain global
Hölder exponents in a straightforward manner, which is a result already reported in the wavelet
literature ([62] and [63]). On the other hand, the singularity detection is robust with respect to
the noise for reasonable levels of its amplitude. In addition, Figure 9 gives us the hint that when
the cones of influence produced by the Gaussian noise enter the scales of the singularity the cone
of the latter becomes undistinguishable from those of the noise. This remark could be used as
a sort of resolution criterium of the WT method in the presence of noise. Therefore, one can
determine a critical amplitude of the noise for which the WT approach looses its applicability.

4.7 Concluding remarks

We showed here explicitly how the wavelet singularity analysis can be applied to infer mixed
growth behavior of fermentation processes using only total biomass data. We prove that the
wavelet analysis is very accurate for all the cases we considered. A very interesting feature
of our research is that the Hölder exponent is sensitive to the type of the mixed-growth
phenomenon, more specifically depends on the parameters of the growth processes and on
their initial conditions. The MCMS case points to the remarkable technological possibility
of detecting the change of the substrate uptake since the singularity appears in the second
derivatives of the biomass signal. This can lead one to think of the possibility to infer substrate
contaminations based only in the analysis of the biomass data. In addition, our results for the
noisy data clearly hint to the fact that the wavelet singularity analysis maintains its attractive
features even in these more difficult but realistic case. We hope that in future works we could
find out the mathematical relationships implied by this possible correlation. It might allow
the usage of the Hölder exponent as an identification criterium of the more specific nature of
mixed-growth processes.

Appendix

A function f : R→ R is said to be Hölder continuous of exponentα (0 < α < 1) if, for each
bounded interval(c,d)⊂ R, we can find a positive constantK such that

| f (t)− f (t0)| ≤ K|t− t0|α (4.26)

for all t, t0 ∈ (c,d).
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The space of Hölder continuous functions is denotedCα . A function is said to beCn+α if it is in
Cn and itsnth derivative is Hölder continuous with exponentα. Thus, if we consider the Hölder
exponentn< α < n+1, with n∈N, the function can be differentiatedn times, but the(n+1)th
derivative does not exist. Therefore, a function with a Hölder exponentn < α < n+ 1 is said
to be singular in thenth derivative. Keeping this in mind, let us give the following definition of
the Hölder regularity of a function [60, 61, 62].

• Let n∈ N andn≤ α < n+1. A function f (t) has alocal Hölder exponentα at t0 if and
only if there exist a constantK > 0, and a polynomialPn(t) of ordern, such that

∀t ∈ R, | f (t)−Pn(t− t0)| ≤ K|t− t0|α (4.27)

• The functionf (t) has aglobalHölder exponentα on the interval(c,d) if and only if there
is a constantK and a polynomial of ordern, Pn(t), such that equation (4.27) is satisfied
for all t ∈ (c,d).

• The Hölderregularityof f (t) at t0 is the supremum of theα such thatf (t) is Hölderα at
t0.

• Thenth derivative of a functionf (t) is singularat t0 if f (t) has a local Hölder exponent
α at t0 with n < α < n+1.

A function f (t) that is continuously differentiable at a given point has a Hölder exponent not
less than 1 at this point. Ifα ∈ (n,n+ 1) in (4.27) thenf (t) is n times but not(n+ 1) times
differentiable at the pointt0, and the polynomialPn(t) corresponds to the first(n+1) terms of
the Taylor series off (t) aroundt = t0. For example, ifn = 0, we haveP0(t− t0) = f (t0).
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Figure 4.1:a) The time evolution of the total biomass concentration signal for Case I.b) The
wavelet cones of influence corresponding to this case showing a very accurate
identification of the two singularity points presented in the signal, of which the first
one allows to infer the presence of the mixed growth feature of the fermentation
process whereas the second one is associated with the end of the fermentation batch
cycle.c) From the slope in the double logarithmic plot, the Hölder coefficient of the
mixed growth singularity is calculated asα = 0.95.
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Figure 4.2:a) The time evolution of the total biomass concentration signal for Case II.b) The
wavelet cones of influence corresponding to this case again showing the accurate
identification of the two singularity points, of the same type, respectively, as in
Fig. 1. c) The Hölder coefficient of the mixed growth singularity is nowα = 0.88.
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Figure 4.3:Same caption comments as in the previous figures but for Case III. The Hölder
coefficient of the mixed growth singularity is nowα = 0.92.
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Figure 4.4:Same caption comments as in the previous figures but for Case IV. The value of the
he Hölder coefficient for the mixed growth singularity isα = 0.84.
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Figure 4.5:Same caption comments as in the previous figures but for the MCMS biomass signal
y = c1. The Hölder coefficient of the mixed growth singularity is nowα = 1.89.
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Figure 4.6:Same caption as in the previous figures but for the MCMS biomass signaly = c2.
The Hölder coefficient of the mixed growth singularity is nowα = 1.87.
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Figure 4.7:Same caption comments as in the previous figures but for the total MCMS signal.
The Hölder coefficient of the mixed growth singularity is nowα = 1.88.
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Figure 4.8:MCMS data corresponding toc1 with a small amplitude Gaussian noise added.
From the bottom plotc) one can see that because the curve is not a straight line
one cannot get a global Hölder coefficient from its slope.
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Figure 4.9:MCMS data corresponding toc2 with a small amplitude Gaussian noise added. The
Hölder coefficient is not a useful concept in this case.
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Figure 4.10:MCMS data corresponding to the sumc1+c2 with the same Gaussian noise added.
The concept of global Hölder coefficient is again not useful.
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5
Gene Regulation Networks

5.1 Nonlinear Software Sensor for Monitoring Genetic Reg-
ulation Processes with Noise and Modeling Errors

This work was performed in collaboration with the Ph.D. student Luis Adolfo Torres, Professor
Dr. H. C. Rosu, Professor Dr. Gerardo Argüello, and Professor Dr. Julio Collado-Vides. [64].

Nonlinear control techniques by means of a software sensor that are commonly used in chemical
engineering could be also applied to genetic regulation processes. We provide here a realistic
formulation of this procedure by introducing an additive white Gaussian noise, which is usually
found in experimental data. Besides, we include model errors, meaning that we assume we do
not know the nonlinear regulation function of the process. In order to illustrate this procedure,
we employ the Goodwin dynamics of the concentrations [B.C. Goodwin,Temporal Oscillations
in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene
systems and some operon cases [H. De Jong, J. Comp. Biol.9, 67 (2002)], which involves the
dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present re-
sults for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes.
However, instead of considering their full dynamics, we use only the data of the metabolites and
a designed software sensor. We also show, more generally, that it is possible to rebuild the com-
plete set of nonmeasured concentrations despite the uncertainties in the regulation function or,
even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of con-
centrations is not affected by the perturbation due to the additive white Gaussian noise and also
we managed to filter the noisy output of the biological system.
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5.2 Introduction

Gene expression is a complex dynamic process with intricate regulation networks all along its
stages leading to the synthesis of proteins [65]. Currently, the most studied aspect is that of
regulation of initiation of transcription at the DNA level. Nevertheless, the expression of a gene
product may be regulated at several levels, from transcription to RNA elongation and process-
ing, RNA translation and even as post-translational modification of protein activity. Control en-
gineering is a key discipline with tremendous potential to simulate and manipulate the processes
of gene expression. In general, the control terminology and its mathematical methods are poorly
known to the majority of biologists. Many times the control ideas are simply reduced to the
homeostasis concept. However, the recent launching of the IEE journalSystems Biology[66]
points to many promising developments from the standpoint of systems analysis and control
theory in biological sciences. Papers like that of Yi et al [67], in which the Barkai and Leibler
robustness model [68] of perfect adaptation in bacterial chemotaxis is shown to have the prop-
erty of a simple linear integral feedback control, could be considered as pioneering work in the
field.

We mention here two important issues. The first one is that the basic concept of state of a
system or process could have many different empirical meanings in biology. For the particular
case of gene expression, the meaning of a state is essentially that of a concentration. The typical
problem in control engineering that appears to be tremendously useful in biology is the recon-
struction of some specific regulated states under conditions of limited information. Moreover,
equally interesting is the issue of noise filtering. It is quite well known that gene expression is a
phenomenon with two sources of noise: one due to the inherent stochastic nature of the process
itself and the other originating in the perturbation of the natural signal due to the measuring
device. In the mathematical approach, the latter class of noise is considered as an additive con-
tamination of the real signal and this is also our choice here. Both issues will form the subject
of this investigation.

Taking into account the fact that rarely one can have a sensor on every state variable, and some
form of reconstruction from the available measured output data is needed, a software can be
constructed using the mathematical model of the process to obtain an estimateX̂ of the true
stateX. This estimate can then be used as a substitute for the unknown stateX. Ever since
the original work by Luenberger [69], the use of state observers has proven useful in process
monitoring and for many other tasks. We will call herein as observer, in the sense of control
theory, an algorithm capable of giving a reasonable estimation of the unmeasured variables of a
process. For this reason, it is widely used in control, estimation, and other engineering applica-
tions.

Since almost all observer designs are heavily based on mathematical models, the main drawback
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is precisely the dependence of the accuracy of such models to describe the naturally occurring
processes. Details such as model uncertainties and noise could affect the performance of the
observers. Taking into account these details is always an important matter and should be treated
carefully. Thus, we will pay special attention in this research to estimating unknown states of
the gene expression process under the worst possible case, which corresponds to noisy data,
modeling errors, and unknown initial conditions. These issues are of considerable interest and
our approach is a novel contribution to this important biological research area. Various aspects
of noisy gene regulation processes have been dealt with recently from both computational and
experimental points of view in a number of interesting papers [70]. We point out that since we
add the noiseδ to the output of the dynamic system in the formy = CX + δ (see Eqs.Γ in
Section IV) it seems that its origin is mainly extrinsic to the regulation process, even though it
could be considered as a type of intrinsic noise with respect to the way the experiment is per-
formed. On the other hand, when writing the equation in the formy = C(X + I∆), where∆ is a
vector of noisy signals, one can see that the observer could estimate states that are intrinsically
noisy even though the processes are still deterministic.

5.3 Brief on the biological context

Similar to many big cities, with heavy traffic, biological cells host complicated traffic of bio-
chemical signals at all levels. Like cars on a busy highway, millions of molecules get involved in
the bulk of the cell in many life processes controlled by genes. At the nanometer level, clusters
of molecules in the form of proteins drive the dynamics of the cellular network that schemati-
cally can be divided into four regulated parts: the DNA or genes, the transcribed RNAs, the set
of interacting proteins and the metabolites. Genes can only affect other genes through specific
proteins, as well as through some metabolic pathways that are regulated by proteins themselves.
They act to catalyze the information stored in DNA, all the way from the fundamental processes
of transcription and translation to the final quantities of produced proteins.

Considering the enormous complexity of multicellular organisms generated by their large
genomes, one can nevertheless still associate at least one regulatory element to any component
gene. Each regulatory system is then composed of two elements at the DNA level, the gene that
encodes a transcriptional regulator, and the target in the DNA where this regulator binds to, and
excerts its activator or repressor function in transcription. These loops of interactions represent
a fundamental piece to understand the functioning of complex regulatory transcriptional and
translational networks [71, 72]. For the purpose of modelling, it is essential to generate simple
models that help to understand elementary dynamical components of these complex regulatory
networks as molecular tools that participate in an important way in the machinery of cellular
decisions, that is to say, in the behaviour and genetic program of cells.
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Many entities in cellular networks can be identified as the basic units of regulation, mainly
distinguished by their unique roles with respect to interaction with other units. These basic
units are: the genes, with codifying content, also described as structural genes; the regulatory
elements that in the old literature were called regulatory genes, which are smaller fragments
of DNA sequences (of the order of 5 to 20 nucleotides) called operator sites where regulatory
proteins as well as the RNA polymerase bind to; the messanger RNAs or mRNAs which are
the products of transcription and form the template for the subsequent production of proteins as
encoded by the corresponding gene; the forms of each protein and protein complexes, as well
as, all metabolites present in the cell, either as products of enzymatic reactions or internalized
by transport systems. These units have associated values that either represent concentrations or
levels of activation. These values depend on both the values of the units that affect them due
to the aforementioned mechanisms and on some parameters that govern each special form of
interaction.

This gives rise to genetic regulatory systems structured by networks of regulatory interactions
between DNA, RNA, proteins, and small molecules. The simplest regulatory network is made
of only one gene that is transribed into mRNA, this mRNA is then translated into proteins,
which can be activated or inhibited as a result of their interaction with other proteins or with
specific metabolites. Transcriptional regulators are two-head structures, one being the domain
of DNA interaction, and the other one is the so-called allosteric domain that interacts with spe-
cific metabolites. Taking together these properties of the molecular machinery, one can envision
that a gene encodes a protein which can regulat its own activity, either positively or negatively,
depending on its effect in enhancing or preventing the RNA polymerase transcriptional activity
on its own gene by means of binding to an operator sites upstream of its own encoding gene.
Upstream here meaning before the beginning of the gene where transcription initiates. A math-
ematical model of such a biological inhibitory loop has been discussed since a long time ago
by Goodwin and recurrently occurred in the literature, most recently being reformulated by De
Jong [73]. Although this case could look unrealistic, there are simple organisms, such as bacte-
ria, where one regulatory loop may prove essential as recently discussed in detail by Ozbudak et
al [74]. However, already at the level of two genes the situation gets really complicated, mostly
because of the possible formation of heterodimers between the repressors and other proteins
around. These heterodimers are able to bind at the regulatory sites of the gene and therefore can
affect it and lead to modifications of the regulatory process.

Recent development of experimental techniques, like cDNA microarrays and oligonucleotide
chips, have allowed rapid measurements of the spatiotemporal expression levels of genes
[75, 76, 77]. In addition, formal methods for the modeling and simulation of gene regulation
processes are currently being developed in parallel to these experimental tools. As most genetic
regulatory systems of interest involve many genes connected through interlocking positive and
negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. The
advantage of the formal methods is that the structure of regulatory systems can be described
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unambiguously, while predictions of their behavior can be made in a systematic way.

To make the description very concrete, it is interesting to look at well-defined, i.e., quite simple
mathematical models that we present in the next section that refers to single gene cases and
single gene clusters (operons). The nonlinear software sensor for such cases is discussed in
Section IV. A three-gene case is treated as an extension to regulatory gene networks and shows
that the method of forward engineering still works for reasonably simple gene networks. The
conclusion section comes at the end of the chapter.

5.4 Mathematical Model for Gene Regulation

In this section, we use the very first kinetic model of a genetic regulation process developed by
Goodwin in 1963 [79], generalized by Tyson in 1978 [80] and most recently explained by De
Jong [73]. The model in its most general form is given by the following set of equations:

Ẋ1 = K1nr (Xn)− γ1X1 , (5.1)

Ẋi = Ki,i−1Xi−1− γiXi , 1 < i ≤ n . (5.2)

The parametersK1n,K21, . . . ,Kn,n−1 are all strictly positive and represent production constants,
whereasγ1, . . . ,γn are strictly positive degradation constants. These rate equations express a
balance between the number of molecules appearing and disappearing per unit time. In the
case ofX1, the first term is the production term involving a nonlinear nondissipative regula-
tion function. We take this as an unknown function. On the other hand, the concentrationXi ,
1 < i ≤ n, increases linearly withXi−1. As well known, in order to express the fact that the
metabolic product is a co-repressor of the gene, the regulation function should be a decreasing
function for which most of the authors use the Hill sigmoid, the Heaviside and the logoid curves.
The decrease of the concentrations through degradation, diffusion and growth dilution is taken
proportional to the concentrations themselves. For further details of this regulation model we
recommend the reader the review of De Jong [73].

It is to be mentioned here that bacteria have a simple mechanism for coordinating the regulation
of genes that encode products involved in a set of related processes: these genes are clustered on
the chromosome and are transcribed together. Most prokaryotic mRNAs are polycistronic (mul-
tiple genes on a single transcript) and the single promoter that initiates transcription of clusters
is the site of regulation for expression of all genes in the cluster. The gene cluster and promoter,
plus additional sequences that function together in regulation, are called operon. Operons that
include two to six genes transcribed as a unit are common in nature [81].

The fact that two or more genes are transcribed together on one polycistronic mRNA implies
that we have a unique mRNA production constant and consequently we also have one mRNA
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degradation constant. In addition, the polycistronic mRNA can be translated into one or several
enzymes, resulting in the existence of just one enzyme production and degradation constant,
respectively. The same applies for the metabolite produced through the enzyme catalysis. Thus,
if the resulting metabolite has repressor activity over the polycistronic mRNA (as in the case of
tryptophan [82]), then the model given by Eqs. (5.1,5.2) could also be applied to operons and
therefore it has a plausible application to the study of prokaryotic gene regulation.

5.5 Nonlinear Software Sensor

Numerous attempts have been made to develop nonlinear observer design methods. One could
mention the industrially popular extended Kalman filter, whose design is based on a local lin-
earization of the system around a reference trajectory, restricting the validity of the approach
to a small region in the state space [78, 83]. The first systematic approach for the development
of a theory of nonlinear observers was proposed some time ago by Krener and Isidori [84]. In
further research, nonlinear transformations of the coordinates have also been employed to put
the considered nonlinear system in a suitable “observer canonical form”, in which the observer
design problem may be easily solved [85, 86, 87]. Nevertheless, it is well known that classical
proportional observers tend to amplify the noise of on-line measurements, which can lead to the
degradation of the observer performance. In order to avoid this drawback, this observer algo-
rithm is based on the works of Aguilar et al. [88, 89], because the proposed integral observer
provides robustness against noisy measurement and uncertainties. We show that this new struc-
ture retains all the characteristics of the popular (the traditional high gain) state observers of the
classical literature and furthermore provides additional robustness and noise filtering and thus
can result in a significant improvement of the monitoring performances of the genetic regulation
process.

In this section, we present the design of a nonlinear software sensor in which oneXj , for
j ∈ (1, ...,n), is the naturally measured state (the most easy to measure). Therefore, it seems
logical to takeXj as the output of the system

y = h(X) = Xj . (5.3)

Now, considering the constantK1n and the functionr (Xn) as unknown, we group them together
in a functionℑ(X). In addition, we consider that the output functionh(X) is contaminated with
a Gaussian noise. In such a case, the model given by the aforementioned Eqs. (5.1) and (5.2),
acquires the form:

Γ :

{
Ẋ = ℑ̄(X)+ `(X)

y = CX+δ (5.4)

whereℑ̄(X) is a n×1 vector whose first entry isℑ(X) and all the rest are zero,`(X) is also
a n×1 vector of the form[−γ1X1,Ki,i−1Xi−1− γiXi ]T , δ is an additive bounded measurement
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noise, andX ∈ Rn. The system is assumed to lie in a “physical subset”Σ⊂ Rn.

Then, the task of designing an observer for the systemΓ is to estimate the vector of statesX,
despite of the unknown part of the nonlinear vectorℑ̄(X) (which should be also estimated)
and considering thaty is measured on-line and that the system is observable. A particular
representation of the software sensor that we describe here is provided in Fig. 5.1.

Metabolite K
(unfiltered)

Protein A

mRNA

X3

Additive
Noise

X̂2

X̂1

Original Process

Software
Sensor Metabolite K

(filtered)

Figure 5.1:Schematic representation of the software sensor, where the output of the system
is the input of the software sensor and the outputs of the latter are the rebuilt
concentrations.

In order to provide the observer with robust properties against disturbances, Aguilar and
collaborators [88] considered only an integral type contribution of the measured error.
Moreover, an uncertainty estimator is introduced in the methodology of observation with the
purpose of estimating the unknown components of the nonlinear vectorℑ̄(X). As a result, the
following representation of the system is proposed

Ξ :





Ẋ0 = CX+δ
Ẋ = ℑ̄+ `(X)

˙̄ℑ = Θ(X)
y0 = X0

(5.5)

that is, in the case of the model given by Eqs. (5.1) and (5.2)

Ẋ0 = Xj +δ (5.6)

Ẋ1 = Xn+1− γ1X1 (5.7)

Ẋi = Ki,iXi−1− γiXi , 1 < i ≤ n , (5.8)

Ẋn+1 = Ω(X) (5.9)

y = X0 , (5.10)
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whereẊ0 is the dynamical extension that allows us to integrate the noisy signal in order to
recover a filtered signal, whilėXn+1 allows us to put the unknown regulation function as a new
state. Thus, the task becomes the estimation of this new state (a standard task for an observer),
and therefore the functionΩ is related to the unknown dynamics of the new state. At this point,
X ∈ Rn+2, and furthermore the following equation is generated

Ẋ = AX+B+Eδ ,

whereAX is the linear part of the previous system such thatA is a matrix equivalent in form to
a Brunovsky matrix,B = [0, . . . ,0,Ω(X)]T andE = [1,0, . . . ,0]T .
We will need now the following result proven in Ref. [88].
An asymptotic-type observer of the systemΞ is given as follows:

Ξ̂ :





˙̂X0 = CX̂ +θ1(y0− ŷ0)
˙̂X = ˆ̄ℑ+ `(X̂)+θ2(y0− ŷ0)

˙̂̄
ℑ = θ3(y0− ŷ0)

ŷ0 = X̂0 ,

(5.11)

where the gain vectorθ of the observer is given by

θ = S−1
θ CT , (5.12)

Sθ ;i, j =
(

Si, j

ϑ i+ j+1

)
. (5.13)

Each entry of the matrixSθ is given by the above equation, whereSθ is an×n matrix (i and j
run from 1 ton), andSi, j are entries of a symmetric positive definite matrix that do not depend
on ϑ . Thus,Si, j are such thatSθ is a positive solution of the algebraic Riccati equation

Sθ

(
A+

ϑ
2

I

)
+

(
A+

ϑ
2

I

)
Sθ = CTC . (5.14)

In all formulas,C = [1,0, ...,0]. In the multivariable case we must create one matrixSθ for each
block corresponding to each output. It is worth mentioning that we can think about this observer
as a ‘slave’ system that follows the ‘master’ system, which is precisely the real experimental
system. In addition,Sθ , as functional components of the gain vector, guarantees the accurate
estimation of the observer through the convergence to zero of the error dynamics, i.e., the dy-
namics of the difference between the measured state and its corresponding estimated state. One
can see thatϑ generates an extra degree of freedom that can be tuned by the user such that the
performance of the software sensor becomes satisfactory for him.

In [90] it has been shown that such an observer has an exponential-type decay for any initial
conditions. Notice that a dynamic extension is generated by considering the measured output of
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the original system as new additional dynamics with the aim to filter the noise. This procedure
eliminates most of the noise in the new output of the system. The reason of the filtering effect
is that the dynamic extension acts at the level of the observer as an integration of the output of
the original system, (see the first equation of the systemΞ and the error part in the equations of
systemΞ̂). The integration has averaging effects upon the noisy measured states. More exactly,
the difference between the integral of the output of the slave part of systemΞ̂ and the integral
of the output of the original system gives the error and the observer is planned in such a way
that the error dynamics goes asymptotically to zero, which results in the recovering of both the
filtered state and the unmeasured states.

Particular Case

For gene regulation processes, which are of interest to us here, we merely apply the aforewritten
system of equations corresponding to the asymptotic observerΞ̂

Ẋ1 = K1,3r (X3)− γ1X1 (5.15)

Ẋ2 = K2,1X1− γ2X2 (5.16)

Ẋ3 = K3,2X2− γ3X3 . (5.17)

The pictorial representation of this system of equations is given in Fig. 5.2.

negative
regulation

inactive
repressor

activerepressor

gene

mRNA

enzyme

Figure 5.2:The genetic regulatory system given by Eqs. (5.15) - (5.17) involving end-product
inhibition according to De Jong [73]. A is an enzyme and C a repressor protein,
while K and F are metabolites. The mathematical model, as used by De Jong and
by us, takes into account experiments where only metabolite K is measured.

The values of the parameters given in Table 1, without necessarily being the experimental
values, are however consistent with the requirements of the model.
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Table 5.1:Parameters of the model

Symbol Meaning Value
(arb. units)

K1,3 Production constant of mRNA 0.001
K2,1 Production constant of protein A 1.0
K3,2 Production constant of metabolite K 1.0
γ1 Degradation constant of mRNA 0.1
γ2 Degradation constant of protein A 1.0
γ3 Degradation constant of metabolite K 1.0
ϑ Hill’s threshold parameter 1.0

Using the structure given by the equations ofΞ̂, the explicit form of the software sensor is:

˙̂X0 = X̂3 +θ1(y0− X̂3) (5.18)
˙̂X1 = X4− γ1X1 +θ2(y0− ŷ0) (5.19)
˙̂X2 = K2,1X1− γ2X2 +θ3(y0− ŷ0) (5.20)
˙̂X3 = K3,2X2− γ3X3 +θ4(y0− ŷ0) (5.21)
˙̂X4 = θ5(y0− X̂3) , (5.22)

ŷ0 = X̂0 . (5.23)

Notice that this dynamic structure does not involve the regulation function.
We can solve Eq. (5.14) and for numerical purposes we chooseϑ = 2.5 and the standard
deviation of the Gaussian noise of 0.001. Figure 5.3 shows the numerical simulation that
illustrates the filtering effect of the software sensor over the noisy measured state.
On the other hand, Fig. 5.4 shows the results of a numerical simulation, where the solid lines
stand for the true states and the dotted lines indicate the estimates, respectively.
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Figure 5.3:Numerical simulation: solid lines represent the filtered states and the dotted lines
represent the noisy measured state for the evolution in time of metabolite K
concentration. Notice that the initial bad estimation is due to the initial conditions
that have been chosen far away from the real ones. This behaviour could be
improved with a better knowledge of the initial conditions. The units of the two
axes are arbitrary, i.e., the model is nondimensional.
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Figure 5.4:Numerical simulation: solid lines represent the true states generated by the original
process endowed with the Hill regulatory function and dotted lines represent the
estimated concentrations provided by the software sensor without any knowledge
about the regulatory function. Plot (a) represents the evolution of mRNA
concentration in time and plot (b) the variation of the concentration of protein A
in time. The two axes have arbitrary units.

5.6 Three-Gene Circuit Case

In this section we extend the previous results to a more complicated case that can occur in
prokaryotic cells. We study a more elaborated system where one regulator affects different
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promoters and transcription units. The case corresponds to the coupled regulation of three
genes in which the metabolite resulting from the translation of gene 1 becomes the substrate for
the synthesis of the metabolite catalyzed by the enzyme translated from gene 2, and similarly
for gene 3, but the metabolite 3 becomes the repressor of all the three genes involved, as shown
in Fig. (5.5).

gene1 gene2 gene3

mRNA1 mRNA2 mRNA3

activerepressor

inactive
repressor

Enz1 Enz2 Enz3

Met1 Met2 Met3

Figure 5.5:The three-gene regulatory circuit under consideration.

In this case the model is given by an extension of the model given by Eqs. (5.1,5.2). That results
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in the following system of differential equations:

d
dt

[mRNA1] = K1R([Met3])− γ1[mRNA1] (5.24)

d
dt

[Enz1] = K2[mRNA1]− γ2[Enz1] (5.25)

d
dt

[Met1] = K3[Enz1]− γ3[Met1]−α1[Enz2] (5.26)

d
dt

[mRNA2] = K4R(Met3)− γ4[mRNA2] (5.27)

d
dt

[Enz2] = K5[mRNA2]− γ5[Enz2] (5.28)

d
dt

[Met2] = K6[Enz2]− γ6[Met2]−α2[Enz3] (5.29)

d
dt

[mRNA3] = K7R([Met3])− γ7[mRNA3] (5.30)

d
dt

[Enz3] = K8[mRNA3]− γ8[Enz3] (5.31)

d
dt

[Met3] = K9[Enz3]− γ9[Met3] , (5.32)

where [mRNAi ], [Enzi ] and [Meti ] represent the concentration of mRNA, enzymes and
metabolites for each gene respectively. We select as the measured variables the metabolites
because we want to show that through the measurement of stable molecules such as the
metabolites, it is possible to infer the concentration of unstable molecules such as the mRNAs.
Note that the equations are coupled through the dynamics of the metabolites. Moreover, we will
assume that the dynamics of mRNA is bounded but unknown.

As we showed in the previous sections our new system can be written as:
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Ẋ1 = X2 +d1 (5.33)

Ẋ2 = K3X3− γ3X2−α1X8 (5.34)

Ẋ3 = K2X4− γ2X3 (5.35)

Ẋ4 = X5 (5.36)

Ẋ5 = φ1(X) (5.37)

Ẋ6 = X7 +d2 (5.38)

Ẋ7 = K6X8− γ6X7−α2X13 (5.39)

Ẋ8 = K5X9− γ5X8 (5.40)

Ẋ9 = X10 (5.41)

Ẋ10 = φ2(X) (5.42)

Ẋ11 = X12+d3 (5.43)

Ẋ12 = K9X13− γ9X12 (5.44)

Ẋ13 = K8X14− γ8X13 (5.45)

Ẋ14 = X15 (5.46)

Ẋ15 = φ3(X) , (5.47)

where mRNA1 = Ẋ4, mRNA2 = Ẋ9, mRNA3 = Ẋ14 , Enz1 = Ẋ3, Enz2 = Ẋ8, Enz3 = Ẋ13,
Met1 = Ẋ2, Met2 = Ẋ7, Met3 = Ẋ12, di represent the noise,φi(X) stand for the unknown
dynamics. In adition, the previous systems can be written in the matricial forma as:

Ẋ = AX+B(X)+Ed, X ∈ Rn (5.48)

y = CX =
(
C1X1 . . . CmXm)T

, (5.49)

where in this caseXi ∈Rλi is theith partition of the stateX so thatX = [(X1)T , . . . ,(Xm)T ]T and
∑m

i=1λi = n; A= diag[A1, . . . ,Am] whereAi is λi×λi such thatSi
θ in the equation (5.14) is invert-

ible; C = diag[C1, . . . ,Cm], whereCi = [1,0, . . . ,0] ∈ Rλi ; B(X) = diag[B1(X)T , . . . ,Bm(X)T ]T ;
E = diag[E1, . . . ,Em], whereEi = [1,0, . . . ,0] ∈ Rλi .

According to the scheme presented in the previous section we construct an observer through the
following system of differential equations
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˙̂X1 = X̂2 +θ11(X1− X̂1) (5.50)
˙̂X2 = K3X̂3− γ3X̂2−α1X̂8 +θ12(X1− X̂1) (5.51)
˙̂X3 = K2X̂4− γ2X̂3 +θ13(X1− X̂1) (5.52)
˙̂X4 = X̂5 +θ14(X1− X̂1) (5.53)
˙̂X5 = θ15(X1− X̂1) (5.54)
˙̂X6 = X̂7 +θ21(X6− X̂6) (5.55)
˙̂X7 = K6X̂8− γ6X̂7−α2X̂13+θ22(X6− X̂6) (5.56)
˙̂X8 = K5X̂9− γ5X̂8 +θ23(X6− X̂6) (5.57)
˙̂X9 = X̂10+θ24(X6− X̂6) (5.58)

˙̂X10 = +θ25(X6− X̂6) (5.59)
˙̂X11 = X̂12+θγ9X̂12+θ32(X11− X̂1) (5.60)
˙̂X13 = K8X̂14− γ8X̂13+θ33(X11− X̂11) (5.61)
˙̂X14 = X̂15+θ34(X1− X̂1) (5.62)
˙̂X15 = θ35(X11− X̂11) , (5.63)

whereθi stand for the observer gain values. Note, that this extension is not a direct application
of that developed by Aguilar et al. [88] in the sense that this is a extension to the multivariable
case. In addition, the matrixAi is equivalent to a matrix of Brunovsky form, which guarantees
the existence, uniqueness and invertibility of the matrix solutionSθ

i [91]. (The existence and
the uniqueness ofSθ

i follows from the facts that−θi
2 I −Ai is of Hurwitz-type and that the pair(

−θi
2 I −Ai ,Ci

)
is observable [92]).

Figure 5.6 shows the numerical simulation of the filtering effect of the software sensor over the
noisy measured state in this case. On the other hand, Fig. 5.7 displays the results of a numerical
simulation of the true states (solid lines) and the estimates (dotted lines).

5.7 Conclusion

In this research, a simple software sensor was designed for a schematic gene regulation dy-
namic process involving end-product inhibition in single gene, operon and three gene circuit
cases. This sensor effectively rebuilds the unmeasured concentrations of mRNA and the cor-
responding enzyme. Thus, the limitation of those experiments in which only the concentration
of the catalytically synthesized metabolite is available, can be overcome by employing the sim-
ple software sensor applied here. This is a quite natural case if one takes into account that
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Figure 5.6:Numerical simulation: solid lines represent the filtered states obtained from the
noisy measured states for the evolution in time of metabolite concentrations, where
a, b and c correspond to metabolite 1, 2, and 3, respectively. The units of the two
axes are arbitrary (nondimensional model).
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Figure 5.7:Numerical simulation: solid lines represent the true states generated by the original
process endowed with the Hill regulatory function and dotted lines represent the
estimated concentrations provided by the software sensor without any knowledge
about the regulatory function; a, b and c correspond to molecule 1, 2 and 3,
respectively. Plot (a) represents the evolution ofmRNAi concentrations in time and
plot (b) the variation of the concentration of the corresponding enzymes in time.The
axes of the graph have arbitrary units.

metabolites are quite stable at the molecular level. At the same time, we can reproduce the con-
centrations of the unstable molecules of mRNA. This is a difficult task in experiments, despite
the fact that the mRNA dynamics has been partially or even totally unspecified.

The same scheme philosophy to build the observer is applied to a three-gene circuit with the
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purpose to show that the software sensor concept could be in usage in a forward engineering
approach. In this research however, we mentioned that we were able to show that the observer
scheme designed in [88] for the single output case works well also in a multiple variable case
as embodied by a particular genetic circuit given in Fig. (5.5). The most stringent mathematical
requirement for this extended applicability to the multiple output case is described below. The
linear part of the dynamic system should be a matrix by blocks in which each of the blocks
should be of Brunovsky equivalent form. In addition, each subsystem corresponding to a su-
perior block depends only on the subsystem corresponding to the next nearest block. This is
a feature similar to the property of Markoff processes. The Brunovsky equivalent form of the
matrix blocksAi together with the structure of the corresponding output vectorCi generate an
observable pair(Ai ,Ci), giving us the capability to infer the internal states of the gene network
through the knowledge of its external outputs. However, the special Brunovsky equivalent form
of the blocks leads to the possible biological interpretation that each block of the linear part of
the differential system represents only that contribution of the gene regulation mechanism that
comes from reactions occurring in a cascade fashion.

Another important issue that we tackled in this work is related to the way of adding the noise
to the output of the dynamic system. Even though this is a typical situation from the stand-
point of control process theory, to the best of our knowledge it has not yet been applied in the
biological context of gene regulation processes. We stress that this way of including noise ef-
fects could have both intrinsic and extrinsic interpretations and therefore assure a more general
approach of the noise problems. For example, in phenomenological terms, perturbations on
the cells due to the measuring devices and the experimental conditions, together with the noise
produced by the nature of the electronic instrumentation, could be equally described in this way.

In addition, this type of nonlinear observer could be used as an online filter being robust with
respect to model uncertainties, i.e., neither a known regulation function nor the parameterK1,3

is required.
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