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Resumen

La tesis se enfoca en el diseno de leyes de control adaptables para robots manipu-
ladores que consideran la naturaleza acotada de los actuadores. Se proponen esquemas
generalizados para regulacion y seguimiento globales por retroalimentacion de estados,
cuyas estructuras permiten obtener versiones adaptables acotadas de algoritmos tipo
PD previamente propuestos para el caso de conocimiento paramétrico exacto. También
se diseno una ley de control tipo SP-SD por retroalimentacién de salida para la estabi-
lizacion global de posicion. Con respecto a trabajos previos, los esquemas adaptables
propuestos son los primeros que resuelven los problemas de control formulados: global-
mente, sin involucrar discontinuidades, evitando saturacién de entrada y liberando las
ganancias de control de restricciones para evitar el fenémeno de saturacion. Méas atn,
ninguno de los esquemas propuestos esta restringido a usar una funcién de saturacién
especifica para lograr el acotamiento deseado sino que es posible escoger cualquiera den-
tro de un conjunto de funciones pasivas acotadas que incluye la tangente hiperbdlica
como caso particular. La eficacia de los controladores propuestos es probada tanto en
simulacion como experimentalmente.

Palabras clave: Robots manipuladores, entradas acotadas, regulacién global,
seguimiento global, control adaptable.

Abstract

This thesis focuses on the design of adaptive control schemes for robot manipulators
under the consideration of the bounded nature of actuators. Generalized state-feedback
controllers are proposed for global regulation and trajectory tracking, whose structures
allow to obtain adaptive versions of bounded PD-type algorithms previously developed
under the consideration of the exact knowledge of the system parameters. A globally
stabilizing SP-SD-type output-feedback adaptive regulation scheme is also developed.
With respect to previous works, the proposed adaptive controllers are the first to
solve the formulated control problems: globally, free of discontinuities throughout the
scheme, avoiding input saturation, and liberating the control gains from the satisfac-
tion of saturation-avoidance inequalities. Moreover, the developed controllers are not
restricted to use a specific saturation function to achieve the required boundedness,
but may involve any one within a set of bounded passive functions that include the
hyperbolic tangent as a particular case. The efficiency of the proposed methodology
was proven both through simulation and experimental implementations

Key words: Robot manipulators, bounded inputs, global regulation, global track-
ing, adaptive control.
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Introduction

1.1 Notation

We denote R the set of real numbers and R" the set of n-dimensional vectors whose
entries are real numbers. Let X € R™" and y € R". Throughout this work, Xj;
denotes the component of X at its i'" row and j™ column, X; represents the i*" row
of X, and y; stands for the i*" element of y. 0,, represents the origin of R", I,, the
n X n identity matrix, 0,, is the n X n matrix whose elements are all zero, and R
the set of nonnegative real numbers, i.e. Ry = [0,00). || - || denotes the standard
Euclidean norm for vectors, i.e. ||y|| = v/>_ i y?, and induced norm for matrices, i.e.
1 X = v/ Amax(XTX), where Apax (X X) represents the maximum eigenvalue of X7 X.
The kernel of X is denoted ker(X) while, for m = n, det(X) denotes the determinant
of X. We denote B, C R™ an origin-centered ball of radius r > 0, i.e. B, = {x € R":
|z|| < r}. Let D and € be subsets (with non-empty interior) of some vector spaces D
and E respectively. We denote C™(D; E) the set of m-times continuously differentiable
functions from D to £ (with differentiability at any point on the boundary of D, when
included in the set, meant as the limit from the interior of D). For a dynamic/time
variable v, © and ¥ respectively denote its first- and second-order evolution/change rate.
Consider a continuously differentiable scalar function ¢ : R — R and a locally Lipschitz-
continuous scalar function ¢ : R — R, both vanishing at zero, i.e. ((0) = ¢(0) = 0.

Let ¢’ denote the derivative of (, i.e. ('(c) = Z—g(q), and DT ¢ stand for the upper-

right (Dini) derivative of ¢, i.e. DT¢(s) = limsup,_, o+ w, with DT¢ = ¢
at points of differentiability [22, App. C.2] [38, App. I]. Thus, ¢(s) = foc Dt ¢(r)dr;
moreover, (Co¢)(s) = ((¢(s)) = [; ('(¢(r))D*¢(r)dr. Furthermore, as conventionally,
¢! represents the inverse function of ¢ (whenever invertible), and sat(-) denotes de
standard (unitary) saturation function, i.e. sat(s) = sign(s) min{|s|, 1}.

The following acronyms are used to name and distinguish the control schemes de-
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scribed throughout this work.

PD Proportional plus derivative control actions.

PDgc Proportional plus derivative with gravity compensation term.

SP-SD Scheme with saturated proportional term plus saturated derivative
term.

SPD Scheme with both proportional and derivative actions within a single
saturation.

SPDgc-like Saturated proportional plus saturated derivative plus gravity compen-
sation, all terms embedded in a single saturation function.

SP-SD.-g, Saturated proportional plus saturated derivative with calculated ve-
locity and adaptable gravity compensation.

SP-SD+ Saturated proportional plus saturated derivative plus system dynamics
compensation.

SPD+ Proportional and derivative actions within a single saturation plus

system dynamics compensation.
SPDhc+-like  Saturated proportional plus saturated derivative plus hybrid system
dynamics compensation, all terms in a single saturation.

Z.00 Represents the control scheme proposed in [50].
L00 Algorithm presented in [25].
D.99 Control scheme appearing in [12].

1.2 Robot manipulators

Mechanical manipulators are articulated systems created from links connected by joints
forming a kinematic chain. Links are the rigid part of the manipulator while joints
are the movable components that produce relative motion between adjoining links.
Joints are usually revolute —allowing a relative rotation between consecutive links—
or prismatic —allowing a linear displacement between two consecutive links—. The
relative displacement between adjacent links is represented by joint variables. The
configuration of the manipulator can be specified by knowing the value of all the
joint variables; the set of all posible configurations a manipulator can adopt is called
configuration space. If the configuration of a system can be described uniquely by n
independent coordinates —generally corresponding to the joint variables— and is said
to have n degrees of freedom (DOF). These n independent coordinates are referred
to as generalized coordinates. As an example, the configuration of a rigid object in a
three dimensional space can be fully described by six parameters, three for position
and three for orientation, and hence it has six degrees of freedom.

The kinematic model represents the motion of the robot without regard to the forces
that created motion, while the dynamic model relates the motion to the forces involved
in its generation. The dynamic model can be obtained using Newtonian mechanics.
The disadvantage of this method is that the analysis becomes more difficult when the
number of degrees of freedom increases. Alternatively, the dynamic model can be easily



derived from the Lagrange’s equations of motion. This method is discussed in greater
detail in the following section.

1.2.1 Lagrange’s equations of motion

The equations obtained through this procedure are derived from a single function,
namely, the Lagrangian. The Lagrangian is defined as the difference between the
kinetic and potential energy functions, i.e.

L(q,q) = K(q,q) —Ul(q)

where ¢ = [q1,...,¢,)" are the generalized coordinates, K(q,q) = £¢"H(q)q is the
kinetic energy with H(q) being the inertia matrix, and U(q) is the potential energy.
The Lagrange’s equation of motion can be derived from Hamilton’s principle and is
given by (for further details see [15], [31]):

doc oL
dtdg; Oq

T

for i = 1,...,n. The resulting equation can be written as

D Hi@i+ )Y ciml@)dsin + gi(a) = 7
j=1 j=1 k=1
where ¢;(q) = g—zj_(q) (the gravity terms), ¢;j, are known as Christoffel symbols of the
first kind, and are defined by

1 {8ij OHy; GHU]
Cijk = 5 +

2 | Og; dqj  Ogy
The R™™™ arrangement whose elements are computed as

T
ck(q)

Cnjk(q)
is called the Coriolis matrix, denoted C(q, ¢), which has important properties summa-

rized in the next section.

1.2.2 The manipulator dynamics and its properties

The general n-DOF serial rigid robot manipulator dynamics with viscous friction can
be expressed as [4, §2.1], [42, §6.2], [26, §7.2]:

H(q)§+C(q,4)q+ Fq+g(q) =7 (1.1)

where ¢, ¢, ¢ € R" are, respectively, the position (generalized coordinates), velocity,
and acceleration vectors, H(q) € R™ ™ is the inertia matrix, and C(q,q)q, Fq, g(q),
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7 € R™ are, respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity,
and external input generalized forces, with with F' = diag[fi,..., f,] where f; > 0,
i = 1,...,n, are the viscous friction coefficients'. The terms of such model posses
widely known properties, (see for instance [20, Chap. 4 & 14] and [14] concerning
Property 1.5 and 1.7). Some of them are recalled here. Subsequently we denote H:

R™ x R — R™™ : (q,q) — [%Lqij(q)ﬂ for every i,7 =1,...,n.

Property 1.1 The inertia matriz H(q) is positive definite, symmetric, and bounded,
i.e. there exist positive constants i, < pyr such that

I < H(q) < parly

Vq € R™. <
Property 1.2 The Coriolis matriz satisfies:

1.2.1 §" [§H(q.4) - Cla,d)| 4 = 0, ¥(g,§) € R x R";

1.2.2 H(q,q) = C(q,q) + CT(q,49), ¥(g,4) € R* x R";

1.2.83 C(w,z+y)z = C(w,z)z + C(w,y)z, Yw, z,y,z € R™;

1.2.4 C(z,y)z = C(z,2)y, Vz,y,z € R™;

1.2.5 ||C(z,y)z|| = kellyllllzll, Y(z,y,2) € R*" x R* x R™, for some constant k¢ > 0.

q
Property 1.3 The viscous friction coefficient matriz satisfies
fullzl* < 2" Fo < farl®
Vo € R", where 0 < f,, £ ming{ f;} < max;{fi} £ fur. <

Property 1.4 The gravity vector is bounded, or equivalently, every element of the
gravity vector, g;(q), i = 1,...,n, satisfies |g;(¢)| < By, Vg € R", for some positive
constants By, i =1,...,n.? q

IThe terms in the left-hand side of the manipulator dynamics in Eq. (1.1) involve a set of param-
eters § € RP. Subsequently, whenever convenient, such a parametric dependence of H(q), C(q,q), F,
and g(q) will be explicitly denoted as H(q, ), C(q,q,0), F(6), and g(q,0).

2Property 1.4 is not satisfied by all types of robot manipulators but it is for instance by those
having only revolute joints [20, §4.3]. This work is addressed to manipulators satisfying Property 1.4.
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Property 1.5 The gravity vector can be rewritten as g(q,0) = G(q)0, where § € RP
15 a constant vector whose elements depend exclusively on the system parameters, and
G(q) € R™P —the regression matriz— is a continuous matriz function whose elements
depend exclusively on the configuration variables and do not involve any of the system
parameters. FEquivalently, the potential energy function of the robot can be rewritten
as U(q,0) = T(q)0, where Y(q) € R™P —the regression vector— is a continuous
row vector function whose elements depend exclusively on the configuration variables
and do not involve any of the system parameters. Actually, GT(q) = %TT((]), or

equivalently, T;(q) = Y1, fq‘? Gij(qu, s Qe 75, G 1y - -5 )dr, Vi€ {1, .., p}, with
¢ =(q},...,q)" being the reference configuration where U(q*,0) = 0.3 <

Property 1.6 Consider the gravity vector g(q,0). Let 0p; represent an upper bound
of I63], such that |6;] < Ouj, ¥ € {1,...,p}, and let 00 2 (Orra,...,0u,)" and
N 9M1,9M1] X oo X [=Opp, O0p]. By Properties 1.4 and 1.5, there exist positive
constants Bgl , i = 1,...,n, such that |g;(z,y)| = |G;(x)y| < ng”, i =1,...,n,
Vz € R", Vy € ©. Furthermore, there exist positive constants Bg,;, Bg,, and Bg
such that |G;(z)| < Ba,,, |Gi(z)|| < Bg,, and [|G(2)|| < Bg, Ve e R, i =1,...,n

j=1,...,p. N

Property 1.7 The left-hand side of the robot dynamic model in Eq. (1.1) can be
rewritten as

H(q, )i+ Cq,¢,¥)q+ F(W)q+9(q,¥) = Y(q,4, §)¢

where Y € R is a constant vector whose elements depend exclusively on the sys-
tem parameters, and Y (q,q,§) € R"™P —the regression matriz —is a continuous
matrix function whose elements depend exclusively on configuration, velocity and ac-
celeration variables and do not involve any of the system parameters. FEven more,
each term of the left-hand side of (1.1) can be analogously rewritten as H(q,v)§ =
Yu(g,4)¢, Clg,d,¥)q = Yola, )¢, F(¢ )q ( )¢, and g(q,¥) = Y4(q)¢, and actu-

Property 1.8 Consider the manipulator dynamics Y (q,q,§)y = H(q,¥)i+C(q, ¢,¥)¢+
F()4+g(q,v) = 7. Let 1 represent an upper bound of 1, such that 1; < p;, Vi €

{17 e 7p}7 and let Yy = (1/1M1> e ,l/JMp)T and ¥ = [—@DMlﬂ/JMl] XX [—¢Mp,¢Mp]~

a. By Properties 1.4 and 1.7, there exist positive constants B;piM > By, t=1,...,n,

such that |g;(z,y)| = |Yi(x)y| < B;le, i=1,...,n, Yx € R", Yy € V. Further-
more, there exist posztwe constants Bg,;, BGZ, and Bg such that Ygij(z)| < Bg,,,
|Y,i(x)|| < Bg,, and ||Y,(x)]] < Bg, Vo eER™ i=1,. L ji=1,...,p.

3The reference configuration ¢* is the generalized position with respect to which U(q, 6) is quanti-
fied. In other words, U(q, #) represents the amount of work needed to relocate the system configuration
at ¢ departing from ¢*.



b. Let X and Y be any compact subsets of R™. By Properties 1.1, 1.2.5, 1.7, and
1.8a., there exist positive constants B}gi_”, i=1,...,n such that

|Yi(w, z,y)z| SB%ZX, i=1,....,n, Y(w,z,y,2) ER" XX xYxXU

Further, there exist positive constants By,;, By,, and By such that |Yi;(w, z,y)| <
By, [IYi(w,z,y)|| < By,, and ||Y (w,z,y)|| < By, for all (w,z,y) € R" x X x Y,
1=1,...n,5=1,...,p.

Remark 1.1 Let us note that under the consideration of Property 1.8, by Proper-
ties 1.1, 1.2.5, 1.3, 1.7, and 1 8a., there exist positive constants ,uw kwj , and f¢M,
such that |Y(w z,y)z| < pd Hy|| + kg |22 + fitllell + BYM, i = 1,...,n, for all

(w,z,y,2) € R" x X x Y x ¥. Observe from this expression that for any 7; > B;iM,
there always exist Sufﬁ(nently small positive values a and b (for instance, such that
wa—i— k¢Ma2 + f a<T;,— Bd’“) that guarantee |Y;(w,z,y)z| <T;,i=1,...,n, on

R™ x B, bix\If <

In Appendix A, the dynamic models of a 2-DOF robotic arm and a 3-DOF anthro-
pomorphic manipulator are thoroughly obtained.

1.3 Bounded inputs

Real-life actuators have a limited range of operation which is a natural consequence of
their power supply limitations. When a controller does not account for this natural lim-
itation input saturation may occur. This unavoidable nonlinear phenomenon generally
characterizes the signal transfer from the controller outputs to the plant inputs. Ig-
noring such a physical constraint may lead to unexpected or undesirable consequences,
as pointed out for instance in [10], [18], [23], and [24]. Control synthesis under the
consideration of such inevitable nonlinearity has consequently become important and
considerably attracted the attention of the feedback control community [7].

1.4 Control of robot manipulators

If we use the control objective as a way to classify controllers, it can be said that there
exist two kinds of control schemes: those who aim for position control or requlation and
those whose objective is motion control or tracking. The problem of position control for
robot manipulators consists in designing a control law u(q, ¢, 6), with § € RP a system
parameter vector, such that, given a desired or target (constant) configuration ¢4 € R™,
when 7 = u(q, ¢, 0) in (1.1), q(t) = g4 becomes an asymptotically stable solution of the
closed loop. This becomes a global regulation problem if, in addition to the asymptotic
stability, ¢(t) = qq4 is aimed at being rendered globally attractive, i.e. ¢(t) — qq as
t — 00, ¥(q,4)(0) € R x R™.



When the parameter vector # is unknown adaptive control may be useful to achieve
the desired objective. In this context, position control becomes an adaptive regulation
problem, which may be formulated in the following terms. Given ¢4 € R", one should

be able to propose a dynamic control law u(q,cj,é), 6 = h(q,q), independent of the
exact values of the system parameters, such that, for the closed-loop system

{H@M+C@AM+F@+ﬁQZUWAﬁ)

0 = h(q.q)

(¢,0)(t) = (qa, 0) becomes a stable solution of the closed loop, simultaneously guaran-
teeing the existence of a subset D C R"™ x R™ x RP, containing (gg,0,,0), such that
q(t) = qq as t — oo, ‘v’(q,cj,é)(O) € D. This becomes a global adaptive regulation
problem if the convergence of ¢(t) towards ¢, is aimed at being achieved for any initial
condition, 7.e. if D = R™ x R" x RP,

Under the consideration of the input saturation phenomenon, the bounded adaptive
regulation objective can be stated as designing a dynamic control law u = u(q, ¢, é),

0 = h(q,q), independent of the exact values of the system parameters, such that, for
the closed loop system

H(q)j+C(q,9)q+ Fq+g(qg) =7
7; = T;sat (u(q,q’,é)/ﬂ-) i=1,..,n

0 = h(q,q)

the (global) adaptive regulation objective is guaranteed with (along the system trajec-
tories)

Analogously, the problem of motion or tracking control consists in finding a control
input u = wu(t,q,q,0), such that, given a desired trajectory q4(t) € R", when 7 =
u(t,q,q,0) in (1.1), q(t) = qq(t) becomes a uniformly asymptotically stable solution
of the closed loop. This becomes a global tracking control problem if, in addition to
the uniformly asymptotic stability, ¢(t) = ¢q(t) is aimed at being uniformly globally
attractive, i.e. q(t) — qq(t) as t = oo, V(q,¢)(0) € R™ x R™.

Adaptive tracking control may be useful to overcome system parameter uncertain-
ties. It can be defined as follows. Given ¢4(t) € R", propose a dynamic control law

u(t,q,q’,é), 0 = h(t,q,q), independent of the exact values of the system parameters,
such that, for the closed-loop system

{H@M+C@@M+F@+mw=uw%¢®

0 = h(t,q.q)

(a(2), é(t)) = (qq(t),0) is a uniformly stable solution of the closed loop, while guar-
anteeing q(t) — qq(t) as t — oo, for initial conditions sufficiently close to the desired
trajectory. If this objective is achieved for any initial condition this becomes a global
adaptive tracking problem.



Considering in the control design input saturation, the bounded adaptive tracking

objective can be stated as proposing a dynamic control law u = u(t,q,q’,é), 0 =
h(t,q,q), independent of the exact values of the system parameters, such that, for the
closed loop system

H(q)i+C(q:9)q+ Fi+glg) =T
7; = T;sat (u(t,q,cj,é)/ﬂ) i=1,...,n

0 = h(t,q,q)
the (global) adaptive tracking objective is achieved with

mi(t)] = [w(®)] <T;, Vt>0, i=1,..n.

1.5 Previous works

Disregarding input saturation, one of the simplest control techniques for the global
regulation of robot manipulators is the so-called PD with gravity compensation [20,
Chap. 7] (PDgc). In its original form, it achieves the global stabilization objective
under ideal conditions, for instance: unconstrained input, availability of all the link
positions and velocities, and exact knowledge of the system parameters. Inspired by
this control method, and in view of the undesirable effects of saturation, researchers
have developed alternative (nonlinear or dynamic) PDge-based approaches that deal
with the limitations on the actuator capabilities and/or on the available system data,
while keeping the natural energy properties of the original PDgc controller: definition
of a unique arbitrarily-located closed-loop equilibrium configuration and motion dis-
sipation. For instance, assuming that the exact value of the system parameters and
accurate measurements of all the system states (positions and velocities) are available,
a basic approach was proposed in [19] and [41]. In these works the P and D parts (at
every joint) are, each of them, explicitly bounded through specific saturation functions:
a continuously differentiable one —more precisely, the hyperbolic tangent function—
is used in [19] and the conventional non-smooth one in [41]. Because of their struc-
ture, this type of algorithms have been denoted SP-SD controllers in [39] (where a
previous version of the work in [41] was presented). Further, two alternative schemes,
that prove to be simpler and/or give rise to improved closed-loop performances, were
recently proposed in [47]. The first approach includes both the P and D parts (at every
joint) within a single saturation function, while in the second one all the terms of the
controller (P, D, and gravity compensation) are covered by one of such functions, with
the P terms internally embedded within an additional saturation.

Moreover, free-of-velocity-measurement versions of the SP-SD controllers in [19]
and [41] —still depending on the exact values of the system parameters— are obtained
through the design methodologies developed in [29] and [40]. In [40], global regula-
tion is proved to be achieved when each velocity measurement is replaced by the dirty
derivative [33] of the respective position in the SP-SD controller of [41]. A similar
replacement in a more general form of the SP-SD controller is proved to achieve global
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regulation through the design procedure proposed in [29] (where an alternative type of
dirty derivative, that involves a saturation function in the auxiliary dynamics giving
rise to the estimated velocity, results from the application of the proposed methodol-
ogy). Furthermore, an output feedback dynamic controller with a structure similar to
that resulting from the methodology in [29], but which considers a single saturation
function (at every joint) where both the position errors and velocity estimation states
are involved, was proposed in [8] (where a dissipative linear term on the auxiliary state
is added to the saturating velocity error dynamics involved for the dirty derivative cal-
culation); extensions of this approach to the elastic-joint case were further developed
in [9].

In view of the gravity compensation terms, the implementation of the above men-
tioned saturating schemes becomes specially problematic when the system parameters
are uncertain. Because of the potential undesirable effects that this constraint can in-
duce, bounded adaptive SP-SD-type algorithms have been developed in [11, 12, 25, 50].

e In [11] global regulation is aimed through a discontinuous scheme that switches
among two different control laws, under the consideration of state and output
feedback. Both proposed control laws keep an SP-SD structure similar to that of
[41]. These algorithms were designed under the consideration of the manipulator
dynamics without friction, i.e.

H(q)j+C(q,9)g +G(q,0) =7 (1.2)

For the state feedback case the authors first propose a non-adaptive scheme with-
out gravity compensation of the form

T = kpysat(é) + kpy’sat(e) (1.3)

where e = g4 — q represents the position error vector, kp, kp,vy € R are positive
constants, and sat(:) is the standard saturation function. The authors prove
that the closed-loop system, Egs. (1.2) and (1.3), possesses a unique equilibrium
vector that can be approached to ¢4 by increasing 7, and this equilibrium position
is globally asymptotically stable. To achieve the convergence the authors propose
to switch the algorithm in Eq. (1.3) to the unbounded adaptive control law

7= f(t) + kpyé + kpy’e (1.4a)
(1) (e~ Fr
f=0 (1 bell) (6 kme) (1.4b)

with

- {o it (17 < fuu) A [£7 (6= f2¢) <]
1 if Otherwise

where fuax = Gmax + 02, and 3, 6, € R are positive constants. For this algorithm,
proposed to achieve the desired convergence, the author shows that all signals
are bounded and that the error vectors e, é converge asymptotically to the origin,



provided that e and é are within the region of attraction of the closed-loop system
(1.2)-(1.4). It was also concluded that the region of attraction can be made
arbitrarily large by increasing «y in the control law (1.4).

In the output feedback case each velocity measurement is replaced by the dirty
derivative of the corresponding position. The followed methodology and stability
properties are the same as in the state feedback case. Unfortunately, a precise
criterion to determine the switching moment (from the first control law to the
second one) is not furnished for either of the proposed schemes.

In [50], semiglobal regulation is proved to be achieved through a state feedback
scheme that keeps the same structure of the SP-SD controller of [19] but addi-
tionally considers adaptive gravity compensation. The proposed controller was
designed under the consideration of the manipulator dynamics with viscous and
Coulomb friction, i.e.

H(q)j+ C(q,q)q + Fag + Fisign(q) + g(q,0) =7 (1.5)

where sign(g) denotes a vector whose elements are given by (sign(qi), .. ., Sign(q'n))T
The adaptation algorithm is defined as

7 =G"(q)0 — KpTy(q) — KpTi(q) (1.6a)
0 = P(Q(q,4).0) (1.6b)
where § = g — qq, for any desired configuration vector ¢, € R", Tp(z) =

(tanh(zq), ... ,tanh(xn))T, Q(q,q) = —TGT(q)[¢ +€Tn(q)], P is defined in terms
of a discontinuous expression —by means of which the parameter estimators are
prevented to take values beyond some pre-specified limits, which consequently
keeps the adaptive gravity term bounded—, whose elements are given as

Pi(Q.0) =
Qj if ejm < éj < ng or (é] < Qjm and Qj > O) or (éj > ejM and Qj < 0)
0 if (éj < Qjm and Qj < 0) or (é] > QjM and Qj > 0)

Jj=1,...,p, where 0;,, and 0}, are known lower and upper bounds of 6; respec-
tively. The author prove that given the system dynamics Eq. (1.5), the control
law in Egs. (1.6) ensures asymptotic stability, provided that Kp, Kp, and ¢
satisfy some inequalities, with a region of attraction that may be enlarged by
increasing the control gains. Once the gains are defined, the author provides an
explicit bound on the torque input, namely

17l < IG(@)llicc 0]l + ArKp + Aar Kp

where § = 0 — 0 and || - || denotes the induced infinity norm of a matrix. This
approach was further extended in [13] to the case when the control objective is
defined in task coordinates and the kinematic parameters —additionally to the
dynamic ones— are considered to be uncertain too.
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e In [25], an adaptive output feedback regulation scheme was proposed. The con-
sidered system dynamics is shown in Eq. (1.2). The author replaces each velocity
measurement by the dirty derivative of the corresponding position, and considers
an unbounded adaptive gravity compensation term. The proposed control law is

of the form A
T = —KpTh<)\(j) — KDTh((s’ﬁ) + Gd(g (17&)

where Gy = G(qq), Th(z) = (tanh(zy),... ,tanh(a:n))T, Kp € R and Kp €
R™ "™ are positive definite diagonal matrices, A and J are positive constants, and
¥ € R™ and 6 € R are the output variables of (interconnected) auxiliary dynamic
subsystems that take the form:

QC = _aK(QC‘I“KCY) (17b)
V=q.+Kq (1.7¢)

and
e = BGY [NT(00) — pTu(A)] (1.7d)

where K € R™™ is a positive definite diagonal matrix, and «, 3, n, and u
are positive constants. Arguing simplicity of development, the gain matrices
involved in this control algorithm are taken in [25] as Kp = kpl,,, Kp = kpl,,
and K = kl,, with kp, kp, and k being positive constants.

Through the proof of the main result, asymptotic stabilization is concluded to be
achieved through the proposed scheme with a region of attraction that may be
enlarged by increasing the control gains, while the input is guaranteed to remain
within bounds that depend on initial conditions.

e An adaptive state feedback scheme aiming for tracking control was developed in
[12]. The dynamic model used considers the viscous friction F, as follows

H(q)§+C(q,4)g+ Fig+g(q,0) =7

The proposed controller is

A

7 =Yy(t)0 — KpTi(q) — KpTh(r) (1.8a)
h=p (@(t.).6) (1.8b)
where Ya(t) = Y (qa(t), da(t), da(t)); T(x) = (tanh(zy), ..., tanh(z,))";
r =G4+ eTh(q) (1.8¢c)
with ¢ being a positive constant;
Q(t,r) = —TYT(t)r (1.8d)

11



where Kp, Kp € R™™ and I' € RP*P are positive definite diagonal matrices; the
elements of P are defined in terms of the following discontinuous expression

Pi(Q.6) =
Qj if ejm < éj < GjM or (é] < ejm and Qj > O) or (éj > ejM and Qj < O)
0 if (é] < ejm and Qj < 0) or (é] > ejM and Qj > 0)

Jj=1,...,pwith 0}, and 0;,; being known lower and upper bounds of ¢; respec-
tively. The authors conclude asymptotic tracking provided that the minimum
eigenvalue of Kp is high enough, with a region of attraction that may be en-
larged by increasing the control gains. They also provide an explicit bound of
the control expression in Eq. (1.8a).

1.6 Motivation

The previously described works are generally local results with a region of attrac-
tion that may be enlarged through the control gain values. Only the work in [11]
aims at contributing a global result through a variable structure scheme that involves
two different control output expressions implying a discontinuous change among them.
Unfortunately, such an approach in [11] fails to furnish an analytical criterion to de-
termine the exact condition at which the mentioned a discontinuous change (among
the involved output control expressions) should be done. Global results on adaptive
control in a bounded input context though continuous (fix structure) algorithms miss
in the literature and constitutes one of the main motivations of this dissertation.

On the other hand, all previously described adaptive schemes define the SP and
SD terms using only hyperbolic tangent functions to bound the position and velocity
error vectors, and with the control gains multiplying the saturation functions. This
gives rise to controllers whose saturation bound is defined in terms of the sum of the
P and D control gains (and the bound of the parameter estimator), which limits the
choice of such gains. This in turn restrains the closed-loop region of attraction in the
cases where it can be enlarged by increasing the control gains.

Even more, adaptive control schemes where the parameter estimates are aimed to
remain bounded within pre-specified values generally appeal to an adaptation dynamics
with discontinuous right hand side, like those appearing in [11] and [50]. The discon-
tinuous character of such type of adaptation dynamics is not necessarily a drawback,
but a bounded adaptive scheme avoiding discontinuities constitutes a better alternative
developed within a simpler analytical context and making use of more natural ways to
cope with the need to bound the parameter estimates.

On the other hand, the control laws appearing in [1, 47| which assume the knowl-
edge of all system parameters, release the gains from satisfying a saturation-avoidance
inequality while achieving globally stabilizing results, and also allow the user to choose
any saturation function within a set. Adaptive versions of the alternative saturat-
ing schemes in [1, 47] have not yet been proposed. Moreover, as far as the authors are
aware, a continuous adaptive scheme, with continuous auxiliary dynamics, that achieve
the global regulation objective is still missing in the literature.
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1.7 Structure of the dissertation

The rest of the work is organized as follows: Chapter 2 presents presents definitions
and results that were used in the analyzes developed in this dissertation.

Chapter 3 deals with the development and stability proof of the proposed adaptive
control laws. First, the results corresponding to position control are shown in the case
of availability of all system states. Then a control scheme that does not involve system
velocities is presented. Finally, a trajectory tracking controller is presented assuming
availability of states.

Simulation results of all developed schemes are presented in Chapter 4 using the
nominal dynamic model of a 2-DOF robot manipulator. Each proposed scheme is
compared against one of the controllers of previous works.

Chapter 5 shows experimental results obtained using two different manipulators:
the 2-DOF mechanical arm in [36] and the 3-revolute-joint anthropomorphic robot
appearing in [37]. The goal is to experimentally compare and corroborate the efficiency
of the proposed control laws.

Conclusions and future work perspectives are finally presented in Chapter 6.
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Mathematical Background

Theorems and definitions used throughout this dissertation are detailed in this chapter.
These results were taken from [4, 22, 32, 38, 45].

2.1 Lipschitz continuity

A function f: D — R"™, with D being a domain (open connected set) contained in R",
that satisfies

1 () = fFWI < Lz =yl (2.1)

for all x and y in D and some non-negative constant L, is said to be Lipschitz-continuous
in x and the positive constant L is called a Lipschitz constant. It is said to be locally
Lipschitz-continuous if, for every x € D, there exists a neighborhood Dy of x such
that f restricted to Dy is Lipschitz-continuous. With D = R", it is said to be globally
Lipschitz-continuous if (2.1) is satisfied for all x and y in R”. Similarly, a function
f:R™ — R™ is said to be Lipschitz/locally Lipschitz on D C R™ if f restricted to D is
Lipschitz-continuous/locally Lipschitz-continuous. An analog terminology is employed
for a function f(¢,x), provided that the Lipschitz condition holds uniformly in ¢ for all
t in a given interval of time. Thus, a function f(¢,z) mapping I x D C R, x R" to
R", with D being a domain contained in R", that satisfies

(8 y) = f(t2)|| < Llly — =] (2.2)

for all (¢,y) and (¢, z) in I x D and some non-negative constant L, is said to be Lipschitz-
continuous in z. It is said to be locally Lipschitz-continuous in x if, for every y € D,
there exists a neighborhood Dy of y such that f restricted to I x Dy is Lipschitz-
continuous. With D = R™, it is said to be globally Lipschitz-continuous in z if (2.2) is
satisfied for all (¢,y) and (¢, z) in I x R™. Similarly, a function f(¢, z) mapping R, x R™
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to R™ is said to be Lipschitz/locally Lipschitz in z on I x D C Ry x R™ if f restricted
to I x D is Lipschitz-continuous/locally Lipschitz-continuous.

Lemma 2.1 [22, Lemma 3.1] Let f : [a,b] x D — R™ be continuous for some domain
D € R"™. Suppose that [0f /0x] exists and is continuous on |a,b] x D. If, for a convex
subset W C D, there is a constant L > 0 such that

' of

ox
1f(t2) = ft.y)ll < Lz —yl
forallt € [a,b], z € W, and y € W. N

o <z

on la,b] x W, then

Lemma 2.1 shows how using the knowledge of [0f/0x] a Lipschitz constant can be
calculated.

The Lipschitz property is stronger than continuity but is weaker than continuous
differentiability as stated in the following lemmas.

Lemma 2.2 [22, Lemma 3.2] If f(t,x) and [0f /0x](t,x) are continuous on [a,b] x D,
for some domain D C R", then f is locally Lipschitz in x on [a,b] X D. <

Lemma 2.3 [22, Lemma 3.3] If f(t,x) and [0f/0z|(t, x) are continuous on |a,b] x R™,
then f is globally Lipschitz in x on [a,b] xR™ if and only if [0 f /Ox] is uniformly bounded
on la,b] x R". q
2.2 Lyapunov stability
Throughout this section we consider a system of the form

i = f(t,) 23

where f : I x Q) — R", is piecewise continuous in ¢ and locally Lipschitz in x on I x €2,
with I £ (7,00), for some 7 € R, Q being a domain of R™ containing de origin, and
such that f(t,0,) = 0,, Vt > 0.

Definition 2.1 [22, Definition 4.4] The origin of (2.3) is
e stable if, for every e > 0 there exists 0 such that

lz(t)]| <8 = |z@®)| <e V>t >0 (2.4)

e uniformly stable if, for each € > 0, there is 6 = 0(¢) > 0 independent of to
such that Eq. (2.4) is satisfied.

e unstable if it is not stable;
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e asymptotically stable if it is stable and there is a positive constant ¢ = c(tg)
such that x(t) — 0 ast — o0, V||z(ty)|| < c.

o uniformly asymptotically stable if its uniformly stable and there is a positive
constant ¢, independent of to, such that for all |z(ty)|| < ¢, z(t) — t as t — oo,
uniformly in to, that is, for each n > 0, there is T'=T(n) > 0 such that

l@I <n, ¥Vt =to+T(n), V()] <c

e globally uniformly asymptotically stable if its uniformly stable, 0(€) can be
chosen to satisfy lim._,, d(€) = 0o, and, for each pair of positive numbers n and
¢, there is T'="T(n,c) > 0 such that

[zl <n, Vi =to+T(n,c), V|z(to)l| <c
<

The following result allows the use of continuous Lyapunov functions being locally
Lipschitz-continuous in z.

Theorem 2.1 [38, Theorem 6.2] If there exist a continuous function V(t,x) : I x Q —
R, locally Lipschitz in x and such that

o V(t,z) = a(|lz]]); V(¢,0) = 0;
o D'V (t,x) <0y
for some a € K and for all (t,x) € I x Q, then the origin is stable N

A scalar mapping a : R, — R, is said to be a class K function, denoted a € I,
if it is strictly increasing and a(0) = 0. Let us further note that, in view of the time-
independence of their dynamics (and consequently of the initial-time-independence of
their solutions), for autonomous systems, stability is always uniform.

2.3 Invariance theory

The result presented in this section may be seen as a version/extension of LaSalle’s

invariance principle that may be applied to autonomous systems with continuous dy-

namics (in contrast for instance to the statement of LaSalle’s theorem presented in [22,

Theorem 4.4] which considers autonomous state equations with Lipschitz-continuous

vector fields). Before we state such an important theorem, some definitions are given.
We consider autonomous systems of the form

i = f(x) (2.5)

where f € C[Q2,R"], 2 C R" is an open connected set.
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Definition 2.2 A set M is said to be

e an tnvariant set with respect to (2.5) if

z(0) e M = x(t) € M, vVt € R.

e a positively invariant set with respect to (2.5) if

z(0) € M = x(t) € M, vt > 0.

N

We say that x(t) approaches a set M as t approaches infinity, if for each £ > 0 there
is a T' > 0 such that
dist(z(t), M) <e, Vt>T

where dist(p, M) denotes the distance from a point p to a set M, that is the smallest
distance from p to any point in M. More precisely,

dist(p, M) = inf [|p — ]|

Theorem 2.2 [32, Theorem 7.2.1] Assume that there exists a function V € C[Q,R],
with Q C R being an open connected set, such that DTV (x) < 0 for x in Q and such
that, for some constant ¢ € R, the set H. is a closed and bounded component of the set
{r €Q:V(x) <c}. Let M be the largest invariant set in

Z={reQ:D"V(z)=0}

with respect to (2.5). Then, every solution x(t) of (2.5) starting in H. approaches to
M ast — oo. <

If we want to show that z(t) — 0,, as t — oo, we need to establish that the largest
invariant set in Z is the origin.

Invariance-like theorem

The following result proves to be helpful to determine convergence in the context of
non-autonomous systems.

Theorem 2.3 [22, Theorem 8.4] Let D € R™ be a domain containing x = 0 and
suppose f(t,x) is piecewise continuous in t and locally Lipschitz in x, uniformly in t,
on [0,00) x D. Furthermore, suppose f(t,0) is uniformly bounded for all t > 0. Let
V :[0,00) x D — R be a continuously differentiable function such that

Wi(z) < V(t,x) < Wy(z)

. v v

V(t,z) = s + e flt,x) < =W(x)
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YVt > 0, Vo € D, where Wi(z) and Wy(x) are continuous positive definite functions
and W (z) is a continuous positive semidefinite function on D. Choose v > 0 such
that B, € D and let p < minjg =, Wi(z). Then, all solutions of & = f(t,x) with
x(to) € {x € B|Wa(z) < p} are bounded and satisfy
Wi(z(t)) =0 as t— 0

Moreover, if all the assumptions hold globally and W1 is radially unbounded, the state-
ment is true for all x(ty) € R™ q
2.4 Passivity
Consider a dynamical system defined by the state model

T = f(z,u) (2.6a)

y = h(z,u) (2.6b)

where f : R® x RP — R" is locally Lipschitz, h : R® x RP — RP is continuous,
f(0,,,0,) = 0,,, and h(0,,0,) = 0,. The following definition shows the various notions
of passivity for the state model (2.6)

Definition 2.3 [22, Definition 6.3] The system (2.6) is said to be passive if there exist a
continuously differentiable positive semi definite function V (z) (called storage function)
such that

uly >V = g_V (x,u), VY(z,u)eR"xR? (2.7)
T

Moreover, it is said to be
o lossless if uly =V
o input-feedforward passive if u"y >V +uTp(u), for some function p.
o input strictly passive if u'y >V +uTp(u), and uT(u) > 0, for all u # 0.
o output-feedforward passive if u"y >V +yTp(y), for some function p.
e output strictly passive if u"y >V +y p(y), and yp(y) > 0, for all y # 0.
o strictly passive if uTy >V + ¢(x), for some positive definite function ¢.

In all cases the inequality should hold for all (z,u). q
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u, o+ e,

Hl yl >

2 i+
-« H,

Figure 2.1: Feedback connection

Feedback systems

Consider the feedback connection presented in figure 2.1 where each of the feedback
components H; and Hs can be a time-invariant dynamical system represented in Egs.
(2.8)

.I"i = fi({['i, 67;) (28&)

yi = hi(t, e;) (2.8b)
i =1,2, or a possibly (time-varying) memoryless functions represented by

Theorem 2.4 [22, Theorem 6.1] The feedback connection of two passive systems is
passive. N

2.5 Generalized saturation functions

The control schemes proposed in this work involve special functions fitting the following
definition.

Definition 2.4 Given a positive constant M, a nondecreasing Lipschitz-continuous
function o0 : R — R is said to be a generalized saturation with bound M if

(a) so(s) >0 for all ¢ #0;

(b) |o(s)| < M forall s € R.
If in addition

(¢) o(s) =< when || < L,

for some positive constant L < M, o is said to be a linear saturation for (L, M)

[45]

Any function satisfying Definition 2.4 has the following properties.
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Lemma 2.4 Let 0 : R — R be a generalized saturation function with bound M, and
let k be a positive constant. Then

1. limy 00 DY o (<) = 0;
2. 3oy, € (0,00) such that 0 < Dro(s) < oy, Vs € R;
3. |o(ks +n) —a(n)| <kls|, Vo,n € R,

4. lo(ks)| < Els|, Vs € R;

k
2ko <f0 o(kr)dr < UMg , Vs € R;

6. [;o(kr)dr >0, Vs #0;
7. [5 o(kr)dr — oo as || = oo;
8. if o 1is strictly increasing, then

(a) slo(c+n)—a(n)] >0, Vs #0, Vn € R;

(b) for any constant a € R, &(c) = o(s + a) — o(a) is a strictly increasing
generalized saturation function with bound M = M + |o(a)|;

9. if o is a linear saturation for (L, M) then, for any continuous function v : R — R
such that [v(n)| < L, Vi € R, we have that s[o(s+v(n)) —o(v(n))] >0, Vs #0,
vn e R.

Proof.

1. Since o is a Lipschitz-continuous function that keeps the sign of its argument
(according to item (a) of Definition 2.4), and is nondecreasing and bounded by
M, there exist positive constants ¢~ < M and ¢t < M such that

|l|1_1>n o(c) = (sign(s) — 1)~ —;— (sign(s) + 1)ct 2,

Hence, we have that:

h) —
lim Do(s) = lim limsup <+ h) = <o)
|s]—o0 || =00 p_o+ h
h) —
= limsup lim (c+h) =<(s)
h—0+  [s]=o0 h
= lim sup T ~ %0 _
h—0t h
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2. Since o is a Lipschitz-continuous nondecreasing function, we have that Dto(s)
exists and is piecewise-continuous on R, and that Do (¢) > 0, V¢ € R. On the
other hand, because of its piecewise-continuity, D" o (<) is bounded on any com-
pact interval on R. Thus, its boundedness holds on R if limg_,o, Do () < o00.
Since limg,oo D70 (s) = 0 (according to item 1 of the statement), we conclude
boundedness of Do (s) (on R), i.e. there exists a non-negative finite scalar o/,
such that D*o(s) < o), Vs € R. Finally, observe that by virtue of item (a) of
Definition 2.4, there exists a € (0, 00] such that D¥o(s) > 0, Vs € (—a,a) \ {0},
whence we conclude that o}, > 0.

3. This item is a direct consequence of the Lipschitz-continuity of ¢ and item 2 of
the statement (as analogously stated for instance in Lemma 2.3).

4. This point follows from item 3 of the statement with n = 0.

5. From Lipschitz-continuity of o, its satisfaction of item (a) of Definition 2.4, and
the boundedness of Do by a positive constant o), (according to item 2 of the
statement), it follows that

D*o(ke)

lo(ks)| < |o (k)| < alks]
O M

Vs € R, whence —considering that ¢ has the sign of its argument (according to
item (a) of Definition 2.4)— we have that

S k. S S
/ MDJFU(/W)CZT < / o(kr)dr < / ko' rdr
0 0 0

Om

wherefrom we get

2 k S k /2
o /g) §/ o(kr)dr < Roms
2ko’y, 0 2

Vs € R.

6. Strict positivity of [ o(kr)dr on R\ {0} follows from items 5 of the statement
and (a) of Definition 2.4, by noting that o?(k¢) > 0, V< # 0.

7. From the Lipschitz-continuous and nondecreasing characters of o, and its satis-
faction of item (a) of Definition 2.4, we have that there exist constants a > 0,
ke > 0, and ¢ > 1 such that |o(<)| > k, |asat(s/a)|®, whence we get

S S
Sa(s) £ / sign(r)k, |asat(r/a)|®dr < / o(ks)dr
0 0
V¢ € R, with

kea® (Js| — %) V[s| > a

c+1

Ka_ |clett V¢l <
o= (T wise
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Thus, from these expressions we observe, on the one hand, that
S

lim S,(s) < lim o(kr)dr

|s|]—o0 T sl—=o0 0

and, on the other, that S,(¢) — oo as || — oo, wherefrom we conclude that
Js o(kr)dr — oo as || = oo.

8. Suppose o is strictly increasing. Let ¢, n,¢ € R.
(a) Since o is strictly increasing, we have that
o() >a(n) < ¢>n
and

o(¢) <o(n) <= <1
Let ¢y = ¢+ n. Then

olc+n)—o(n) >0 < ¢>0 VnekR

and
ols+n)—on) <0 < ¢<0 YneR
whence it follows that ¢[o(sc+n) — o(n)] > 0, Vs # 0, ¥n € R.
(b) For any constant a € R, let (¢) = o(s + a) — o(a).

e Lipschitz-continuity. From the Lipschitz-continuity of o and item 2 of
the statement, we have that |o(s) —o(n)| < olyls —nl, Vs,n € R. Then

() —a(n)] = |(o(s +a) = a(a)) = (a(n +a) — a(a))]
= |o(c +a) —a(n +a)
< oly|(s+a) = (n+a)|
< ahyls =l

V¢, n € R, which shows that & is Lipschitz-continuous.

e Strictly increasing monotonicity. From the strictly increasing mono-
tonicity of o, we have that

o(s)>a(n) < o(c+a)—o(a) >c(n+a)—ol(a)
<~ o(c+a)>o(n+a)
<~ cta>n—+a
— ¢>7

which shows that & is strictly increasing.

e ¢i(s) >0, Vs # 0. From item 8a of the Lemma, we have that ¢a(¢) =
Slo(s +a) —o(a)] >0, for all ¢ # 0 and any a € R.
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o |5(s)| < M =M +l|o(a)], Vs € R. Since |o(s)| < M, Vs € R, we have
that

7(S) =lo(s +a) —o(a)] < |o(s +a)| +|o(a)] < M + |o(a)] = M

Thus, according to Definition 2.4, ¢ is concluded to be a strictly increasing
generalized saturation with bound M = M + |o(a).

9. Let us begin by noting, from item (c) of Definition 2.4, that |v(n)| <
o(v(n)) = v(n), Vn € R. Furthermore, [s+v(n)| < L = o(s+v(n)) =
Vn € R. Hence,

L —
s+v(n),

slo(s+v(n) —o(vn)] =¢*>0
for all ¢ # 0 such that |s + v(n)| < L, and all n € R. (2.10)

On the other hand, if ¢ 4+ v(n) > L, which implies that
> L—v(p) > L |v(n)] >0

Vn € R, then (from item (c) of Definition 2.4 and the nondecreasing character of
o)
o(s+vm) —o(vm) = L—v(n) = L—|vmn)]>0

Vn € R, while if ¢ + v(n) < —L, which implies that
¢ <—L—v(n) <—-L+vmn]<0
Vn € R, then
o(s+v(n) —o(v(n) < —L—-vn) < —L+[vmn)] <0

Vn € R, and consequently

slo(s+v(n) —o(v(n)] >0
for all ¢ € R such that |¢ +v(n)| > L, and all n € R. (2.11)

Thus, from (2.10) and (2.11), it follows that s [o (s+v(n)) —o(v(n))] > 0, Vs # 0,
Vn € R.
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Proposed approaches

We begin by recalling the manipulator dynamics as exposed in Section 1.2, i.e.

H(q)j+C(q,q)q+ Fq+glg) =7 (3.1)

whose various terms and properties had been described in subsection 1.2.2. Let us
suppose that the absolute value of each input 7; (i element of the input vector 7)
is constrained to be smaller than a given saturation bound T; > 0, i.e. || < Tj,
i =1,...,n. In other words, letting u; represent the control variable (controller output)

relative to the i degree of freedom, we have that

U;
- = Tisat | — 3.2
T, sa <Tz> (3.2)

1=1,...,n.

Let us note from (3.1)-(3.2) that T; > By, (see Property 1.4), Vi € {1,...,n}, is a
necessary condition for the manipulator to be stabilizable at any desired equilibrium
configuration gq; € R™. Thus, the following assumption turns out to be crucial within
the analytical setting considered in this work:

Assumption 3.1 T; > By, Vi € {1,...,n}. q

3.1 State-feedback regulation approach

A generalized non adaptive approach is first presented. Developments and results from
this section will be used to present the proposed adaptive schemes.
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3.1.1 Global regulation involving exact gravity compensation:
a generalized approach

Let us consider the following generalized expression defining saturating controllers for
the global regulation of system (3.1)-(3.2):

u(q,q,0) = —sa4(q,4,0) — sp(Kpq) + G(q)0 (3.3)

where ¢ = g — qq, for any constant (desired equilibrium position) vector g; € R"™. The
third term in the right-hand side of (3.3) is the gravity compensation term where G(q)
is the regression matrix related to the gravity vector, i.e. such that g(q,0) = G(q)6.
The second term in the right-hand side of (3.3) is a (bounded non-linear) position
error correction term where Kp € R™ " is a positive definite diagonal matrix, i.e.
Kp = diaglkp1, ..., kpy) with kp; >0 for alli =1,...,n, and

sp:R" = R"
T
T (O’pl(l’l) S ey O-Pn<mn))
with op;(-), i = 1,...,n being (suitable) generalized saturation functions with
bounds Mp;. The first term in the right-hand side of (3.3) corresponds to a motion

dissipation term where s; : R x R" x RP — R is a bounded continuous vector function
satisfying s; : R” x R" x RP — R" is a bounded continuous vector function satisfying

sq(x,0p,2) = 0, (3.4)

Ve e R" Vz € RP,
Isa(z,y, 2)|| < &lly| (3.5)

V(z,y,2) € R" x R™ x RP, for some positive constant x, and given z € R? such that
|Gi(q)z| < T;,1=1,...,n, Vg€ R™

yTSd<‘T7 Y, Z) >0 (36)
Yy # 0,, Vx € R", and
i=1,...,n, V€ R" Yy € R", for suitable bounds Mp; of op;(-).
Proposition 3.1 Consider system (3.1)—(3.2) taking u = u(q,q,0) as defined in Eq.
(3.3), under Assumption 3.1 and the conditions on the vector function sq stated through
FEq. (3.4) and inequalities (3.5)—(3.7). Thus, for any positive definite diagonal matriz

Kp, global asymptotic stability of the closed-loop trivial solution q(t) = 0,, is guaranteed
with |7;(t)] = |w;(t)| < T;, i =1,...,n, ¥t > 0. <

Proof. Observe that the satisfaction of (3.7), under the consideration of (3.2), shows
that
Ti > |ui(q, ¢, 0)| = |ui| = |7i]
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i=1,...,n,¥(q,q) € R"xR" Hence it can be seen that, along the system trajectories
()] = lwi(t)] < T;

1=1,...,n, Vt > 0. This proves that with the proposed scheme, the input saturation
values, T;, are never reached. Thus, under the consideration of Property 1.5, the
closed-loop dynamics takes the form?

H(q)i+C(q,4)q + Fq = —5a(q,q,0) — sp(Kpq) (3.8)

Let us define the scalar function

Vola.d) = 50" HG@)i+ < H@sp(ra) + [ sh(Kpr)ar (39)

with foqn sh(Kpr)dr =", fo_i opi(kpiri)dr; and € being a positive constant satisfying

£ < ey 2 min{ey, ep} (3.10)
where
g2 ‘ lf—m and £q 2 f—m2
HarBp B + @
with

/Bp £ IIlZaX{O';gZM]fpz} s BM £ l{ich + ,UzMﬂP s BP

o',y being the positive bound of Dt op;(+) in accordance to item 2 of Lemma 2.4, k as
defined through (3.5), and g, par, ko, fm, and far as defined in Properties 1.1, 1.2.5,
and 1.3. Observe that from Property 1.1 and item 5 of Lemma 2.4, we have that

q
Vo(@,d) > Wol@. ) + (1 — o) / (K pr)dr (3.11)
On,
where
N Hm oy -2 _ . (04 12
Wo(q,q) = 7qu! —epumllsp(Kpq) |4l +_26 |sp(Kpq)||
P

- (B, ) ()

and « is a positive constant satisfying

62
S <a<l (3.13)
3

n the error variable space ¢ = ¢ + qq, and hence H(q) = H(q + q4), C(q,q) = C(q + qa,q), and
G(q) = G(q + qqa)- However, for the sake of simplicity, H(q), C(q, ¢), and G(q) are used throughout
this work.
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(see (3.10)). Note further that, by (3.13), Wy(q, ¢) is positive definite (since with € <
ey < €1, in accordance to (3.10), any « satisfying (3.13) renders positive definite the
matrix at the right-hand side of (3.12)), and observe that Wy (0,,, ) — oo as ||| — oo.
From this, inequality (3.13), and items 6 and 7 of Lemma 2.4 (through which one sees
that the integral term in the right-hand side of inequality (3.11) is a radially unbounded
positive definite function of §), V5(q, ¢) is concluded to be positive definite and radially
unbounded. Its upper-right derivative along the system trajectories, Vo = DtV (38,
App. 1] [32, §6.1A], is given by

) . N .. _ . e ) _
Vo(q.4) = ¢"H(q)j + éqTH(q, Q)q +esp(Kpq)H(q)i + 4" H(q,§)sp(Kpq)

+e¢" H(q)sp(Kpq)Kpq + sp(Kpq)d

) N ) . _ 1.5 N

= ¢"[-C(q,4)d — Fq — 54(q.4,9) — sp(Kpq)] + §qTH(q, Q)q
+esp(Kpq)|[ — Clq,4)d — Fq — 54(q, 4,0) — sp(Kpq)]
+e¢"H(q, 4)sp(Kpq) + eq" H(q)sp(Kpd) Kpg + sp(Kpq)d

= —§"Fq—q"54(q,4,0) — esp(Kpq)F — esp(Kpq)sa(, 4, 0)
—esp(Kpq)sp(Kpq) + 24" Clq,4)sp(Kpq) + ed" H(q)sp(Kpq) Kpd

where H(q)§ has been replaced by its equivalent expression from the closed-loop dy-
namics in (3.8), Property 1.2.1 has been used, and

S;:;(qu_) é diag[D+ap1(kp1cjl), ceey D+O'pn<k’pnqn)] (314)

Observe that from Properties 1.1, 1.2.5, and 1.3, the satisfaction of (3.5), items (b) of
Definition 2.4 and 2 of Lemma 2.4, and the positive definite character of Kp, we have
that

%(q; Q) < _qTSd(Q7 Qa 6)) - Wl <Qa Q)
with

W1(q,4) = fulldll® — efullsp(Kpa)llldll — exllsp(Kp@)Ildll + ellsp(Kp)|I*
— ek Bpl|l|* — ennBpldll”

:(HsPﬁqunDT(_%(f;H) _fi({MsEJ)) (||SPT§|J|:@>H) (3.15)

Note further that, from the satisfaction of (3.10), W7(q,q) is positive definite (since
any € < gy < &y renders positive definite the matrix at the right-hand side of (3.15)).
From this and (3.6), by Lyapunov’s second method,? the trivial solution g(t) = 0, is
concluded to be globally asymptotically stable, which completes the proof. <

2See for instance [38, Chap. II, §6], where (generalized) statements of Lyapunov’s second method
are presented under the consideration of locally Lipschitz-continuous Lyapunov functions and their
upper-right derivative along the system trajectories.
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Remark 3.1 Let Kp € R™ ™ be a positive definite diagonal matrix, i.e. Kp =

diaglkp1,...,kps] with kp; > 0 for all @ = 1,...,n. A generalized version of the
SP-SD controller is retrieved from (3.3) by defining

sa(q,4,9) = sp(Kpq) (3.16)
where sp : R® — R" : 2 +— (UDl(IL’l) e aDn(J:n))T, with op;(+), 1 = 1,...,n,

being generalized saturation functions with bounds Mp;; and the involved bound
values, Mp; and Mp;, satisfy

= 1,...,n. Special cases of the generalized SP-SD controller in Egs. (3.3) and
(3 16) were defined in [19] and [41], taking op;(x;) = kp; tanh <’\P1’fz> and op;(z;) =

kp; tanh (ADZQCl), with kp; + kp; < T; — By, in [19], and op;(x;) = 5]318313( P’) and

opi(z;) = dpisat ( ) with dp; +0p; < T; — By, in [41]. Further, generalized versions

of the SPD and SPDgc-like schemes proposed in [47] are retrieved from (3.3) as well,
by respectively defining

54(q,4,0) = sp(Kpq + Kpq) — sp(Kpq) (3.18)
with the generalized saturations op;(+), ¢ = 1,...,n, being strictly increasing, and
bound values satisfying

Mp; <T,— By (3.19)

i=1,...,n (for the SPD case),® and
sa(7, 4, 0) = 50(G(q)0 — sp(Kpq)) — s0(G(q)0 — sp(Kpq) — Kpq) (3.20)
where sp : R* — R : z (001(301) e agn(:lcn))T7 with og;(+), i = 1,...,n,

being linear saturation functions for (Lg;, My;), and the involved linear/generalized
saturation function parameters satisfying

i =1,...,n (for the SPDgc-like case).* Observe from (3.21) that, by virtue of item
(c) of Definition 2.4 (under the consideration of Properties 1.4 and 1.5), we have that
s0(G(9)0 — sp(Kpq)) = G(q)0 — sp(Kpq) (see (3.20) and (3.3)). Furthermore, note
that, from items (a) of Definition 2.4 and 8a and 9 of Lemma 2.4 (under the fulfilment
of inequalities (3.21) in the SPDgc-like case), s4(q,¢,0) in every one of the above
cases in (3.16), (3.18), and (3.20) satisfies the expressions in (3.4) and (3.6). Further,
notice that, through the fulfilment of (3.17), (3.19) (under the consideration of the

*Note that the generalized saturations, op;(-), in (3.18) are not restricted to be continuously
differentiable as originally formulated in [47].

4Notice that the internal saturations, op;(-), in (3.20) are permitted to be any function satisfying
Definition 2.4 and are consequently not tied to be linear saturations as originally formulated in [47].
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strictly increasing character of the generalized saturation functions op; involved in the
SPD case), and (3.21), every s4(q, ¢, 6) in expressions (3.16), (3.18), and (3.20) satisfies
inequalities (3.7) too. Moreover, from the Lipschitz-continuous character of generalized
saturation functions, one sees that s4(q, ¢, 6) in every one of the above cases in (3.16),
(3.18), and (3.20) satisfies inequality (3.5) with

K= ml_ax{ang'Di} (3.22a)

where
0y in the SP-SD case

0pins 0 the SPD case (3.22b)

oo in the SPDgc-like case

/
OiM =

Ohints Tpings and of;,, respectively being the positive bounds of Dt op,(-), DYop;(-),
and DT og;(-), in accordance to item 2 of Lemma 2.4, q

3.1.2 Global adaptive set-point control

If the accurate values of the elements of 6 in g(g, ) are unknown, exact gravity compen-
sation is no longer possible. However, in such a situation, global position stabilization
avoiding input saturation can still be accomplished through adaptive gravity compen-
sation. This is achieved by means of suitable strict bounds on the elements of 6, as
described next.

Let My 2 (M, ..., My,)" and ©, 2 [~ My, Myy] X - -+ X [= Mgy, M), with M,;,
j=1,...,p, being positive constants such that

0]‘ < Maj (323&)

Vi e{l,...,p}, and
Bl <T, (3.23b)

Vi € {1,...,n}, where, in accordance to Property 1.6, Bé\f“ are positive constants
such that |g;(z,y)| = |Gi(z)y| < Bé‘f”, i=1,...,n, Vo € R" Vy € O,. Let us note
that Assumption 3.1 ensures the existence of such positive values M,;, j = 1,...,p,
satisfying inequalities (3.23). Notice further that inequalities (3.23b) are satisfied
if Y% | Bo,; Moy < Tiy, B |[Ma|l < Ti, or Bol|Ma|| < Ti, i = 1,...,n; actually,

Y1 Ba;;Maj, Ba,| M|, or Bg|[M,||, may be taken as the value of Bé\f‘l as long
as inequality (3.23b) is satisfied.

Based on the generalized algorithm in Eq. (3.3), the proposed adaptive control
scheme is defined as

A A~ ~

u(Qv ij 0) = _Sd(Q7 Cja 9) - SP(KPQ) + G(Q)e (324)

with sp(-), K,, and sq(-) being as defined in Section 3.1.1, and 6 (vector of estimated
parameters) being the output variable of an auxiliary dynamic subsystem defined as

¢ =-TG"(q) (G +esp(Kpq)] (3.25a)
0 = s.(¢) (3.25b)
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CONTROLLER

ACTUATOR

> Sd(?,é,é)—SP(KPcT)+G(q)é _/_ ROBOT | 4

|

0 q
Auxiliary dynamic subsystem

$=-TG (@) g+es,(K,7)]

0=s,(¢)

Parameter estimator

Figure 3.1: Block diagram of the proposed state feedback adaptive control scheme

where ¢ is the (internal) state of the auxiliary dynamics in Eq. (3.25a);
Sq : RP — RP
T
T (cral(xl) s aan(xp))

04(+), 7 = 1,...,p, being strictly increasing generalized saturation functions
with bounds M,; as defined above, i.e. satisfying inequalities (3.23); I' € RP*? is a
positive definite diagonal constant matrix, i.e. I' = diag[y; ..., ;] with 7; > 0 for all
j=1,...,p; and ¢ is a positive constant satisfying inequality (3.10). A block diagram
of the proposed adaptive control scheme is shown in Fig. 3.1.

Remark 3.2 Observe that the control scheme in (3.24)-(3.25) does not involve the
exact values of the elements of 6. It only requires the satisfaction of inequalities (3.23).
In other words, only strict bounds M,; of 0;, 7 = 1,...,p, —t.e. any set of them
satisfying inequalities (3.23b)— are involved. Notice further that a suitable choice of ¢
does not require the exact knowledge of the system parameters either. Indeed, observe,
on the one hand, that an estimation of the right-hand side of inequality (3.10) may be
obtained by means of upper and lower bounds of the system parameters and viscous
friction coefficients (more precisely, nonzero lower bounds of p,, and f,,, and upper
bounds of s, ke, and fyr; see Properties 1.1, 1.2.5, and 1.3). On the other hand, the
fulfilment of inequality (3.10) is not necessary but only sufficient for the closed-loop
analysis to hold, as shown next, which permits the consideration of values of ¢ higher
than €,/ (up to certain limit) without destabilizing the closed loop. <

Remark 3.3 The auxiliary subsystem in Egs. (3.25) is the adaptation algorithm. Its
particular form gives rise to parameter estimates evolving within pre-specified limits,
avoiding discontinuities throughout its dynamical structure. Let us note that the e-
term in the adaptation subsystem forces g; to be the unique equilibrium configuration
of the closed-loop system. This eliminates the steady-state position error generated by
conventional approaches that include exact gravity compensation through generally-
inexact (or biassed) parameter estimates. Further, inequality (3.10) states a (sufficient)
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condition that guarantees the required stability /convergence properties. It is obtained
from the closed-loop analysis, by looking for the conditions through which the involved
Lyapunov function adopts the required analytical properties. This is corroborated
next. <

Closed-loop analysis

~

Consider system (3.1)-(3.2) taking u = u(q, ¢, 6) as defined through Eqs. (3.24)-(3.25).
Observe that —under Assumption 3.1, the satisfaction of inequalities (3.23), and the
consideration of (3.2)— the fulfilment of (3.7) shows that

Ty > |ui(q,4,84(0))| = lwi| = Im| i=1,....n ¥Y(q,4,¢) €ER" xR"xR” (3.26)
Thus, under the consideration of Property 1.5, the closed-loop system takes the form

H(q)q+Cle. )i+ Fi= —54(. 4, 5a(¢)) — sp(Kpq) + G(q)54(0) (3.27a)
¢ = —TG"(q) [+ esp(Kpq)] (3.27b)

where ¢ = ¢ — ¢* and B B
Sa(@) = Sa(d + ¢%) — 54(¢") (3.28)

with ¢* = ((b{,...,qﬁ;)T such that s,(¢*) = 0, or equivalently, ¢%
1,...,p.% Observe that, by item 8b of Lemma 2.4, the elements of 5,(

o, (0;), j =
) in (3.28), i.e.

-

Gaj(05) = 04j(0) + &F) — 00j ()
j=1,...,p, turn out to be strictly increasing generalized saturation functions.

Remark 3.4 Let us note that, from Egs. (3.27) under stationary conditions, i.e. by
considering § = ¢ = 0,, and ¢ = Op, ga proves to be the unique equilibrium position
of the closed-loop system —or equivalently, 0, proves to be the unique equilibrium
position error of the closed loop—, while the parameter estimation error equilibrium
vector ¢, turns out to be defined by the solutions of the equation G(gq)54(¢.) = Oy,
and consequently 5,(¢.) € ker(G(qq)). 4

®Notice that their strictly increasing character renders the generalized saturation functions o,
j=1,...,p, (involved in the definition of s,) invertible.
5From the closed-loop system Eq. 3.27, under stationary conditions, one gets

—sp(Kpq) + G(g)54(¢) = 0n (3.29)
G (q)sp(Kpq) =0, (3.30)

Hence premultiplying Eq. (3.29) by —s%5(Kpg) and using Eq. (3.30), we obtain

sp(Kpq)sp(Kpq) — sp(Kpq)G(q) 5a(9) = sp(Kpq)sp(Kpq) =0 <= =0, (3.31)
D

T
017

Finally, using the result from Eq. (3.31) in Eq. (3.29), one gets G(q4)34(¢) = O,.
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Proposition 3.2 For the closed-loop system in Eqs. (3.27), under the consideration
of Assumption 3.1, the trivial solution (g, ¢)(t) = (0,,0,) is stable and, for any initial
condition (g, q,9)(0) € R" x R x RP, g(t) — 0,, ast — oo, and 3,(¢(t)) — ker(G(qq))
as t — oo, with |7;(t)| = |w;(t)| < T;, i =1,...,n, ¥Vt > 0. g

Proof. By (3.26), we see that, along the system trajectories, |7;(t)| = |wi(t)| < T,
Vt > 0. This proves that, under the proposed adaptive scheme, input saturation is
avoided. Now, in order to develop the stability/convergence analysis, let us define the
scalar function p

Wi@.d.0) = Va(a. i)+ [ LT ar (332
where f r)ltdr =330, fod)j Saj(r)7; "drj, and Vo(q, ¢) is as defined in Eq. (3.9).
Note that, from the positive definite and radially unbounded characters of V;(g, )
(shown in the proof of Proposition 3.1) and items 8b, 6, and 7 of Lemma 2.4 (through
which the integral term in the right-hand side of Eq. (3.32) is concluded to be a radially
unbounded positive definite function of ¢), V1(, ¢, ¢) proves to be positive definite and

radially unbounded. Its upper-right derivative along the system trajectories, V; =
D*™V; [38, App. 1] [32, §6.1A], is given by

Vi(q@.d4, 9)
= ¢"H(q)j+ %QTH(q, Q)+ esh(Kpq)H(q)G + 4" H(q, 4)sp(Kpq)
+eqTH(q)sp(Kp@) Kpi + sh(Kpq)d + 51 (516

q"H(q,q)q

= ¢"[ - Clq,9)d — Fq — s4(q, 4, sa(cb)) P(KpQ) + G(q)54(9)] +
(7.4 o(0)]

+esp(Kpq)[— Clg, )i — Fq — sq (9)) — sp(Kpq) + G(q)5
+eq"H(q,4)sp(Kpq) + e¢" H(q)sp(Kpq )qu + sL(Kpg)g
—50(0)G"(q) [q + esp(Kpq)]

= —§"Fq—q"54(q,4,54(9)) — esh(Kpq)Fq — esh(Kpq)sa(d, 4, sa(9))
— esp(Kpq)sp(Kpq) +ed"Clq, §)sp(Kpq) + 4" H(q)s»(Kpg) Kpg

\/N)I»—

where H(q)G and ¢ have been replaced by their equivalent expressions from the closed-
loop manipulator dynamics in Eq. (3.27), Property 1.2.1 has been used, and s (Kpq)
was defined in (3.14). Observe that from Properties 1.1, 1.2.5, and 1.3, the satisfaction
of (3.5), items (b) of Definition 2.4 and 2 of Lemma 2.4, and the positive definite
character of Kp, we have that

W(Qa (ja qg) S —CJTSd <Q> Q7 Sa(¢)) - Wl (CY7 Q)

"The complete expression is given as

1 . ) [T s ~
Vi(q,4,6) = EqTH(q)qusér?(qu)H(q)qﬁL/ S?(Kpr)dﬂr/ ga(r~tdr
0pn 0

P

32



where Wi(q,q) was defined in (3.15) and shown to be a positive definite function
in the proof of Proposition 3.1. From this and (3.6), we have that Vi(g,¢,¢) < 0
Y(7, ¢, ¢) € R* x R" x R?, with Vi(q,¢,¢) = 0 <= (7,¢) = (0,,0,). Therefore, by
Lyapunov’s second method (see Footnote 2), the trivial solution (g, ¢)(t) = (0,,0,) is
concluded to be stable. Now, in view of the radially unbounded character of V(g ¢, ¢),
the set

Q21{(q,4,0) ER" xR" x R : Vi(q,q4,¢) < c} (3.33)

is compact for any positive constant ¢ [22, p. 128]. Moreover, in view of the seminega-
tive definite character of Vl(q q, @), Q is positively invariant with respect to the closed-
loop system. Furthermore, from previous arguments, we have that E2{(q,¢0¢) €Q:

Vi(3,4,0) =0} = {(7,4,0) € Q: = ¢=0,}. Further, from Remark 3.4, the largest
invariant set in E, denoted M, is given as M = {(¢,q4,¢) € E : 5,(¢) € ker(G’(qd))}.
Thus, by the invariance theory [32, §7.2] —more specifically, by [32, Theorem 7.2.1]%—
we have that (g,q,$)(0) € Q@ = (¢,4,6)(t) — M as t — oco. Since this holds for
any ¢ > 0 and V;(q, ¢, ¢) is radially unbounded (in view of which  may be rendered
arbitrarily large), we conclude that, for any (g,q, ¢)(0) € R* x R x RP, ¢(t) — 0,, as
t — oo and 5,((t)) — ker(G(qq)) as t — oo, which completes the proof. q

Corollary 3.1 If G"(qy)G(qq) is nonsingular, then the trivial solution (q,)(t)
(0, 0,) s globally asymptotically stable.

a

Proof. This is concluded by noting on the one hand that non-singularity of G (¢4)G(qa)
implies that ker(G(gq)) = {0,}, and on the other hand that 5,(¢) = 0, <= ¢ = 0,,.
Then, from Proposition (3.2), we have that, for any (q,¢,¢)(0) € R” x R™ x RP,
(q,6)(t) — (0,,0,) as t — oo, whence the stability of the trivial solution (g, ¢)(t) =
(0,,0,) is concluded to be globally asymptotical [22, §4.1], [16, §26], [38, Chap. I,
§2.10-2.11], [43, §2.3.1]. q

If GT(q4)G(qq) is non-singular, G(qq) is said to be pseudo-invertible. Pseudo-
invertibility of G(qq) is fulfilled if G(g4) has full-column rank. The fulfillment of this
property will depend on the specific (geometrical) structure of each manipulator and
the particular value of gg.

Remark 3.5 Let e = —yp = — (I, I,)" G(¢)3a(0), &2 = y1 = — (eshH(Kpq) q'T)T,

fo 5E(r)T~dr and consider V;(q,q) as defined in Eq. (3.9). By previous
arguments and developments, Vo and V; are radially unbounded positive definite func-
tions in their respective arguments. Following an analysis analog to that of the proofs
of Propositions 3.1 and (3.2), one obtains

Vo < —Wi(q.4) + el y

8Theorem 7.2.1 in [32] may be seen as a version of La Salle’s invariance principle that considers
autonomous systems with continuous dynamics and makes use of continuous scalar functions and
their upper-right derivative along the system trajectories [32, §6.1A] (in contrast, for instance, with
the statement presented in [22, Theorem 4.4], which is addressed to autonomous state equations with
locally Lipschitz-continuous vector fields and makes use of continuously differentiable scalar functions).
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and _
Vay < elys

with W1(q,¢) as defined in the proof of Proposition 3.1 where it was proven to be
positive definite in its arguments. Hence, the closed-loop system, in Eqs. (3.27), may
be seen as a (negative) feedback connection among a strictly passive subsystems ¥;
with dynamical model

.- H(Q)q + O(Q? q)q + Fq = _Sd((i C]a ‘9 - 61) - SP(KPQ) - (In Onxn) €1
1- T _ \T
y1 = — (esp(Kpq) 4)

and a storage function V;(q, ¢), and a (lossless) passive subsystem Y5 with state model

G=— Ousn L) ex
Y2000 =TG"(q) (In I.)es
y2 = (I ]n)T G(q>§a(¢;)

and storage function V5(¢). This representation shows that, at non-equilibrium con-
ditions, the system energy flows from ¥ to s, through y;, and back from ¥, to ¥y,
through y,, generating a mutual excitation among >; and ¥,. The energy dissipation
carried out in Y; —which involves the velocity and position errors and does not stop
until they are all vanished— instantaneously decreases the closed loop stored energy
and its flow entailing a continuous reduction on the mutual excitation intensity. This
process holds as long as (e, e3) # (02, 02,), or equivalently (yi,y2) # (02, 02,), and
consequently ||y;(t)|| — 0 as t — oo, i = 1,2. Note that the vanishing of y; implies
that (q,¢)(t) — (0,,0,) as t — oo in view of which the global regulation objective is
guaranteed. On the other hand, the vanishing of y, implies that

lim G ((1)) 5, (9(0)) = Glaa) Jim 5, (3(1)) = 0,

t_,00

and consequently B
Sa (0(t)) — ker (G(gq)) as t— o0

which permits a steady state-error on the parameter estimations, unless ker (G(qq)) =
{0,} which is implied by the conditions stated in Corollary 3.1 q

Remark 3.6 Adaptive versions of the SP-SD controller and of the SPD and SPDgc-
like algorithms of [47] are obtained by considering in the proposed design method the
expressions in (3.16), (3.18), and (3.20), respectively, with suitable adjustments on the
saturation function parameter conditions. Thus, the SP-SD controller with adaptive
gravity compensation is obtained from (3.24) taking

~

sd(q,4,0) = sp(Kpq) (3.34)
with sp(+) and Kp as defined in Remark 3.1, and the involved bound values, Mp; and

Mp;, satistying
Mp; + Mp; < T; — B/ (3.35)
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1 =1,...,n, the adaptive SPD scheme is gotten taking
4@, 4,0) = sp(Kpg+ Kpg) — sp(Kpq) (3.36)
with sp(-) as defined for this case in Remark 3.1, and bound values satisfying
Mp; < T; — Bl (3.37)
t=1,...,n, and the adaptive SPDgc-like algorithm is obtained taking
$4(7,4,0) = 50(G()0 — sp(Kpq)) — 50(G(q)0 — sp(Kpq) — Knq) (3.38)

with so(-) as defined in Remark 3.1, and the involved saturation function parameters
satisfying

Bl + Mp; < Lo; < My; < T, (3.39)
i =1,...,n. For these cases, x in (3.10) remains as specified in Remark 3.1 (see Egs.
(3.22)). q

3.2 QOutput-feedback regulation approach

In the case when velocity measurements are not available either, output-feedback adap-
tive control is still possible as presented next.

3.2.1 Output-feedback global adaptive regulation
We propose an output-feedback adaptive control scheme defined as
u(g,9,0) = —sp(Kpq) — sp(Kp?) + G(q)f (3.40)
with ¢ and G(q) as previously described in Section 3.1; Kp € R™"™ and Kp € R™"
T
are positive definite diagonal matrices; sp(x) = (apl(xl), . ,apn(xn)> and sp(z) =

T
(am(xl), . ,O'Dn(l‘n)> , with op;(+) and op;(+), i = 1,...,n, being generalized sat-

uration functions with bounds Mp; and Mp; such that
Mp; + Mp; < T; — B} (3.41)

i=1,...,n;° 9 € R" (the velocity estimator) and § € ©, C R? (the vector of estimated
parameters) are the output vector variables of auxiliary dynamic subsystems defined
as

Ge = —AKp'sp(Kp(g. + BJ)) (3.42a)
v =gq.+ Bq (3.42b)

9Note that the satisfaction of inequalities (3.23) guarantees positivity of the right-hand side of
inequalities (3.41).
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Figure 3.2: Block diagram of the output-feedback adaptive scheme

and

¢ = —eT'G" (q)sp(Kpq) (3.43a)
0 = sa(6. —TT"(q)) (3.43b)

where A € R B € R™" and I' € RP*P are positive definite diagonal matri-

ces; q. and ¢, are the state vectors of the auxiliary dynamics in Eqgs. (3.42a) and

(3.43a) respectively; T(q) is the regression vector related to the potential energy func-

tion, according to Property 1.5, i.e. such that U(q,8) = Y(q)0; for all z € R™
T

Sq(x) = (aal(xl), . ,aap(xp)> , with o4;(-), 7 = 1,...,p, being strictly increasing

generalized saturation functions with bounds M,; satisfying inequalities (3.23);
and ¢ is a positive constant satisfying

£ < ey = min{eg, €1, e} (3.44)

A Hm, A fm A
€0 = 4| g1=—"T- g9 = 2B
"V dBe YT Bu+ )2 ’

with 8p £ max; {o};p/kpi}, Bn = min; {#}, B £ ke Bp+pmBp, Bp £ />y M},
0'p;y being the positive bound of DT op;(+) in accordance to point 2 of Lemma 2.4, and

M, s ko, fm, and fis as defined in Properties 1.1, 1.2.5, and 1.3. A block diagram
of the output-feedback adaptive control scheme is shown in Fig. 3.2.

where

Remark 3.7 Analogously to the state-feedback case of Section 3.1, one can see from
expressions (3.40),(3.42)-(3.43), and (3.44) that the developed control scheme does not
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involve the exact values of the elements of 6. Note further that the velocity vector ¢ is
not involved in any of the expressions in Eqs. (3.40),(3.42)-(3.43) either. g

Remark 3.8 The auxiliary subsystem in Eqs. (3.42) is an alternative version of the
dirty derivative (applied to ¢) involving the saturation vector function sp(-) in its
dynamics. In its conventional form, where the function sp(-) is not included (or equiv-
alently, which is obtained by replacing sp(-) in (3.42a) by the identity function), it leads
(through its output variable ) to the derivative of ¢ (or equivalently, to the velocity
vector ¢) with every of its components going through a first-order low-pass filter. This
is commonly done in practice to bound the gain of the high frequency components,
giving rise to a causal (approximated) derivative operator. The consideration of sp(-)
in (3.42a) proves to be helpful to show the expected stability /convergence closed-loop
properties, as will be seen in Section 3.2.2. N

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(g, 9, 0) as defined through (3.40),(3.42)-(3.43).
Define the variable transformation

q 4 —4d
J| =1 g+ Blag—q) (3.45)
¢ ¢ — YT (q) — ¢*
with ¢* = ((b{,...,(é;)T such that s,(¢*) = 0, or equivalently, ¢ = a;jl(@j), j =
1,...,p. Observe that, from the fulfilment of inequalities (3.23) and (3.41), we have

that |u; (7 + qa, 7, a(¢ + ¢%))| < Mp; + Mp; + BY* < Ti, i =1,....n, ¥(q,9,9) €
R™ x R™ x R", whence, in view of (3.2), one sees that

ﬂ > |u7,(q+Qd7f§7 8a<(5+¢*))‘ = ’uz‘ = ’T’L| )
i=1,...,n, ¥(q,9,0) € R" x R" x R" (3.46)

Thus, under the consideration of Property 1.5 and the variable transformation (3.45),
the closed-loop dynamics adopts the form

H(q)j+ C(q,4)q+ Fg = —sp(Kpq) — sp(Kp?¥) + G(g)54(9) (3.47a)
V= —AK;'sp(Kpd) + Bg (3.47b)
6= —TG"(q)[esp(Kpq) + q] (3.47¢)

where 5,(¢) = $a(¢ + ¢*) — sq4(¢*). Observe that, by point 8b of Lemma 2.4, the
elements of 5,(¢), i.e. 04j(¢;) = 0uj(d; + ¢F) — 04j(¢}), 5 = 1,...,p, turn out to be
strictly increasing generalized saturation functions.

Remark 3.9 Analogously to the adaptive approach of Section 3.1, let us note, from
Egs. (3.47), that under stationary conditions: § = ¢ = Y =0, and ¢ = 0p, the
desired position vector g, is the unique equilibrium position of the closed-loop system
—or equivalently, 0,, is the unique equilibrium position error of the closed loop— while
the parameter estimation error equilibrium vector ¢. turns out to be defined by the
solutions of the equation G(qq)54(¢.) = 0,,, and consequently 5,(¢.) € ker(G(qq)). <
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Proposition 3.3 Consider the closed-loop system in FEqs. (3.47) under the satis-
faction of Assumption 3.1 and inequalities (3.23) and (3.41). Then, for any posi-
tive definite diagonal matrices Kp, Kp, A, B, and ', and any ¢ satisfying inequal-
ity (3.44), the trivial solution (3,9, ¢)(t) = (0,,0,,0,) is stable and, for any initial
condition (q,q,9,9)(0) € R* x R* x R" x R?, (g,9)(t) — (0,,0,) as t — oo, and
5.(0(1)) — ker(G(qq)) ast — oo, with |7;(t)| = |ui(t)| < T;, i=1,...,n, Vt > 0. q
Proof. By (3.46), one sees that, along the system trajectories, |7;(¢)| = |u;(t)| < 17,
Vt > 0. This proves that under the proposed output-feedback adaptive scheme, the
input saturation values, T}, are never reached. Now, in order to develop the stabil-
ity /convergence analysis, let us define the scalar function

oo L . i e
Vi(@.4.9.6) = 30" Hla)i + esh(r Ha)i+ | shKeryir+ [ sHrar
0

On o

9
—i—/ sg(KDr)Bfldr
On
(3.48)

where

q n i
/ Sg(KPT’)dT = Z/ api(k‘p,-ri)dri,
On i=1 v 0
U n 9
/ sL(Kpr)B~'dr = Z / opi(kpirs)b dr,
On ;

%5
and / I dr = Z/ Taj(rj)Y dr]
OP

Observe that, under the consideration of Property 1.1, we have that

_ S o a o
Via.4.0.6) = 510l = cnellse(Keldl] + ao [ sh(Ker)dr + Won(a,0.9)

On

with
_ g ¢ a
Woi(q,9,¢) = / sg(KDr)Bldr—i—/ 5 (I dr + (1 — ao)/ sH(Kpr)dr
On 0p On

for any constant ag € (0,1). Moreover, from point 5 of Lemma 2.4, we have:

& (kpi;)
opi szrz ) drz Z Pz—
/0 ( 2kpiopin

Vg € R

Vg € R, whence we get:

kll
ao/ SP (Kpr) dr-aOZ/ opi(kpiri dm>ozozapZ pid:)

2kPZO-PZM

(&%) 9 B I o
(kpiGi) = 7~ K
~ 2max{kpiohp, } ;UPZ( Pidi) 285 [sp(Kpq)|l
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and consequently
V(q,4,9,¢) = HQ||2 — et ||sp(Kp)lldll + 57~ HSP(qu)H + Wou(q, 9, )

which may be rewritten as

v<q_7 q.> Q97 (5) > WOO(q_J Q) + WOI (q_7 197 Q_ﬁ) = WO(@: q.a 197 qg)

U se(Epa)l\' [ BE —Erar) (Nsp(Kpq)l|
watad) = ("} )(_W W)( i)

where «g is chosen such that

with

2

= <ap<l1 (3.49)
Note that (3.44) guarantees the existence of positive values «q satisfying (3.49) (since
e<ey <g = z—% < 1). Moreover, by (3.49), Wy is a positive definite function of
(7,G),*° while from point 6 of Lemma 2.4, one sees that Wy (g,,¢) > 0, V(q,9, ¢) €
R xR"xRP, with Wy, (g,9,¢) =0 <= (¢,9,¢) = (0, 0,,0,). Hence, Wo(q, 4,9, ®) is
concluded to be positive definite. Taking this into account, by noting that Wy, (0,,, ¢) —
00 as [|¢|| = oo, and from point 7 of Lemma 2.4 that Wy(q,0,,0,) = 0o as |g;| = oo
for every i € {1,...,n}, Wy (0,,9,0,) = oo as |¢;| — oo for every i € {1,...,n}, and
Wo1(0,,, 0, @) — 00 as |¢;| — oo for every j € {1,...,p}, Wo(q,¢,V, ¢) additionally
proves to be radially unbounded [21, p. 115]. Therefore, V (g, 4,9, ¢) is concluded to be
positive definite and radially unbounded. Its upper-right derivative along the system
trajectories, V = DTV [38, App. 1] [32, §6.1A], is given by

) _ 1 )
V(3,4.9,0) = ¢"H(q)i + 4" H(q,4)d + esh(Kpq)H(q)i + esh(Kpq)H(q, 4)d

(
2
+ e H(q)Sp(Kpq) K pg + s5(Kpq)q + s5(Kp?) B~ + 5L(4)T ¢
= —¢'"F§—esh(Kpq)Fq— esp(Kpq)sp(Kpq) — esh(Kpq)sp(Kp?)
+e4" Clq,q)sp(Kpq) + 4" H(q)sp(Kpq) Kpg

—SD(KDﬁ)B 1AK SD(KD19>

where H(q)q, 19, and gz_5 have been replaced by their equivalent expression from the
closed-loop manipulator dynamics in Eqs. (3.47), Property 1.2.1 has been used, and
s»(Kpq) = diag[D*opi(kpi1d), ..., DTopu(kpnGs)]. Observe that from Properties 1.1,
1.2.5, 1.3, and points (b) of Definition 2.4 and 2 of Lemma 2.4, we have that

V(@,4.9,9) < — fulldll + e farllse(Kpd) [ [ld]l — ellsp(Kpa)|”
+ellsp(Epd)llsp(Kp?)| + (ke Bp + paBe) [dl* = Bullsp(Kpd)|*

. 2 2
0By (3.49), it follows that &2 (%) = z—g <ap = 2ud, < S = 0< - e2ut, =
det(Qo) whence (taking into account that g—}g > 0, by the leading principal minor criterion) Qq is
concluded to be a positive definite symmetric matrix.
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which may be rewritten as

V(7,4,9,0) < —Wi(q,q) — Wa(q, V)

o (lseEe) N[5 = (e (K]
Wi(q,q) = It cf :
i N A I
o (lsrEe) T (5 5 <||sP<qu>||)
wata.n) = (o) (- ﬁm> Jso(Kp0)]
Let us note that the fulfillment of (3.44) renders W, and W5 positive definite functions
of (7,q) and (g, V) respectively.'! Hence, V(7,q,9,¢) < 0, ¥(7,¢,9,6) € R" x R x
R”™ x R?, with V(7,¢,9,0) =0 <= (§,¢,9) = (0,,0,,0,). Thus, by Lyapunov’s 2nd
method (see footnote 2), the trivial solution (g, 9, ¢)(t) = (0,,0,,0,) is concluded to
be stable. Now, in view of the radially unbounded character of V(g,q,v, ¢), the set
Q2 {(q,4,9,¢0) € R* x R* x R* x RP : V(q, 4,9, ) < c} is compact for any positive
constant ¢ [21, p. 115]. Moreover, in view of the negative semidefinite character of
V(q, 4,0, ), Q is positively invariant with respect to the closed-loop dynamics [21, p.
101]. Furthermore, from previous arguments, we have that £ = {(g,¢,9,¢) € Q :
V(q,q,9, $) =0} = {(q,4,9,0) €Q:q=¢=1 =0,}. Further, from Remark 3.9,
the largest invariant set in E, denoted M, is given as M = {(¢, 4,9, ¢) € E : 5,(¢) €
ker(G(gq))}. Thus, by the invariance theory [32, §7.2] —more specifically, by [32,
Theorem 7.2.1] (see footnote 8)—, we have that (g, ¢, 9, $)(0) € Q@ = (q,¢,9,0)(t) —
M as t — oo. Since this holds for any ¢ > 0 and V(q, ¢, 1, ¢) is radially unbounded
(in view of which 2 may be rendered arbitrarily large), we conclude that, for any
(7,G,9,0)(0) € R* x R* x R* x R, (7,9)(t) — (0,,0,) as t — oo and 5,(p(t)) —
ker(G(qq)) as t — oo, which completes the proof. q

where

Corollary 3.2 If G"(qq)G(qq) is nonsingular, then the trivial solution (q,9,$)(t)
(0, 0, 0,) s globally asymptotically stable.

Al

Proof. Note, on the other hand, that non-singularity of G*(q4)G(qs) implies that
ker(G(gq)) = {0,}, and on the other hand that 3,(¢) =0, <= ¢ = 0,. Then, from
Proposition 3.4, we have that, for any (g, ¢, 9, $)(0) € R* x R" x R* x R?, (g, 9, ¢)(t) —
(04, 0,,,0,) as t — oo, whence the stability of the trivial solution (g, ¥, ¢)(t) = (0,,0,,0,)
is concluded to be globally asymptotical [22, §4.1], [16, §26], [38, Chap. I, §2.10-2.11],

43, §2.3.1]. <

UBy (3.44), it follows that ¢ < epr < &1 = ﬁ]w_{i";gﬂ = % (BM—F%) < 6};’"’ = 0<
M

2
S (fm —€Bur) — (EfTM) =det(@Q1), and € < epy < e =28, = 0< 5[%*" — % = det(Q2) whence

(taking into account that § > 0, by the leading principal minor criterion) Q1 and @2 are concluded
to be positive definite symmetric matrices.

40



Remark 3.10 Let

€1 = —Ya2 = — ([n [n)T G(Q)ga(é)
e2 =y = — (esp(Kpq) QT)T
1 a v
Vila.0) = 30" Ha)i + eshpa @i+ [ shedr+ [ sh(on B dr
O 0

~ ¢

V@) = [ strtar
Op

By previous arguments and developments, V; and V5 are radially unbounded positive

definite functions in their respective arguments. Following an analysis similar to that

of the proof of Proposition 3.4, one obtains

Vi < —Wi(q,4) — Wa(4,9) — Ws(q,9) + el

and ‘
Vo < edys

with W1(q, ¢), Wa(q, ), and W3(q, ) being positive definite in their arguments. Hence,
the closed-loop system, in Eqs. (3.47), may be seen as a (negative) feedback connection
among a strictly passive subsystems >; with dynamical model

H(Q)q + C<q7 Q)q + Fq = _SP(KP(j> - SD(KDQS‘) - ([n Onxn) €1
S1:% 0 =—AKy'sp (KpV) + Bg

v = — (esh(Kra) ")

and a storage function V;(q, ¢), and a (lossless) passive subsystem ¥, with state model

§=- (Opxn In)e2
¥0: 0 =TG"(q) (I, I,)es
y2 = (In 1) G(9)54(9)

and storage function V5(¢). Analogously to the state-feedback case described in Remark
3.5, this representation shows that, at non-equilibrium conditions, the system energy
flows from ¥; to s, through y;, and back from ¥, to ¥y, through ys, generating
a mutual excitation among >; and 5. The energy dissipation carried out in >
—which involves the velocity and position errors and does not stop until they are
all vanished— instantaneously decreases the closed loop stored energy and its flow
entailing a continuous reduction on the mutual excitation intensity. This process holds
as long as (e, es) # (0a,,0s,), or equivalently (y1,vy2) # (024, 0s,), and consequently
lly:(t)|]] — 0 as t — oo, i = 1,2. Note that the vanishing of y; implies that (g, ¢)(t) —
(0,,,0,) as t — oo in view of which the global regulation objective is guaranteed. On
the other hand, the vanishing of 1y, implies that

lim G ((t)) 50 (¢(t)) = G(ga) Jim 5, (¢(£)) = On
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Figure 3.3: Block diagram of the extended output-feedback adaptive scheme

and consequently B
Sa (0(1)) — ker (G(gq)) as t— o0

which permits a steady state-error on the parameter estimations, unless ker (G(gq)) =
{0,} which is implied by the conditions stated in Corollary 3.1 q

3.2.2 Output-feedback global adaptive regulation with extended
adaptation algorithm

An alternative version of the output-feedback adaptive scheme is proposed under the
consideration of Eqgs. (3.40), (3.42), and the extended adaptation dynamics given by

¢. = —eT'G"(q) [sp(Kpq) + asp(Kpd)] (3.50a)
0 = s,(0. — TYT(q)) (3.50b)

where « is a constant that may arbitrarily take any real value. A block diagram of the
extended output-feedback adaptive control scheme is shown in Fig. 3.3.

The a-term extending the adaptation dynamics in (3.50a) has been included for the
sake of generality, since an analogue term was considered in a previous approach [25].
Furthermore, the a-term in (3.50a) has a natural influence in the closed-loop responses
which could be used for performance adjustment purposes. This aspect will not be
explored in this dissertation.

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(q, 9, 6) as defined in Egs. (3.40),(3.42), in
Egs. (3.50). By Property 1.5 and the variable transformation (3.45), the closed-loop
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dynamics adopts the form

H(q)i+ C(g,4)q + Fq = —sp(Kpq) — sp(Kp¥) + G(q)5a(¢) (3.51a)
V= —AK;'sp(Kpd) + Bg (3.51b)
6 = —TG"(q)[esp(Kpq) + assp(Kpd) + ] (3.51c)
where 5,(0) = 8,(¢ + ¢*) — 54(¢").
Let
I Hom
o \/M?w (Bp + a?Bpo) (3.52)
£ 2 7 fm 7 (3.52b)
Bup + 7M + |e] (ﬁMD + _—m)
€3
A 26
g9 = (3.52¢)
1+ a2+ 2@\&\
€3
where
Bp £ max{op;ykpi} . Bpo = max {%}

Bump £ ke Bp + umBp ,  Bub £ keBp + tear B

{ a; } — AQmeﬁm

Ea =
bikpi ’ Buta

B = miin

n

2 L
> M3, Bp2
=0

> M,
i=0
Bp1 = max {opirkpibi} . Bua = far + 1 Boa

Bpa 2 max {olpy0:)

with o’;,, and o', being the positive bounds of D" op;(+) and Do p;(-), respectively,
in accordance to point 2 of Lemma 2.4, and p,,, par, ko, fim, and fi; as defined in
Properties 1.1, 1.2.5, and 1.3. We are ready to state the main analytical result.

Proposition 3.4 Consider the closed-loop system in Eqs. (3.51), under the satisfac-
tion of Assumption 3.1 and inequalities (3.23) and (3.41), and the positive constants
e, K =0,1,2, defined in Eqs. (3.52). Then, given any positive definite diagonal ma-
trices Kp, Kp, A, B, and T', and any o € R, there exists ¢* > min{eg,e1,e2} such
that, for any ¢ € (0,¢*), the trivial solution (g, v, )(t) = (0,,0,,0,) is stable and, for
any initial condition (q,q, ¢, )(0) € R* x R* x R* x R, (g,9)(t) — (0,,0,) ast — oo,
and 5,(p(t)) — ker(G(qq)) as t — oo, with |75(t)| = |u;(t)| < Ty, i =1,...,n, Vt > 0.
<
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Proof. By (3.46), it can be seen that, along the system trajectories, |7;(¢)| = |u;(t)| <
T;, ¥t > 0. This proves that, under the proposed output-feedback adaptive scheme,
the input saturation values 7T; are never reached. Now, in order to develop the stabil-
ity /convergence analysis, let us define the scalar function'?

Vi(q,4,9,0) = V(q,4,9,¢) + acsh(Kpd)H(q)q

where foi sh(Kpr)B Ydr =371, foﬁi opi(kpiri)b; tdr; and V as defined in Eq. (3.48),
with ¢ satisfying

£ < ey = min{eg, e1, 62} (3.53)

Observe that, from Property 1.1 and point 5 of Lemma 2.4, we have that

_ q
V(G 4,9, 8) > Wo(d d, 9) + (1 — 60) / ST (K pr)dr
On,

U ¢
+(1— 50)/ S%(KDT)B_ldT+/ 5T tdr (3.54)
On 0

P

where
_ T _
. ||SP(KPCJ)|| ||SP(KPQ)||
Wo(q,4,0) = = |l Qo 4l
|sp(Kpd)|| |sp(Kp?)|
g—i —E&UpM 0
Qo= |—eum  pm  —lalepn
[
0 —|O./|€[LM B_DOO

and dy is a positive constant satisfying

82
E 8o <1 (3.55)

(see (3.53)). Note further that, by (3.55), Wy(q, ¢,1) is positive definite (since with
e < ey < €p, in accordance to (3.53), any dy satisfying (3.55) renders positive definite
Qo), and observe that Wy(0,,q,0,) — oo as [|¢|]| — oo. From this, inequality (3.55),
and points 6 and 7 of Lemma 2.4 (through which one sees that the integral terms
in the right-hand side of (3.54) are radially unbounded positive definite functions),
Ve(q, 4,9, ¢) is concluded to be positive definite and radially unbounded. Its upper-
right derivative along the system trajectories, Viz = DTVg [38, App. 1] [32, §6.1A], is

TH(q)q + esp(Kpq)H(q)q +

12The whole expression is given by Vg(q,4,9,6) = 3¢
aesh(Kpd)H(q)q + [y sH(Kpr)dr+ foﬁn sT(Kpr)B~'dr + fOi ST (r) T Ldr
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given by

Ve(d,4,9,6) = ¢"H(a)g + %q‘TH (¢:9)d + esp(Kp@)H(q)d + 24" H(g, 4)sp(Kpq)
+e¢"H(q)s»(Kpq)Kpg + ash(Kp9)H(q)j + ag" H(q, §)sp(Kpd)
+ " H(q)sp(KpV)Kpd + sh(Kpq)q + sh(Kpd) B4 + 51 (606

= — (' Fq—esp(Kpq)Fq — esp(Kpg)sp(Kpq)

— (1 + a)esp(Kpq)sp(Kp?) + 4" Clq, 4)sp(Kpq)
+e¢" H(q)sp(Kpq)Kpg — acsh(Kpd)Fg — assh(Kpd)sp(Kp?)
+azq" C(q,4)sp(Kpd) — asq” H(q)sp (Kpd) Asp(Kpd)
+aeq" H(q)s(KpW)KpBg — sh(Kpd) B AK 5 sp(Kpd)

where H(q)q, 9, and gE have been replaced by their equivalent expression from the
closed-loop manipulator dynamics in Eqgs. (3.51), Property 1.2.1 has been used, and

sp(Kpq) £ diag[D opi(kp1@1), - - -, Do pn(kpndy)]
Observe that from Properties 1.1, 1.2.5, and 1.3, and points (b) of Definition 2.4 and

2 of Lemma 2.4, we have that

Ve(q,¢,9,0) < — fmlldll® + e fullsp(Kp) 4l — ellsp(Kpg) ||
+ |1+ alellsp(EKpd) ||| sp(Kpd)|| + cke Belldl* + epnrBplld))?
+ lale farlldlllsp(Kpd) || = eallsp(Kp9)||* + |aleke Bp | 41
+ lalepnBpalldll | sp(Kp?) || + [elepaBorllgl* = Bmllsp(Kpd)|?
< —Wi(q,q) — Wal(q,9) — Ws(g, V)

where

_ Isp(Kpq) H)T (HSP Kpq) )
Wi(q,4) =
(7:4) = ( gl ) U
lal - \" [l
WQ(%ﬁ) = (HSD KD19 ||> QQ( KD79 ||)
o (se(ER)T p(KpQ)|
Ws(a,9) = (nsD Kpo))|) @ ||sD Kpd)|
with ,
Q) = 3 2
—EfQM 01 fm — e (Bup + || Bup)

_ laleBuma (1 o 51)5m

2

£ - |1+0¢|€
QB _ 2 2
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where §; is a positive constant satisfying

1 1
0<51mé5|:maX{—,—}—M:|<51<1—‘ié61M<1 (356)

€1 €2 £3 Eg
Let us note that the fulfillment of (3.53) guarantees the existence of values 0, € (0,1)
satisfying (3.56) (since € < ej; < min{ey, g2}, in accordance to (3.53), implies that
d1m < 01p), while the satisfaction of (3.56) renders Wy(q, ¢), Wa(q,v), and Ws(g,9)
positive definite (with respect to their arguments, since, under such a condition, ¢,
@2, and @3 turn out to be positive definite). Hence, VE(Q,q,ﬁ,QE) <0,v(q,q9,0) €
R” x R" x R" x R, with Vg(7,¢,9,¢) =0 <= (7,¢,9) = (O, 0,,0,). Therefore, by
Lyapunov’s second method, the trivial solution (g,9,®)(t) = (0, 0,,0,) is concluded
to be stable. Now, in view of the radially unbounded character of Vz(q, 4,7, ¢), the set
Q2 {(q,4,9,0) € R" x R" x R x R? : V(q, ¢, 9, ) < c} is compact for any positive
constant ¢ [22, p. 128]. Moreover, in view of the seminegative definite character of
V(q, 4,0, ), Q is positively invariant with respect to the closed-loop dynamics [22, p.
115]. Furthermore, from previous arguments: E 2 {(7,4,9,¢) € Q : V(7,¢,0,0) =
0} = {(3,4,9,0) € Q:q=¢ =19 = 0,}. Further, from Remark 3.9, the largest
invariant set in F, denoted M, is given as M = {(q, 4,9, 0) € E : 3,(¢) € ker(G(qq))}.
Thus, by the invariance theory [32, §7.2] —more specifically, by [32, Theorem 7.2.1]—,
we have that (g,¢,9,0)(0) € Q@ = (¢,4,9,¢)(t) = M ast — oo. Since this
holds for any ¢ > 0 and V(q, ¢, 9, ¢) is radially unbounded (in view of which  may be
rendered arbitrarily large), we conclude that, for any (g, ¢, 9, ¢)(0) € R" x R" x R" x R?,
(7,9)(t) — (0,,0,) as t — oo and 3,(¢(t)) — ker(G(qq)) as t — oo. Finally, from
(3.53) and its sufficient character, as a condition supporting the proof, the stated
stability /convergence result is concluded to hold with € € (0,e*) for some * > g/, «
The result presented in Corollary 3.2 is also concluded for the presented extended
version.

Remark 3.11 Let

€1 = Y2 = — (]n In In)T G(Q)ga(é)
er =y = — (esp(Kpq) easph(Kpd) QT)T
q

Vi(2,9) %q’TH ()4 + ¢ [sp(Kpa) + ash(Kpw)] H(a)d + / ST(Kpr)dr

[V,
—i—/ sH(Kpr)B™tdr
On
_ d)C
Vé) = [ strtar
P

Analogously to the output-feedback adaptive approach of the precedent subsection,
through the extended scheme, the closed-loop system, in Eqgs. (3.47), may be seen as a
(negative) feedback connection among a strictly passive subsystems ¥; with dynamical
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model

H(q)j+C(q,4)¢+ Fg= —sp(Kpq) — sp(Kp?¥) — (I, Onxn)er
Y1:{ 9 =—AKp'sp (Kp?) + Bg

Yy = — (53}@(Kp67) + eastH(Kpv) qT)T

and a storage function V;(q, ¢), and a (lossless) passive subsystem ¥y with state model

Q = - (Onxn Onxn [n) €2
E2 : QB - FGT(Q) (In In In) €2
Yo = (In In ]n)T G(q)ga(q_ﬁ)

and storage function V5(¢). An interpretation in the context of passive feedback in-
terconnected systems analog to the one described in Remark 3.9 for the precedent
output-feedback adaptive algorithm, applies in this case as well. N

3.3 State-feedback trajectory tracking approach

In this section a general adaptive scheme for the motion control through state feed-
back is presented. The developed analytical framework will be used to formulate the
generalized adaptive controller. It is important to note that the bounded nature of the
inputs restricts the tractable trajectories. In this direction, the following assumption
turns out to be crucial within the analytical setting considered in this section.

Assumption 3.2 The desired trajectory vector function qq(t) belongs to
Q42 {qa € C*(R;R") ¢ [|da(®)]| < Baw, lGa(t)]] < Baa}

for some positive constants By, and Bg, < i—’g (see Properties 1.2.5 and 1.3) <

3.3.1 Global trajectory tracking with exact gravity compen-
sation: a generalized approach

Let us consider the following generalized expression defining global-tracking controllers
for system (3.1)-(3.2):

U(t7 q, Qa ¢) = _Sd(t7 q, Cja ¢) - SP<KPQ) + Y(q7 Qd(t)7 Qd(t))qu) (357)

where § = q — qq, for any suitable (desired trajectory) vector function gq(t) € R™. The
third term in the right-hand side of (3.57) is a hybrid compensation term (since it
involves online position measurements but desired velocities and accelerations), where
6 is the system parameter vector and Y'(-,-,-) is the regression matrix characterizing
the system open-loop structure, according to Property 1.7, i.e. such that

Y (q,qa(t), Ga(t)) v = H(q,¥)da(t) + C(q,4a(t), V) qa(t) + F(¥)qa(t) + g(q,%) (3.58)

47



The second term in the right-hand side of (3.57) is a (bounded non-linear) position
error correction term where Kp € R™ ™ is a positive definite diagonal matrix, i.e.
Kp = diaglkp1, ..., kpy] with kp; >0 for alli =1,...,n, and

Sp . R" — R"
T
T (apl(azl) e, Upn($n>>

with op;(+), i = 1,...,n being (suitable) generalized saturation functions with
bounds Mp;. The first term in the right-hand side of (3.57) corresponds to a motion
dissipation term where s; : Ry X R® x R® x R? — R" is a bounded continuous vector
function satisfying

sq(t,x,0,,2) =0, (3.59)

Vr e R" Vze RVt >0,
[sa(t, @y, 2)[ < &yl (3.60)

V(t,z,y,2z) € Ry x R" x R" x R?, for some positive constant x, and given q; € Qg4 (see
Assumption 3.2) and z € R” such that |Y;(q, 4a(t), da(t))z| < T;, i =1,...,n, Vg € R",
Yt > 0:

y sq(t,z,y,2) >0 (3.61)

Yy # 0,, Vx € R", Vt > 0, and
it @y, 2)| < T; (3.62)
i=1,...,n, Ve e R" Yy € R", Vt > 0, for suitable bounds Mp; of op;(-).

Proposition 3.5 Consider system (3.1)-(3.2) taking u = u(t, q, ¢,%), with u as defined
in Eq. (3.57), under the satisfaction of Assumptions 3.1 and 3.2, and the conditions on
the vector function sq stated through expressions (3.59)—(3.62). Thus, for any positive
definite diagonal matriz Kp, global uniform asymptotic stability of the closed loop trivial
solution ¢(t) = 0,, is guaranteed with |7;(t)| = |u;(t)| < T3, i =1,...,n, Vt > 0. <

Proof. Observe that the satisfaction of (3.62), under the consideration of (3.2), shows
that T; > |u(q, ¢, V)| = |us| = |1], i = 1,...,n, ¥(q,q) € R" x R". From this expression
we see that, along the system trajectories, |7;(t)| = |u;(t)| < T3, i = 1,...,n, Vt > 0.
This proves that under the proposed scheme, the input saturation values, 7T;, are never
reached. Thus, under the consideration of Property 1.5, the closed-loop dynamics takes
the form

where Property 1.2.4 has been used and g = q + ¢4(¢) in the error variable space. Let
us define the scalar function

1 q

Vo(t,q,q) = §§TH(§ +qa(t))q +eq" H (7 + qa(t))sp(Kpq) + /0 sp(Kpr)dr (3.64)
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with foqn sH(Kpr)dr=3", foqi opi(kpir;)dr; and ¢ being a positive constant satisfying
£ < ey = min{ey, &9} (3.65)

where
A Hm

c A fm - kC'de
1= =
113, 8p

B + (ke Baw + %)2

(note that the satisfaction of Assumption 2 ensures positivity of ) with

and 9

Bp & miax{ajpz-Mkpi} . Bu=keBp+puuBe . Bp

o'p;iy being the positive bound of op;(-) in accordance to item 2 of Lemma 2.4, k as
defined through (3.60), and g, par, ke, fm, and fas as defined in Properties 1.1-1.3.
Observe that from Property 1.1, items 4 and 5 of Lemma 2.4, and Lipschitz continuity
of o, V4(q, @) can be bounded above and below by

Wo(q,q) + (1 — ) /q sp(Kpr)dr < Vo(q,q) < Woa(q, )

On

where

_ = ,u/m - _ - 07 _
Woi(a,0) = Zall” = eparllsp(Kea)lllldll + %HSP(KPQ)HQ

= (HsP<KPq>II)T< 5 —WM) ("8P<KPQ>”) (3.66)

]| —epinr ]|

with a being a positive constant satisfying

2

€
g<a<l (3.67)

(see (3.65)), and

- 12578 s ﬁP _
Woa(q.9) = 11611 + e Be a1l + = llalP

_1 (Hqu)T ( Bp €uMﬂp) (Hqu) (3.68)

2 HC?H e Bp 1237 H@H '
Notice that, by (3.67), Wo1(q,q) and Wa(q,q) are positive definite (since with
e < ey < gy, in accordance to (3.65), the matrix at the right-hand side of (3.68) is
positive definite; and, in conjunction with any « satisfying (3.67), the matrix at the
right-hand side of (3.66) is also positive definite). Further observe that Wy, (0,,7) — oo
as ||q|] = oo. From this, inequality (3.67) (whence 1 — a > 0), and items 6 and 7 of

Lemma 2.4 (through which one sees that the integral term in the right-hand side of
(3.64) is a radially unbounded positive definite function of q), Vs(t,q, q) is concluded
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to be positive definite and radially unbounded. Its upper-right derivative along the
system trajectories, is given by

Volt,q,q) = q"H(q+ )+ %ijH(f? +qa(t), 4+ 4a(t))q + esp(Kpq)H(q)q
+eq"H(q+ qa(t),d+ da(t))sp(Kpq) + eq" H(q + qa(t))sp(Kpq) Kp
+sp(Kpa)q

= Q_T[ —C(q+ qa(t), 3+ 4a(t))q — C(qT+ qa(t), 4a(t)) G — Fq — sa(t,q,q,v)
— sp(Kpg)| + %QTH (@ + qa(t), 4+ da(t)) 4
+esh(Kpa) | = C(a+qalt), d+dalt))d — C(a+ aalt), du(t)d — Fd
~ 54(3.4,0) — sp(Kpd)]
+ €§TH(Q_+ qa(t), 3+ Ga())sp(Kpq) +eq" H(7+ qa(t))sp(Kpq)Kpq
+sp(Kpa)q
= — ¢ C(q+ ), ()7 — 4" FG— ¢ sa(t, q,q,%)
—esp(Kpq)C (7 + qa(t), 4a(t))§ — esp(KpQ) Fq — esp(Kpq)sa(t, 7.4, ¥)
— esp(Kpq)sp(Kpq) +q" [C(q + qa(t), ) + C(q + qa(t), Qd(t))} sp(KpQ)
+e¢"H(q+ qu(t))sp(Kpg) Kpg

where H(q)q has been replaced by its equivalent expression from the closed-loop dy-
namics in (3.63), Properties 1.2.1 and 1.2.3 had been used, and

sp(Kpq) = diaglopi(kp1@1), - - -, 0pn(kpnGn)] (3.69)

Observe that from Assumption 3.2, Properties 1.1-1.3, the satisfaction of (3.60) and
(3.61), items (b) of Definition 2.4 and 2 of Lemma 2.4 (recall that for continuously
differentiable functions op;, D op; = o)), and the positive definite character of Kp,
we have that

.

with

Wi(7,q) = fmlldll® — efullsp(Kp) |Gl — exllsp(Kp@) 1G]] — 2¢kc Bayllsp (K p@) 1|l
+ellsp(Kpq)||* — ekeBpllql* — epnBrllgll® — ke Ballgll®
(HSP(KPQ)H) < € —e (Date 4 kchv)) (HSP(KPQ)H>

gl —e (DL 4 keBay)  fm — keBay — €Bu lqll
(3.70)

Note further that, from the satisfaction of (3.65), W;(q, ¢) is positive definite (since
any € < ey < &5 renders positive definite the matrix at the right-hand side of (3.70)).
Thus, by Lyapunov’s stability theory (applied to non-autonomous systems, see for
instance [22, Theorem 4.9]), the trivial solution ¢(¢f) = 0 is concluded to be globally
uniformly asymptotically stable, which completes the proof. <
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Remark 3.12 Let Kp € R™™ be a positive definite diagonal matrix, i.e. Kp =
diaglkps, ..., kps) with kp; > 0 for all @ = 1,...,n. A generalized version of the
SP-SD+ and SPD+ controllers of [1] are retrieved from (3.57) by respectively defining

sa(t,q,4,¢) = sp(Kpq) (3.71)

T
where sp : R" — R" : x +— (aDl(atl) s aDn(a:n)> , with op;(+), 1 = 1,...,n,
being generalized saturation functions with bounds Mp;; and the involved bound
values, Mp; and Mp;, satisfy

Mp; + Mp; < T;, — Bp; (372)

1=1,...,n, with
BDi = ,uMBda + kC’BsU + fMBd’U + Bgi

and
sa(t,q,q,v) = sp(Kpq+ Kpq) — sp(Kpq) (3.73)

with the generalized saturations op;(+), i = 1,...,n, being strictly increasing, and
bound values satisfying
Mp; <T; — Bpi (3.74)

1 = 1,...,n, both SP-SD+ and SPD+ cases under the consideration of sufficiently
small desired-trajectory-related bound values By, and By, (see Assumption 3.2) as
stated in [1]. Furthermore a tracking version of the SPDgc-like controller proposed in
[47], that (in addition to the SP and D actions) includes the hybrid compensation terms
within a single saturation function (at each link) is obtained from (3.57) by defining

sa(t, @, 4, 1) = so(Y (g, 4a(t), Ga(t)) — sp(Kpq))
— 50(Y (¢, 4a(t), Ga(t))0 — sp(Kpq) — Kpq) (3.75)

T
where 5o : R" — R" : 2 — (am(xl) s UOn(a:n)> , with og;(+), ¢ = 1,...,n,
being linear saturation functions for (Lg;, My;), and the involved linear/generalized
saturation function parameters satisfying

Bpi + Mp; < L()i < MOZ' < T; (376)

1 = 1,...,n, with sufficiently small desired-trajectory-related bounds By, and By,
as stated in [1]"®. Observe from (3.76) that, by virtue of item (c) of Definition 2.4
(under the consideration of Properties 1.4 and 1.5), we have that so (Y (¢, ¢a(t), Ga(t))v—
sp(Kpq)) = Y(q,4a(t), Ga(t)) — sp(Kpq) (see (3.75) and (3.57)), giving rise to an
SPDhc+-like controller of the form

w = s0(Y (4, 4a(t), Ga(t)) ¥ — sp(Kpq) — Kpd)

13Notice that the internal saturations, op;(-), in (3.75) are allowed to be any function satisfying
Definition 2.4 and are consequently not tied to be linear saturations as originally formulated in [47].
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Furthermore from items (a) of Definition 2.4 and 8a and 9 of Lemma 2.4 (under the
satisfaction of inequalities (3.76) in the case SPDhc+-like controller obtained through
(3.75)), sa(t, q, q, ) in every one of the above cases in (3.71), (3.73), and (3.75) satisfies
the expressions in (3.59) and (3.61). Further, notice that, through the satisfaction
of (3.72), (3.74) (under the consideration of the strictly increasing character of the
generalized saturation functions op; involved in the SPD+ case), and (3.76), every
sa(t,q,q,%) in expressions (3.71), (3.73), and (3.75) satisfies inequalities (3.62) too.
Moreover, from points 3 and 4 of Lemma 2.4, one sees that sq4(t,q,q, ) in every one
of the above cases in (3.71), (3.73), and (3.75) satisfies inequality (3.60) with

K= m?X{JZ{MkDi} (3.77a)

where
0piy  in the SP-SD+ case
Oy = Opiyy  in the SPD+ case (3.77b)
04 in the SPDhe+-like case

hints Tping, and og;y, respectively being the positive bounds of Do p;(-), o),(+), and
D% o,(+), in accordance to item 2 of Lemma 2.4. N

3.3.2 Global adaptive tracking control

The result of the precedent section cannot be guaranteed as stated in Proposition 3.5
if the exact knowledge of the system parameters is not available. However, in such a
situation, global tracking avoiding input saturation can still be accomplished through
auxiliary dynamics in an adaptive control context. This is achieved by means of suitable
strict bounds on the elements of 1, as described next.

Let M, 2 (M, ..., M,,)" and W, 2 [— My, Myy] X -+ X [= Mgy, M,,), with M,;,

j=1,...,p, being positive constants such that
wj < Maj (378&)
Vi e{l,...,p}, and
M,
B,* <T; (3.78Db)
Vi € {1,...,n}, where, in accordance to Property 1.8a, Bé‘f" are positive constants

such that |g;(w, 2)| = |Y(w)z| < B;\f“, i=1,...,n, V(w,z) € R" x ¥,, and consider
a small enough desired-trajectory-related bound values By, and By, (in accordance to

Assumption 3.2) such that
Yi(q, (), Ga(t))9] < Bpy* < T, (3.78¢)

i=1,...,n, Vg € R", V9 € ¥,, Vt > 0, where B¥* i = 1,...,n are positive
constants such that |Y;(w,x,y)z| < B¥ i = 1,...,n, for all (w,z,y,2) € R" x
Bp,, x Bp,, x ¥,. Let us note that Assumption 3.1 ensures the existence of such
positive values M,;, j = 1,..., p, satisfying inequalities (3.78a) and (3.78b) while, under
Assumption 3.2, through the fulfillment of (3.78b), inequalities (3.78¢) can always be
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CONTROLLER
ACTUATOR

94 (1)
[q’d(t)J s (BT 50 )= 50 (K,T) + Y (0,0, (0,0 ——w /™ > roBoT
G,()
W (CIJ
Auxiliary dynamic subsystem q
¢=-TY"(q.4,(6).4,)][T+es,(K,7)]
v =s,(4)

Parameter estimator

Figure 3.4: Block diagram of the proposed adaptive control scheme

satisfied through sufficiently small values of By, and By, (see Remark 3.12). Notice
further that inequalities (3.78b) are satisfied if }7_, B, M,; < Ti, Be,||Ma| < T;, or
Bg||M,|l < Ti, i =1,...,n (see Property 1.8a.); actually, > ¥_, Bg,, Maj, Be,||[Mal, or
Bg||M,||, may be taken as the value of Bé\f“ as long as inequality (3.78b) is satisfied.
Similarly, inequalities (3.78c) are satisfied if »7_; By, Ma; < Ti, By,||Ma|l < Ti, or
By ||M,|| < T;,i=1,...,n, where in accordance to Property 1.8b and Assumption 3.2,
By,,, By,, and By are positive constants such that |Yj;(w, z,y)| < By, |[Yi(w, z,y)|| <
By, respectively, for all (w,z,y) € R" x Bg, X Bp,,; in fact, By, M, By,||M,||, or
By||M,||, may be taken as the value of BY* as long as inequality (3.78c¢) is fulfilled.

Based on the generalized algorithm in Eq. (3.57), the proposed adaptive control
scheme is defined as

U(t, q, Cja '&) = _Sd(t> q_a Cja 1;) - 5P<KPq_) + Y(Q> Qd(t)ﬂ Qd(t))'& (379)

with sp(-), K,, and s4(-) as previously defined, Y (¢, ¢a(t), Ga(t)) as defined in Section
3.3.1 (see Eq. (3.58)), and 1 (the vector of estimated parameters) being the output
variable of an auxiliary dynamic subsystem defined as

¢ =—TY"(q,da(t), a(t))[d + esp(Kpq)] (3.80a)
Y = 54(0) (3.80b)
where ¢ is the (internal) state of the auxiliary dynamics in Eq. (3.80a);
Sq : RP — RP
T
T — (aal(xl) s Uap(acp))
04;(-), 7 = 1,...,p, being strictly increasing generalized saturation functions

with bounds M,; as defined above, i.e. satisfying inequalities (3.78); I' € R”*” is a
positive definite diagonal constant matrix, i.e. I' = diag[y; ...,7,| with 7; > 0 for all
j=1,...,p; and € is a positive constant satisfying inequality (3.65). A block diagram
of the proposed adaptive control scheme is shown in Fig. 3.4.

Remark 3.13 Analogously to the adaptive regulation cases of Section 3.1 and 3.2,
one can see from expressions (3.79)-(3.80), (3.65) that the proposed adaptive tracking
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control scheme does not involve the exact values of the elements of ). Note further
that by previous arguments, the satisfaction of the restriction of By, stated through
Assumption 3.2 does not require the exact knowledge of the system parameters either.
<

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(t,q,q, 1)) as defined through Eqgs. (3.79)-
(3.80). Observe that, under Assumption 3.1 and the consideration in (3.2), if the
inequalities in (3.78) are satisfied, the fulfillment of (3.62) guarantees that

ﬂ> ’uz(t7Q7Q)8a(¢))|:|ul|:‘7-2| izl""an V(t7q’§7¢)eR+XRnXR”XRP
(3.81)
Thus, under the consideration of Property 1.5, the closed-loop system takes the form

H(q)q+ [C(q,9)+C (g, qa(t))] G+ Fq

= = 546, 0654(0)) — 55 (KpD) Y (0,000, 1a0)5l@) )
Gg = —TIY"(q, 4a, Ga) [§ + e5p(Kpq)] (3.82b)

where ¢ = ¢ — ¢* and
5a(¢) - 5a(¢ + ¢ ) - 5a<¢ ) (383)

with ¢* = ( ’{,...,qbZ)T such that s,(¢*) = 1, or equivalently, ¢7 = aa_jl(@bj), j =
1,...,p. Observe that, by item 8b of Lemma 2.4, the elements of 5,(¢) in (3.83), i.e

Gaj(05) = 0uj (05 + &7) — 00j(])
j=1,...,p, turn out to be strictly increasing generalized saturation functions.

Proposition 3.6 Consider the closed-loop system in Eqs. (3.82), under the satisfac-
tion of Assumptions 3.1 and 3.2, and the conditions on the vector function sy stated
through expressions (3.59)—(3.62). Thus, for any positive definite diagonal matrices Kp
and T, and any e satisfying (3.65), the trivial solution (g, $)(t) = (0,,0,) is uniformly
stable and, for any initial condition (to,(j(to),cj(to),ag(to)) € Ry x R" x R" x R”, the
closed-loop system solution (g, ¢)(t) is bounded and such that G(t) — 0,, ast — oo with
()| = |wi(t)| <Ti, i =1,...,n, ¥Vt > to. q

Proof. By (3.81), we see that, along the system trajectories, |7;(t)| = |u;(t)| < T3,
Vt > 0. This proves that, under the proposed adaptive scheme, input saturation is
avoided. Now, in order to develop the stability /convergence analysis, let us define the
scalar function

_ ' ¢
Vi(t,4,4.8) = Vo(t.4,d) + / ST (D dr (3.84)

P

where 0¢ So(r)Ttdr = 320, foq;j Saj(15)7; 'dry, and Vy(t,q,q) is as defined in Eq.

(3.64)11. Note that, from the positive definite and radially unbounded characters of

14The whole expression is given by Vi(t,4,4,0) = 3¢"H(q+ qa(t))qd + g7 H (G + qa(t))sp(Kpq) +
f_ sL(Kpr) dr+f0 sI(r)0~tdr
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Vo(t,q,q) (shown in the proof of Proposition 3.5) and items 8b, 6, and 7 of Lemma 2.4
(through which the integral term in the right-hand side of Eq. (3.84) is concluded to
be a radially unbounded positive definite decrescent function of @), Vi(t,q, ¢, ¢) proves
to be positive definite, radially unbounded, and decrescent. Its derivative along the
system trajectories is given by

Vi(t,3.4,0) = ¢"H(q+ qalt)) g + %QTH(qwd(t),q# Ga(t))q + esp(Kpq)H (7 + qa(t))q
+ €§TH(C? +qa(t), G+ 4a(t)) sp(Kpq) + eq" H(q)sp(Kpg) Kpg

+ sh(Kpq)G + 50 (AT 6
= ciT[ — C(q+qa(t), G+ 4a(t))§ — C(q+ qalt), 4a(t))§ — Fq
= 54,6 54(0)) — sp(Kpa) + Y (a+ qu(t). da(t), a(1))5(9)]
A E (T aat), 6+ dal)d
+ esp(Kpq) [ — C(7+ qa(t), 7+ 4a(t)) G — C(T+ qa(t), 4a(t)) 7 — Fq
= 5a(@. G, 50(0)) = sp(Kpa) + Y (a + qult). da(t), Ga(t))54(6)]
+eq"H(q+ qa(t), G+ da(®))sp(Kpq) + eG"H(q + qa(t))sp(Kpq) Kpg
+ sp(Kpq)g — 55 (@)Y (7 + qa(t), da(t), Ga(t)) [q + esp(Kpq)]
= — ¢ C(q+qut),4a(t) — " Fqg— q"54(t, 7,4, 54(0))
— esp(Kpq)C (7 + qa(t), 4a(t))§ — esp(Kpq) Fq
— esp(Kpq)sa(t, 4,4, 54(¢)) — esp(Kpq)sp(Kpq)

(
) -
+eq" [C(q+qd q) + C(q+ gl ))]SP(KPQ)
+eq" H(q+ qa(t ))sp(qu)qu

where H(q)q have been replaced by their equivalent expression from the closed-loop ma-
nipulator dynamics in Eq. (3.82), Properties 1.2.1-1.2.3 have been used, and (K pq)
was defined in (3.69). Observe that from Assumption 3.2, Properties 1.1-1.3, the sat-
isfaction of (3.60) and (3.61), items (b) of Definition 2.4 and 2 of Lemma 2.4, and the
positive definite character of Kp, we have that

%(ta (ja é? &) < _Wl ((Z Q)

where W1(q,q) was defined in (3.70) and shown to be a positive definite function in
the proof of Proposition 3.5. Thus, we have that Vi(t,7,q,¢) < 0, V(t,7,4,¢) € Ry x
R™ x R™ x R?, with Vl(t,q, 7,0) =0 <= (¢,9) = (0,,0,). Therefore, by Lyapunov
stability theory (applied to nonautonomous systems, refer to Section 2.3, Theorem
2.3) the trivial solution (g, )(t) = (0,,0,) is concluded to be uniformly stable. Finally,
by Theorem 2.3, we conclude that for an initial condition (to,q(to), G(to), ¢(to)) €
R, x R™ x R™ x R, the closed-loop system solution (g, ¢)(t) is bounded and such that
q(t) — 0, as t — oo.

N
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Observe that even though the result stated through Proposition 3.6 does not permit
to analytically conclude anything on the convergence of the parameter estimators zﬂ(t),
it guarantees boundedness of the auxiliary states ¢(¢) (and actually of every closed-
loop system variable). Recall further, from Section 1.4, that parameter estimator
convergence is not part of the adaptive tracking goal. Further results in this direction
could be contemplated through additional excitation persistency conditions [30], which
is out of the scope of this work.

Remark 3.14 Adaptive versions of the SP-SD+ and SPD+ schemes of [47] and of
the SPDhc+-like algorithm described in Remark 3.12 are obtained by considering in
the proposed design method the expressions in (3.71), (3.73), and (3.75), respectively,
with suitable adjustments on the saturation function parameter conditions. Thus, the
adaptive SP-SD+ controller is obtained from (3.79) by taking

Sd(t7 q, q;a 1&) = SD(KDq;> (385)

with sp(-) and Kp as defined in Remark 3.12, and the involved bound values, Mp; and
Mp;, satisfying
Mp; + Mp; < T; — BY*® (3.86)

t=1,...,n, the adaptive SPD+ scheme is gotten by taking
sa(t,3,4,%) = sp(Kpq+ Kpq) — sp(Kpq) (3.87)
with sp(-) as defined for this case in Remark 3.12, and bound values satisfying
Mp; < T, — BM® (3.88)
1 =1,...,n, and the adaptive SPDhc+-like algorithm is obtained by taking

sa(t, 4,4, %) = s0(Y (g, 4a(t), 4a(t))0—sp(Kpd)) —50(Y (¢, 4a(t), Ga(t))—sp(Kpd)—Kpg)
(3.89)
with so(+) as defined in Remark 3.12, and the involved saturation function parameters

satisfying

Bg[; + Mp; < LOi < MOZ' <T; (390)
i=1,...,n. For these cases, x in (3.65) remains as specified in Remark 3.12 (see Egs.
(3.77)). q
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Simulation results

The effectiveness of the proposed schemes was corroborated through computer simula-
tions considering the model of a 2-DOF manipulator corresponding to the experimental
robotic arm used in [1, 47]. For this robot, the various terms characterizing the system
dynamics in (3.1) are given by!

2.351 4+ 0.168 cos 0.102 + 0.084 cos

0.102 4 0.084 cos go 0.102

. [—0.084¢ssings —0.084(¢; + go) sin go 9
Clg.q) = ( 0.0844; sin g 0 [kgm® /3]

(2288 0 )
F‘( 0 0.175) [eg m7/s]

and

(38.465sin¢; + 1.825sin(q1 + ¢o)
9(q) = ( 1.825sin(q; + ¢o) A

Thus, Properties 1.1, 1.2.5, 1.3, and 1.4 are satisfied with p,, = 0.088 kgm?, uy; =
2.533 kgm?, ke = 0.1455 kgm?, B, = 40.29 Nm, By = 1.825 Nm, f,, = 0.175

LA detailed procedure through which the generalized model of such a 2-DOF robotic arm is devel-
oped in Appendix A.
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kgm/s? fi = 2.288 kgm/s?, and

G 0
(241 + G2) cos(q2) — G2(2¢1 + G2) sin(ga) G cos(ga) + ¢f sin(gz)
G2 G1 + Go
Y(q.4.4) = a 0
0 2
sin(qy) 0
sin(q1 + g2) sin(qy + go)

¢T:(2.351 0.084 0.102 2.288 0.175 38.465 1.825) [Nm]

In particular

(4@ (241 +G2)cos(x) G 0 0 0 0
YH(q,q)— (O dlCOS(Ch) q1+q 0 0 O

o (00 ~(20 + d)iasin(g) 0 0 0 0
Ye(q,q) = (0 0 G2 sin(qy) 000

. {000 ¢ 000
YF(q>_(ooooq200

Y(q) = (O 000 0 sin(g) Sin(Q1+qQ))

00000 0 sin(q; + ¢2)

The maximum torques allowed (input saturation bounds) are 7} = 150 Nm and 75 = 15
Nm for the first and second links respectively. From these data one easily corroborates
that Assumption 3.1 is fulfilled.

4.1 State feedback regulation

The proposed adaptive scheme in Eqs. (3.24)-(3.25a) was tested in its SP-SD, SPD,
and SPDgc-like forms, under the respective consideration of expressions (3.34)-(3.35),
(3.36)-(3.37), and (3.38)-(3.39). The involved saturation functions were defined as

opi(s) = Mp;sat(s/Mp;) and op;(s) = Mp; sat(s/Mp;)

1 =1,...,n, in the SP-SD case;

( ) s v|§‘ < Lp;
oPi\S) = 3 —sign i
P sign(s)Lp; + (Mp; — Lp;) tanh (ﬁ) Vis| > Lp;

1=1,...,n, with 0 < Lp; < Mp;, in the SPD case;
opi(s) = Mp;sat(¢/Mp,) and og;(s) = My, sat(s/M,)
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t=1,...,n, in the SPDgc-like case; and

( ) S \V/|§| S Laj
Oaj = . —sign i
A sign(s)Lq; + (Mg — Lg;) tanh <ﬁ) V|s| > Lq;

Jj=1,...,p, with 0 < Ly; < M,;, in all the three cases. Let us note that with these
saturation functions we have op,, = 0, = 0(y; = 1 , and that in consequence, for
the three controllers, inequality (3.5) is satisfied with x = max;{kp;} (see Egs. (3.22)).

The simulation implementations were run fixing the following saturation parameter
values®: Mp, = Mp, = 40 and Mpy, = Mpy, = 5 in the SP-SD case; Mp; = 80,
Mpy = 10, and Lp; = 0.9Mp;, i = 1,2, in the SPD case; Mp; = 120, My = 50,
Mpy, = 12, and My, = 7 in the SPDgc-like case; and M,; = 50, M, = 3, and
Loj =0.9M,;, j = 1,2, in all the three cases.

For comparison purposes, additional simulations were run considering the adaptive
controller proposed by [50] —referred to as Z.00—, i.e.

GT(q)0 — KpTy(7) — KpTh(q)

= P(Q(q,4),9)

S
Il

D> .

where T}, (z) = (tanh(z1), ... ,tanh(:vn))T, Q(7,q) = —T'G"(q)[¢+¢eTy(q)], the elements
of P are defined as

P(Q é) _ Qj if QjAm < éj < HjM or (éj < Qij and Qj > O) or (é] > QjM and Qj < O)
e 0 if (6; <8, and Q; < 0) or (§; > 6,5 and Q; > 0)

j=1,...,p, with 6,,, and 0,); being known lower and upper bounds of ; respectively,

and the initial auxiliary state values are taken such that 6,(0) € [0;,,,0;m], 7 =1,...,p.

The parameter bounds were fixed at 6y, = 10, 617 = 50, 0, = 0.5, and 65y = 3 [Nm)].
Observe that —using Property 1.5— the gravity vector can be written as g(q,0) =

G(q)0 with

_ (sing; sin(qg1 + ¢2) ~(38.465
G(Q)_( 0 sin(ql—l—qg)) and 9_(1.825) [Nm]

The results of two simulation tests (for every considered controller) are presented.
The initial conditions and desired link positions in all the simulated cases were taken
as ¢1(0) = ¢2(0) = ¢1(0) = ¢2(0) = 0; 6,(0) = 20, 65(0) = 1 [Nm]; and qg1 = gg2 = 7/4
[rad]. In the first implementation —referred to as Test 1.1—, a value of € satisfying
(3.10) was fixed for the SP-SD, SPD, and SPDgc-like algorithms; the control parameters
(kpi, kpi, i = 1,2) and adaptation gains (y;, ¢ = 1, 2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests using the SPD
control law, and the same fixed values were kept for the SP-SD and the SPDgc-like

2 For the sake of simplicity, the units of the elements of the parameter vector 6, their estimation
variables and related bounds and saturation function parameters, the auxiliary states, and the control
and adaptation gains are omitted. The angles are expressed and measured in radians.
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Table 4.1: Control parameter values for the state-feedback regulation scheme
TEST 1.1 TEST 1.2
SP-SD SP-SD
Parameter SPD 7.00 SPD 7.00
SPDgc-like SPDgc-like
kp1 100 75 100 100
kpo 200 7 30 30
kp1 50 4.5 50 1000
kpo 3 3 3 250
" 1000 1000 15 250
Y2 750 750 0.35 20
€ 0.001 0.0001 0.1 0.1
algorithms. As for the Z.00 controller, the selection of e, control parameters, and

adaptation gains was performed according to the tuning procedure of the algorithm as
presented in [50], taking into account the pre-specified initial conditions and desired
positions, and such that the greatest possible absolute value of the control signals
at every link was ensured to be lower than the corresponding input saturation value
(i.e. 25:1 Bea,;0im + kpi + kpi < T;, i = 1,2); under these considerations, the fixed
parameters and gains were those giving rise to the best closed-loop performance after
numerous trial-and-error tests. With the aim at improving the closed-loop performance
obtained through Test 1.1, in the second implementation —referred to as Test 1.2—, a
higher value of ¢, disregarding inequality (3.10), was fixed for all the tested controllers
(recall that the condition on €, (3.10), is only sufficient, and that such a parameter is not
involved in the condition stated to avoid input saturation, (3.7)). For the SP-SD, SPD,
and SPDgc-like algorithms, the control parameters and adaptation gains were tuned
as in the previously described case. As for the Z.00 controller, the referred values
were fixed such that the best closed-loop performance was obtained from numerous
trial-and-error tests; the tuning conditions presented in [50] could not any longer be
satisfied for the value of € that was taken, and saturation avoidance was disregarded
since control parameter tuning under such a consideration gave rise to extremely poor
closed-loop performances. The resulting values for all the implemented controller at
both tests are presented in Table 4.1.

Figures 4.1-4.3 show the position errors, control signals, and parameter estimators,
for all the considered controllers at Test 1.1. Observe that in all the cases, the control
objective is achieved avoiding input saturation. However, note that while around 100
sec is enough for the SP-SD, SPD, and SPDgc-like algorithms to achieve the desired
stabilization, more than 10000 sec are needed by the Z.00 controller. This can be
better appreciated in the zoom of the responses presented at the right hand side of
each figure. It can be also observed that the SPD algorithm converge faster than the
others tested. As for the parameter estimator response, shown in figure 4.3, notice
that even when the Z.,00 algorithm approaches faster to the real parameter value it
never converges to it within the time the test was performed, 7.e. 15000 sec, while the
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Figure 4.3: Test 1: parameter estimators

SP-SD, SPD and SPDgc-like controllers reach the real parameter value in about 120
sec.

Figures 4.4-4.6 show the results obtained through Test 1.2 for all the considered
controllers. In all the simulated cases, the control objective is observed to be achieved
avoiding input saturation, with a stabilization time considerably lower than in the
previous test. Furthermore, the SP-SD, SPD, and SPDgc-like algorithms are still
observed to achieve the desired convergence much faster than the Z.00 controller. It
can be seen in the right hand side zoom of the response in figure 4.4 that the algorithm
2,00 achieves the control objective in about 60 sec. On the other hand, figure 4.6
shows the parameter estimation response for all tested control schemes, notice that the
parametric convergence of the SP-SD, SPD, and SPD-gc like algorithms is faster than
that of the Z.00 controller.

Observe from Figures 4.3 and 4.6 that the parameter estimators converge to the
real values 6;, 1 = 1,2. This is so in view of the selected desired configuration which
gives rise to the satisfaction of the condition stated by Corollary 3.1.

4.2 QOutput feedback regulation

The saturation functions involved in the proposed scheme Eq. (3.40) —referred to as
SP-SD.-g, — were defined as

opi(s) = Mp;sat(s/Mp,) and op;(s) = Mp;sat(s/Mp,)
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1=1,...,n, and
S V|§| S Laj
7ails) = sign(s)La; + (M,; — Lqj) tanh (—C_Sign(g)L‘”> V|| > L,
aj aj aj Maj—La; aj
j=1,...,p, with 0 < Ly; < M,;. Let us note that with these saturation functions we

have o), = 0y = 1. The simulation implementations were run fixing the following
saturation parameter values (see footnote 2): Mp; = Mp; = 40 and Mpy = Mps = 5;
and Mal = 50, Mag = 3, and Laj = 0-9M(zj7 j = 1,2

For comparison purposes, additional simulations were run considering the adaptive
controller proposed by [25] —referred to as LO0—, i.e.

u=G"(q))0 — KpTp(A\7) — KpT(69)

6 = BG(qa)"01d — 1T (09) + pTH(AG)]
= K9+ Kg

where T},(z) = (tanh(z1),... ,tanh(a:n))T, Kp = diaglkp], Kp = diaglkp], and K =
diag[k], with X, d, kg4, kp, B, 1, p, k, and x being positive constants.

The results of two simulation tests (for every considered controller) are presented.
The initial conditions and desired link positions in all the simulated cases were taken
as ¢1(0) = ¢2(0) = ¢1(0) = ¢2(0) = 0; ¢1(0) = 20, ¢2(0) = 1 [Nm]; g1 = 7/4, and
qa2 = /2 [rad]. In the first implementation —referred to as Test 1—, a value of ¢
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satisfying (3.44) was fixed for the SP-SD.-g, algorithm; the control parameters (kp;,
kpi, i = 1,2) and adaptation gains (7;, ¢« = 1,2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests. As for the
LOO controller the selection of control parameters as described in [25] could not be
accomplished due to the impossibility of reconciling the inequalities proposed in their
tuning procedure. In an effort to fulfill as many conditions as possible two different
simulations were performed for the L0OO controller, referred to as L0O0: Test A and
L00: Test B (each of them disregarding one different inequality of the tuning criterion
presented in [25]); under these considerations, the fixed parameters and gains were
those giving rise to the best closed-loop performance after numerous trial-and-error
tests.

With the aim at improving the closed-loop performance obtained through Test 1, in
the second implementation —referred to as Test 2—, condition (3.44) was disregarded
and hence a higher value of € was fixed for the SP-SD.-g, controller (recall that the
condition on ¢, (3.44), is only sufficient, and that such a parameter is not involved
in the condition stated to avoid input saturation) while all conditions presented in
the stability proof of [25] were disregarded for the LOO scheme. For the SP-SD.-g,
algorithm, the control parameters and adaptation gains were tuned as in the previously
described case. As for the LOO controller, the referred values were fixed such that the
best closed-loop performance was obtained from numerous trial-and-error tests; the
conditions presented in [25] could not be satisfied any longer and saturation avoidance
was disregarded since control parameter tuning under such a consideration gave rise
to poor closed-loop performances. The resulting values for all the tested controller at
both tests are presented in Table 4.2.

Figures 4.7-4.9 show the position errors, control signals, and parameter estimators,
for both considered controllers at Test 1. The SP-SD.-g, achieves the control objective
without reaching the saturation bound. In the L00: Test A experiment the input sat-
uration inequality considered in the tuning procedure and, as expected, the saturation
bound is not reached but slow convergence time is observed; while in the L0O0: Test B
trial convergence time is greatly improved but large oscillations and input saturation
could not be avoided. The slow convergence of system parameters and states, observed
in both tested controllers, is due to the small value of the selected control gains.

The responses obtained through Test 2 are shown in Figures 4.10-4.12, observe
that faster convergence time is achieved through the selected control gains without
oscillations notice however that a small overshoot is present and input saturation could
not be avoided in the case of the LOO controller.

Observe from Figures 4.9 and 4.12 that the parameter estimators converge to the
real values #;, « = 1,2. This is so in view of the selected desired configuration which
gives rise to the satisfaction of the condition stated by Corollary 3.2.

4.3 State feedback trajectory tracking

Considering the main characteristics of the proposed scheme —bounded adaptive—
additional simulations were run for comparison purposes using an approach of analog
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Table 4.2: Control parameter values for the output-feedback regulation scheme

TEST 1 TEST 2

’ Pammeter\ SP-SD.-g, \ LOO: Test A \ LO00: Test B | SP-SD.-g, \ L00
kp1 11 7 180 180 40
kpo 11 7 180 150 40
kp1 1 7 90 50 50
kpa 3 7 90 6 50
T 300 80
Vo 120 20
€ 0.0035 0.035
ap 15 250
ay 15 200
by 0.5 2.5
by 0.025 17.5
g 100 120 25
X 10 10 5
n 0.05 0.05 1
i 0.05 0.1 2
k 50 40 20
A 1 3 10
) 1 1 6
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Figure 4.7: Test 1: position errors
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Figure 4.12: Test 2: parameter estimators

features. The chosen scheme, proposed by [12] —referred to as D.99— is given by
u=Yy(t) — KpTi(e) — KpTy(r)
v =P(Q4:4.9))

where Yy(t) = Ya(qa, Ga; 4a), Tn(z) = (tanh(ﬂﬁl),---,tanh(xn))T; e =q—qr =
¢+ aTy(e); Q(q,q,v) = TY](t)[q + €T(q)]; the elements of P are defined as

P.(Q.0) = Q; i m < Uy < Pjr or (1h; < Yy and Q; > 0) or (1h; > oy and Q; < 0)
P00 i (§ < Wy and Q5 < 0) or (¢ = dyur and Q; > 0)

Jj=1,...,p, with ¢;,, and 9;5; being known lower and upper bounds of 1; respectively;
and the initial auxiliary state values are taken such that %(0) € Wim Vjml, J =
1,...,p. The parameter bounds were fixed at (wlm YVom V3m Yam Usm Vem Vim ) =
(0.588 0.021 0.025 0.572 0.044 9.616 0.456) (see footnote 2), and ¢ = M,
j=1,...,7, (these values are specified below).

The results of two experimental tests are presented. The initial link positions and
velocities at all the executed simulations were ¢;(0) = ¢2(0) = ¢1(0) = ¢2(0) = 0, the
auxiliary states were initiated at ¢” (0) = (2.88 0.103 0.125 2.803 0.214 47119 2.235);
and the desired trajectory was defined as

79

qd1 :g + sin(0.1¢) [rad/s]
a2 = cos(0.1t) [rad/s]
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Table 4.3: Control parameter values for the state-feedback tracking scheme: Test 1

’ Parameter ‘ SP-SD+, SPD+, SPDhc+-like ‘ D.99
kp1 50 200
kp2 80 90
kp1 3 70
kps 5 66
r diag[50,0.5,0.1,1.5,0.1,60, 2.5] | diag[30,0.05,0.01,1.5,0.1,20,0.1]
€ 0.00027 5

Le us note that with this desired trajectory Assumption 3.2 is satisfied with By, = w <
1.2027 = f,,/kc and By, = w?. The fixed saturation function parameters values for the
SP-SD+, SPD+, and SPDhc+-like schemes were (see footnote 2) Mpy = 40, Mp; = 40,
Mpy = 4, and Mpy = 4 for SP-SD+ scheme; Mp; = 85 and Mpy = 8.5 in the SPD+
case; My, = 130, Mpy = 45, My, = 13, and Mpy = 4 for the SPDhc+-like algorithm;
and Lp; = 0.9Mp;, i = 1,2, M = (2.939 0.105 0.127 2.86 0.219 48.081 2.281),
L,; = 09M,;, j = 1,...,7, in all three cases. With these values inequalities (3.78),
(3.86), (3.88), and (3.90) are satisfied with w = 0.1 rad/s, taking B)/* = 237:1 Ba,; M,j,
1=1,2, i.e.

BM* = My + My = 50.362 and Bl = M,y = 2.281
and By =37 By, My, i =1,2, i.c.
BMr = (My1 + VI0Mys + Myz)w? + Mygw + Mg + M7 = 58.6872

and
BMs — (Mg + V2My3)w? + Mysw + Mz = 2.9536

In the first implementation —referred to as Test 1— a sufficiently small value of
e was taken, for the SP-SD+, SPD+, and SPDhc+-like, guaranteeing satisfaction of
inequalities (3.65). For the D.99 algorithm, with the chosen auxiliary state variable ini-
tial condition, the inequality bounding the input torque stated in [12, Remark 3] could
not be met while selecting proportional and derivative gains which fulfill the control
objective, so it was disregarded. Under the stated considerations the tuning parame-
ter combination giving rise to the best closed-loop performance —in terms mainly of
stabilization time (as short as possible) and transient response (avoiding or lowering
down overshoot and oscillations as much as possible)— was determined from numerous
trial-and-error experiments for every implemented controller. The resulting values are
presented in Table 4.3.

Figures 4.13-4.17 show the results of Test 1 for every implemented controller. Ob-
serve that even when ¢(t) approaches ¢q(t) in short time for the D.99 approach, the
control inputs reach their respective saturation limits, uy remaining saturated all sim-
ulated time and in consequence giving rise to a small steady state error in g¢o(t). It
can be observed that the parameter estimators convergence rate is slow due to the
small value of ¢, notice however that this fact does not prevent the tracking objective
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Figure 4.13: Test 1: position errors

Table 4.4: Control parameter values for the state-feedback tracking scheme: Test 2

] Parameter \ SP-SD+, SPD+, SPDhc+-like \ D.99
kp1 100 80
kpo 80 28
kp1 30 25
kpo 5 8
r diag[60, 3,0.5,1.5,10,35,10] | diag[30,0.5,0.1,1.5,0.1, 35, 6]
€ 0.02 2

to be reached. The SP-SD+, SPD+, and SPDhc—+-like algorithms achieve the control
objective without saturating the inputs but in a long period of time due to the small

value of €.

For the second implementation —referred to as Test 2—, in order to get faster
responses for the SP-SD+, SPD+, and SPDhc+-like controller, a high value of £ was
fixed (considerably higher than in the precedent tests) disregarding inequality (3.65)
(recall that the condition stated by inequality (3.65) is only sufficient); and for the D99
the tuning procedure was disregarded only respecting the input torque bound so that
an initial condition further away from the parameter real value could be chosen, the
auxiliary state variable initial condition was taken as ¢;(0) = 0.5¢;, for j =1,...,7,
for all controllers. The resulting values are presented in Table 4.4.

Figures 4.18-4.22
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show the results of Test 2 for every implemented controller.
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Figure 4.22: Test 2: parameter estimators

Observe that the SP-SD+, SPD+, and SPDhc+-like algorithms achieved the tracking
objective —avoiding input saturation— considerably faster than in Test 1, and that
the D.99 controller failed to avoid input saturation. A suitable convergence of the
parameter estimators could not be ensured in view of the high number of elements
of 9. This can be improved choosing desired trajectories satisfying persistency of
excitation conditions.
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Experimental results

Experimental implementations were carried out on two different manipulators: a 2-
DOF device located at the IT de la Laguna and on a 3-DOF manipulator located
at the BUAP. Experiments done in the 2-DOF robot were performed by Dr. Victor
Santibanez while those obtained in the 3-DOF manipulator were carried out by the
author of the dissertation with the support of Dr. Fernando Reyes.

State-feedback adaptive scheme experiment description

For all carried out experiments, the proposed adaptive schemes in Eqs. (3.24)-(3.25)
was tested in its SP-SD, SPD, and SPDgc-like forms, under the respective consideration
of expressions (3.34)-(3.35), (3.36)-(3.37), and (3.38)-(3.39). The involved saturation
functions were defined as

opi(s) = Mp;sat(c/Mp,) and op;(s) = Mp;sat(s/Mp,)

i=1,...,n (in accordance to the number of links), in the SP-SD case;
(¢) = o Vis| < Lpi
opilS) = sign(¢)Lp; + (Mp; — Lp;) tanh (%) V|| > Lp;

with 0 < Lp; < Mp;, i =1,...,n, in the SPD case;
opi(s) = Mp;sat(s/Mp,) and og;(s) = My, sat(s/Mo,)

t=1,...,n, in the SPDgc-like case; and

( ) - S v|§’ S Laj
793 = sign(¢) Luj + (Maj — Laj) tanh (et} W] > Ly

7



with 0 < L,; < M,;, j =1,...,p (according to the number of the system parameters
involved in the gravity vector), in all the three cases. Let us note that with these
saturation functions we have o, = 0y = oy = 1, Vi = 1,...,n, and that in
consequence, for the three controllers, inequality (3.5) is satisfied with x = max;{kp;}
(see Egs. (3.22)).

For comparison purposes, additional experiments were implemented considering the
adaptive controller proposed in [50] —referred to as Z.00—, shown in Eqgs. (1.6), i.e.

u=G(q)0 — KpTi(Apq) — KpTi(Apd)

~

0 = P(Q(7,4,0),0)

with

P(Q é) - Qj if Hjm < éj < ejM or (é] < ejm and Qj > 0) or (éj > ejM and Qj < O)
T 0 if (éjgﬁjm and Q; < 0) or (éjZQjM and Q; > 0)

j=1,...,p.

For the Z.00 scheme the parameter bounds were fixed at 6y, = 10, 615y = 50,
ng = 05, and 92M =3 [Nm]

Output-feedback adaptive scheme experiment description

As for the developed adaptive output feedback scheme in Eqs (3.40), (3.42)-(3.43), the
saturation functions involved at the implementations were defined as

Upi(g) = Mpi Sat<§/Mpi) (52&)
O'DZ‘<§> = MDi sat(g/MDi) (52b)
1=1,...,n, and
( ) S V|§| S Laj
Tqj(S) = sign(¢)Laj + (Maj — L,;) tanh (%) V|s| > Lg;

7=1,...,n, with 0 < Laj < Maj~

Let us note that with these saturations we have o, = 0, = 1, Vi=1,...,n.
The saturation parameter values fixed at every implementation of the SP-SD.-g, were
corroborated to satisfy inequalities (3.23) and (3.41), taking B;‘fa = 25:1 Bg,, M,
1=1,...,n.

For comparison purposes, additional experiments were run implementing the output-
feedback adaptive algorithm proposed in [25] —referred to as the LOO controller—
(choice made in terms of the analog nature of the compared algorithms: output-
feedback adaptive schemes developed in a bounded input context; comparison of con-
trollers of different nature looses coherence) shown in Eq. (1.7), and briefly recalled
here:

u=—KpTh(A7) — KpTp(609) + G0
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q.c = _aK<QC+Kq_)
U= QC—I'Kq

¢c = BGY [nT(89) — nT3(Aq)]
0 =9¢.— BGLq
At every implementation of the LOO algorithm, the P and D control gains, i.e. kp and

kp, were fixed small enough to avoid input saturation (note that they fix the bounds
of the SP and SD actions).

Trajectory tracking adaptive scheme experiment description

The proposed adaptive scheme in Eqgs. (3.79)-(3.80) was tested in its SP-SD+, SPD+,
and SPDhc+-like forms, under the respective consideration of expressions (3.85)-(3.86),
(3.87)-(3.88), and (3.89)-(3.90). The involved saturation functions were defined as

© S V|s| < Lp;
g 7 g == . —sion .
P sign(s)Lps + (Mpi — Lp;) tanh (52952 ) - v[g| > Lp,

with 0 < Lp; < Mp;, 1,...,n, in all the three cases;
opi(s) = Mp;sat(s/Mp,)
1 =1,...,n, in the SP-SD+ case;
00i(s) = Mo sat(c/Mo,)
t=1,...,n, in the SPDhc+-like case; and

( ) - S V|§’ S Laj
793 = sign(¢) Luj + (Maj — Laj) tanh (St} Wl > Ly

with 0 < Lg; < M,;, j = 1,...,p, in all the three cases. Let us note that with these
saturation functions we have o, = 0py = oy = 1, Vi = 1,...,n, and that in
consequence, for the three controllers, inequality (3.60) is satisfied with x = max;{kp;}
(see Egs. (3.77)).

For comparison purposes, additional simulations were implemented considering the
adaptive controller proposed by [12] —referred to as D.99— (choice made in terms of
the analog nature of the compared algorithms: bounded adaptive), i.e.

u = Yy(t)h — KpTi(Apq) — KpTh(Apr)
v =P(Q(t,r),0)

where Yy(t) = Y(qa(t),da(t),da(t)); Th(z) = (tanh(zy),... ,tanh(:cn))T; Ap =
diag[Ap1, ..., Aps] and Ap = diag[Ap1, ..., Aps] with Ap; = 1 [rad]™! and Ap; = 1
s/rad, for all i € {1,...,n};

r=q+<Tx(q)
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Figure 5.1: Experimental setup

with € being a positive constant;
Q(t,r) = =TY] (t)r

Kp, Kp € R™™ and I" € R?*? are positive definite diagonal matrices; the elements of
P are defined as

. Q; if bjm < U < thjur or (1% < jm and Q; > 0) or (?ﬁj > 1y and Q; < 0)
0 if (772] < T/)jm and Qj < 0) or (77&] > ¢jM and Qj > O)

Jj=1,...,p, with ¢;,, and 1;5; being known lower and upper bounds of 1; respectively.

5.1 Experiments on a 2-DOF manipulator

In order to experimentally corroborate the efficiency of the proposed controllers, real-
time control implementations were carried out on a 2-DOF direct-drive manipulator.
The experimental setup, shown in Fig. 5.1, is a prototype of the 2-revolute-joint
robot arm used in [35] and [36], located at the Instituto Tecnoldgico de la Laguna.
The actuators are direct-drive brushless motors operated in torque mode, so they act
as torque source and accept an analog voltage as a reference of torque signal. The
control algorithm is executed at a 2.5 ms sampling period in a control board (based
on a DSP 32-bit floating point microprocessor) mounted on a PC-host computer. The
manipulator software is in open architecture, whose platform is based in C language
to run the control algorithm in real time.

For the considered experimental manipulator, Properties 1.4—-1.5 are satisfied with
(details on the dynamic model and parameter values are given in [35, 36]):

Gla) = (Sir(l)q1 :ﬂiigi;) 0= (31?é42655) [Nm] (5:4)

fi = 0.088 kg m?, puar = 2.533 kg m?, ke = 0.1455 kg m?, B,y = 40.29 Nm, By = 1.825
Nm, f,, = 0.175 kgm?/s, fy; = 2.288 kgm? /s, and

T(q) = (COS ¢ —cosqr , cos(qi +g3) — cos(qr + Q2))
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with ¢* = (¢, q¢5)" being the reference configuration referred to in Property 1.5; in
particular, for the two degree of freedom experimental implementations reported in
this work, ¢; = 7/2 and ¢ = 0 were taken. The maximum allowed torques (input
saturation bounds) are 77 = 150 Nm and 75 = 15 Nm for the first and second links
respectively. From these data, one easily corroborates that Assumption 3.1 is fulfilled.

5.1.1 State feedback regulation

The experimental implementations were run fixing the following saturation parameter
values (recall footnote 2 of Chapter 4): Mp; = 58, Mp; = 38, Mpy =7, and Mpy = 4
in the SP-SD case; Mp; = 50, Mpy = 7, and Lp; = 0.9Mp;, 1 = 1,2, in the SPD case;
My, = 120, Mp; = 50, My = 12, and Mpy = 7 in the SPDgc-like case; and M,; = 50,
Mgy =3, and L,; = 0.9M,;, 5 = 1,2, in all the three cases. These saturation function
parameter values were corroborated to satisfy inequalities (3.23), (3.35), (3.37), and
(3.39), taking B} =377 | Bg, My, i =1,2, i.e. Bjf* =53 and Bjj* = 3.

The results of two experimental tests (for every implemented controller) are pre-
sented. The initial and desired link positions at all the executed experiments were
¢1(0) = ¢2(0) = ¢1(0) = ¢2(0) = 0 and qq1 = gao = 7/4 [rad], while the auxiliary
state variable initial values were taken as ¢1(0) = ¢2(0) = 0 for the SP-SD, SPD,
and SPDgc-like algorithms, and ¢1(0) = 20, ¢2(0) = 2 [Nm] for the Z.00 controller.
Let us notice that through the selected desired configurations, the condition stated by
Corollary 3.1 is satisfied.

With the aim at getting fast position responses, in the first implementation —
referred to as Test 1—, high control gains were taken for the SP-SD, SPD, and SPDgc-
like algorithms, and a consequent considerably small value of £ satisfying inequality
(3.10) was fixed. As for the Z.00 scheme, a relatively small value of ¢ was also taken
(although several times higher than for the other algorithms) and reasonable values of
the rest of the tuning parameters were fixed disregarding the tuning procedure stated
in [50, Theorem 2| in order to prevent considerably slower responses, with control
gains small enough to avoid input saturation (recall that they fix the bounds of the SP
and SD actions). Under the stated considerations, the tuning parameter combination
giving rise to the best closed-loop performance —in terms mainly of stabilization time
(as short as possible) and transient response (avoiding or lowering down overshoot
and oscillations as much as possible)— was determined from numerous trial-and-error
experiments for every implemented controller. The resulting values are presented in
Table 5.1.

Figures 5.2-5.4 show the results of Test 1 for every implemented controller. Ob-
serve that the SP-SD, SPD, and SPDgc-like algorithms achieve the position regulation
objective —avoiding input saturation— in less than 2 seconds. On the other hand, the
parameter estimators present important steady-state errors. These parametric conver-
gence errors are mainly due to the unmodeled phenomena such as the static friction.
It is worth pointing out that the small value of € importantly reduces the ability of the
adaptation auxiliary dynamics to decrease the parameter estimation steady state error.
However, it is important to note that this does neither prevent the position regulation
objective to be succeeded (avoiding input saturation), nor to achieve it in a consider-
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Table 5.1: Control parameter values for the state-feedback regulation scheme: Test 1

’ Pammeter‘ SP-SD ‘ SPD ‘ SPDgc-like ‘ 2,00 ‘
kp1 2900 3500 3700 70
kpo 225 250 250 9
kp1 40 80 40 6.5
kp2 3 6 3 2.5
" 2.5 2.5 9 500
Y2 0.05 0.05 0.15 2
€ 0.000021 | 0.000014 | 0.000017 | 0.0005
—8P-SD ---SPD - SPDgc-like - - Z.00
1‘5 é 2‘5 é 3‘.5 4‘1 4‘5 5

|
15 2 25 3 35 4 45 5
Time [s]

Figure 5.2: Test 1: position errors
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Table 5.2: Control parameter values for the state-feedback regulation scheme: Test 2

’ Pammeter‘ SP-SD ‘ SPD ‘ SPDgc-like ‘ 7.00 ‘

kpy 2100 | 1600 1850 I6)
kpao 225 125 250 9
kp1 40 80 40 6.5
kDo 3 6 3 2.5
" 0.5 0.5 9 375
Yo 0.015 | 0.015 0.25 15
€ 3 2.5 0.31 0.1

ably short time. As for the additional implementation, notice that the Z.00 controller
generates lower bias in the parameter estimator steady-state values but the size of the
errors is, however, observed to remain considerable and, more importantly, the position
responses could not be stabilized at the desired value throughout the duration of the
test.

In order to get an improved parameter estimation, in the second implementation
—referred to as Test 2—, a higher value of ¢ was fixed for the SP-SD, SPD, and
SPDgc-like algorithms (considerably higher than in the precedent tests) disregarding
inequality (3.10) (recall that the condition stated by inequality (3.10) is only sufficient)
keeping large control gains; in this context, for every one of the mentioned controllers,
the tuning parameter combination giving rise to the best closed-loop performance was
determined from numerous trial-and-error experiments. As for the Z.00 scheme, an
increased value of € was also taken and adjustments in a control and the adaptation
gains were done, keeping the rest of the control parameters with the same value taken
in Test 1 but gains Ap;, ¢ = 1,2, (inside the hyperbolic tangent functions involved
in the SP action) greater than unity were fixed; specifically: Ap; = 1.75, Ap; = 3.5
(rad™!). The resulting values are presented in Table 5.2.

Figures 5.5-5.7 show the results of Test 2 for every implemented controller. Observe
that, as in Test 1, the SP-SD, SPD, and SPDgc-like algorithms achieved the position
regulation objective —avoiding input saturation— in less than 2 seconds. Moreover,
an improved parameter estimation took place. In this direction, observe that, among
the referred schemes, the algorithm with greatest parameter estimation bias is the one
with the lowest value assigned to e, corresponding to the SPDgc-like controller. As
for the Z.00 scheme, an improved parameter estimation, comparable to that obtained
through the algorithms that took the highest value of € i.e. the SP-SD and SPD
controllers, is observed too. Nevertheless, position stabilization was not completely
achieved throughout the duration of the test.

5.1.2 Output feedback regulation

The results of two experimental tests with e = 0 are presented. The initial conditions
and desired link positions at all the implementations were: ¢;(0) = ¢;(0) = ¢.(0) =
¢i(0) = 0,7 = 1,2, and g1 = qao = /4 [rad]. Let us notice that, through these
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Figure 5.7: Test 2: parameter estimators

desired configurations, the condition stated by Corollary 3.2 is satisfied.

With the aim at getting fast position responses, in the first implementation —
referred to as Test 1—, high control gains were taken for the SP-SD.-g, scheme, and a
consequent considerably small value of ¢ satisfying inequality (3.44) was fixed. As for
the LOO algorithm, analogous small values of  and p were considered, and reasonable
values of the rest of the tuning parameters were fixed disregarding the tuning procedure
stated in [25, Expressions (19)] in order to prevent extremely slow responses. Under
the stated considerations, the tuning parameter combination giving rise to the best
closed-loop performance —in terms mainly of stabilization time (as short as possible)
and transient response (avoiding or lowering down overshoot and oscillations as much
as possible)— was determined from numerous trial-and-error experiments for every
implemented controller. For the SP-SD.-g, scheme, the resulting values were: Kp =
diag[4000,400] Nm/rad, Kp = diag[50,8] Nms/rad, A = diag[80,60] rad/s*, B =
diag[20,20] s7!, T' = diag[40,4] Nm, ¢ = 1.36 x 10° [Nms|™!; and the saturation
function bounds —all of them expressed in Nm— were: Mp; = 29, Mpy = 3, Mp, = 50,
Mpi = 6, My = 50, and M, = 3, with L,; = 0.9M,;, 7 = 1,2. For the LOO controller,
the resulting values were: kp = 9.2 Nm, kp = 2.7 Nm, A = 20 [rad]™!, 6 = 10 s/rad,
k=20 [s]™!, a =15, 8 =25 Nm/rad, n = 0.015 rad/s, and p = 0.05 rad/s.

Figures 5.8-5.10 show the results of Test 1 for both implemented controllers. Ob-
serve that the SP-SD.-g, scheme achieved the regulation objective —avoiding input
saturation— in less than 1 second. On the contrary, it took almost 80 seconds for
the LOO algorithm to achieve the desired convergence and it also reached the input
saturation limit. For the SP-SD.-g, case, the parameter estimators present impor-
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Figure 5.10: Test 1: parameter estimators

tant steady-state errors due to unmodeled phenomena and the adaptation dynamics
decreased action —this is mainly because of the small value of ¢ and the fast time
of response—. As for the L0O controller the parameter estimator were not observed
to converge during the test. However, it is important to note that this does neither
prevent the position regulation objective to be succeeded (avoiding input saturation),
nor to achieve it in a considerably short time. By contrast, the L0O controller could not
achieve a stabilization time shorter than 120 seconds, and the parameter estimation
steady-state bias remained considerable. This is mainly due to the small control gains
that the saturation avoidance inequality forces to take, particularly considering the
common values that the algorithm proposed in [25] forces to use at every link (which
prevents the possibility to take higher control gains at the links where T; — Bé\f“ does
not adopt its minimum value).

In the second implementation —referred to as Test 2—, large control gains and a
high value of € (considerably higher than in the precedent tests) disregarding inequality
(3.44) (recall that the condition stated by inequality (3.44) is only sufficient) were fixed
for the SP-SD.-g, scheme. In this context, the tuning parameter combination giving
rise to the best closed-loop performance was determined from numerous trial-and-
error experiments. The resulting values were: Kp = diag[2100,225] Nm/rad, Kp =
diag[50,8] Nms/rad, A = diag[80, 60] rad/s?>, B = diag[20,20] s™', T' = diag[1,0.1]
Nm, ¢ = 3 [Nms|™!; and the saturation function bounds —all of them expressed in
Nm— were: Mp1 = 30, Mpg = 3, MDI = 50, MDl = 6, Mal = 50, and Mag = 3, with
L,j =09M,;, j =1,2. As for the LOO scheme, considerably increased values of 1 and
1 were also taken, and the rest of the tuning parameters were kept as in Test 1 except
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Figure 5.11: Test 2: position errors

for a and 8 which were adjusted adopting values that proved to be convenient during
trial-and-error tests.

Figures 5.11-5.13 show the results of Test 2 for both implemented controllers.
Observe that, similarly to Test 1, the SP-SD.-g, scheme achieved the position regu-
lation objective —avoiding input saturation— in around 1 second, and without the
overshoot of the position error response in Test 1. Moreover, an improved parameter
estimation took place; on the contrary, and similarly to that achieved in Test 1, longer
position stabilization and parameter estimator convergence times are observed for the
LOO controller.

5.1.3 State feedback trajectory tracking

At every experimental test, the initial link positions and velocities were taken as ¢;(0) =
¢i(0) = 0, i = 1,2. The auxiliary states were initiated at ¢*(0) = (2.88 0.103 0.125
2.803 0.214 47.119 2.235) (see footnote 2) in the SP-SD+, SPD+, and SPDhc+-like

cases and @T(O) = (2.88 0.103 0.125 2.803 0.214 47.119 2.235) in the case of the
D99 algorithm. The desired trajectory for all the implemented controllers was defined

” o= (126) - (i) ”

Let us note that with this desired trajectory, Assumption 2 is satisfied with By, = w <
1.2027 rad/s and By, = w?.
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Table 5.3: Control parameter values for the state-feedback tracking scheme

’ Parameter ‘ SP-SD-+ ‘ SPD+ ‘ SPDhc+-like ‘ D.99 ‘

€ 1.0167x1077 [ 1.0165x10°" [ 4.15x10°° 3

Kp diag[20, 5] diag[150,20] | diag[10, 3.8]
Kp diag[1500, 300] diag[70,7.9]
) diag[20,0.5,0.1,1.5,0.1, 10, 0.25]

Ap diag|20, 10]
Ap diag[3, 3]

RMS 00133 | 0.0106 | 0.0172 0.0314

For the adaptive SP-SD+, SPD+-, and SPDhc+-like algorithms, a sufficiently small
value of ¢ (satisfying inequality (3.65)) was taken and the saturation-function param-
eters as well as w in (5.5) were fixed such that inequalities (3.72), (3.74), (3.76), and
(3.78) were satisfied. Within the consequent limits, the saturation function bounds re-
lated to the SP and SD actions and the control and adaptation gains in Kp , Kp, and
' were fixed after several trial-and-error simulation tests so as to have the best possible
closed-loop performance —in terms mainly of stabilization time (as short as possible)
and transient response (avoiding or lowering down overshoot and oscillations as much
as possible)— and then refined experimentally. As for the D99 controller, a similar
procedure was followed taking small enough control gains to avoid input saturation
(recall that in this approach, the control gains in Kp and Kp respectively bound the
P and D terms) but, with the aim to speed up the closed-loop responses, gains Ap; and
Api, © = 1,2, (inside the hyperbolic tangent functions involved in the SP and SD ac-
tions) greater than unity were fixed. The resulting control parameter values for all the
implemented schemes are presented in Table 5.3 As for the saturation function param-
eters involved in the SP-SD+, SPD+, and SPDhc+-like algorithms, the selected values
were (refer to Chapter 4 footnote 2): Mpy = 40, Mp; = 40, Mpy = 4, and Mpy =4 in
the SP-SD+ case; Mp; = 85 and Mpy = 8.5 in the SPD+ case; My, = 130, Mp; = 45,
Mgy = 13, and Mpy, = 4.5 in the SPDhc+-like case; and Lp; = 0.9Mp;, ¢ = 1,2,
MT = (2.939 0.105 0.127 2.86 0.219 48.081 2.281)7 and L,; = 09M,;, j=1,...,7,
in all three cases. With these values, inequalities (3.72), (3.74), (3.76), (3.78), and
Assumption 3.2 were corroborated to be satisfied with Bé\f‘l = 237':1 Bg,;My;,1=1,2,
i.e. BY* = My + My = 50.362 Nm and Bjy* = M,y = 2.281 Nm, and B =
S By, My, i =12, i.e. By = (May+ VI0May + Myz)w? + Moaw + My + Mz =
58.6872 Nm and By = (Maa + V2M3)w? + Mysw + M7 = 2.9536 Nm.

Figures 5.14-5.15 show the position error evolution and control signals obtained
at every experimental test. Note that all the implemented controllers achieved the
trajectory tracking objective —avoiding input saturation— in less that 2 seconds, with
the SPD+ scheme being the one that gave rise to the fastest responses. This could
be achieved preventing overshoot on the position error responses through the SPD+
and SPDhc+-like algorithms, while the SP-SD+ and D.99 controllers could not avoid
it. Let us further note that post-transient effects due to unmodelled phenomena, such
as Coulomb friction, were present at all the closed-loop responses. They are observed
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Figure 5.16: Experimental setup

in the position error graphs as small oscillations. In order to evaluate and compare
the performance of the implemented controllers in relation to such a post-transient

effect, the root mean square (RMS) of the position error, i.e. \/t;tl ttf lg(t)||?dt, was
calculated from t; = 2 s to to = 10 s. The values obtained from such a calculation
are shown in Table I. Note that under such a criterion, the best performance was
obtained through the SPDhc—+-like algorithm, while the highest post-transient error
was generated by the D99 controller. As for the parameter estimators, a considerably
slow evolution was observed. This is due to the considerably small value of . Such a
slow adaptation rate together with the high number of elements in # and the unmodelled
dynamics gave rise to parameter estimations with considerable bias. Improvements in
this direction could be contemplated through different desired trajectories leading to
the satisfaction of persistency of excitation conditions [30], which is out of the scope of
this work. However, accuracy on the parameter estimation is not part of the motion
control goal. Moreover, neither the slow evolution nor the biased convergence of the
parameter estimators prevented the trajectory tracking objective to be accomplished
—avoiding input saturation— or to be achieved in a considerably short time.

5.2 Experiments on a 3-DOF manipulator

The experimental setup used for the 3-DOF experiments, shown in Fig. 5.16, is a 3-
revolute-joint anthropomorphic arm located at the Benemerita Universidad Autonoma
de Puebla. The actuators are direct-drive brushless motors operated in torque mode, so
they act as torque source and accept an analog voltage as a reference of torque signal.
A more detailed technical description of this robot is given in [37].!
For the considered experimental manipulator, Properties 1.4 and 1.5 are satisfied
with 0 0
G(q) = | sing: sin(gz+gs) | , 0= (318842655) [Nm] (5.6)
0  sin(g2 + ¢3) '

By =0, By = 40.29 Nm, and Byz = 1.825 Nm, and

T(g) = (1 — cosg 1 — cos(gz + ¢3))

LA detailed procedure through which the generalized model of such a 3-DOF anthropomorphic
manipulator is developed in Appendix A.

93



(with ¢* € Uy = {q € R : ¢ = g3 = 0}, i.e. such that U(¢*,0) = 0, Yg* € Up; see
Property 1.5). The maximum allowed torques (input saturation bounds) are T; = 50
Nm, 75 = 150 Nm, and 75 = 15 Nm for the first, second, and third links respectively.
From these data, one easily corroborates that Assumption 3.1 is fulfilled.

5.2.1 State feedback regulation

For all performed experiments the desired configurations were chosen such that the
condition stated by Corollaries 3.1 and 3.2 are satisfied. One can verify from G(g) in
(5.6) that, for the considered manipulator, the desired configurations are those ¢q € R?
such that gz # mym and g + qq3 # mam, for any my,mo =0, +1,£2,. ...

The experimental implementation referred as Test 1 was run fixing the following
saturation parameter values: Mp; = Mp, = 20, Mpy = Mpy, = 40, and Mp3 =
Mps = 5 in the SP-SD case; Mp; = 40, Mpy = 80, Mps = 10, and Lp; = 0.9Mp;,
1= 1,2,3, in the SPD case; M01 = 40, Mp1 =35 M02 = 120, MP2 = 50, M03 = 12,
and Mps = 7 in the SPDgc-like case; and M, = 50, M, = 3, and L,; = 0.9M,;,
j = 1,2, in all the three cases. For Test 2 saturation parameter values (in Nm) were
set as: Mp1 = MDl = 20, Mp2 = MDQ = 35, and Mp3 = MD3 = 4 in the SP-SD
case; Mpy = 40, Mpy = 60, Mp3 = 8, and Lp; = 0.9Mp;, © = 1,2, 3, in the SPD case;
My = 40, Mpy = 35 Moy = 130, Mpy = 40, Moz = 13, and Mp3 = 6 in the SPDgc-like
case; and My = 70, My =5, and Ly; = 0.9M,;, j = 1,2, 3, in all the three cases.

For comparison purposes, additional test were run considering the adaptive con-
troller proposed by [50] —referred to as Z.00—, described in Equations (1.6). The
parameter bounds were fixed at 6y, = 10, 013 = 50, 6, = 0.5, and 09y, = 3 [Nm] for
Test 1, and 6y, = 10, 015y = 70, O, = 0.5, and b5y = 5 [Nm] for Test 2.

The results of two experiments (for every implemented controller) are presented.
The initial conditions and desired link positions in the first simulated case, Test 1, were
taken as ¢1(0) = ¢2(0) = ¢3(0) = ¢1(0) = ¢2(0) = ¢3(0) = 0; $1(0) = 20, ¢»(0) =1
INm|; gs1 = qao = 7/4 [rad], and g43 = 7/2 [rad]. For Test 2 initial conditions and
desired link position were chosen as ¢;(0) = ¢2(0) = ¢3(0) = ¢1(0) = ¢2(0) = ¢3(0) = 0;
$1(0) =20, ¢2(0) = 1 [Nm]; g51 = —n/3 [rad], and qa2 = g3 = 7/3 [rad].

In the first implementation —referred to as Test 1—, a small value of ¢ satisfying
(3.10) was fixed for the SP-SD, SPD, and SPDgc-like algorithms; the control parameters
(kpi, kpi, i = 1,2) and adaptation gains (y;, ¢ = 1, 2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests using the SP-
SD control law, and the same fixed values were kept for the SPD and the SPDgc-
like algorithms. As for the Z.,00 controller, the selection of &, control parameters,
and adaptation gains was performed such that the greatest possible absolute value
of the control signals at every link was ensured to be lower than the corresponding
input saturation value (i.e. 23:1 Ba,, 0 + kpi + kp; < T;, i = 1,2); under these
considerations, the fixed parameters and gains were those giving rise to the best closed-
loop performance after numerous trial-and-error tests.

With the aim at improving the closed-loop performance obtained through Test 1, in
the second implementation —referred to as Test 2—, a higher value of ¢ was fixed for
all the tested controllers (recall that the condition on ¢, (3.10), is only sufficient, and
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Table 5.4: Control parameter values for the state-feedback regulation scheme

TEST 1 TEST 2
SP-SD SP-SD
Parameter SPD Z.00 SPD Z.00
SPDgc-like SPDgc-like

kpi 200 800 500 800
kpo 250 1800 350 1400
kps 120 180 180 150
kp1 15 30 10 30
kpo 15 100 30 140

kps 3 8 3 5
o1 150 150 5 20
Y2 50 35 0.5 0.35
€ 0.0001 0.0001 1.5 1.5

that such a parameter is not involved in the condition stated to avoid input saturation,
(3.7)). For the SP-SD, SPD, and SPDgc-like algorithms, the control parameters and
adaptation gains were tuned as in the previously described case. As for the Z.00
controller, the referred values were fixed such that the best closed-loop performance was
obtained from numerous trial-and-error tests. Saturation avoidance was disregarded
since control parameter tuning under such a consideration gave rise to extremely poor
closed-loop performances. The resulting values for all the implemented controller at
both tests are presented in Table 5.4.

Figures 5.17-5.19 show the position errors, control signals, and parameter estima-
tors, for all the considered controllers at Test 1. Observe that in all the cases, the
control objective is achieved avoiding input saturation. Note that, even when a small
value of £ was used position error convergence is still achieved, however, this causes
the performance of the parameter estimators to become slower which in addition to
unmodeled phenomena results in biased estimations.

Figures 5.20-5.22 show the results obtained through Test 2 for all the considered
controllers. In every tested algorithm, the control objective is observed to be achieved
avoiding input saturation, with a stabilization time considerably lower than in the pre-
vious test. Nevertheless, the SP-SD, SPD, and SPDgc-like algorithms are still observed
to achieve the desired convergence much faster than the Z.00 controller.

Let us further note from Figures 5.19 and 5.22 that the parameter estimators con-
verge to the real values 6;, : = 1,2. This is so in view of the selected desired configu-
ration which gives rise to the satisfaction of the condition stated by Corollary 3.1.

5.2.2 Output feedback regulation

The results of two experimental tests & = —1 are presented. The initial conditions at
all the implementations were ¢;(0) = ¢;(0) = ¥;(0) = 0, i = 1,2,3, and ¢ (0) = 20,
¢e2(0) = 1 [Nm]; the desired link positions were taken as g = qa2 = 7/4, qus = 7/2
[rad] in the first experiment, and ¢ = —7/3, qs2 = a3 = 7/3 [rad] in the second
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Figure 5.23: Test 1: position errors

one. Let us notice that, through these desired configurations, the condition stated by
Corollary 3.2 is satisfied. 2

In the first implementation —referred to as Test 1— a considerably small value of €
was fixed for the SP-SD.-g, controller. With such a tiny value of €, actually fixed at ¢ =
0.0035 [Nms| !, the tuning parameter combination giving rise to the best closed-loop
performance —in terms mainly of stabilization time (as short as possible) and transient
response (avoiding or lowering down overshoot and oscillations as much as possible)—
was determined from numerous trial-and-error experiments. The resulting gains were:
Kp = diag[250, 350,60] Nm/rad, Kp = diag[25, 70, 15] Nms/rad, A = diag[15, 50, 25
rad/s?, B = diag[5, 10,25] s71, and T’ = diag[150, 35] Nm; and the saturation function
bounds were: Mp1 = MDl = 20, MP2 = MD2 = 40, Mp3 = MD3 = 5, Mal = 50, and
Mo = 3, with L,; = 0.9M,;, j = 1, 2; these saturation function parameter values were
corroborated to satisfy inequalities (3.23) and (3.41), taking Bé\f“ = 232:1 Ba,; Maj,
1=1,2,3, i.e. Bﬁ“ =0, B%“ = 53, and B%‘l = 3. As for the LOO controller, analogous
small values of n and p were considered. More importantly, in this test, control gains
satisfying the saturation avoidance inequality, i.e. kp + kp < minieq 23} {ﬂ — Bé‘f"}
(as analogously or equivalently expressed in [25]), were taken. Unfortunately, this
condition was so restrictive, that the closed-loop system could not even react. For this
reason, corresponding results are not reported.

Figures 5.23-5.25 show the results of Test 1 for the SP-SD.-g, controller. Observe
that the regulation objective was achieved —avoiding input saturation— in less than
4 seconds. The parameter estimators took a considerably longer convergence time,
though. Furthermore, a (small) steady-state error can be appreciated at such param-

20ne can verify from G(q) in (5.6) that, for the considered manipulator, the desired configurations
that satisfy the condition stated by Corollary 3.2 are those g4 € R? such that gz # mim and
Qa2 + qaz # mem, for any my,mo = 0,+1,+2, ...
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eter estimation variables. Such convergence errors are mainly due to the unmodeled
phenomena such as the static friction.

With the aim at shortening the overall stabilization time (particularly considering
the parameter estimator convergence time at this point), in the second implementation
—referred to as Test 2—, a considerably higher value of £ was fixed for the SP-SD.-g,,
controller (without any consideration on the possible satisfaction of inequality (3.44),
as long as the closed-loop stability is not lost; recall that the condition stated by such
inequality is only sufficient). With such a value of ¢, actually fixed at ¢ = 1.5 [Nms| ™!,
the tuning parameter combination giving rise to the best closed-loop performance was
again determined from numerous trial-and-error experiments. The resulting gains were:
Kp = diag[350,400, 75| Nm/rad, Kp = diag[25, 50, 12] Nms/rad, A = diag[15, 50, 35
rad/s?, B = diag[5,10,5] s7', and T' = diag[5,0.5] Nm; and the saturation function
bounds —expressed in Nm— were: Mp; = Mp; = 20, Mpys = Mpy = 35, Mps =
Mps = 4, My = 70, and My, = 5, with L,; = 0.9M,;, j = 1,2; these saturation
function parameter values were corroborated to satisfy inequalities (3.23) and (3.41),
taking Bj* = 327 | Ba, M, i = 1,23, i.e. B)* =0, BN = 75, and B)j* = 5.
As for the L0OO controller, in order to avoid considerably slow responses, the tuning
procedure presented in [25, Proposition 3| was not taken into account; not even the
saturation avoidance inequality was regarded in view of the considerably poor closed-
loop performance observed under its consideration. Moreover, in order to speed up the
closed-loop responses, different P and D control gains were considered at every input
control expression; in other words, Kp and Kp in (1.7) were taken in this test as Kp =
diaglkp1, kpe, kp3| and Kp = diag[kpi, kpa, kps] with gains kp; and kp;, i = 1,2, 3, that
may have each of them its own different positive value. Under such considerations, the
tuning parameter combination giving rise to the best closed-loop performance was
determined, for this controller too, from numerous trial-and-error experiments. The
resulting gains were: Kp = diag[800, 1300, 200] Nm, Kp = diag[5,10,10] Nm, A = 30
[rad]™!, 6 = 5 s/rad, k = 50 s™', w = 5, 3 = 25 Nm/rad, n = 5 rad/s, and u = 10
rad/s.

Figures 5.26-5.28 show the results of Test 2 for both implemented controllers. Ob-
serve that the regulation objective was this time achieved —avoiding input saturation—
in less than 2 seconds. Moreover, the parameter estimators took a convergence time
considerably shorter than in Test 1. The parametric estimation steady-state errors
were however inevitable and could hardly be concluded to be smaller. Note on the
other hand that the regulation objective is also achieved through the L0OO controller,
but that the position stabilization time was longer than 5 seconds. Moreover, a pa-
rameter estimator convergence time considerably longer than that obtained through
the proposed scheme is further observed.

5.2.3 State feedback tracking control

At every experiment, the initial link positions and velocities were taken as ¢;(0) =
G;(0) =0, i = 1,2,3. The auxiliary states were initiated at ¢(0) = 05 in the SP-SD+,

101



1 1 1
75 10 125 15
1 1 1 1
75 10 125 15
1 1 1 —
75 10 125 15
Time [s]

Figure 5.26: Test 2: position errors
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Figure 5.27: Test 2: control signals
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Figure 5.28: Test 2: parameter estimators

SPD+, and SPDhc+-like cases and @T = 015 in the case of the D99 algorithm?. The
desired trajectory for all the implemented controllers was defined as

qa1(t) —% + Zcos(0.5t)
qa(t) = | qa2(t) | = & sin(0.5t) [rad]
qa3(t) T+ §sin(t)

Let us note that with this desired trajectory, Assumption 3.2 is satisfied with B, =
1.255 rad/s and By, = 0.574 rad/s%.

For the adaptive SP-SD+, SPD+, and SPDhc+-like algorithms, the saturation-
function parameters were fixed such that inequalities (3.72), (3.74), (3.76), and (3.78)
were satisfied. The control gains in Kp and Kp were fixed after several trial-and-error
tests so as to have the best possible closed-loop performance. As for the D99 controller,
a similar procedure was followed disregarding the input saturation avoidance inequality
to achieve better closed-loop responses (recall that in this approach, the control gains
in Kp and Kp respectively bound the P and D terms). The resulting control parameter
values for all the implemented schemes are presented in Table 5.5. The elements of
the diagonal of I' are given by I'; = 0.01, Vj € {1,...,18}/{14,15}, I}y = 2.75, and
['y5 = 0.015 Nm/rad, for the SP-SD+, SPD+ and the SPDhc+-like controllers, while
for D99 such values are given by I'; = 0.01, Vj € {1,...,18}/{14, 15}, I'14 = 20, and
I''s =5 Nm/rad.

As for the saturation function parameters involved in the SP-SD+, SPD+, and
SPDhc+-like algorithms, the selected values were (refer to footnote 2): Mp; = 11.5,
Mpy = 11.5, Mpy = 27.5, Mpy = 27.5, Mp3 = 4.25, and Mp3 = 4.25 in the SP-SD+

3Refer to Section A.2 of Appendix A for the description of the system parameters and consider the
viscous friction coeficientes.
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Table 5.5: Control parameter values for the state-feedback tracking scheme

’ Parameter ‘ SP-SD+, SPD+, SPDhc+-like ‘ D.99 ‘

kp1 380 150
kpa 330 330
kps 180 30
kp1 35 20
kpa 13 30
kps 5 5

€ 1.5 1
Ap diag[1, 1]
Ap diag[1, 1]

\—SP-SD+ —SPD+ - SPDhe+-like - - DEQQ‘

n - ~e ———— — e
= ; % : =

3 . e y

2 ' 5 : £ 5 ‘

P / ‘ £ ‘

— "‘ﬁ . ,--»-" IG S :

I ‘ ‘ ‘

Figure 5.29: Position errors

case; Mp; = 23, Mpy = 60 and Mpz = 8.5 in the SPD+ case; My, = 45, Mp, = 18,
My = 135, and Mpy, = 41, Myz = 13.5, and Mps = 7 in the SPDhc+-like case; and
Lp; = 09Mp;, i = 1,2,3, MT = (0.15 01 1.5 3 01 0.1 15 01 2 0.25
025 0.25 0.1 60 3 3.75 3 0.25) and L,; = 0.9M,;, 7 = 1,...,18, in all the
three cases. With these values, inequalities (3.72), (3.74), (3.76), and (3.78) were
corroborated to be satisfied.

Figures 5.29 and 5.30 show the position error evolution and control signals ob-
tained through every implemented controller. Observe that the SP-SD+, SPD+,
and SPDhc+-type schemes achieve the trajectory tracking objective —avoiding input
saturation— in around 2 seconds with a post-transient oscillation of small amplitude,
and even though the D.99 controller attains the goal with the same stabilization time,
the post-transient oscillation is wider. The evolution of the parameter estimators did
not converge in all implemented controllers, but implemented simulations showed that
only two estimators, those related to the parameters involved in the gravity force vec-
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Time [s]

Figure 5.30: Control signals

Table 5.6: RMS steady-state error

SP-SD+ | SPD+ | SPDhe+-like | D.99 | units
RMS | 0.0276 | 0.0311 0.0269 0.1157 | rad

tor, converged to the real values, and that the convergence rate depends on the value
of e, being faster for a higher value of €. More estimators may be expected to converge
to the real values through different desired trajectories leading to the satisfaction of
persistency of excitation conditions [30] (this aspect is out of the scope of this work).
Let us point out that these observations on the parameter estimator behavior did not
prevent the trajectory tracking objective to either be accomplished —avoiding input
saturation— or to achieve it in a considerably short time. The input control signal
was observed to remain within the input saturation limits for the SP-SD+, SPD+, and
SPDhc+-type algorithms, and for the D.99 scheme the input saturation bound of the
third link was reached.

To compare the performance of the implemented controllers the root mean square

(RMS) of the position errors, i.e. \/ 1 ttf |G(t)]|2dt, was calculated from ¢; = 2 s

ta—t1
to to = 10 s to avoid the transient response. The resulting values are shown in Table
5.6. The best performance was obtained through the SPDhc+-like algorithm, while
the worst through the D.99 scheme.

Figures 5.31 to 5.32 show the comparison results of the proposed controller in its
SP-SD+, SPD+, and SPDhc+-like forms and their respective non-adaptive version
using the nominal parameters, and tested with the same control gains (see Table 5.5)
for both versions of each control scheme. Notice how the performance is considerably
improved through the adaptive controller.
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Figure 5.31: Test 2: Position errors of the SPSD+ scheme
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Figure 5.32: Test 2: Control signals of the SPSD+ scheme
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Figure 5.33: Test 2: Position errors of the SPD+ scheme
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Figure 5.34: Test 2: Control signals of the SPD+ scheme
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Figure 5.35: Test 2: Position errors of the SPDhc+-like scheme
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Figure 5.36: Test 2: Control signals of the SPDhc+-like scheme
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Conclusions and perspectives

In this dissertation adaptive state feedback schemes for the global position and motion
control of robot manipulators with bounded inputs were proposed. Both control strate-
gies have a generalized structure that give rise to adaptive versions/extensions of several
PD-type saturating controllers previously developed under the consideration of the ex-
act knowledge of the system parameters. Furthermore, an output-feedback bounded
adaptive algorithm that achieves global regulation —avoiding input saturation— in
the absence of velocity measurements was also proposed. With respect to the previ-
ously developed approaches, the proposed algorithms guarantee the control objective:
for any initial condition (global results), avoiding discontinuities throughout the sche-
me, preventing the inputs to reach their natural saturation limits, and imposing no
saturation-avoidance restriction on the control gains. Moreover, the developed con-
trollers are not restricted to the use of a specific saturation function to achieve the
required boundedness, but may rather involve any one within a set of smooth and
non-smooth (Lipschitz-continuous) bounded passive functions that include the hyper-
bolic tangent and the conventional saturation as particular cases. Their efficiency
were corroborated through numerical simulations using a 2-DOF model, and through
several experimental implementations using two different experimental devices. The
results showed that it is always posible to reach the control objective —avoiding input
saturation— quickly enough.

The adaptation dynamics of the output feedback scheme was first designed in its
simplest form: involving only the position error vector. Then, an extended version
additionally involving the estimation of the velocity vector was further designed for
the sake of generality and since a previous approach included an analogous term. The
first approach guarantees the control objective through a simpler implementation. The
second one gives an additional degree of design flexibility that may be used for perfor-
mance adjustment purposes.

It is important to remark that while through suitable desired target positions the
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regulation designed schemes give rise to asymptotic approximations (happening to
be exact under ideal conditions) of the parameters involved in the gravity vector,
the tracking algorithm cannot ensure a similar convergence of the system dynamic
parameter estimators. This is essentially due to the non-invariant asymptotic behavior
that such estimators may have in the more general context of non-autonomous systems.
The referred convergence could be guaranteed under additional excitation-persistency
conditions. Nevertheless, the change rate and convergence properties of the parameter
estimators do not prevent the regulation/tracking objective to be achieved or that such
an achievement take place fast enough.

The adaptive tracking algorithm presented in this dissertation was designed assum-
ing the availability of all system states. An output feedback version of such scheme
proves to be convenient since not every manipulator is equipped with tachometers, and
when velocity measurements are available they are usually noisy.

Through the adaptive regulation algorithms, global position control is now possible
—avoiding input saturation— for manipulators with bounded inputs disregarding the
exact value of system parameters and even in the absence of velocity measurements
through the output-feedback version. However, the regressor matrix related to the
gravity force vector is involved in the control expressions. Stabilization schemes that
further avoid the system structure would prove to be a convenient future research work.
Some algorithms of such a kind are already found in the literature but they are usually
expressed though specific control expressions (for instance considering every term of
the controller within a saturation function) and they generally give rise to complex
tuning criteria. A generalized scheme that include multiple control structures with
simplified tuning conditions is still missing in the literature.
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Dynamics of two basic configurations

The intention of this appendix is to show a methodology to obtain the manipulator
dynamics through the Jacobian. The dynamic models presented here were used for the
experimental implementation of the adaptive tracking control scheme. The explicit
form of the regression matrix —of each configuration— is shown after the development
of the dynamics.

A.1 Dynamics of a 2-DOF robot manipulator

A two degree of freedom robot arm is shown in figure A.1. The intention of this section
is to illustrate how to obtain the manipulator dynamics using the Euler-Lagrange
equations of motion through the Jacobian using a well-known configuration in order to
apply this methodology on a manipulator with different kinematic chain arrangements.

Let us begin with the development of the forward kinematics. The derivation of
the dynamics by the Euler-Lagrange formulation requires the knowledge of the homo-
geneous matrices A;, transforming the coordinates of some point from the reference
frame {XY Z}; to the reference frame {XY Z}, 4, for i = 1,...,n, and whose product
represents the kinematic model of the manipulator. These matrices can be obtained
through the Denavit-Hartenberg (DH) convention. Consider the location of the inertial
frame {XY Z}o and reference frames {XY Z};, for : = 1,2, 3, attached to the manip-
ulator joints as illustrated in Figure A.1. The resulting DH parameters are shown in
Table A.1, where a; is given by the distance between z;_; and z; axes measured along
x; axis; d; is defined as the distance between the x;_; and x; axes measured along z;_1;
a; represents the angle between z;_; and z; axes about the x; axis; and 6; is the angle
between z;_; and x; axes about the z; axis; o; and ;. The homogeneous matrices 1 4;
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Figure A.1: 2 DOF Robot Manipulator

Table A.1: Denavit-Hartenberg parameters for the doble pendulum manipulator

[ifaifdi]al6]
1 ll 0 0 q1
lo ] O] 0 |q

are obtained through four basic transformations,

~1 A; = [Rotation(6;, Z)][Translation(d;, Z)][Translation(a;, X )][Rotation(c;, X)]

Co, —380,Cq; 50,5qa; | Q;Cy,

| se cacay  —CoSa, aise, | [ Ri di
|0 se G [ di | [ 0301
0 0 0o 1

For the considered manipulator, they are given by

cos(q1) —sin(q1) 0 lycos(q1) | |
04 sin(g1) cos(q) 0 Lisin(q) | [ Ry dy
te 0 0 1" 0 -

4, — Sin((CI2) cos(gz) 0 l2sin(gn) { Ry . dy }

where R; € R¥3 and d; € R3, i = 1,2. The homogeneous transformation matrix
g
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relating the origin of the inertial frame {XY Z}, to the tip of the last link is given by*

e HHAZ- =04,...714,

i=1

where
Cl2 —S12 licy + lacgs

0
o414 _ |S12 ciz 0 lisy+lasi2
= ArA =1t 0
0 0 0 1

The latter developments are useful to compute the dynamics using the Euler-

Lagrange equation (A.2)
d (0L oL
(%)% (A2

where 7 represents the force applied to the system and £(q, ¢) is the difference between
the kinetic and potential energies, £(q,q) = T'(¢,4) —V (q), and it is called Lagrangian.
We first determine the kinetic energy by using the angular and linear velocities of
each link. Defining the Jacobian as a map from joint velocity ¢ to cartesian velocity,
the jacobian matrix might be partitioned into a translational and an rotational part

- 1

Using this definition the kinetic energy can be written as

—qTZ [midyi(a) Jilq) + I (@) Ri(@) LR} (9) Jui(a) @ (A.3)
where
Ii: I:L‘yi [yi Iyzi
I Iyzi [zi

is the inertia tensor and .J,; is the matrix formed from the first three rows of J; and
represents the translational velocity, J,; is the matrix formed with the last three rows
of J; and it represents the part of the Jacobian due to angular velocity, the matrix R;
represents a rotation to express the angular velocity in the frame attached to link i.
The Jacobian of joint i is computed supposing that joints ¢ + 1 to n are not present
—because they do not contribute to the velocity of joint i— and that the last reference
frame is placed in the center of mass of the i-th link. With these, the Jacobian can be

'The following convention will be used ¢; = cos(q;), s; = sin(g;), ¢i; = cos(q; + qj), and s;; =
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written as

—r1s1 0
—T1C1 0
7 = { Ty } _ {Zox(dl—do)oﬂ»] I
w1 20 03 0 0
0 0
L 1 0 -
[ —l181 — 12812 —T2S12 ]
lici +rac12 r2C12
m [ ] < [t axma] |0
w2 20 21 0 0
0 0
L 1 1 -

with J,;, J,i € R3*2, i = 1,2. The kinetic energy due to rotational velocity is given by

T.(q,q) = %QT [T (@) Ba () LR (0) T (9) + Tia(9) Ra(@) 2R () Jun (9)] 4

where . .
T T7 _joo1]|@ =% o 00]
mnrla= i[5 a5 1
(I, 0
1o o
co —s2 0 c2 s2 0 00
ThaRabRE = 1881 3 5 o B[] [88)
_ [z2 [,22
N Iz2 Iz2

The translational part of the kinetic energy is

T,(0.4) = 50" [ T4 (0 ora) + ma 5 0) uola)] d

where
r —T151 0
—r1s1 —ricg 0O
Jgijvl: 6 ! 01 ! 0:| —rict 0
- 0 0
_ [P0
N _0 0
r —1181 — 19812 —T2S12
—1181 — 198 licy +1r9c12 O
JE;JUQ = 1 2otz 2T lici 4 raci2 T2C12
—T2512 T2C12 0
0 0
o -l% + 7’% + 2[17"202 117’202 + T‘%
o l1r9co + 13 ra
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Hence

T(q.4) = " Hla)i

where the inertia matrix H(q) is given by

mars + mo(l1? +1r3) + 2malirace + L1 + Lo MmalyroCy + maors + Lo
m2l1r202 + mQT% + ]zg mQT% —+ Iz?

H(q) =

Supposing that the potential energy, V(q), is equal to zero when both links are resting
downwards, it can be written as

V(g) = migri(1 —c1) + ng[ll(l —c1) +ra(l — C12)}
The Lagrangian is then
L(g:q) =T(q:4) = V(q)
Applying the Euler-Lagrange equation and defining
N AT ~. L1Lo . .
C(g,4)q =H(q,9)4 + 5@—q(qTH(Q)Q)g(Q) = — (V')

the dynamics are given by

T =H(q)j+ C(g,9)4+ 9(q)

The elements of the coriolis matrix C'(q, ¢) are known as Christoffel symbols of the first
kind and are defined by

. 1= (0H; A 0Hy OHy)\ .
Ciilg,4) = 5 > ( T >Qk (A.4)

k=1

this representation is not unique and other definitions are posible. However, this par-
ticular choice has useful properties in control. The arrangement of the coriolis matrix
C(q,q), using Eq. (A.4) is given by

Clq, ) = —maliTa85Ga  —malirasa (1 + ¢o)
i —maliresay 0

the gravity vector g(q) is

g(q) —g miriS, + mg(llsl + 7’2812>
MaT28512

Observe that ¢g(g) may be rewritten as ¢g(q) = G(q)0 with

_[S1 S12 _ gmarsa
G(q) o (0 812) and 9 o (g(mlﬁ +m2l1))

The dynamics satisfies the linear parametrization property Y (q, 4, G)¥ = 7 with

Y (g, d, ) = G g1 (241 + G2)ca — G252(2¢1 + G2)  S12 St
o 0 g1 +@ g2 + G352 s12 0
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and

Py = mﬂ”% + m2l% + 1
Yo =mors + Lo

3 = malirs

Yy = gmars

s = g(mary + maly)

A.2 Dynamics of a 3-DOF robot manipulator

Known as the anthropomorphic arm or articulated manipulator, its principal feature is
that the revolution axis of the second joint is parallel to that of the third, being both
perpendicular to the axis of revolution of the first joint. A common manipulator with
this configuration is the PUMA 560 (see [20]).

Consider the location of the inertial frame { XY Z}, and reference frames { XY Z},,
for 1 = 1,2, 3, attached to the manipulator joints as illustrated in Figure A.2. Using
the resulting DH parameters —shown in Table A.2—, the homogeneous matrices ©~ 4;
are obtained using Eq. (A.1). For the considered manipulator, they are given by Egs.
A5,

Xo Yo zZ3 X3

Figure A.2: Anthropomorphic manipulator
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Table A.2: Denavit-Hartenberg parameter values

1 00 ]90° ¢
2 l2 0 0 q2
3 Is 0 0 ¢
[ cosqg; 0 singg 0
04 | Sn@t O —cosq | 0 Ry dy
o1 0o 05 | 1
0 0 0 1
[ cosqs —sings 0 lycosgs
14 _ | sing2 cosgy 0 ysingy | [ Ry dy
L0 o 1, 0 O0s 1
0 0 0 1 ]
[ cosq; —singg 0 l3cosqs |
2,4, _ | Sings cosgg 0 gsings | [ Ry ds
S o 1, 0 O0s 1
|0 0 0 1 ]
The forward kinematics are described by
3
0T3:Hz IA 0A11A22A3
i=1
where )
C1Cy —C159 S1 lgclcg
0 __ q0p1 _ | S1€2 —S182 —C ls102
T2 N Tl T2 - S9 Co 0 ZQSQ
|0 0 0
(1003 —C1523 81 lsC10a3 + 10y
0 _ o2 _ | S1023 —S1823 —C1 381003 + 25102
I =515 = S23 23 0 l3503 + 1282
| 0 0 0 1

(A.5a)

(A.5b)

(A.5¢)

As described in the preceding section, these are used to compute the Jacobian of
each joint, and using the translational and rotational part of the Jacobian matrices the
kinetic energy can be expressed as in (A.6).

1 3
5 Z m“]T

i(q) + J5(0)Ri(@) LiRT (q) Jus(9)] 4

(A.6)

Using the frame location shown in figures A.3 to compute the Jacobian matrices of

117



(a) Second joint (b) Third joint

Figure A.3: Frame placement to compute the Jacobian of each joint

joint 7, we get

R 03 03 03
g | | | < (di—do) O3 O3 0 0 0
S /P | 20 03 03 0 0 0
1 0 O
go| de | Z [0 x(da—do) 2 x(dy—di) 05
27 a2 | 20 21 03
[ —T9S81Co2 —T9C1S2 0 )
T9C1Co  —T35189 0
0 T9Co 0
o0 s 0
0 —C1 0
i 1 0 0 |

J3 -7 Jv 1 _ |:Zo X (dg—do) z21 X (dg—dl) 29 X (dg—dg)

[ —51(r3cag + laca)  —c1(r3503 + l252)  —7T3¢1523 |
c1(rscos +laca)  —51(r3s93 + 12S2)  —1351523
0 T3Co3 + ZQCQ Tr3Co23
0 s s1
0 —C —C1
1 0 0
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where J,;, J,i € R¥3, ¢ = 1,2,3. With these, the products appearing in equation
(A.6) are

= §54) 335 (3 4 5[4
Iy 0 0
=(0 00
0 00

0 0 1 c1Cc2 —C182 S1 cic2  S1C2 82 0 s1 O
J R2]2R2 JWQ = [sl —c1 0] [8162 —s182 —cl] 12 |:—0182 —S182 CQi| |:0 —c1 0}
00 s2 co 0 s1 —c1 0

Ia:2282 + ]yZQCQ 122 0

|:[x23% + 2[$y28202 -+ [yQCg IIZQSQ + [yZQCQ 0
0 0 0

J Rg[gR Joz = 51 —cC1 0 51€23 —S1523 —C1 —C1823 —S1523 €23 0 —c1 —c1
s1 —cC1 0 $923 c23 0 S1 —C1 0 1 0 0

0 0 1 c1C23 —C1823 S1 C1€23  S1C23 S23 0 s1  s1
3
2
L3835 + 21,y3523Co3 + [y3Csq  Ip.3503 + Iy3C03 123503 + Iyyz3¢03
= I,.3893 + Iy.3C03 I3 I3

123593 + I.3Ca3 1.3 1.3

000
JLJa=10 0 0
000

T —rasica rT2c1c2 0 —7r281Cc2 —T2c182 0
Jpodva = “racisy —rasis maca | | Tacics —rasisy
0

rocyg 0
0 0
= r% 0
0 0
T —s1(r3caz+laca) c1(r3caz+laca) 0 —s1(r3ce3+laca) —c1(ra3saz+lasa) —racises
JU3Jv3 = | —ci1(r3saz+las2) —s1(r3s23+las2) races+lace c1(r3caz+laca) —s1(r3saz+lase) —r3sises
—r3c1523 —T351523 r3c23 0 racoz+laca r3c23
(r3ca3 + laco)? 0 0
= 0 Tg + l% + 27’312C3 7’% + 7’312C3
0 T% -+ 7’31263 7“%

the kinetic energy is finally given by

1

T(q.q) = §QTH(Q)C]
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where H(q) € R**® is the inertia matrix and its elements H;; € R are given by

Hll = Iyl + ngsg + 2[:vy25202 + Iygcg + Im35§3 + 2Izy3523623 + Iy3033 + m27ﬁgc§

+ mg(r3cas + locy)?
Hig = I2080 + Iy.0Co + 1523523 + 12303
Hiy3 = I,.3503 + Iy.3C23
Hyy = 12080 + Iyoco + L3893 + Iy3cas
Hyy = Lo+ Lz + mary + ms(r3 + 15 + 2r3lacs)
Hys = Ls + ms(r3 4 rslycs)
Hsy = I;.3523 + Iy23C23
Hsy = L+ my(r3 4 rlacs)

2
Hss = I3+ marj

Assuming that V(q) = 0 with the second and third links resting downwards, the
potential energy is given by

V(q) = magra(1 — ¢2) + msg[la(1 — c2) + r3(1 — co3)]

Using the Euler-Lagrange equation, the dynamics is obtained as
N o :
7= H(q)g+ H(q:4)q + 57-(¢" H(a)d) + 5~ (V(4))

With the vectors C(q,¢)q £ H(q,4)d + 32 (¢"H(q)q) and g(q) £ £ (V'(q)), the
dynamics can be written as

7= H(q)§+ C(q,4)q+ 9(q)

The vector due to gravitational forces is given by

0

9(q) = g | marass + ms(lasy + r3s93)
msgrsaSas
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The elements of the C(q, ¢), obtained through equation (A.4), are given by

Cu= — [(mﬂ’% + Lo — Iyo)s2co + ms(races + laca) (13523 + lasa) + (Lys — In3)S23Cas3
+ ]wy2(3§ - Cg)}(b - [(m3r§ + I3 — I,3)S23C23 + m37”35262823} q3
— Luys (553 — 33) (G2 + d3)
Cia = — [(mﬂ% + Lo — Lo)saco + mig(r3c23 + laca) (r3sas + lasa) + (Iys — Lu3)s23C23
+ Lya(s5 — )] d1 + [Luzaca — Ly259] Go + (Lpazcas — Ly3823) (6o + Gs)
+ (32323 — Iy235923) (42 + Gs3)
Ciz=— [(m37’§ + Iy3 — I3)s23C03 + m3r31202523} q1 + (Lpz3cos — 1y235923) (G2 + 43)
Cor = [(mﬂ’% + Lo — Ip2)52Co + m3(r3cas + lac2) (13823 + l252) + (Lys — Ip3)S23Ca3
+ [:vy2(5§ - Cg)}‘h
Coy = —m3r3l253G3
Coz = —marslyss(ga + G3)
Cs1 = [(marg + Lz — Lus)sascas + marslacasas] Gu
Csa = mar3lassgo

03320

Notice that the location of the inertial frame does not play an important role in
the dynamics. For the developed dynamic model, the gravity vector satisfies the linear
parametrization property with

O O g mars + maly)
9(q) = G(q@)Y = |s2 Sa3 {g 29727137332}

0 S923

Even more, the dynamic model can be expressed as the product of a matrix Y (¢, ¢, §) €
R3*15 containing only states an a vector ¢» € R'® containing the system parameters.
Observe that this parametrization is not unique since the parameter grouping can be
arranged in many other ways, from all investigated parameterizations the presented
one was found to have the minimum size for vector ). The componentes of vector v
are as follows

=13 Wy = mgr} V3 = marsly

Yy = mals +mars + Ly s = Iy23 e = 1.3

=Ty — Lo+ mal3 +mory s = y3 — I3+ m3r§ Yo = Iy + Ipo + I3
VY10 = Luy2 P11 = Lpzo 12 = Iyzo

V13 = Lpys VY1a = g(mary +maly) P15 = gmars

and the entries of Y(q, ¢, §) are

121



The first row elements are given by

Yii=0

Y13 = 2G1caca3 — 241425(2¢2 + q3) — 2¢1G3C2523

Yis = (G + Gs)s2s + (G2 + ds)*cas
Yiz= éilcg — 21G252C2

Yio=aq

Vit = Gas2 + G5

Y113 = 2(1823¢23 — Gu(2 + G3) (553 — 33)
Yii5=0

The second row elements are

Yor=¢+ s Yoo =1qa+ s
You=qo Yos = Gi523
Yor = 4%8202 Yog = 43523023
Ya10 = ¢i(s3 — c3) Yo11 = G¢i152
Y513 =0 Y514 = 59

And the third row elements are

Y31 =42+ Gs Y32 =¢Go+G3
Y3,=0 Y35 = Gisas
Y37=0 Vs = ;23023
Y310=0 Y311=0
Y313=0 Y314 =0
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Yio=0

Y14=0

Yie = (G2 + G3)cas — (42 + d3)*s03
Yis = G135 — 2G1(Go + 3)s23C23
Y110 = 2G15202 — 2@1@2(83 - Cg)
Y12 = Gaca + G552

Yiu=0

Yo3 = 2¢acs + Gscs + 4%3(2% +q3)
— 4243523 — G3(qd2 + q3)s3

Yo6 = Gicas
Yo9=0
Y212 = Gico
Y515 = s23

Y33 = Gocs + Q%52302 + 4333

Y36 = Gicos
Y50=0
Y312=0
Y315 = 523
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