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Resumen

La tesis se enfoca en el diseño de leyes de control adaptables para robots manipu-
ladores que consideran la naturaleza acotada de los actuadores. Se proponen esquemas
generalizados para regulación y seguimiento globales por retroalimentación de estados,
cuyas estructuras permiten obtener versiones adaptables acotadas de algoritmos tipo
PD previamente propuestos para el caso de conocimiento paramétrico exacto. También
se diseñó una ley de control tipo SP-SD por retroalimentación de salida para la estabi-
lización global de posición. Con respecto a trabajos previos, los esquemas adaptables
propuestos son los primeros que resuelven los problemas de control formulados: global-
mente, sin involucrar discontinuidades, evitando saturación de entrada y liberando las
ganancias de control de restricciones para evitar el fenómeno de saturación. Más aún,
ninguno de los esquemas propuestos está restringido a usar una función de saturación
espećıfica para lograr el acotamiento deseado sino que es posible escoger cualquiera den-
tro de un conjunto de funciones pasivas acotadas que incluye la tangente hiperbólica
como caso particular. La eficacia de los controladores propuestos es probada tanto en
simulación como experimentalmente.

Palabras clave: Robots manipuladores, entradas acotadas, regulación global,
seguimiento global, control adaptable.

Abstract

This thesis focuses on the design of adaptive control schemes for robot manipulators
under the consideration of the bounded nature of actuators. Generalized state-feedback
controllers are proposed for global regulation and trajectory tracking, whose structures
allow to obtain adaptive versions of bounded PD-type algorithms previously developed
under the consideration of the exact knowledge of the system parameters. A globally
stabilizing SP-SD-type output-feedback adaptive regulation scheme is also developed.
With respect to previous works, the proposed adaptive controllers are the first to
solve the formulated control problems: globally, free of discontinuities throughout the
scheme, avoiding input saturation, and liberating the control gains from the satisfac-
tion of saturation-avoidance inequalities. Moreover, the developed controllers are not
restricted to use a specific saturation function to achieve the required boundedness,
but may involve any one within a set of bounded passive functions that include the
hyperbolic tangent as a particular case. The efficiency of the proposed methodology
was proven both through simulation and experimental implementations

Key words: Robot manipulators, bounded inputs, global regulation, global track-
ing, adaptive control.
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1
Introduction

1.1 Notation

We denote R the set of real numbers and Rn the set of n-dimensional vectors whose
entries are real numbers. Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij

denotes the component of X at its ith row and jth column, Xi represents the ith row
of X, and yi stands for the ith element of y. 0n represents the origin of Rn, In the
n × n identity matrix, 0n×n is the n × n matrix whose elements are all zero, and R+

the set of nonnegative real numbers, i.e. R+ = [0,∞). ‖ · ‖ denotes the standard
Euclidean norm for vectors, i.e. ‖y‖ =

√∑n
i=0 y

2
i , and induced norm for matrices, i.e.

‖X‖ =
√
λmax(XTX), where λmax(XTX) represents the maximum eigenvalue of XTX.

The kernel of X is denoted ker(X) while, for m = n, det(X) denotes the determinant
of X. We denote Br ⊂ Rn an origin-centered ball of radius r > 0, i.e. Br = {x ∈ Rn :
‖x‖ ≤ r}. Let D and E be subsets (with non-empty interior) of some vector spaces D
and E respectively. We denote Cm(D; E) the set of m-times continuously differentiable
functions from D to E (with differentiability at any point on the boundary of D, when
included in the set, meant as the limit from the interior of D). For a dynamic/time
variable υ, υ̇ and ϋ respectively denote its first- and second-order evolution/change rate.
Consider a continuously differentiable scalar function ζ : R→ R and a locally Lipschitz-
continuous scalar function φ : R → R, both vanishing at zero, i.e. ζ(0) = φ(0) = 0.
Let ζ ′ denote the derivative of ζ, i.e. ζ ′(ς) = dζ

dς
(ς), and D+φ stand for the upper-

right (Dini) derivative of φ, i.e. D+φ(ς) = lim suph→0+
φ(ς+h)−φ(ς)

h
, with D+φ = φ′

at points of differentiability [22, App. C.2] [38, App. I]. Thus, φ(ς) =
∫ ς

0
D+φ(r)dr;

moreover, (ζ ◦φ)(ς) = ζ(φ(ς)) =
∫ ς

0
ζ ′(φ(r))D+φ(r)dr. Furthermore, as conventionally,

φ−1 represents the inverse function of φ (whenever invertible), and sat(·) denotes de
standard (unitary) saturation function, i.e. sat(ς) = sign(ς) min{|ς|, 1}.

The following acronyms are used to name and distinguish the control schemes de-
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scribed throughout this work.

PD Proportional plus derivative control actions.
PDgc Proportional plus derivative with gravity compensation term.
SP-SD Scheme with saturated proportional term plus saturated derivative

term.
SPD Scheme with both proportional and derivative actions within a single

saturation.
SPDgc-like Saturated proportional plus saturated derivative plus gravity compen-

sation, all terms embedded in a single saturation function.
SP-SDc-ga Saturated proportional plus saturated derivative with calculated ve-

locity and adaptable gravity compensation.
SP-SD+ Saturated proportional plus saturated derivative plus system dynamics

compensation.
SPD+ Proportional and derivative actions within a single saturation plus

system dynamics compensation.
SPDhc+-like Saturated proportional plus saturated derivative plus hybrid system

dynamics compensation, all terms in a single saturation.
Ze00 Represents the control scheme proposed in [50].
L00 Algorithm presented in [25].
De99 Control scheme appearing in [12].

1.2 Robot manipulators

Mechanical manipulators are articulated systems created from links connected by joints
forming a kinematic chain. Links are the rigid part of the manipulator while joints
are the movable components that produce relative motion between adjoining links.
Joints are usually revolute —allowing a relative rotation between consecutive links—
or prismatic —allowing a linear displacement between two consecutive links—. The
relative displacement between adjacent links is represented by joint variables. The
configuration of the manipulator can be specified by knowing the value of all the
joint variables; the set of all posible configurations a manipulator can adopt is called
configuration space. If the configuration of a system can be described uniquely by n
independent coordinates —generally corresponding to the joint variables— and is said
to have n degrees of freedom (DOF). These n independent coordinates are referred
to as generalized coordinates. As an example, the configuration of a rigid object in a
three dimensional space can be fully described by six parameters, three for position
and three for orientation, and hence it has six degrees of freedom.

The kinematic model represents the motion of the robot without regard to the forces
that created motion, while the dynamic model relates the motion to the forces involved
in its generation. The dynamic model can be obtained using Newtonian mechanics.
The disadvantage of this method is that the analysis becomes more difficult when the
number of degrees of freedom increases. Alternatively, the dynamic model can be easily
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derived from the Lagrange’s equations of motion. This method is discussed in greater
detail in the following section.

1.2.1 Lagrange’s equations of motion

The equations obtained through this procedure are derived from a single function,
namely, the Lagrangian. The Lagrangian is defined as the difference between the
kinetic and potential energy functions, i.e.

L(q, q̇) = K(q, q̇)− U(q)

where q = [q1, . . . , qn]T are the generalized coordinates, K(q, q̇) = 1
2
q̇TH(q)q̇ is the

kinetic energy with H(q) being the inertia matrix, and U(q) is the potential energy.
The Lagrange’s equation of motion can be derived from Hamilton’s principle and is
given by (for further details see [15], [31]):

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi

for i = 1, . . . , n. The resulting equation can be written as

n∑
j=1

Hij(q)q̈j +
n∑
j=1

n∑
k=1

cijk(q)q̇j q̇k + gi(q) = τi

where gi(q) = ∂U
∂qi

(q) (the gravity terms), cijk are known as Christoffel symbols of the
first kind, and are defined by

cijk =
1

2

[
∂Hkj

∂qi
+
∂Hki

∂qj
+
∂Hij

∂qk

]
The Rn×n arrangement whose elements are computed as

Ckj(q, q̇) =

c1jk(q)
...

cnjk(q)


T

q̇

is called the Coriolis matrix, denoted C(q, q̇), which has important properties summa-
rized in the next section.

1.2.2 The manipulator dynamics and its properties

The general n-DOF serial rigid robot manipulator dynamics with viscous friction can
be expressed as [4, §2.1], [42, §6.2], [26, §7.2]:

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1.1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (generalized coordinates), velocity,
and acceleration vectors, H(q) ∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q),
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τ ∈ Rn are, respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity,
and external input generalized forces, with with F = diag[f1, . . . , fn] where fi > 0,
i = 1, . . . , n, are the viscous friction coefficients1. The terms of such model posses
widely known properties, (see for instance [20, Chap. 4 & 14] and [14] concerning
Property 1.5 and 1.7). Some of them are recalled here. Subsequently we denote Ḣ :

Rn × Rn → Rn×n : (q, q̇) 7→
[
∂Hij
∂q

(q)q̇
]

for every i, j = 1, . . . , n.

Property 1.1 The inertia matrix H(q) is positive definite, symmetric, and bounded,
i.e. there exist positive constants µm ≤ µM such that

µmIn ≤ H(q) ≤ µMIn

∀q ∈ Rn. /

Property 1.2 The Coriolis matrix satisfies:

1.2.1 q̇T
[

1
2
Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0, ∀(q, q̇) ∈ Rn × Rn;

1.2.2 Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇), ∀(q, q̇) ∈ Rn × Rn;

1.2.3 C(w, x+ y)z = C(w, x)z + C(w, y)z, ∀w, x, y, z ∈ Rn;

1.2.4 C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn;

1.2.5 ‖C(x, y)z‖ = kC‖y‖‖z‖, ∀(x, y, z) ∈ Rn ×Rn ×Rn, for some constant kC ≥ 0.

/

Property 1.3 The viscous friction coefficient matrix satisfies

fm‖x‖2 ≤ xTFx ≤ fM‖x‖2

∀x ∈ Rn, where 0 < fm , mini{fi} ≤ maxi{fi} , fM . /

Property 1.4 The gravity vector is bounded, or equivalently, every element of the
gravity vector, gi(q), i = 1, . . . , n, satisfies |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive
constants Bgi, i = 1, . . . , n.2 /

1The terms in the left-hand side of the manipulator dynamics in Eq. (1.1) involve a set of param-
eters θ ∈ Rp. Subsequently, whenever convenient, such a parametric dependence of H(q), C(q, q̇), F ,
and g(q) will be explicitly denoted as H(q, θ), C(q, q̇, θ), F (θ), and g(q, θ).

2Property 1.4 is not satisfied by all types of robot manipulators but it is for instance by those
having only revolute joints [20, §4.3]. This work is addressed to manipulators satisfying Property 1.4.
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Property 1.5 The gravity vector can be rewritten as g(q, θ) = G(q)θ, where θ ∈ Rp

is a constant vector whose elements depend exclusively on the system parameters, and
G(q) ∈ Rn×p —the regression matrix— is a continuous matrix function whose elements
depend exclusively on the configuration variables and do not involve any of the system
parameters. Equivalently, the potential energy function of the robot can be rewritten
as U(q, θ) = Υ(q)θ, where Υ(q) ∈ R1×p —the regression vector— is a continuous
row vector function whose elements depend exclusively on the configuration variables
and do not involve any of the system parameters. Actually, GT (q) = ∂

∂q
ΥT (q), or

equivalently, Υj(q) =
∑n

i=1

∫ qi
q∗i
Gij(q1, . . . , qi−1, ri, q

∗
i+1, . . . , q

∗
n)dri, ∀j ∈ {1, . . . , p}, with

q∗ = (q∗1, . . . , q
∗
n)T being the reference configuration where U(q∗, θ) = 0.3 /

Property 1.6 Consider the gravity vector g(q, θ). Let θMj represent an upper bound

of |θj|, such that |θj| ≤ θMj, ∀ ∈ {1, . . . , p}, and let θM ,
(
θM1, . . . , θMP

)T
and

Θ , [−θM1, θM1] × · · · × [−θMP
, θMP

]. By Properties 1.4 and 1.5, there exist positive
constants BθM

gi , i = 1, . . . , n, such that |gi(x, y)| = |Gi(x)y| ≤ BθM
gi , i = 1, . . . , n,

∀x ∈ Rn, ∀y ∈ Θ. Furthermore, there exist positive constants BGij , BGi, and BG

such that |Gij(x)| ≤ BGij , ‖Gi(x)‖ ≤ BGi, and ‖G(x)‖ ≤ BG, ∀x ∈ Rn, i = 1, . . . , n,
j = 1, . . . , p. /

Property 1.7 The left-hand side of the robot dynamic model in Eq. (1.1) can be
rewritten as

H(q, ψ)q̈ + C(q, q̇, ψ)q̇ + F (ψ)q̇ + g(q, ψ) = Y (q, q̇, q̈)ψ

where ψ ∈ Rρ is a constant vector whose elements depend exclusively on the sys-
tem parameters, and Y (q, q̇, q̈) ∈ Rn×ρ —the regression matrix —is a continuous
matrix function whose elements depend exclusively on configuration, velocity and ac-
celeration variables and do not involve any of the system parameters. Even more,
each term of the left-hand side of (1.1) can be analogously rewritten as H(q, ψ)q̈ =
YH(q, q̈)ψ, C(q, q̇, ψ)q̇ = YC(q, q̇)ψ, F (ψ)q̇ = YF (q̇)ψ, and g(q, ψ) = Yg(q)ψ, and actu-
ally Y (q, q̇, q̈) = YH(q, q̈) + YC(q, q̇) + YF (q̇) + Yg(q). /

Property 1.8 Consider the manipulator dynamics Y (q, q̇, q̈)ψ = H(q, ψ)q̈+C(q, q̇, ψ)q̇+
F (ψ)q̇+g(q, ψ) = τ . Let ψMj represent an upper bound of ψj, such that ψj ≤ ψMj, ∀j ∈
{1, . . . , ρ}, and let ψM ,

(
ψM1, . . . , ψMρ

)T
and Ψ , [−ψM1, ψM1]× · · · × [−ψMρ, ψMρ].

a. By Properties 1.4 and 1.7, there exist positive constants BψM
gi ≥ Bgi, i = 1, . . . , n,

such that |gi(x, y)| = |Ygi(x)y| ≤ BψM
gi , i = 1, . . . , n, ∀x ∈ Rn, ∀y ∈ Ψ. Further-

more, there exist positive constants BGij , BGi, and BG such that |Ygij(x)| ≤ BGij ,
‖Ygi(x)‖ ≤ BGi, and ‖Yg(x)‖ ≤ BG, ∀x ∈ Rn, i = 1, . . . , n, j = 1, . . . , ρ.

3The reference configuration q∗ is the generalized position with respect to which U(q, θ) is quanti-
fied. In other words, U(q, θ) represents the amount of work needed to relocate the system configuration
at q departing from q∗.
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b. Let X and Y be any compact subsets of Rn. By Properties 1.1, 1.2.5, 1.7, and
1.8a., there exist positive constants BψM

Di
, i = 1, . . . , n such that

|Yi(w, x, y)z| ≤ BψM
Di , i = 1, . . . , n, ∀(w, x, y, z) ∈ Rn ×X × Y ×Ψ

Further, there exist positive constants BYij , BYi, and BY such that |Yij(w, x, y)| ≤
BYij , ‖Yi(w, x, y)‖ ≤ BYi, and ‖Y (w, x, y)‖ ≤ BY , for all (w, x, y) ∈ Rn×X ×Y,
i = 1, . . . n, j = 1, . . . , ρ.

/

Remark 1.1 Let us note that under the consideration of Property 1.8, by Proper-
ties 1.1, 1.2.5, 1.3, 1.7, and 1.8a., there exist positive constants µψMM , kψMC , and fψMM ,
such that |Yi(w, x, y)z| ≤ µψMM ‖y‖ + kψMC ‖x‖2 + fψMM ‖x‖ + BψM

gi , i = 1, . . . , n, for all

(w, x, y, z) ∈ Rn × X × Y × Ψ. Observe from this expression that for any Ti > BψM
gi ,

there always exist sufficiently small positive values a and b (for instance, such that
µψMM b+ kψMC a2 + fψMM a < Ti −BψM

gi ) that guarantee |Yi(w, x, y)z| < Ti, i = 1, . . . , n, on
Rn × Ba × Bb ×Ψ. /

In Appendix A, the dynamic models of a 2-DOF robotic arm and a 3-DOF anthro-
pomorphic manipulator are thoroughly obtained.

1.3 Bounded inputs

Real-life actuators have a limited range of operation which is a natural consequence of
their power supply limitations. When a controller does not account for this natural lim-
itation input saturation may occur. This unavoidable nonlinear phenomenon generally
characterizes the signal transfer from the controller outputs to the plant inputs. Ig-
noring such a physical constraint may lead to unexpected or undesirable consequences,
as pointed out for instance in [10], [18], [23], and [24]. Control synthesis under the
consideration of such inevitable nonlinearity has consequently become important and
considerably attracted the attention of the feedback control community [7].

1.4 Control of robot manipulators

If we use the control objective as a way to classify controllers, it can be said that there
exist two kinds of control schemes: those who aim for position control or regulation and
those whose objective is motion control or tracking. The problem of position control for
robot manipulators consists in designing a control law u(q, q̇, θ), with θ ∈ Rp a system
parameter vector, such that, given a desired or target (constant) configuration qd ∈ Rn,
when τ = u(q, q̇, θ) in (1.1), q(t) ≡ qd becomes an asymptotically stable solution of the
closed loop. This becomes a global regulation problem if, in addition to the asymptotic
stability, q(t) ≡ qd is aimed at being rendered globally attractive, i.e. q(t) → qd as
t→∞, ∀(q, q̇)(0) ∈ Rn × Rn.
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When the parameter vector θ is unknown adaptive control may be useful to achieve
the desired objective. In this context, position control becomes an adaptive regulation
problem, which may be formulated in the following terms. Given qd ∈ Rn, one should

be able to propose a dynamic control law u(q, q̇, θ̂),
˙̂
θ = h(q, q̇), independent of the

exact values of the system parameters, such that, for the closed-loop system{
H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u(q, q̇, θ̂)
˙̂
θ = h(q, q̇)

(q, θ̂)(t) ≡ (qd, θ) becomes a stable solution of the closed loop, simultaneously guaran-
teeing the existence of a subset D ⊂ Rn × Rn × Rp, containing (qd, 0n, θ), such that
q(t) → qd as t → ∞, ∀(q, q̇, θ̂)(0) ∈ D. This becomes a global adaptive regulation
problem if the convergence of q(t) towards qd is aimed at being achieved for any initial
condition, i.e. if D = Rn × Rn × Rp.

Under the consideration of the input saturation phenomenon, the bounded adaptive
regulation objective can be stated as designing a dynamic control law u = u(q, q̇, θ̂),
˙̂
θ = h(q, q̇), independent of the exact values of the system parameters, such that, for
the closed loop system

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ

τi = Tisat
(
u(q, q̇, θ̂)/Ti

)
i = 1, ..., n

˙̂
θ = h(q, q̇)

the (global) adaptive regulation objective is guaranteed with (along the system trajec-
tories)

|τi(t)| = |ui(t)| < Ti, ∀t ≥ 0, i = 1, ..., n.

Analogously, the problem of motion or tracking control consists in finding a control
input u = u(t, q, q̇, θ), such that, given a desired trajectory qd(t) ∈ Rn, when τ =
u(t, q, q̇, θ) in (1.1), q(t) ≡ qd(t) becomes a uniformly asymptotically stable solution
of the closed loop. This becomes a global tracking control problem if, in addition to
the uniformly asymptotic stability, q(t) ≡ qd(t) is aimed at being uniformly globally
attractive, i.e. q(t)→ qd(t) as t→∞, ∀(q, q̇)(0) ∈ Rn × Rn.

Adaptive tracking control may be useful to overcome system parameter uncertain-
ties. It can be defined as follows. Given qd(t) ∈ Rn, propose a dynamic control law

u(t, q, q̇, θ̂),
˙̂
θ = h(t, q, q̇), independent of the exact values of the system parameters,

such that, for the closed-loop system{
H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u(t, q, q̇, θ̂)
˙̂
θ = h(t, q, q̇)(

q(t), θ̂(t)
)
≡
(
qd(t), θ

)
is a uniformly stable solution of the closed loop, while guar-

anteeing q(t) → qd(t) as t → ∞, for initial conditions sufficiently close to the desired
trajectory. If this objective is achieved for any initial condition this becomes a global
adaptive tracking problem.
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Considering in the control design input saturation, the bounded adaptive tracking

objective can be stated as proposing a dynamic control law u = u(t, q, q̇, θ̂),
˙̂
θ =

h(t, q, q̇), independent of the exact values of the system parameters, such that, for the
closed loop system 

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ

τi = Tisat
(
u(t, q, q̇, θ̂)/Ti

)
i = 1, ..., n

˙̂
θ = h(t, q, q̇)

the (global) adaptive tracking objective is achieved with

|τi(t)| = |ui(t)| < Ti, ∀t ≥ 0, i = 1, ..., n.

1.5 Previous works

Disregarding input saturation, one of the simplest control techniques for the global
regulation of robot manipulators is the so-called PD with gravity compensation [20,
Chap. 7] (PDgc). In its original form, it achieves the global stabilization objective
under ideal conditions, for instance: unconstrained input, availability of all the link
positions and velocities, and exact knowledge of the system parameters. Inspired by
this control method, and in view of the undesirable effects of saturation, researchers
have developed alternative (nonlinear or dynamic) PDgc-based approaches that deal
with the limitations on the actuator capabilities and/or on the available system data,
while keeping the natural energy properties of the original PDgc controller: definition
of a unique arbitrarily-located closed-loop equilibrium configuration and motion dis-
sipation. For instance, assuming that the exact value of the system parameters and
accurate measurements of all the system states (positions and velocities) are available,
a basic approach was proposed in [19] and [41]. In these works the P and D parts (at
every joint) are, each of them, explicitly bounded through specific saturation functions:
a continuously differentiable one —more precisely, the hyperbolic tangent function—
is used in [19] and the conventional non-smooth one in [41]. Because of their struc-
ture, this type of algorithms have been denoted SP-SD controllers in [39] (where a
previous version of the work in [41] was presented). Further, two alternative schemes,
that prove to be simpler and/or give rise to improved closed-loop performances, were
recently proposed in [47]. The first approach includes both the P and D parts (at every
joint) within a single saturation function, while in the second one all the terms of the
controller (P, D, and gravity compensation) are covered by one of such functions, with
the P terms internally embedded within an additional saturation.

Moreover, free-of-velocity-measurement versions of the SP-SD controllers in [19]
and [41] —still depending on the exact values of the system parameters— are obtained
through the design methodologies developed in [29] and [40]. In [40], global regula-
tion is proved to be achieved when each velocity measurement is replaced by the dirty
derivative [33] of the respective position in the SP-SD controller of [41]. A similar
replacement in a more general form of the SP-SD controller is proved to achieve global
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regulation through the design procedure proposed in [29] (where an alternative type of
dirty derivative, that involves a saturation function in the auxiliary dynamics giving
rise to the estimated velocity, results from the application of the proposed methodol-
ogy). Furthermore, an output feedback dynamic controller with a structure similar to
that resulting from the methodology in [29], but which considers a single saturation
function (at every joint) where both the position errors and velocity estimation states
are involved, was proposed in [8] (where a dissipative linear term on the auxiliary state
is added to the saturating velocity error dynamics involved for the dirty derivative cal-
culation); extensions of this approach to the elastic-joint case were further developed
in [9].

In view of the gravity compensation terms, the implementation of the above men-
tioned saturating schemes becomes specially problematic when the system parameters
are uncertain. Because of the potential undesirable effects that this constraint can in-
duce, bounded adaptive SP-SD-type algorithms have been developed in [11, 12, 25, 50].

• In [11] global regulation is aimed through a discontinuous scheme that switches
among two different control laws, under the consideration of state and output
feedback. Both proposed control laws keep an SP-SD structure similar to that of
[41]. These algorithms were designed under the consideration of the manipulator
dynamics without friction, i.e.

H(q)q̈ + C(q, q̇)q̇ +G(q, θ) = τ (1.2)

For the state feedback case the authors first propose a non-adaptive scheme with-
out gravity compensation of the form

τ = kDγsat(ė) + kPγ
2sat(e) (1.3)

where e = qd − q represents the position error vector, kP , kD, γ ∈ R are positive
constants, and sat(·) is the standard saturation function. The authors prove
that the closed-loop system, Eqs. (1.2) and (1.3), possesses a unique equilibrium
vector that can be approached to qd by increasing γ, and this equilibrium position
is globally asymptotically stable. To achieve the convergence the authors propose
to switch the algorithm in Eq. (1.3) to the unbounded adaptive control law

τ = f(t) + kDγė+ kPγ
2e (1.4a)

ḟ = β
(

1− bffT‖f‖
)(

ė− kP
kDγ

e

)
(1.4b)

with

b =

{
0 if (‖f‖ ≤ fmax) ∧

[
fT
(
ė− kP

kDγ
e
)
≤ 0
]

1 if Otherwise

where fmax , Gmax +δ2, and β, δ2 ∈ R are positive constants. For this algorithm,
proposed to achieve the desired convergence, the author shows that all signals
are bounded and that the error vectors e, ė converge asymptotically to the origin,
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provided that e and ė are within the region of attraction of the closed-loop system
(1.2)–(1.4). It was also concluded that the region of attraction can be made
arbitrarily large by increasing γ in the control law (1.4).

In the output feedback case each velocity measurement is replaced by the dirty
derivative of the corresponding position. The followed methodology and stability
properties are the same as in the state feedback case. Unfortunately, a precise
criterion to determine the switching moment (from the first control law to the
second one) is not furnished for either of the proposed schemes.

• In [50], semiglobal regulation is proved to be achieved through a state feedback
scheme that keeps the same structure of the SP-SD controller of [19] but addi-
tionally considers adaptive gravity compensation. The proposed controller was
designed under the consideration of the manipulator dynamics with viscous and
Coulomb friction, i.e.

H(q)q̈ + C(q, q̇)q̇ + Fdq̇ + Fssign(q̇) + g(q, θ) = τ (1.5)

where sign(q̇) denotes a vector whose elements are given by
(
sign(q̇1), . . . , sign(q̇n)

)T
The adaptation algorithm is defined as

τ = GT (q)θ̂ −KPTh(q̄)−KDTh(q̇) (1.6a)

˙̂
θ = P

(
Q(q̄, q̇), θ̂

)
(1.6b)

where q̄ = q − qd, for any desired configuration vector qd ∈ Rn, Th(x) =(
tanh(x1), . . . , tanh(xn)

)T
, Q(q̄, q̇) = −ΓGT (q)[q̇+ εTh(q̄)], P is defined in terms

of a discontinuous expression —by means of which the parameter estimators are
prevented to take values beyond some pre-specified limits, which consequently
keeps the adaptive gravity term bounded—, whose elements are given as

Pj(Q, θ̂) ={
Qj if θjm < θ̂j < θjM or

(
θ̂j ≤ θjm and Qj ≥ 0

)
or
(
θ̂j ≥ θjM and Qj ≤ 0

)
0 if

(
θ̂j ≤ θjm and Qj < 0

)
or
(
θ̂j ≥ θjM and Qj > 0

)
j = 1, . . . , p, where θjm and θjM are known lower and upper bounds of θi respec-
tively. The author prove that given the system dynamics Eq. (1.5), the control
law in Eqs. (1.6) ensures asymptotic stability, provided that KP , KD, and ε
satisfy some inequalities, with a region of attraction that may be enlarged by
increasing the control gains. Once the gains are defined, the author provides an
explicit bound on the torque input, namely

‖τ‖ ≤ ‖G(q)‖i∞‖θ̄‖+ λMKP + λMKD

where θ̄ = θ − θ̂ and ‖ · ‖i∞ denotes the induced infinity norm of a matrix. This
approach was further extended in [13] to the case when the control objective is
defined in task coordinates and the kinematic parameters —additionally to the
dynamic ones— are considered to be uncertain too.
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• In [25], an adaptive output feedback regulation scheme was proposed. The con-
sidered system dynamics is shown in Eq. (1.2). The author replaces each velocity
measurement by the dirty derivative of the corresponding position, and considers
an unbounded adaptive gravity compensation term. The proposed control law is
of the form

τ = −KPTh(λq̄)−KDTh(δϑ) +Gdθ̂ (1.7a)

where Gd = G(qd), Th(x) =
(

tanh(x1), . . . , tanh(xn)
)T

, KP ∈ Rn×n and KD ∈
Rn×n are positive definite diagonal matrices, λ and δ are positive constants, and
ϑ ∈ Rn and θ̂ ∈ Rp are the output variables of (interconnected) auxiliary dynamic
subsystems that take the form:

q̇c = −αK(qc +Kq̄) (1.7b)

ϑ = qc +Kq̄ (1.7c)

and

φ̇c = βGT
d

[
ηTh(δϑ)− µTh(λq̄)

]
(1.7d)

θ̂ = φc − βGT
d q̄ (1.7e)

where K ∈ Rn×n is a positive definite diagonal matrix, and α, β, η, and µ
are positive constants. Arguing simplicity of development, the gain matrices
involved in this control algorithm are taken in [25] as KP = kP In, KD = kDIn,
and K = kIn, with kP , kD, and k being positive constants.

Through the proof of the main result, asymptotic stabilization is concluded to be
achieved through the proposed scheme with a region of attraction that may be
enlarged by increasing the control gains, while the input is guaranteed to remain
within bounds that depend on initial conditions.

• An adaptive state feedback scheme aiming for tracking control was developed in
[12]. The dynamic model used considers the viscous friction F , as follows

H(q)q̇ + C(q, q̇)q̇ + F q̇ + g(q, θ) = τ

The proposed controller is

τ = Yd(t)θ̂ −KPTh(q̄)−KDTh(r) (1.8a)

˙̂
θ = P

(
Q(t, r), θ̂

)
(1.8b)

where Yd(t) = Y (qd(t), q̇d(t), q̈d(t)); Th(x) = (tanh(x1), . . . , tanh(xn))T ;

r = ˙̄q + εTh(q̄) (1.8c)

with ε being a positive constant;

Q(t, r) = −ΓY T
d (t)r (1.8d)
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where KP , KD ∈ Rn×n and Γ ∈ Rp×p are positive definite diagonal matrices; the
elements of P are defined in terms of the following discontinuous expression

Pj(Q, θ̂) ={
Qj if θjm < θ̂j < θjM or

(
θ̂j ≤ θjm and Qj ≥ 0

)
or
(
θ̂j ≥ θjM and Qj ≤ 0

)
0 if

(
θ̂j ≤ θjm and Qj < 0

)
or
(
θ̂j ≥ θjM and Qj > 0

)
j = 1, . . . , p with θjm and θjM being known lower and upper bounds of θj respec-
tively. The authors conclude asymptotic tracking provided that the minimum
eigenvalue of KD is high enough, with a region of attraction that may be en-
larged by increasing the control gains. They also provide an explicit bound of
the control expression in Eq. (1.8a).

1.6 Motivation

The previously described works are generally local results with a region of attrac-
tion that may be enlarged through the control gain values. Only the work in [11]
aims at contributing a global result through a variable structure scheme that involves
two different control output expressions implying a discontinuous change among them.
Unfortunately, such an approach in [11] fails to furnish an analytical criterion to de-
termine the exact condition at which the mentioned a discontinuous change (among
the involved output control expressions) should be done. Global results on adaptive
control in a bounded input context though continuous (fix structure) algorithms miss
in the literature and constitutes one of the main motivations of this dissertation.

On the other hand, all previously described adaptive schemes define the SP and
SD terms using only hyperbolic tangent functions to bound the position and velocity
error vectors, and with the control gains multiplying the saturation functions. This
gives rise to controllers whose saturation bound is defined in terms of the sum of the
P and D control gains (and the bound of the parameter estimator), which limits the
choice of such gains. This in turn restrains the closed-loop region of attraction in the
cases where it can be enlarged by increasing the control gains.

Even more, adaptive control schemes where the parameter estimates are aimed to
remain bounded within pre-specified values generally appeal to an adaptation dynamics
with discontinuous right hand side, like those appearing in [11] and [50]. The discon-
tinuous character of such type of adaptation dynamics is not necessarily a drawback,
but a bounded adaptive scheme avoiding discontinuities constitutes a better alternative
developed within a simpler analytical context and making use of more natural ways to
cope with the need to bound the parameter estimates.

On the other hand, the control laws appearing in [1, 47] which assume the knowl-
edge of all system parameters, release the gains from satisfying a saturation-avoidance
inequality while achieving globally stabilizing results, and also allow the user to choose
any saturation function within a set. Adaptive versions of the alternative saturat-
ing schemes in [1, 47] have not yet been proposed. Moreover, as far as the authors are
aware, a continuous adaptive scheme, with continuous auxiliary dynamics, that achieve
the global regulation objective is still missing in the literature.
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1.7 Structure of the dissertation

The rest of the work is organized as follows: Chapter 2 presents presents definitions
and results that were used in the analyzes developed in this dissertation.

Chapter 3 deals with the development and stability proof of the proposed adaptive
control laws. First, the results corresponding to position control are shown in the case
of availability of all system states. Then a control scheme that does not involve system
velocities is presented. Finally, a trajectory tracking controller is presented assuming
availability of states.

Simulation results of all developed schemes are presented in Chapter 4 using the
nominal dynamic model of a 2-DOF robot manipulator. Each proposed scheme is
compared against one of the controllers of previous works.

Chapter 5 shows experimental results obtained using two different manipulators:
the 2-DOF mechanical arm in [36] and the 3-revolute-joint anthropomorphic robot
appearing in [37]. The goal is to experimentally compare and corroborate the efficiency
of the proposed control laws.

Conclusions and future work perspectives are finally presented in Chapter 6.
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2
Mathematical Background

Theorems and definitions used throughout this dissertation are detailed in this chapter.
These results were taken from [4, 22, 32, 38, 45].

2.1 Lipschitz continuity

A function f : D → Rn, with D being a domain (open connected set) contained in Rn,
that satisfies

‖f(x)− f(y)‖ ≤ L‖x− y‖ (2.1)

for all x and y inD and some non-negative constant L, is said to be Lipschitz-continuous
in x and the positive constant L is called a Lipschitz constant. It is said to be locally
Lipschitz-continuous if, for every x ∈ D, there exists a neighborhood D0 of x such
that f restricted to D0 is Lipschitz-continuous. With D = Rn, it is said to be globally
Lipschitz-continuous if (2.1) is satisfied for all x and y in Rn. Similarly, a function
f : Rn → Rn is said to be Lipschitz/locally Lipschitz on D ⊂ Rn if f restricted to D is
Lipschitz-continuous/locally Lipschitz-continuous. An analog terminology is employed
for a function f(t, x), provided that the Lipschitz condition holds uniformly in t for all
t in a given interval of time. Thus, a function f(t, x) mapping I × D ⊂ R+ × Rn to
Rn, with D being a domain contained in Rn, that satisfies

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖ (2.2)

for all (t, y) and (t, z) in I×D and some non-negative constant L, is said to be Lipschitz-
continuous in x. It is said to be locally Lipschitz-continuous in x if, for every y ∈ D,
there exists a neighborhood D0 of y such that f restricted to I × D0 is Lipschitz-
continuous. With D = Rn, it is said to be globally Lipschitz-continuous in x if (2.2) is
satisfied for all (t, y) and (t, z) in I×Rn. Similarly, a function f(t, x) mapping R+×Rn
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to Rn is said to be Lipschitz/locally Lipschitz in x on I ×D ⊂ R+ ×Rn if f restricted
to I ×D is Lipschitz-continuous/locally Lipschitz-continuous.

Lemma 2.1 [22, Lemma 3.1] Let f : [a, b]×D → Rn be continuous for some domain
D ∈ Rn. Suppose that [∂f/∂x] exists and is continuous on [a, b]×D. If, for a convex
subset W ⊂ D, there is a constant L ≥ 0 such that∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ L

on [a, b]×W , then
‖f(t, x)− f(t, y)‖ ≤ L ‖x− y‖

for all t ∈ [a, b], x ∈ W , and y ∈ W . /

Lemma 2.1 shows how using the knowledge of [∂f/∂x] a Lipschitz constant can be
calculated.

The Lipschitz property is stronger than continuity but is weaker than continuous
differentiability as stated in the following lemmas.

Lemma 2.2 [22, Lemma 3.2] If f(t, x) and [∂f/∂x](t, x) are continuous on [a, b]×D,
for some domain D ⊂ Rn, then f is locally Lipschitz in x on [a, b]×D. /

Lemma 2.3 [22, Lemma 3.3] If f(t, x) and [∂f/∂x](t, x) are continuous on [a, b]×Rn,
then f is globally Lipschitz in x on [a, b]×Rn if and only if [∂f/∂x] is uniformly bounded
on [a, b]× Rn. /

2.2 Lyapunov stability

Throughout this section we consider a system of the form

ẋ = f(t, x) (2.3)

where f : I ×Ω→ Rn, is piecewise continuous in t and locally Lipschitz in x on I ×Ω,
with I , (τ,∞), for some τ ∈ R, Ω being a domain of Rn containing de origin, and
such that f(t, 0n) = 0n, ∀t ≥ 0.

Definition 2.1 [22, Definition 4.4] The origin of (2.3) is

• stable if, for every ε > 0 there exists δ such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t ≥ t0 ≥ 0 (2.4)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0 independent of t0
such that Eq. (2.4) is satisfied.

• unstable if it is not stable;
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• asymptotically stable if it is stable and there is a positive constant c = c(t0)
such that x(t)→ 0 as t→∞,∀‖x(t0)‖ < c.

• uniformly asymptotically stable if its uniformly stable and there is a positive
constant c, independent of t0, such that for all ‖x(t0)‖ < c, x(t) → t as t → ∞,
uniformly in t0, that is, for each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η), ∀‖x(t0)‖ < c

• globally uniformly asymptotically stable if its uniformly stable, δ(ε) can be
chosen to satisfy limε→∞ δ(ε) =∞, and, for each pair of positive numbers η and
c, there is T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η, c), ∀‖x(t0)‖ < c

/

The following result allows the use of continuous Lyapunov functions being locally
Lipschitz-continuous in x.

Theorem 2.1 [38, Theorem 6.2] If there exist a continuous function V (t, x) : I×Ω→
R, locally Lipschitz in x and such that

• V (t, x) ≥ a(‖x‖); V (t, 0) = 0;

• D+V (t, x) ≤ 0;

for some a ∈ K and for all (t, x) ∈ I × Ω, then the origin is stable /

A scalar mapping a : R+ → R+ is said to be a class K function, denoted a ∈ K,
if it is strictly increasing and a(0) = 0. Let us further note that, in view of the time-
independence of their dynamics (and consequently of the initial-time-independence of
their solutions), for autonomous systems, stability is always uniform.

2.3 Invariance theory

The result presented in this section may be seen as a version/extension of LaSalle’s
invariance principle that may be applied to autonomous systems with continuous dy-
namics (in contrast for instance to the statement of LaSalle’s theorem presented in [22,
Theorem 4.4] which considers autonomous state equations with Lipschitz-continuous
vector fields). Before we state such an important theorem, some definitions are given.

We consider autonomous systems of the form

ẋ = f(x) (2.5)

where f ∈ C[Ω,Rn], Ω ⊂ Rn is an open connected set.
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Definition 2.2 A set M is said to be

• an invariant set with respect to (2.5) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ∈ R.

• a positively invariant set with respect to (2.5) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0.

/

We say that x(t) approaches a set M as t approaches infinity, if for each ε > 0 there
is a T > 0 such that

dist
(
x(t),M

)
< ε, ∀t > T

where dist(p,M) denotes the distance from a point p to a set M , that is the smallest
distance from p to any point in M . More precisely,

dist(p,M) = inf
x∈M
‖p− x‖

Theorem 2.2 [32, Theorem 7.2.1] Assume that there exists a function V ∈ C[Ω,R],
with Ω ⊂ R being an open connected set, such that D+V (x) ≤ 0 for x in Ω and such
that, for some constant c ∈ R, the set Hc is a closed and bounded component of the set
{x ∈ Ω : V (x) ≤ c}. Let M be the largest invariant set in

Z = {x ∈ Ω : D+V (x) = 0}

with respect to (2.5). Then, every solution x(t) of (2.5) starting in Hc approaches to
M as t→∞. /

If we want to show that x(t)→ 0n as t→∞, we need to establish that the largest
invariant set in Z is the origin.

Invariance-like theorem

The following result proves to be helpful to determine convergence in the context of
non-autonomous systems.

Theorem 2.3 [22, Theorem 8.4] Let D ∈ Rn be a domain containing x = 0 and
suppose f(t, x) is piecewise continuous in t and locally Lipschitz in x, uniformly in t,
on [0,∞) × D. Furthermore, suppose f(t, 0) is uniformly bounded for all t ≥ 0. Let
V : [0,∞)×D → R be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x)

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W (x)
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∀t ≥ 0, ∀x ∈ D, where W1(x) and W2(x) are continuous positive definite functions
and W (x) is a continuous positive semidefinite function on D. Choose r > 0 such
that Br ∈ D and let ρ < min‖x‖=rW1(x). Then, all solutions of ẋ = f(t, x) with
x(t0) ∈ {x ∈ Br|W2(x) ≤ ρ} are bounded and satisfy

W (x(t))→ 0 as t→∞

Moreover, if all the assumptions hold globally and W1 is radially unbounded, the state-
ment is true for all x(t0) ∈ Rn /

2.4 Passivity

Consider a dynamical system defined by the state model

ẋ = f(x, u) (2.6a)

y = h(x, u) (2.6b)

where f : Rn × Rp → Rn is locally Lipschitz, h : Rn × Rp → Rp is continuous,
f(0n, 0p) = 0n, and h(0n, 0p) = 0p. The following definition shows the various notions
of passivity for the state model (2.6)

Definition 2.3 [22, Definition 6.3] The system (2.6) is said to be passive if there exist a
continuously differentiable positive semi definite function V (x) (called storage function)
such that

uTy ≥ V̇ =
∂V

∂x
f(x, u), ∀(x, u) ∈ Rn × Rp (2.7)

Moreover, it is said to be

• lossless if uTy = V̇

• input-feedforward passive if uTy ≥ V̇ + uTϕ(u), for some function ϕ.

• input strictly passive if uTy ≥ V̇ + uTϕ(u), and uTϕ(u) > 0, for all u 6= 0.

• output-feedforward passive if uTy ≥ V̇ + yTρ(y), for some function ρ.

• output strictly passive if uTy ≥ V̇ + yTρ(y), and yTρ(y) > 0, for all y 6= 0.

• strictly passive if uTy ≥ V̇ + φ(x), for some positive definite function φ.

In all cases the inequality should hold for all (x, u). /
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Figure 2.1: Feedback connection

Feedback systems

Consider the feedback connection presented in figure 2.1 where each of the feedback
components H1 and H2 can be a time-invariant dynamical system represented in Eqs.
(2.8)

ẋi = fi(xi, ei) (2.8a)

yi = hi(t, ei) (2.8b)

i = 1, 2, or a possibly (time-varying) memoryless functions represented by

yi = hi(t, ei) i = 1, 2 (2.9)

Theorem 2.4 [22, Theorem 6.1] The feedback connection of two passive systems is
passive. /

2.5 Generalized saturation functions

The control schemes proposed in this work involve special functions fitting the following
definition.

Definition 2.4 Given a positive constant M , a nondecreasing Lipschitz-continuous
function σ : R→ R is said to be a generalized saturation with bound M if

(a) ςσ(ς) > 0 for all ς 6= 0;

(b) |σ(ς)| ≤M for all ς ∈ R.

If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤ M , σ is said to be a linear saturation for (L,M)
[45]. /

Any function satisfying Definition 2.4 has the following properties.
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Lemma 2.4 Let σ : R → R be a generalized saturation function with bound M , and
let k be a positive constant. Then

1. lim|ς|→∞D
+σ(ς) = 0;

2. ∃σ′M ∈ (0,∞) such that 0 ≤ D+σ(ς) ≤ σ′M , ∀ς ∈ R;

3. |σ(kς + η)− σ(η)| < k|ς|, ∀ς, η ∈ R;

4. |σ(kς)| < k|ς|, ∀ς ∈ R;

5. σ2(kς)
2kσ′M

≤
∫ ς

0
σ(kr)dr ≤ kσ′M ς

2

2
, ∀ς ∈ R;

6.
∫ ς

0
σ(kr)dr > 0, ∀ς 6= 0;

7.
∫ ς

0
σ(kr)dr →∞ as |ς| → ∞;

8. if σ is strictly increasing, then

(a) ς[σ(ς + η)− σ(η)] > 0, ∀ς 6= 0, ∀η ∈ R;

(b) for any constant a ∈ R, σ̄(ς) = σ(ς + a) − σ(a) is a strictly increasing
generalized saturation function with bound M̄ = M + |σ(a)|;

9. if σ is a linear saturation for (L,M) then, for any continuous function ν : R→ R
such that |ν(η)| < L, ∀η ∈ R, we have that ς

[
σ
(
ς+ν(η)

)
−σ
(
ν(η)

)]
> 0, ∀ς 6= 0,

∀η ∈ R.

/

Proof.

1. Since σ is a Lipschitz-continuous function that keeps the sign of its argument
(according to item (a) of Definition 2.4), and is nondecreasing and bounded by
M , there exist positive constants c− ≤M and c+ ≤M such that

lim
|ς|→∞

σ(ς) =
(sign(ς)− 1)c− + (sign(ς) + 1)c+

2
, σ∞

Hence, we have that:

lim
|ς|→∞

D+σ(ς) = lim
|ς|→∞

lim sup
h→0+

σ(ς + h)− ς(ς)
h

= lim sup
h→0+

lim
|ς|→∞

σ(ς + h)− ς(ς)
h

= lim sup
h→0+

σ∞ − σ∞
h

= 0
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2. Since σ is a Lipschitz-continuous nondecreasing function, we have that D+σ(ς)
exists and is piecewise-continuous on R, and that D+σ(ς) ≥ 0, ∀ς ∈ R. On the
other hand, because of its piecewise-continuity, D+σ(ς) is bounded on any com-
pact interval on R. Thus, its boundedness holds on R if lim|ς|→∞D

+σ(ς) < ∞.
Since lim|ς|→∞D

+σ(ς) = 0 (according to item 1 of the statement), we conclude
boundedness of D+σ(ς) (on R), i.e. there exists a non-negative finite scalar σ′M
such that D+σ(ς) ≤ σ′M , ∀ς ∈ R. Finally, observe that by virtue of item (a) of
Definition 2.4, there exists a ∈ (0,∞] such that D+σ(ς) > 0, ∀ς ∈ (−a, a) \ {0},
whence we conclude that σ′M > 0.

3. This item is a direct consequence of the Lipschitz-continuity of σ and item 2 of
the statement (as analogously stated for instance in Lemma 2.3).

4. This point follows from item 3 of the statement with η = 0.

5. From Lipschitz-continuity of σ, its satisfaction of item (a) of Definition 2.4, and
the boundedness of D+σ by a positive constant σ′M (according to item 2 of the
statement), it follows that

D+σ(kς)

σ′M
|σ(kς)| ≤ |σ(kς)| ≤ σ′M |kς|

∀ς ∈ R, whence —considering that σ has the sign of its argument (according to
item (a) of Definition 2.4)— we have that∫ ς

0

σ(kr)

σ′M
D+σ(kr)dr ≤

∫ ς

0

σ(kr)dr ≤
∫ ς

0

kσ′Mrdr

wherefrom we get
σ2(kς)

2kσ′M
≤
∫ ς

0

σ(kr)dr ≤ kσ′M ς
2

2

∀ς ∈ R.

6. Strict positivity of
∫ ς

0
σ(kr)dr on R \ {0} follows from items 5 of the statement

and (a) of Definition 2.4, by noting that σ2(kς) > 0, ∀ς 6= 0.

7. From the Lipschitz-continuous and nondecreasing characters of σ, and its satis-
faction of item (a) of Definition 2.4, we have that there exist constants a > 0,
ka > 0, and c ≥ 1 such that |σ(ς)| ≥ ka |a sat(ς/a)|c, whence we get

Sa(ς) ,
∫ ς

0

sign(r)ka |a sat(r/a)|c dr ≤
∫ ς

0

σ(kς)dr

∀ς ∈ R, with

Sa(ς) =

{
ka
c+1
|ς|c+1 ∀|ς| ≤ a

kaa
c
(
|ς| − ac

c+1

)
∀|ς| > a
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Thus, from these expressions we observe, on the one hand, that

lim
|ς|→∞

Sa(ς) ≤ lim
|ς|→∞

∫ ς

0

σ(kr)dr

and, on the other, that Sa(ς) → ∞ as |ς| → ∞, wherefrom we conclude that∫ ς
0
σ(kr)dr →∞ as |ς| → ∞.

8. Suppose σ is strictly increasing. Let ψ, η, ς ∈ R.

(a) Since σ is strictly increasing, we have that

σ(ψ) > σ(η) ⇐⇒ ψ > η

and
σ(ψ) < σ(η) ⇐⇒ ψ < η

Let ψ = ς + η. Then

σ(ς + η)− σ(η) > 0 ⇐⇒ ς > 0 ∀η ∈ R

and
σ(ς + η)− σ(η) < 0 ⇐⇒ ς < 0 ∀η ∈ R

whence it follows that ς[σ(ς + η)− σ(η)] > 0, ∀ς 6= 0, ∀η ∈ R.

(b) For any constant a ∈ R, let σ̄(ς) = σ(ς + a)− σ(a).

• Lipschitz-continuity. From the Lipschitz-continuity of σ and item 2 of
the statement, we have that |σ(ς)− σ(η)| ≤ σ′M |ς − η|, ∀ς, η ∈ R. Then∣∣σ̄(ς)− σ̄(η)

∣∣ =
∣∣(σ(ς + a)− σ(a)

)
−
(
σ(η + a)− σ(a)

)∣∣
=
∣∣σ(ς + a)− σ(η + a)

∣∣
≤ σ′M

∣∣(ς + a)− (η + a)
∣∣

≤ σ′M
∣∣ς − η∣∣

∀ς, η ∈ R, which shows that σ̄ is Lipschitz-continuous.

• Strictly increasing monotonicity. From the strictly increasing mono-
tonicity of σ, we have that

σ̄(ς) > σ̄(η) ⇐⇒ σ(ς + a)− σ(a) > σ(η + a)− σ(a)

⇐⇒ σ(ς + a) > σ(η + a)

⇐⇒ ς + a > η + a

⇐⇒ ς > η

which shows that σ̄ is strictly increasing.

• ςσ̄(ς) > 0, ∀ς 6= 0. From item 8a of the Lemma, we have that ςσ̄(ς) =
ς[σ(ς + a)− σ(a)] > 0, for all ς 6= 0 and any a ∈ R.
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• |σ̄(ς)| ≤ M̄ = M + |σ(a)|, ∀ς ∈ R. Since |σ(ς)| ≤ M , ∀ς ∈ R, we have
that

|σ̄(ς)| = |σ(ς + a)− σ(a)| ≤ |σ(ς + a)|+ |σ(a)| ≤M + |σ(a)| = M̄

Thus, according to Definition 2.4, σ̄ is concluded to be a strictly increasing
generalized saturation with bound M̄ = M + |σ(a)|.

9. Let us begin by noting, from item (c) of Definition 2.4, that |ν(η)| < L =⇒
σ
(
ν(η)

)
≡ ν(η), ∀η ∈ R. Furthermore, |ς+ν(η)| < L =⇒ σ

(
ς+ν(η)

)
= ς+ν(η),

∀η ∈ R. Hence,

ς
[
σ
(
ς + ν(η)

)
− σ

(
ν(η)

)]
= ς2 > 0

for all ς 6= 0 such that |ς + ν(η)| < L, and all η ∈ R. (2.10)

On the other hand, if ς + ν(η) ≥ L, which implies that

ς ≥ L− ν(η) ≥ L− |ν(η)| > 0

∀η ∈ R, then (from item (c) of Definition 2.4 and the nondecreasing character of
σ)

σ
(
ς + ν(η)

)
− σ

(
ν(η)

)
≥ L− ν(η) ≥ L− |ν(η)| > 0

∀η ∈ R, while if ς + ν(η) ≤ −L, which implies that

ς ≤ −L− ν(η) ≤ −L+ |ν(η)| < 0

∀η ∈ R, then

σ
(
ς + ν(η)

)
− σ

(
ν(η)

)
≤ −L− ν(η) ≤ −L+ |ν(η)| < 0

∀η ∈ R, and consequently

ς
[
σ
(
ς + ν(η)

)
− σ

(
ν(η)

)]
> 0

for all ς ∈ R such that |ς + ν(η)| ≥ L, and all η ∈ R. (2.11)

Thus, from (2.10) and (2.11), it follows that ς
[
σ
(
ς+ν(η)

)
−σ
(
ν(η)

)]
> 0, ∀ς 6= 0,

∀η ∈ R.

/
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3
Proposed approaches

We begin by recalling the manipulator dynamics as exposed in Section 1.2, i.e.

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (3.1)

whose various terms and properties had been described in subsection 1.2.2. Let us
suppose that the absolute value of each input τi (ith element of the input vector τ)
is constrained to be smaller than a given saturation bound Ti > 0, i.e. |τi| ≤ Ti,
i = 1, . . . , n. In other words, letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Tisat

(
ui
Ti

)
(3.2)

i = 1, . . . , n.

Let us note from (3.1)-(3.2) that Ti ≥ Bgi (see Property 1.4), ∀i ∈ {1, . . . , n}, is a
necessary condition for the manipulator to be stabilizable at any desired equilibrium
configuration qd ∈ Rn. Thus, the following assumption turns out to be crucial within
the analytical setting considered in this work:

Assumption 3.1 Ti > Bgi, ∀i ∈ {1, . . . , n}. /

3.1 State-feedback regulation approach

A generalized non adaptive approach is first presented. Developments and results from
this section will be used to present the proposed adaptive schemes.
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3.1.1 Global regulation involving exact gravity compensation:
a generalized approach

Let us consider the following generalized expression defining saturating controllers for
the global regulation of system (3.1)-(3.2):

u(q, q̇, θ) = −sd(q̄, q̇, θ)− sP (KP q̄) +G(q)θ (3.3)

where q̄ = q − qd, for any constant (desired equilibrium position) vector qd ∈ Rn. The
third term in the right-hand side of (3.3) is the gravity compensation term where G(q)
is the regression matrix related to the gravity vector, i.e. such that g(q, θ) = G(q)θ.
The second term in the right-hand side of (3.3) is a (bounded non-linear) position
error correction term where KP ∈ Rn×n is a positive definite diagonal matrix, i.e.
KP = diag[kP1, . . . , kPn] with kPi > 0 for all i = 1, . . . , n, and

sP : Rn → Rn

x 7→
(
σP1(x1) , . . . , σPn(xn)

)T
with σPi(·), i = 1, . . . , n being (suitable) generalized saturation functions with
bounds MPi. The first term in the right-hand side of (3.3) corresponds to a motion
dissipation term where sd : Rn×Rn×Rp → Rn is a bounded continuous vector function
satisfying sd : Rn × Rn × Rp → Rn is a bounded continuous vector function satisfying

sd(x, 0n, z) = 0n (3.4)

∀x ∈ Rn, ∀z ∈ Rp,

‖sd(x, y, z)‖ ≤ κ‖y‖ (3.5)

∀(x, y, z) ∈ Rn × Rn × Rp, for some positive constant κ, and given z ∈ Rp such that
|Gi(q)z| < Ti, i = 1, . . . , n, ∀q ∈ Rn:

yT sd(x, y, z) > 0 (3.6)

∀y 6= 0n, ∀x ∈ Rn, and

|ui(x, y, z)| < Ti (3.7)

i = 1, . . . , n, ∀x ∈ Rn, ∀y ∈ Rn, for suitable bounds MPi of σPi(·).

Proposition 3.1 Consider system (3.1)–(3.2) taking u = u(q, q̇, θ) as defined in Eq.
(3.3), under Assumption 3.1 and the conditions on the vector function sd stated through
Eq. (3.4) and inequalities (3.5)–(3.7). Thus, for any positive definite diagonal matrix
KP , global asymptotic stability of the closed-loop trivial solution q̄(t) ≡ 0n is guaranteed
with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0. /

Proof. Observe that the satisfaction of (3.7), under the consideration of (3.2), shows
that

Ti > |ui(q, q̇, θ)| = |ui| = |τi|
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i = 1, . . . , n, ∀(q, q̇) ∈ Rn×Rn. Hence it can be seen that, along the system trajectories

|τi(t)| = |ui(t)| < Ti

i = 1, . . . , n, ∀t ≥ 0. This proves that with the proposed scheme, the input saturation
values, Ti, are never reached. Thus, under the consideration of Property 1.5, the
closed-loop dynamics takes the form1

H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sd(q̄, q̇, θ)− sP (KP q̄) (3.8)

Let us define the scalar function

V0(q̄, q̇) =
1

2
q̇TH(q)q̇ + εq̇TH(q)sP (KP q̄) +

∫ q̄

0n

sTP (KP r)dr (3.9)

with
∫ q̄

0n
sTP (KP r)dr =

∑n
i=1

∫ q̄i
0
σPi(kPiri)dri and ε being a positive constant satisfying

ε < εM , min{ε1, ε2} (3.10)

where

ε1 ,
√

µm
µ2
MβP

and ε2 ,
fm

βM + (fM+κ)2

4

with

βP , max
i
{σ′PiMkPi} , βM , kCBP + µMβP , BP ,

√√√√ n∑
i=0

M2
Pi

σ′PiM being the positive bound of D+σPi(·) in accordance to item 2 of Lemma 2.4, κ as
defined through (3.5), and µm, µM , kC , fm, and fM as defined in Properties 1.1, 1.2.5,
and 1.3. Observe that from Property 1.1 and item 5 of Lemma 2.4, we have that

V0(q̄, q̇) ≥ W0(q̄, q̇) + (1− α)

∫ q̄

0n

sTP (KP r)dr (3.11)

where

W0(q̄, q̇) =
µm
2
‖q̇‖2 − εµM‖sP (KP q̄)‖‖q̇‖+

α

2βP
‖sP (KP q̄)‖2

=
1

2

(
‖sP (KP q̄)‖
‖q̇‖

)T ( α
βP

−εµM
−εµM µm

)(
‖sP (KP q̄)‖
‖q̇‖

)
(3.12)

and α is a positive constant satisfying

ε2

ε2
1

< α < 1 (3.13)

1In the error variable space q = q̄ + qd, and hence H(q) = H(q̄ + qd), C(q, q̇) = C(q̄ + qd, q̇), and
G(q) = G(q̄ + qd). However, for the sake of simplicity, H(q), C(q, q̇), and G(q) are used throughout
this work.
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(see (3.10)). Note further that, by (3.13), W0(q̄, q̇) is positive definite (since with ε <
εM ≤ ε1, in accordance to (3.10), any α satisfying (3.13) renders positive definite the
matrix at the right-hand side of (3.12)), and observe that W0(0n, q̇)→∞ as ‖q̇‖ → ∞.
From this, inequality (3.13), and items 6 and 7 of Lemma 2.4 (through which one sees
that the integral term in the right-hand side of inequality (3.11) is a radially unbounded
positive definite function of q̄), V0(q̄, q̇) is concluded to be positive definite and radially
unbounded. Its upper-right derivative along the system trajectories, V̇0 = D+V0 [38,
App. I] [32, §6.1A], is given by

V̇0(q̄, q̇) = q̇TH(q)q̈ +
1

2
q̇T Ḣ(q, q̇)q̇ + εsTP (KP q̄)H(q)q̈ + εq̇T Ḣ(q, q̇)sP (KP q̄)

+ εq̇TH(q)s′P (KP q̄)KP q̇ + sTP (KP q̄)q̇

= q̇T
[
− C(q, q̇)q̇ − F q̇ − sd(q̄, q̇, θ)− sP (KP q̄)

]
+

1

2
q̇T Ḣ(q, q̇)q̇

+ εsTP (KP q̄)
[
− C(q, q̇)q̇ − F q̇ − sd(q̄, q̇, θ)− sP (KP q̄)

]
+ εq̇T Ḣ(q, q̇)sP (KP q̄) + εq̇TH(q)s′P (KP q̄)KP q̇ + sTP (KP q̄)q̇

= − q̇TF q̇ − q̇T sd(q̄, q̇, θ)− εsTP (KP q̄)F q̇ − εsTP (KP q̄)sd(q̄, q̇, θ)

− εsTP (KP q̄)sP (KP q̄) + εq̇TC(q, q̇)sP (KP q̄) + εq̇TH(q)s′P (KP q̄)KP q̇

where H(q)q̈ has been replaced by its equivalent expression from the closed-loop dy-
namics in (3.8), Property 1.2.1 has been used, and

s′P (KP q̄) , diag[D+σP1(kP1q̄1), . . . , D+σPn(kPnq̄n)] (3.14)

Observe that from Properties 1.1, 1.2.5, and 1.3, the satisfaction of (3.5), items (b) of
Definition 2.4 and 2 of Lemma 2.4, and the positive definite character of KP , we have
that

V̇0(q̄, q̇) ≤ −q̇T sd(q̄, q̇, θ)−W1(q̄, q̇)

with

W1(q̄, q̇) = fm‖q̇‖2 − εfM‖sP (KP q̄)‖‖q̇‖ − εκ‖sP (KP q̄)‖‖q̇‖+ ε‖sP (KP q̄)‖2

− εkCBP‖q̇‖2 − εµMβP‖q̇‖2

=

(
‖sP (KP q̄)‖
‖q̇‖

)T (
ε − ε

2
(fM + κ)

− ε
2
(fM + κ) fm − εβM

)(
‖sP (KP q̄)‖
‖q̇‖

)
(3.15)

Note further that, from the satisfaction of (3.10), W1(q̄, q̇) is positive definite (since
any ε < εM ≤ ε2 renders positive definite the matrix at the right-hand side of (3.15)).
From this and (3.6), by Lyapunov’s second method,2 the trivial solution q̄(t) ≡ 0n is
concluded to be globally asymptotically stable, which completes the proof. /

2See for instance [38, Chap. II, §6], where (generalized) statements of Lyapunov’s second method
are presented under the consideration of locally Lipschitz-continuous Lyapunov functions and their
upper-right derivative along the system trajectories.

27



Remark 3.1 Let KD ∈ Rn×n be a positive definite diagonal matrix, i.e. KD =
diag[kD1, . . . , kDn] with kDi > 0 for all i = 1, . . . , n. A generalized version of the
SP-SD controller is retrieved from (3.3) by defining

sd(q̄, q̇, θ) = sD(KDq̇) (3.16)

where sD : Rn → Rn : x 7→
(
σD1(x1) , . . . , σDn(xn)

)T
, with σDi(·), i = 1, . . . , n,

being generalized saturation functions with bounds MDi; and the involved bound
values, MPi and MDi, satisfy

MPi +MDi < Ti −Bgi (3.17)

i = 1, . . . , n. Special cases of the generalized SP-SD controller in Eqs. (3.3) and

(3.16) were defined in [19] and [41], taking σPi(xi) = kPi tanh
(
λPixi
kPi

)
and σPi(xi) =

kDi tanh
(
λDixi
kDi

)
, with kPi + kDi < Ti − Bgi, in [19], and σPi(xi) = δPisat

(
xi
δPi

)
and

σDi(xi) = δDisat
(
xi
δDi

)
, with δPi + δDi < Ti−Bgi, in [41]. Further, generalized versions

of the SPD and SPDgc-like schemes proposed in [47] are retrieved from (3.3) as well,
by respectively defining

sd(q̄, q̇, θ) = sP (KP q̄ +KDq̇)− sP (KP q̄) (3.18)

with the generalized saturations σPi(·), i = 1, . . . , n, being strictly increasing, and
bound values satisfying

MPi ≤ Ti −Bgi (3.19)

i = 1, . . . , n (for the SPD case),3 and

sd(q̄, q̇, θ) = s0

(
G(q)θ − sP (KP q̄)

)
− s0

(
G(q)θ − sP (KP q̄)−KDq̇

)
(3.20)

where s0 : Rn → Rn : x 7→
(
σ01(x1) , . . . , σ0n(xn)

)T
, with σ0i(·), i = 1, . . . , n,

being linear saturation functions for (L0i,M0i), and the involved linear/generalized
saturation function parameters satisfying

Bgi +MPi < L0i ≤M0i < Ti (3.21)

i = 1, . . . , n (for the SPDgc-like case).4 Observe from (3.21) that, by virtue of item
(c) of Definition 2.4 (under the consideration of Properties 1.4 and 1.5), we have that
s0

(
G(q)θ − sP (KP q̄)

)
≡ G(q)θ − sP (KP q̄) (see (3.20) and (3.3)). Furthermore, note

that, from items (a) of Definition 2.4 and 8a and 9 of Lemma 2.4 (under the fulfilment
of inequalities (3.21) in the SPDgc-like case), sd(q̄, q̇, θ) in every one of the above
cases in (3.16), (3.18), and (3.20) satisfies the expressions in (3.4) and (3.6). Further,
notice that, through the fulfilment of (3.17), (3.19) (under the consideration of the

3Note that the generalized saturations, σPi(·), in (3.18) are not restricted to be continuously
differentiable as originally formulated in [47].

4Notice that the internal saturations, σPi(·), in (3.20) are permitted to be any function satisfying
Definition 2.4 and are consequently not tied to be linear saturations as originally formulated in [47].

28



strictly increasing character of the generalized saturation functions σPi involved in the
SPD case), and (3.21), every sd(q̄, q̇, θ) in expressions (3.16), (3.18), and (3.20) satisfies
inequalities (3.7) too. Moreover, from the Lipschitz-continuous character of generalized
saturation functions, one sees that sd(q̄, q̇, θ) in every one of the above cases in (3.16),
(3.18), and (3.20) satisfies inequality (3.5) with

κ = max
i
{σ′iMkDi} (3.22a)

where

σ′iM =


σ′DiM in the SP-SD case

σ′PiM in the SPD case

σ′0iM in the SPDgc-like case

(3.22b)

σ′DiM , σ′PiM , and σ′0iM respectively being the positive bounds of D+σDi(·), D+σPi(·),
and D+σ0i(·), in accordance to item 2 of Lemma 2.4. /

3.1.2 Global adaptive set-point control

If the accurate values of the elements of θ in g(q, θ) are unknown, exact gravity compen-
sation is no longer possible. However, in such a situation, global position stabilization
avoiding input saturation can still be accomplished through adaptive gravity compen-
sation. This is achieved by means of suitable strict bounds on the elements of θ, as
described next.

Let Ma ,
(
Ma1, . . . ,Map

)T
and Θa , [−Ma1,Ma1]× · · · × [−Map,Map], with Maj,

j = 1, . . . , p, being positive constants such that

θj < Maj (3.23a)

∀j ∈ {1, . . . , p}, and
BMa
gi < Ti (3.23b)

∀i ∈ {1, . . . , n}, where, in accordance to Property 1.6, BMa
gi are positive constants

such that |gi(x, y)| = |Gi(x)y| ≤ BMa
gi , i = 1, . . . , n, ∀x ∈ Rn, ∀y ∈ Θa. Let us note

that Assumption 3.1 ensures the existence of such positive values Maj, j = 1, . . . , p,
satisfying inequalities (3.23). Notice further that inequalities (3.23b) are satisfied
if
∑p

j=1 BGijMaj < Ti, BGi‖Ma‖ < Ti, or BG‖Ma‖ < Ti, i = 1, . . . , n; actually,∑p
j=1BGijMaj, BGi‖Ma‖, or BG‖Ma‖, may be taken as the value of BMa

gi as long
as inequality (3.23b) is satisfied.

Based on the generalized algorithm in Eq. (3.3), the proposed adaptive control
scheme is defined as

u(q, q̇, θ̂) = −sd(q̄, q̇, θ̂)− sP (KP q̄) +G(q)θ̂ (3.24)

with sP (·), Kp, and sd(·) being as defined in Section 3.1.1, and θ̂ (vector of estimated
parameters) being the output variable of an auxiliary dynamic subsystem defined as

φ̇ = −ΓGT (q)
[
q̇ + εsP (KP q̄)

]
(3.25a)

θ̂ = sa(φ) (3.25b)
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Figure 3.1: Block diagram of the proposed state feedback adaptive control scheme

where φ is the (internal) state of the auxiliary dynamics in Eq. (3.25a);

sa : Rp → Rp

x 7→
(
σa1(x1) , . . . , σan(xp)

)T
σaj(·), j = 1, . . . , p, being strictly increasing generalized saturation functions
with bounds Maj as defined above, i.e. satisfying inequalities (3.23); Γ ∈ Rp×p is a
positive definite diagonal constant matrix, i.e. Γ = diag[γ1 . . . , γp] with γj > 0 for all
j = 1, . . . , p; and ε is a positive constant satisfying inequality (3.10). A block diagram
of the proposed adaptive control scheme is shown in Fig. 3.1.

Remark 3.2 Observe that the control scheme in (3.24)-(3.25) does not involve the
exact values of the elements of θ. It only requires the satisfaction of inequalities (3.23).
In other words, only strict bounds Maj of θj, j = 1, . . . , p, —i.e. any set of them
satisfying inequalities (3.23b)— are involved. Notice further that a suitable choice of ε
does not require the exact knowledge of the system parameters either. Indeed, observe,
on the one hand, that an estimation of the right-hand side of inequality (3.10) may be
obtained by means of upper and lower bounds of the system parameters and viscous
friction coefficients (more precisely, nonzero lower bounds of µm and fm, and upper
bounds of µM , kC , and fM ; see Properties 1.1, 1.2.5, and 1.3). On the other hand, the
fulfilment of inequality (3.10) is not necessary but only sufficient for the closed-loop
analysis to hold, as shown next, which permits the consideration of values of ε higher
than εM (up to certain limit) without destabilizing the closed loop. /

Remark 3.3 The auxiliary subsystem in Eqs. (3.25) is the adaptation algorithm. Its
particular form gives rise to parameter estimates evolving within pre-specified limits,
avoiding discontinuities throughout its dynamical structure. Let us note that the ε-
term in the adaptation subsystem forces qd to be the unique equilibrium configuration
of the closed-loop system. This eliminates the steady-state position error generated by
conventional approaches that include exact gravity compensation through generally-
inexact (or biassed) parameter estimates. Further, inequality (3.10) states a (sufficient)
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condition that guarantees the required stability/convergence properties. It is obtained
from the closed-loop analysis, by looking for the conditions through which the involved
Lyapunov function adopts the required analytical properties. This is corroborated
next. /

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(q, q̇, θ̂) as defined through Eqs. (3.24)-(3.25).
Observe that —under Assumption 3.1, the satisfaction of inequalities (3.23), and the
consideration of (3.2)— the fulfilment of (3.7) shows that

Ti >
∣∣ui(q, q̇, sa(φ)

)∣∣ = |ui| = |τi| i = 1, . . . , n ∀(q, q̇, φ) ∈ Rn × Rn × Rp (3.26)

Thus, under the consideration of Property 1.5, the closed-loop system takes the form

H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sd
(
q̄, q̇, sa(φ)

)
− sP (KP q̄) +G(q)s̄a(φ̄) (3.27a)

˙̄φ = −ΓGT (q)
[
q̇ + εsP (KP q̄)

]
(3.27b)

where φ̄ = φ− φ∗ and

s̄a(φ̄) = sa(φ̄+ φ∗)− sa(φ∗) (3.28)

with φ∗ =
(
φ∗1, . . . , φ

∗
p

)T
such that sa(φ

∗) = θ, or equivalently, φ∗j = σ−1
aj (θj), j =

1, . . . , p.5 Observe that, by item 8b of Lemma 2.4, the elements of s̄a(φ̄) in (3.28), i.e.

σ̄aj(φ̄j) = σaj(φ̄j + φ∗j)− σaj(φ∗j)

j = 1, . . . , p, turn out to be strictly increasing generalized saturation functions.

Remark 3.4 Let us note that, from Eqs. (3.27) under stationary conditions, i.e. by

considering q̈ = q̇ = 0n and ˙̄φ = 0p, qd proves to be the unique equilibrium position
of the closed-loop system —or equivalently, 0n proves to be the unique equilibrium
position error of the closed loop—, while the parameter estimation error equilibrium
vector φ̄e turns out to be defined by the solutions of the equation G(qd)s̄a(φ̄e) = 0n,
and consequently s̄a(φ̄e) ∈ ker(G(qd)).

6 /

5Notice that their strictly increasing character renders the generalized saturation functions σaj ,
j = 1, . . . , p, (involved in the definition of sa) invertible.

6From the closed-loop system Eq. 3.27, under stationary conditions, one gets

−sP (KP q̄) +G(q)s̄a(φ̄) = 0n (3.29)

GT (q)sP (KP q̄) = 0p (3.30)

Hence premultiplying Eq. (3.29) by −sTP (KP q̄) and using Eq. (3.30), we obtain

sTP (KP q̄)sP (KP q̄)− sTP (KP q̄)G(q)︸ ︷︷ ︸
0T
p

s̄a(φ̄) = sTP (KP q̄)sP (KP q̄) = 0⇐⇒ q̄ = 0n (3.31)

Finally, using the result from Eq. (3.31) in Eq. (3.29), one gets G(qd)s̄a(φ̄) = 0n.
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Proposition 3.2 For the closed-loop system in Eqs. (3.27), under the consideration
of Assumption 3.1, the trivial solution (q̄, φ̄)(t) ≡ (0n, 0p) is stable and, for any initial
condition (q̄, q̇, φ̄)(0) ∈ Rn×Rn×Rp, q̄(t)→ 0n as t→∞, and s̄a(φ̄(t))→ ker(G(qd))
as t→∞, with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0. /

Proof. By (3.26), we see that, along the system trajectories, |τi(t)| = |ui(t)| < Ti,
∀t ≥ 0. This proves that, under the proposed adaptive scheme, input saturation is
avoided. Now, in order to develop the stability/convergence analysis, let us define the
scalar function

V1(q̄, q̇, φ̄) = V0(q̄, q̇) +

∫ φ̄

0p

s̄Ta (r)Γ−1dr (3.32)

where
∫ φ̄

0p
s̄Ta (r)Γ−1dr =

∑p
j=1

∫ φ̄j
0
s̄aj(rj)γ

−1
j drj, and V0(q̄, q̇) is as defined in Eq. (3.9).7

Note that, from the positive definite and radially unbounded characters of V0(q̄, q̇)
(shown in the proof of Proposition 3.1) and items 8b, 6, and 7 of Lemma 2.4 (through
which the integral term in the right-hand side of Eq. (3.32) is concluded to be a radially
unbounded positive definite function of φ̄), V1(q̄, q̇, φ̄) proves to be positive definite and
radially unbounded. Its upper-right derivative along the system trajectories, V̇1 =
D+V1 [38, App. I] [32, §6.1A], is given by

V̇1(q̄,q̇, φ̄)

= q̇TH(q)q̈ +
1

2
q̇T Ḣ(q, q̇)q̇ + εsTP (KP q̄)H(q)q̈ + εq̇T Ḣ(q, q̇)sP (KP q̄)

+ εq̇TH(q)s′P (KP q̄)KP q̇ + sTP (KP q̄)q̇ + s̄Ta (φ̄)Γ−1 ˙̄φ

= q̇T
[
− C(q, q̇)q̇ − F q̇ − sd

(
q̄, q̇, sa(φ)

)
− sP (KP q̄) +G(q)s̄a(φ̄)

]
+

1

2
q̇T Ḣ(q, q̇)q̇

+ εsTP (KP q̄)
[
− C(q, q̇)q̇ − F q̇ − sd

(
q̄, q̇, sa(φ)

)
− sP (KP q̄) +G(q)s̄a(φ̄)

]
+ εq̇T Ḣ(q, q̇)sP (KP q̄) + εq̇TH(q)s′P (KP q̄)KP q̇ + sTP (KP q̄)q̇

− s̄Ta (φ̄)GT (q)
[
q̇ + εsP (KP q̄)

]
= − q̇TF q̇ − q̇T sd

(
q̄, q̇, sa(φ)

)
− εsTP (KP q̄)F q̇ − εsTP (KP q̄)sd

(
q̄, q̇, sa(φ)

)
− εsTP (KP q̄)sP (KP q̄) + εq̇TC(q, q̇)sP (KP q̄) + εq̇TH(q)s′P (KP q̄)KP q̇

where H(q)q̈ and ˙̄φ have been replaced by their equivalent expressions from the closed-
loop manipulator dynamics in Eq. (3.27), Property 1.2.1 has been used, and s′P (KP q̄)
was defined in (3.14). Observe that from Properties 1.1, 1.2.5, and 1.3, the satisfaction
of (3.5), items (b) of Definition 2.4 and 2 of Lemma 2.4, and the positive definite
character of KP , we have that

V̇1(q̄, q̇, φ̄) ≤ −q̇T sd
(
q̄, q̇, sa(φ)

)
−W1(q̄, q̇)

7The complete expression is given as

V1(q̄, q̇, φ̄) =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)H(q)q̇ +

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0p

σ̄Ta (r)Γ−1dr
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where W1(q̄, q̇) was defined in (3.15) and shown to be a positive definite function
in the proof of Proposition 3.1. From this and (3.6), we have that V̇1(q̄, q̇, φ̄) ≤ 0,
∀(q̄, q̇, φ̄) ∈ Rn × Rn × Rp, with V̇1(q̄, q̇, φ̄) = 0 ⇐⇒ (q̄, q̇) = (0n, 0n). Therefore, by
Lyapunov’s second method (see Footnote 2), the trivial solution (q̄, φ̄)(t) ≡ (0n, 0p) is
concluded to be stable. Now, in view of the radially unbounded character of V1(q̄, q̇, φ̄),
the set

Ω , {(q̄, q̇, φ̄) ∈ Rn × Rn × Rp : V1(q̄, q̇, φ̄) ≤ c} (3.33)

is compact for any positive constant c [22, p. 128]. Moreover, in view of the seminega-
tive definite character of V̇1(q̄, q̇, φ̄), Ω is positively invariant with respect to the closed-
loop system. Furthermore, from previous arguments, we have that E , {(q̄, q̇, φ̄) ∈ Ω :
V̇1(q̄, q̇, φ̄) = 0} = {(q̄, q̇, φ̄) ∈ Ω : q̄ = q̇ = 0n}. Further, from Remark 3.4, the largest
invariant set in E, denoted M, is given as M = {(q̄, q̇, φ̄) ∈ E : s̄a(φ̄) ∈ ker(G(qd))}.
Thus, by the invariance theory [32, §7.2] —more specifically, by [32, Theorem 7.2.1]8—,
we have that (q̄, q̇, φ̄)(0) ∈ Ω =⇒ (q̄, q̇, φ̄)(t) → M as t → ∞. Since this holds for
any c > 0 and V1(q̄, q̇, φ̄) is radially unbounded (in view of which Ω may be rendered
arbitrarily large), we conclude that, for any (q̄, q̇, φ̄)(0) ∈ Rn × Rn × Rp, q̄(t) → 0n as
t→∞ and s̄a(φ̄(t))→ ker(G(qd)) as t→∞, which completes the proof. /

Corollary 3.1 If GT (qd)G(qd) is nonsingular, then the trivial solution (q̄, φ̄)(t) ≡
(0n, 0p) is globally asymptotically stable. /

Proof. This is concluded by noting on the one hand that non-singularity ofGT (qd)G(qd)
implies that ker(G(qd)) = {0p}, and on the other hand that s̄a(φ̄) = 0p ⇐⇒ φ̄ = 0p.
Then, from Proposition (3.2), we have that, for any (q̄, q̇, φ̄)(0) ∈ Rn × Rn × Rp,
(q̄, φ̄)(t) → (0n, 0p) as t → ∞, whence the stability of the trivial solution (q̄, φ̄)(t) ≡
(0n, 0p) is concluded to be globally asymptotical [22, §4.1], [16, §26], [38, Chap. I,
§2.10–2.11], [43, §2.3.1]. /

If GT (qd)G(qd) is non-singular, G(qd) is said to be pseudo-invertible. Pseudo-
invertibility of G(qd) is fulfilled if G(qd) has full-column rank. The fulfillment of this
property will depend on the specific (geometrical) structure of each manipulator and
the particular value of qd.

Remark 3.5 Let e1 = −y2 = − (In In)T G(q)s̄a(φ̄), e2 = y1 = −
(
εsTP (KP q̄) q̇T

)T
,

V2(φ̄) =
∫ φ̄

0P
s̄Ta (r)Γ−1dr and consider V0(q̄, q̇) as defined in Eq. (3.9). By previous

arguments and developments, V0 and V2 are radially unbounded positive definite func-
tions in their respective arguments. Following an analysis analog to that of the proofs
of Propositions 3.1 and (3.2), one obtains

V̇0 ≤ −W1(q̄, q̇) + eT1 y1

8Theorem 7.2.1 in [32] may be seen as a version of La Salle’s invariance principle that considers
autonomous systems with continuous dynamics and makes use of continuous scalar functions and
their upper-right derivative along the system trajectories [32, §6.1A] (in contrast, for instance, with
the statement presented in [22, Theorem 4.4], which is addressed to autonomous state equations with
locally Lipschitz-continuous vector fields and makes use of continuously differentiable scalar functions).
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and
V̇2 ≤ eT2 y2

with W1(q̄, q̇) as defined in the proof of Proposition 3.1 where it was proven to be
positive definite in its arguments. Hence, the closed-loop system, in Eqs. (3.27), may
be seen as a (negative) feedback connection among a strictly passive subsystems Σ1

with dynamical model

Σ1 :

{
H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sd(q̄, q̇, θ − e1)− sP (KP q̄)− (In 0n×n) e1

y1 = −
(
εsTP (KP q̄) q̇T

)T
and a storage function V1(q̄, q̇), and a (lossless) passive subsystem Σ2 with state model

Σ2 :


q̇ = − (0n×n In) e2

˙̄φ = ΓGT (q) (In In) e2

y2 = (In In)T G(q)s̄a(φ̄)

and storage function V2(φ̄). This representation shows that, at non-equilibrium con-
ditions, the system energy flows from Σ1 to Σ2, through y1, and back from Σ2 to Σ1,
through y2, generating a mutual excitation among Σ1 and Σ2. The energy dissipation
carried out in Σ1 —which involves the velocity and position errors and does not stop
until they are all vanished— instantaneously decreases the closed loop stored energy
and its flow entailing a continuous reduction on the mutual excitation intensity. This
process holds as long as (e1, e2) 6= (02n, 02n), or equivalently (y1, y2) 6= (02n, 02n), and
consequently ‖yi(t)‖ → 0 as t → ∞, i = 1, 2. Note that the vanishing of y1 implies
that (q̄, q̇)(t) → (0n, 0n) as t → ∞ in view of which the global regulation objective is
guaranteed. On the other hand, the vanishing of y2 implies that

lim
t→∞

G (q(t)) s̄a
(
φ̄(t)

)
= G(qd) lim

t→∞
s̄a
(
φ̄(t)

)
= 0n

and consequently
s̄a
(
φ̄(t)

)
→ ker (G(qd)) as t→∞

which permits a steady state-error on the parameter estimations, unless ker (G(qd)) =
{0p} which is implied by the conditions stated in Corollary 3.1 /

Remark 3.6 Adaptive versions of the SP-SD controller and of the SPD and SPDgc-
like algorithms of [47] are obtained by considering in the proposed design method the
expressions in (3.16), (3.18), and (3.20), respectively, with suitable adjustments on the
saturation function parameter conditions. Thus, the SP-SD controller with adaptive
gravity compensation is obtained from (3.24) taking

sd(q̄, q̇, θ̂) = sD(KDq̇) (3.34)

with sD(·) and KD as defined in Remark 3.1, and the involved bound values, MPi and
MDi, satisfying

MPi +MDi < Ti −BMa
gi (3.35)
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i = 1, . . . , n, the adaptive SPD scheme is gotten taking

sd(q̄, q̇, θ̂) = sP (KP q̄ +KDq̇)− sP (KP q̄) (3.36)

with sP (·) as defined for this case in Remark 3.1, and bound values satisfying

MPi ≤ Ti −BMa
gi (3.37)

i = 1, . . . , n, and the adaptive SPDgc-like algorithm is obtained taking

sd(q̄, q̇, θ̂) = s0

(
G(q)θ̂ − sP (KP q̄)

)
− s0

(
G(q)θ̂ − sP (KP q̄)−KDq̇

)
(3.38)

with s0(·) as defined in Remark 3.1, and the involved saturation function parameters
satisfying

BMa
gi +MPi < L0i ≤M0i < Ti (3.39)

i = 1, . . . , n. For these cases, κ in (3.10) remains as specified in Remark 3.1 (see Eqs.
(3.22)). /

3.2 Output-feedback regulation approach

In the case when velocity measurements are not available either, output-feedback adap-
tive control is still possible as presented next.

3.2.1 Output-feedback global adaptive regulation

We propose an output-feedback adaptive control scheme defined as

u(q, ϑ, θ̂) = −sP (KP q̄)− sD(KDϑ) +G(q)θ̂ (3.40)

with q̄ and G(q) as previously described in Section 3.1; KP ∈ Rn×n and KD ∈ Rn×n

are positive definite diagonal matrices; sP (x) =
(
σP1(x1), . . . , σPn(xn)

)T
and sD(x) =(

σD1(x1), . . . , σDn(xn)
)T

, with σPi(·) and σDi(·), i = 1, . . . , n, being generalized sat-

uration functions with bounds MPi and MDi such that

MPi +MDi < Ti −BMa
gi (3.41)

i = 1, . . . , n;9 ϑ ∈ Rn (the velocity estimator) and θ̂ ∈ Θa ⊂ Rp (the vector of estimated
parameters) are the output vector variables of auxiliary dynamic subsystems defined
as

q̇c = −AK−1
D sD

(
KD(qc +Bq̄)

)
(3.42a)

ϑ = qc +Bq̄ (3.42b)

9Note that the satisfaction of inequalities (3.23) guarantees positivity of the right-hand side of
inequalities (3.41).
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Figure 3.2: Block diagram of the output-feedback adaptive scheme

and

φ̇c = −εΓGT (q)sP (KP q̄) (3.43a)

θ̂ = sa
(
φc − ΓΥT (q)

)
(3.43b)

where A ∈ Rn×n, B ∈ Rn×n, and Γ ∈ Rp×p are positive definite diagonal matri-
ces; qc and φc are the state vectors of the auxiliary dynamics in Eqs. (3.42a) and
(3.43a) respectively; Υ(q) is the regression vector related to the potential energy func-
tion, according to Property 1.5, i.e. such that U(q, θ) = Υ(q)θ; for all x ∈ Rn:

sa(x) =
(
σa1(x1), . . . , σap(xp)

)T
, with σaj(·), j = 1, . . . , p, being strictly increasing

generalized saturation functions with bounds Maj satisfying inequalities (3.23);
and ε is a positive constant satisfying

ε < εM , min {ε0, ε1, ε2} (3.44)

where

ε0 ,
√

µm
µ2
MβP

ε1 ,
fm

βM + f 2
M/2

ε2 , 2βm

with βP , maxi {σ′PiMkPi}, βm , mini

{
ai

bikDi

}
, βM , kCBP+µMβP , BP ,

√∑n
i=0 M

2
Pi,

σ′PiM being the positive bound of D+σPi(·) in accordance to point 2 of Lemma 2.4, and
µm, µM , kC , fm, and fM as defined in Properties 1.1, 1.2.5, and 1.3. A block diagram
of the output-feedback adaptive control scheme is shown in Fig. 3.2.

Remark 3.7 Analogously to the state-feedback case of Section 3.1, one can see from
expressions (3.40),(3.42)-(3.43), and (3.44) that the developed control scheme does not
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involve the exact values of the elements of θ. Note further that the velocity vector q̇ is
not involved in any of the expressions in Eqs. (3.40),(3.42)-(3.43) either. /

Remark 3.8 The auxiliary subsystem in Eqs. (3.42) is an alternative version of the
dirty derivative (applied to q̄) involving the saturation vector function sD(·) in its
dynamics. In its conventional form, where the function sD(·) is not included (or equiv-
alently, which is obtained by replacing sD(·) in (3.42a) by the identity function), it leads
(through its output variable ϑ) to the derivative of q̄ (or equivalently, to the velocity
vector q̇) with every of its components going through a first-order low-pass filter. This
is commonly done in practice to bound the gain of the high frequency components,
giving rise to a causal (approximated) derivative operator. The consideration of sD(·)
in (3.42a) proves to be helpful to show the expected stability/convergence closed-loop
properties, as will be seen in Section 3.2.2. /

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(q, ϑ, θ̂) as defined through (3.40),(3.42)-(3.43).
Define the variable transformationq̄ϑ

φ̄

 =

 q − qd
qc +B(q − qd)

φc − ΓΥT (q)− φ∗

 (3.45)

with φ∗ =
(
φ∗1, . . . , φ

∗
p

)T
such that sa(φ

∗) = θ, or equivalently, φ∗j = σ−1
aj (θj), j =

1, . . . , p. Observe that, from the fulfilment of inequalities (3.23) and (3.41), we have
that

∣∣ui(q̄ + qd, ϑ, sa(φ̄ + φ∗)
)∣∣ ≤ MPi + MDi + BMa

gi < Ti, i = 1, . . . , n, ∀(q̄, ϑ, φ̄) ∈
Rn × Rn × Rn, whence, in view of (3.2), one sees that

Ti >
∣∣ui(q̄ + qd, ϑ, sa(φ̄+ φ∗)

)∣∣ = |ui| = |τi| ,
i = 1, . . . , n , ∀(q̄, ϑ, φ̄) ∈ Rn × Rn × Rn (3.46)

Thus, under the consideration of Property 1.5 and the variable transformation (3.45),
the closed-loop dynamics adopts the form

H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sP (KP q̄)− sD
(
KDϑ

)
+G(q)s̄a(φ̄) (3.47a)

ϑ̇ = −AK−1
D sD(KDϑ) +Bq̇ (3.47b)

˙̄φ = −ΓGT (q)
[
εsP (KP q̄) + q̇

]
(3.47c)

where s̄a(φ̄) = sa(φ̄ + φ∗) − sa(φ
∗). Observe that, by point 8b of Lemma 2.4, the

elements of s̄a(φ̄), i.e. σ̄aj(φ̄j) = σaj(φ̄j + φ∗j) − σaj(φ∗j), j = 1, . . . , p, turn out to be
strictly increasing generalized saturation functions.

Remark 3.9 Analogously to the adaptive approach of Section 3.1, let us note, from

Eqs. (3.47), that under stationary conditions: q̈ = q̇ = ϑ̇ = 0n and ˙̄φ = 0p, the
desired position vector qd is the unique equilibrium position of the closed-loop system
—or equivalently, 0n is the unique equilibrium position error of the closed loop— while
the parameter estimation error equilibrium vector φ̄e turns out to be defined by the
solutions of the equation G(qd)s̄a(φ̄e) = 0n, and consequently s̄a(φ̄e) ∈ ker(G(qd)). /
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Proposition 3.3 Consider the closed-loop system in Eqs. (3.47) under the satis-
faction of Assumption 3.1 and inequalities (3.23) and (3.41). Then, for any posi-
tive definite diagonal matrices KP , KD, A, B, and Γ, and any ε satisfying inequal-
ity (3.44), the trivial solution (q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0p) is stable and, for any initial
condition (q̄, q̇, ϑ, φ̄)(0) ∈ Rn × Rn × Rn × Rp, (q̄, ϑ)(t) → (0n, 0n) as t → ∞, and
s̄a(φ̄(t))→ ker(G(qd)) as t→∞, with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0. /

Proof. By (3.46), one sees that, along the system trajectories, |τi(t)| = |ui(t)| < Ti,
∀t ≥ 0. This proves that under the proposed output-feedback adaptive scheme, the
input saturation values, Ti, are never reached. Now, in order to develop the stabil-
ity/convergence analysis, let us define the scalar function

V (q̄, q̇, ϑ, φ̄) =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)H(q)q̇ +

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0p

s̄Ta (r)Γ−1dr

+

∫ ϑ

0n

sTD(KDr)B
−1dr

(3.48)
where ∫ q̄

0n

sTP (KP r)dr =
n∑
i=1

∫ q̄i

0

σPi(kPiri)dri,

∫ ϑ

0n

sTD(KDr)B
−1dr =

n∑
i=1

∫ ϑi

0

σDi(kDiri)b
−1
i dri,

and

∫ φ̄

0p

s̄Ta (r)Γ−1dr =

p∑
j=1

∫ φ̄j

0

σ̄aj(rj)γ
−1
j drj

Observe that, under the consideration of Property 1.1, we have that

V (q̄, q̇, ϑ, φ̄) ≥ µm
2
‖q̇‖2 − εµM‖sP (KP q̄)‖‖q̇‖+ α0

∫ q̄

0n

sTP (KP r)dr +W01(q̄, ϑ, φ̄)

with

W01(q̄, ϑ, φ̄) =

∫ ϑ

0n

sTD(KDr)B
−1dr +

∫ φ̄

0p

s̄Ta (r)Γ−1dr + (1− α0)

∫ q̄

0n

sTP (KP r)dr

for any constant α0 ∈ (0, 1). Moreover, from point 5 of Lemma 2.4, we have:∫ q̄i

0

σPi(kPiri)dri ≥
σ2
Pi(kPiq̄i)

2kPiσ′PiM
∀q̄i ∈ R

∀q̄i ∈ R, whence we get:

α0

∫ q̄

0n

sTP (KP r)dr = α0

n∑
i=1

∫ q̄i

0

σPi(kPiri)dri ≥ α0

n∑
i=1

σ2
Pi(kPiq̄i)

2kPiσ′PiM

≥ α0

2 maxi{kPiσ′PiM}

n∑
i=1

σ2
Pi(kPiq̄i) =

α0

2βP
‖sP (KP q̄)‖2
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and consequently

V (q̄, q̇, ϑ, φ̄) ≥ µm
2
‖q̇‖2 − εµM‖sP (KP q̄)‖‖q̇‖+

α0

2βP
‖sP (KP q̄)‖2 +W01(q̄, ϑ, φ̄)

which may be rewritten as

V (q̄, q̇, ϑ, φ̄) ≥ W00(q̄, q̇) +W01(q̄, ϑ, φ̄) , W0(q̄, q̇, ϑ, φ̄)

with

W00(q̄, q̇) =
1

2

(
‖sP (KP q̄)‖
‖q̇‖

)T ( α0

βP
−εµM

−εµM µm

)(
‖sP (KP q̄)‖
‖q̇‖

)
where α0 is chosen such that

ε2

ε2
0

< α0 < 1 (3.49)

Note that (3.44) guarantees the existence of positive values α0 satisfying (3.49) (since
ε < εM ≤ ε0 =⇒ ε2

ε20
< 1). Moreover, by (3.49), W00 is a positive definite function of

(q̄, q̇),10 while from point 6 of Lemma 2.4, one sees that W01(q̄, ϑ, φ̄) ≥ 0, ∀(q̄, ϑ, φ̄) ∈
Rn×Rn×Rp, with W01(q̄, ϑ, φ̄) = 0 ⇐⇒ (q̄, ϑ, φ̄) = (0n, 0n, 0p). Hence, W0(q̄, q̇, ϑ, φ̄) is
concluded to be positive definite. Taking this into account, by noting that W00(0n, q̇)→
∞ as ‖q̇‖ → ∞, and from point 7 of Lemma 2.4 that W01(q̄, 0n, 0p)→∞ as |q̄i| → ∞
for every i ∈ {1, . . . , n}, W01(0n, ϑ, 0p)→∞ as |ϑi| → ∞ for every i ∈ {1, . . . , n}, and
W01(0n, 0n, φ̄) → ∞ as |φ̄j| → ∞ for every j ∈ {1, . . . , p}, W0(q̄, q̇, ϑ, φ̄) additionally
proves to be radially unbounded [21, p. 115]. Therefore, V (q̄, q̇, ϑ, φ̄) is concluded to be
positive definite and radially unbounded. Its upper-right derivative along the system
trajectories, V̇ = D+V [38, App. I] [32, §6.1A], is given by

V̇ (q̄, q̇, ϑ, φ̄) = q̇TH(q)q̈ +
1

2
q̇T Ḣ(q, q̇)q̇ + εsTP (KP q̄)H(q)q̈ + εsTP (KP q̄)Ḣ(q, q̇)q̇

+ εq̇TH(q)s′P (KP q̄)KP q̇ + sTP (KP q̄)q̇ + sTD(KDϑ)B−1ϑ̇+ s̄Ta (φ̄)Γ−1 ˙̄φ

= − q̇TF q̇ − εsTP (KP q̄)F q̇ − εsTP (KP q̄)sP (KP q̄)− εsTP (KP q̄)sD(KDϑ)

+ εq̇TC(q, q̇)sP (KP q̄) + εq̇TH(q)s′P (KP q̄)KP q̇

− sTD(KDϑ)B−1AK−1
D sD(KDϑ)

where H(q)q̈, ϑ̇, and ˙̄φ have been replaced by their equivalent expression from the
closed-loop manipulator dynamics in Eqs. (3.47), Property 1.2.1 has been used, and
s′P (KP q̄) , diag[D+σP1(kP1q̄1), . . . , D+σPn(kPnq̄n)]. Observe that from Properties 1.1,
1.2.5, 1.3, and points (b) of Definition 2.4 and 2 of Lemma 2.4, we have that

V̇ (q̄, q̇, ϑ, φ̄)≤− fm‖q̇‖2 + εfM‖sP (KP q̄)‖‖q̇‖ − ε‖sP (KP q̄)‖2

+ ε‖sP (KP q̄)‖‖sD(KDϑ)‖+ ε
(
kCBP + µMβP

)
‖q̇‖2 − βm‖sD(KDϑ)‖2

10By (3.49), it follows that ε2
(
µ2
MβP

µm

)
= ε2

ε20
< α0 =⇒ ε2µ2

M < α0µm

βP
=⇒ 0 < α0µm

βP
− ε2µ2

M =

det(Q0) whence (taking into account that α0

βP
> 0, by the leading principal minor criterion) Q0 is

concluded to be a positive definite symmetric matrix.
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which may be rewritten as

V̇ (q̄, q̇, ϑ, φ̄) ≤ −W1(q̄, q̇)−W2(q̄, ϑ)

where

W1(q̄, q̇) =

(
‖sP (KP q̄)‖
‖q̇‖

)T ( ε
2

− εfM
2

− εfM
2

fm − εβM

)(
‖sP (KP q̄)‖
‖q̇‖

)

W2(q̄, ϑ) =

(
‖sP (KP q̄)‖
‖sD(KDϑ)‖

)T ( ε
2
− ε

2

− ε
2

βm

)(
‖sP (KP q̄)‖
‖sD(KDϑ)‖

)
Let us note that the fulfillment of (3.44) renders W1 and W2 positive definite functions
of (q̄, q̇) and (q̄, ϑ) respectively.11 Hence, V̇ (q̄, q̇, ϑ, φ̄) ≤ 0, ∀(q̄, q̇, ϑ, φ̄) ∈ Rn × Rn ×
Rn × Rp, with V̇ (q̄, q̇, ϑ, φ̄) = 0 ⇐⇒ (q̄, q̇, ϑ) = (0n, 0n, 0n). Thus, by Lyapunov’s 2nd
method (see footnote 2), the trivial solution (q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0p) is concluded to
be stable. Now, in view of the radially unbounded character of V (q̄, q̇, ϑ, φ̄), the set
Ω , {(q̄, q̇, ϑ, φ̄) ∈ Rn × Rn × Rn × Rp : V (q̄, q̇, ϑ, φ̄) ≤ c} is compact for any positive
constant c [21, p. 115]. Moreover, in view of the negative semidefinite character of
V̇ (q̄, q̇, ϑ, φ̄), Ω is positively invariant with respect to the closed-loop dynamics [21, p.
101]. Furthermore, from previous arguments, we have that E , {(q̄, q̇, ϑ, φ̄) ∈ Ω :
V̇ (q̄, q̇, ϑ, φ̄) = 0} = {(q̄, q̇, ϑ, φ̄) ∈ Ω : q̄ = q̇ = ϑ = 0n}. Further, from Remark 3.9,
the largest invariant set in E, denoted M, is given as M = {(q̄, q̇, ϑ, φ̄) ∈ E : s̄a(φ̄) ∈
ker(G(qd))}. Thus, by the invariance theory [32, §7.2] —more specifically, by [32,
Theorem 7.2.1] (see footnote 8)—, we have that (q̄, q̇, ϑ, φ̄)(0) ∈ Ω =⇒ (q̄, q̇, ϑ, φ̄)(t)→
M as t → ∞. Since this holds for any c > 0 and V (q̄, q̇, ϑ, φ̄) is radially unbounded
(in view of which Ω may be rendered arbitrarily large), we conclude that, for any
(q̄, q̇, ϑ, φ̄)(0) ∈ Rn × Rn × Rn × Rp, (q̄, ϑ)(t) → (0n, 0n) as t → ∞ and s̄a(φ̄(t)) →
ker(G(qd)) as t→∞, which completes the proof. /

Corollary 3.2 If GT (qd)G(qd) is nonsingular, then the trivial solution (q̄, ϑ, φ̄)(t) ≡
(0n, 0n, 0p) is globally asymptotically stable. /

Proof. Note, on the other hand, that non-singularity of GT (qd)G(qd) implies that
ker(G(qd)) = {0p}, and on the other hand that s̄a(φ̄) = 0p ⇐⇒ φ̄ = 0p. Then, from
Proposition 3.4, we have that, for any (q̄, q̇, ϑ, φ̄)(0) ∈ Rn×Rn×Rn×Rp, (q̄, ϑ, φ̄)(t)→
(0n, 0n, 0p) as t→∞, whence the stability of the trivial solution (q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0p)
is concluded to be globally asymptotical [22, §4.1], [16, §26], [38, Chap. I, §2.10–2.11],
[43, §2.3.1]. /

11By (3.44), it follows that ε < εM ≤ ε1 = fm
βM+f2

M/2
=⇒ ε2

2

(
βM +

f2
M

2

)
< εfm

2 =⇒ 0 <

ε
2 (fm − εβM ) −

(
εfM

2

)2

= det(Q1), and ε < εM ≤ ε2 = 2βm =⇒ 0 < εβm

2 − ε2

4 = det(Q2) whence

(taking into account that ε
2 > 0, by the leading principal minor criterion) Q1 and Q2 are concluded

to be positive definite symmetric matrices.
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Remark 3.10 Let

e1 = −y2 = − (In In)T G(q)s̄a(φ̄)

e2 = y1 = −
(
εsTP (KP q̄) q̇T

)T
V1(q̄, ϑ) =

1

2
q̇TH(q)q̇ + εsTP (KP q̄)H(q)q̇ +

∫ q̄

0n

sTP (KP r)dr +

∫ ϑ

0n

sTD(KDr)B
−1dr

V2(φ̄) =

∫ φ̄

0P

s̄Ta (r)Γ−1dr

By previous arguments and developments, V1 and V2 are radially unbounded positive
definite functions in their respective arguments. Following an analysis similar to that
of the proof of Proposition 3.4, one obtains

V̇1 ≤ −W1(q̄, q̇)−W2(q̇, ϑ)−W3(q̄, ϑ) + eT1 y1

and
V̇2 ≤ eT2 y2

with W1(q̄, q̇), W2(q̇, ϑ), and W3(q̄, ϑ) being positive definite in their arguments. Hence,
the closed-loop system, in Eqs. (3.47), may be seen as a (negative) feedback connection
among a strictly passive subsystems Σ1 with dynamical model

Σ1 :


H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sP (KP q̄)− sD(KDϑ)− (In 0n×n) e1

ϑ̇ = −AK−1
D sD (KDϑ) +Bq̇

y1 = −
(
εsTP (KP q̄) q̇T

)T
and a storage function V1(q̄, q̇), and a (lossless) passive subsystem Σ2 with state model

Σ2 :


q̇ = − (0n×n In) e2

˙̄φ = ΓGT (q) (In In) e2

y2 = (In In)T G(q)s̄a(φ̄)

and storage function V2(φ̄). Analogously to the state-feedback case described in Remark
3.5, this representation shows that, at non-equilibrium conditions, the system energy
flows from Σ1 to Σ2, through y1, and back from Σ2 to Σ1, through y2, generating
a mutual excitation among Σ1 and Σ2. The energy dissipation carried out in Σ1

—which involves the velocity and position errors and does not stop until they are
all vanished— instantaneously decreases the closed loop stored energy and its flow
entailing a continuous reduction on the mutual excitation intensity. This process holds
as long as (e1, e2) 6= (02n, 02n), or equivalently (y1, y2) 6= (02n, 02n), and consequently
‖yi(t)‖ → 0 as t→∞, i = 1, 2. Note that the vanishing of y1 implies that (q̄, q̇)(t)→
(0n, 0n) as t → ∞ in view of which the global regulation objective is guaranteed. On
the other hand, the vanishing of y2 implies that

lim
t→∞

G (q(t)) s̄a
(
φ̄(t)

)
= G(qd) lim

t→∞
s̄a
(
φ̄(t)

)
= 0n
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Figure 3.3: Block diagram of the extended output-feedback adaptive scheme

and consequently
s̄a
(
φ̄(t)

)
→ ker (G(qd)) as t→∞

which permits a steady state-error on the parameter estimations, unless ker (G(qd)) =
{0p} which is implied by the conditions stated in Corollary 3.1 /

3.2.2 Output-feedback global adaptive regulation with extended
adaptation algorithm

An alternative version of the output-feedback adaptive scheme is proposed under the
consideration of Eqs. (3.40), (3.42), and the extended adaptation dynamics given by

φ̇c = −εΓGT (q)
[
sP (KP q̄) + αsD(KDϑ)

]
(3.50a)

θ̂ = sa
(
φc − ΓΥT (q)

)
(3.50b)

where α is a constant that may arbitrarily take any real value. A block diagram of the
extended output-feedback adaptive control scheme is shown in Fig. 3.3.

The α-term extending the adaptation dynamics in (3.50a) has been included for the
sake of generality, since an analogue term was considered in a previous approach [25].
Furthermore, the α-term in (3.50a) has a natural influence in the closed-loop responses
which could be used for performance adjustment purposes. This aspect will not be
explored in this dissertation.

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(q, ϑ, θ̂) as defined in Eqs. (3.40),(3.42), in
Eqs. (3.50). By Property 1.5 and the variable transformation (3.45), the closed-loop
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dynamics adopts the form

H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sP (KP q̄)− sD
(
KDϑ

)
+G(q)s̄a(φ̄) (3.51a)

ϑ̇ = −AK−1
D sD(KDϑ) +Bq̇ (3.51b)

˙̄φ = −ΓGT (q)
[
εsP (KP q̄) + αεsD(KDϑ) + q̇

]
(3.51c)

where s̄a(φ̄) = sa(φ̄+ φ∗)− sa(φ∗).
Let

ε0 ,
√

µm
µ2
M (βP + α2βD0)

(3.52a)

ε1 ,
fm

βMP +
f 2
M

2
+ |α|

(
βMD +

fm
ε̄3

) (3.52b)

ε2 ,
2βm

1 + α2 +
2βm
ε̄3

|α|
(3.52c)

where

βP , max
i
{σ′PiMkPi} , βD0 , max

i

{
σ′DiMkDi

bi

}
βMP , kCBP + µMβP , βMD , kCBD + µMβD1

βm , min
i

{
ai

bikDi

}
, ε̄3 ,

2
√
fmβm
βMa

BP ,

√√√√ n∑
i=0

M2
Pi , BD ,

√√√√ n∑
i=0

M2
Di

βD1 , max
i
{σ′DiMkDibi} , βMa , fM + µMβDa

βDa , max
i
{σ′DiMai}

with σ′PiM and σ′DiM being the positive bounds of D+σPi(·) and D+σDi(·), respectively,
in accordance to point 2 of Lemma 2.4, and µm, µM , kC , fm, and fM as defined in
Properties 1.1, 1.2.5, and 1.3. We are ready to state the main analytical result.

Proposition 3.4 Consider the closed-loop system in Eqs. (3.51), under the satisfac-
tion of Assumption 3.1 and inequalities (3.23) and (3.41), and the positive constants
εk, k = 0, 1, 2, defined in Eqs. (3.52). Then, given any positive definite diagonal ma-
trices KP , KD, A, B, and Γ, and any α ∈ R, there exists ε∗ ≥ min{ε0, ε1, ε2} such
that, for any ε ∈ (0, ε∗), the trivial solution (q̄, ϕ, φ̄)(t) ≡ (0n, 0n, 0p) is stable and, for
any initial condition (q̄, q̇, ϕ, φ̄)(0) ∈ Rn×Rn×Rn×Rp, (q̄, ϑ)(t)→ (0n, 0n) as t→∞,
and s̄a(φ̄(t)) → ker(G(qd)) as t → ∞, with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.
/
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Proof. By (3.46), it can be seen that, along the system trajectories, |τi(t)| = |ui(t)| <
Ti, ∀t ≥ 0. This proves that, under the proposed output-feedback adaptive scheme,
the input saturation values Ti are never reached. Now, in order to develop the stabil-
ity/convergence analysis, let us define the scalar function12

VE(q̄, q̇, ϑ, φ̄) = V (q̄, q̇, ϑ, φ̄) + αεsTD(KDϑ)H(q)q̇

where
∫ ϑ

0n
sTD(KDr)B

−1dr =
∑n

i=1

∫ ϑi
0
σDi(kDiri)b

−1
i dri and V as defined in Eq. (3.48),

with ε satisfying

ε < εM , min{ε0, ε1, ε2} (3.53)

Observe that, from Property 1.1 and point 5 of Lemma 2.4, we have that

VE(q̄, q̇, ϑ, φ̄) ≥ W0(q̄, q̇, ϑ) + (1− δ0)

∫ q̄

0n

sTP (KP r)dr

+ (1− δ0)

∫ ϑ

0n

sTD(KDr)B
−1dr +

∫ φ̄

0p

s̄Ta (r)Γ−1dr (3.54)

where

W0(q̄, q̇, ϑ) =
1

2

‖sP (KP q̄)‖
‖q̇‖

‖sD(KDϑ)‖

T

Q0

‖sP (KP q̄)‖
‖q̇‖

‖sD(KDϑ)‖



Q0 =


δ0
βP

−εµM 0

−εµM µm −|α|εµM
0 −|α|εµM δ0

βD0


and δ0 is a positive constant satisfying

ε2

ε2
0

< δ0 < 1 (3.55)

(see (3.53)). Note further that, by (3.55), W0(q̄, q̇, ϑ) is positive definite (since with
ε < εM ≤ ε0, in accordance to (3.53), any δ0 satisfying (3.55) renders positive definite
Q0), and observe that W0(0n, q̇, 0n) → ∞ as ‖q̇‖ → ∞. From this, inequality (3.55),
and points 6 and 7 of Lemma 2.4 (through which one sees that the integral terms
in the right-hand side of (3.54) are radially unbounded positive definite functions),
VE(q̄, q̇, ϑ, φ̄) is concluded to be positive definite and radially unbounded. Its upper-
right derivative along the system trajectories, V̇E = D+VE [38, App. I] [32, §6.1A], is

12The whole expression is given by VE(q̄, q̇, ϑ, φ̄) = 1
2 q̇
TH(q)q̇ + εsTP (KP q̄)H(q)q̇ +

αεsTD(KDϑ)H(q)q̇ +
∫ q̄

0n
sTP (KP r)dr +

∫ ϑ
0n
sTD(KDr)B

−1dr +
∫ φ̄

0p
s̄Ta (r)Γ−1dr
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given by

V̇E(q̄, q̇, ϑ, φ̄) = q̇TH(q)q̈ +
1

2
q̇T Ḣ(q, q̇)q̇ + εsTP (KP q̄)H(q)q̈ + εq̇T Ḣ(q, q̇)sP (KP q̄)

+ εq̇TH(q)s′P (KP q̄)KP q̇ + αsTD(KDϑ)H(q)q̈ + αq̇T Ḣ(q, q̇)sD(KDϑ)

+ αq̇TH(q)s′D(KDϑ)KDq̇ + sTP (KP q̄)q̇ + sTD(KDϑ)B−1ϑ̇+ s̄Ta (φ̄)Γ−1 ˙̄φ

= − q̇TF q̇ − εsTP (KP q̄)F q̇ − εsTP (KP q̄)sP (KP q̄)

− (1 + α)εsTP (KP q̄)sD(KDϑ) + εq̇TC(q, q̇)sP (KP q̄)

+ εq̇TH(q)s′P (KP q̄)KP q̇ − αεsTD(KPϑ)F q̇ − αεsTD(KPϑ)sD(KDϑ)

+ αεq̇TC(q, q̇)sD(KDϑ)− αεq̇TH(q)s′D(KDϑ)AsD(KDϑ)

+ αεq̇TH(q)s′D(KDϑ)KDBq̇ − sTD(KDϑ)B−1AK−1
D sD(KDϑ)

where H(q)q̈, ϑ̇, and ˙̄φ have been replaced by their equivalent expression from the
closed-loop manipulator dynamics in Eqs. (3.51), Property 1.2.1 has been used, and

s′D(KDq̄) , diag[D+σD1(kD1q̄1), . . . , D+σDn(kDnq̄n)]

Observe that from Properties 1.1, 1.2.5, and 1.3, and points (b) of Definition 2.4 and
2 of Lemma 2.4, we have that

V̇E(q̄, q̇, ϑ, φ̄)≤− fm‖q̇‖2 + εfM‖sP (KP q̄)‖‖q̇‖ − ε‖sP (KP q̄)‖2

+ |1 + α|ε‖sP (KP q̄)‖‖sD(KDϑ)‖+ εkCBP‖q̇‖2 + εµMβP‖q̇‖2

+ |α|εfM‖q̇‖‖sD(KDϑ)‖ − εα‖sD(KDϑ)‖2 + |α|εkCBD‖q̇‖2

+ |α|εµMβDa‖q̇‖‖sD(KDϑ)‖+ |α|εµMβD1‖q̇‖2 − βm‖sD(KDϑ)‖2

≤ −W1(q̄, q̇)−W2(q̇, ϑ)−W3(q̄, ϑ)

where

W1(q̄, q̇) =

(
‖sP (KP q̄)‖
‖q̇‖

)T
Q1

(
‖sP (KP q̄)‖
‖q̇‖

)
W2(q̇, ϑ) =

(
‖q̇‖

‖sD(KDϑ)‖

)T
Q2

(
‖q̇‖

‖sD(KDϑ)‖

)
W3(q̄, ϑ) =

(
‖sP (KP q̄)‖
‖sD(KDϑ)‖

)T
Q3

(
‖sP (KP q̄)‖
‖sD(KDϑ)‖

)
with

Q1 =

(
ε
2

− εfM
2

− εfM
2

δ1fm − ε (βMP + |α|βMD)

)

Q2 =

(
(1− δ1)fm − |α|εβMa

2

− |α|εβMa

2
(1− δ1)βm

)

Q3 =

(
ε
2

− |1+α|ε
2

− |1+α|ε
2

αε+ δ1βm

)
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where δ1 is a positive constant satisfying

0 < δ1m , ε

[
max

{
1

ε1

,
1

ε2

}
− |α|
ε̄3

]
< δ1 < 1− |α|ε

ε̄3

, δ1M < 1 (3.56)

Let us note that the fulfillment of (3.53) guarantees the existence of values δ1 ∈ (0, 1)
satisfying (3.56) (since ε < εM ≤ min{ε1, ε2}, in accordance to (3.53), implies that
δ1m < δ1M), while the satisfaction of (3.56) renders W1(q̄, q̇), W2(q̇, ϑ), and W3(q̄, ϑ)
positive definite (with respect to their arguments, since, under such a condition, Q1,
Q2, and Q3 turn out to be positive definite). Hence, V̇E(q̄, q̇, ϑ, φ̄) ≤ 0, ∀(q̄, q̇, ϑ, φ̄) ∈
Rn × Rn × Rn × Rp, with V̇E(q̄, q̇, ϑ, φ̄) = 0 ⇐⇒ (q̄, q̇, ϑ) = (0n, 0n, 0n). Therefore, by
Lyapunov’s second method, the trivial solution (q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0p) is concluded
to be stable. Now, in view of the radially unbounded character of VE(q̄, q̇, ϑ, φ̄), the set
Ω , {(q̄, q̇, ϑ, φ̄) ∈ Rn × Rn × Rn × Rp : VE(q̄, q̇, ϑ, φ̄) ≤ c} is compact for any positive
constant c [22, p. 128]. Moreover, in view of the seminegative definite character of
V̇ (q̄, q̇, ϑ, φ̄), Ω is positively invariant with respect to the closed-loop dynamics [22, p.
115]. Furthermore, from previous arguments: E , {(q̄, q̇, ϑ, φ̄) ∈ Ω : V̇ (q̄, q̇, ϑ, φ̄) =
0} = {(q̄, q̇, ϑ, φ̄) ∈ Ω : q̄ = q̇ = ϑ = 0n}. Further, from Remark 3.9, the largest
invariant set in E, denotedM, is given asM = {(q̄, q̇, ϑ, φ̄) ∈ E : s̄a(φ̄) ∈ ker(G(qd))}.
Thus, by the invariance theory [32, §7.2] —more specifically, by [32, Theorem 7.2.1]—,
we have that (q̄, q̇, ϑ, φ̄)(0) ∈ Ω =⇒ (q̄, q̇, ϑ, φ̄)(t) → M as t → ∞. Since this
holds for any c > 0 and V (q̄, q̇, ϑ, φ̄) is radially unbounded (in view of which Ω may be
rendered arbitrarily large), we conclude that, for any (q̄, q̇, ϑ, φ̄)(0) ∈ Rn×Rn×Rn×Rp,
(q̄, ϑ)(t) → (0n, 0n) as t → ∞ and s̄a(φ̄(t)) → ker(G(qd)) as t → ∞. Finally, from
(3.53) and its sufficient character, as a condition supporting the proof, the stated
stability/convergence result is concluded to hold with ε ∈ (0, ε∗) for some ε∗ ≥ εM . /

The result presented in Corollary 3.2 is also concluded for the presented extended
version.

Remark 3.11 Let

e1 = −y2 = − (In In In)T G(q)s̄a(φ̄)

e2 = y1 = −
(
εsTP (KP q̄) εαsTD(KDϑ) q̇T

)T
V1(q̄, ϑ) =

1

2
q̇TH(q)q̇ + ε

[
sTP (KP q̄) + αsTD(KDϕ)

]
H(q)q̇ +

∫ q̄

0n

sTP (KP r)dr

+

∫ ϑ

0n

sTD(KDr)B
−1dr

V2(φ̄) =

∫ φc

0P

s̄Ta (r)Γ−1dr

Analogously to the output-feedback adaptive approach of the precedent subsection,
through the extended scheme, the closed-loop system, in Eqs. (3.47), may be seen as a
(negative) feedback connection among a strictly passive subsystems Σ1 with dynamical
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model

Σ1 :


H(q)q̈ + C(q, q̇)q̇ + F q̇ = −sP (KP q̄)− sD(KDϑ)− (In 0n×n) e1

ϑ̇ = −AK−1
D sD (KDϑ) +B ˙̄q

y1 = −
(
εsTP (KP q̄) + εαsTD(KDϑ) q̇T

)T
and a storage function V1(q̄, q̇), and a (lossless) passive subsystem Σ2 with state model

Σ2 :


q̇ = − (0n×n 0n×n In) e2

˙̄φ = ΓGT (q) (In In In) e2

y2 = (In In In)T G(q)s̄a(φ̄)

and storage function V2(φ̄). An interpretation in the context of passive feedback in-
terconnected systems analog to the one described in Remark 3.9 for the precedent
output-feedback adaptive algorithm, applies in this case as well. /

3.3 State-feedback trajectory tracking approach

In this section a general adaptive scheme for the motion control through state feed-
back is presented. The developed analytical framework will be used to formulate the
generalized adaptive controller. It is important to note that the bounded nature of the
inputs restricts the tractable trajectories. In this direction, the following assumption
turns out to be crucial within the analytical setting considered in this section.

Assumption 3.2 The desired trajectory vector function qd(t) belongs to

Qd ,
{
qd ∈ C2(R+;Rn) : ‖q̇d(t)‖ ≤ Bdv, ‖q̈d(t)‖ ≤ Bda

}
for some positive constants Bda and Bdv <

fm
kC

(see Properties 1.2.5 and 1.3) /

3.3.1 Global trajectory tracking with exact gravity compen-
sation: a generalized approach

Let us consider the following generalized expression defining global-tracking controllers
for system (3.1)-(3.2):

u(t, q, q̇, ψ) = −sd(t, q̄, ˙̄q, ψ)− sP (KP q̄) + Y (q, q̇d(t), q̈d(t))ψ (3.57)

where q̄ = q− qd, for any suitable (desired trajectory) vector function qd(t) ∈ Rn. The
third term in the right-hand side of (3.57) is a hybrid compensation term (since it
involves online position measurements but desired velocities and accelerations), where
θ is the system parameter vector and Y (·, ·, ·) is the regression matrix characterizing
the system open-loop structure, according to Property 1.7, i.e. such that

Y (q, q̇d(t), q̈d(t))ψ = H(q, ψ)q̈d(t) + C (q, q̇d(t), ψ) q̇d(t) + F (ψ)q̇d(t) + g(q, ψ) (3.58)

47



The second term in the right-hand side of (3.57) is a (bounded non-linear) position
error correction term where KP ∈ Rn×n is a positive definite diagonal matrix, i.e.
KP = diag[kP1, . . . , kPn] with kPi > 0 for all i = 1, . . . , n, and

sP : Rn → Rn

x 7→
(
σP1(x1) , . . . , σPn(xn)

)T
with σPi(·), i = 1, . . . , n being (suitable) generalized saturation functions with
bounds MPi. The first term in the right-hand side of (3.57) corresponds to a motion
dissipation term where sd : R+ × Rn × Rn × Rp → Rn is a bounded continuous vector
function satisfying

sd(t, x, 0n, z) = 0n (3.59)

∀x ∈ Rn, ∀z ∈ Rρ, ∀t ≥ 0,

‖sd(t, x, y, z)‖ ≤ κ‖y‖ (3.60)

∀(t, x, y, z) ∈ R+×Rn×Rn×Rρ, for some positive constant κ, and given qd ∈ Qd (see
Assumption 3.2) and z ∈ Rρ such that |Yi(q, q̇d(t), q̈d(t))z| < Ti, i = 1, . . . , n, ∀q ∈ Rn,
∀t ≥ 0:

yT sd(t, x, y, z) > 0 (3.61)

∀y 6= 0n, ∀x ∈ Rn, ∀t ≥ 0, and

|ui(t, x, y, z)| < Ti (3.62)

i = 1, . . . , n, ∀x ∈ Rn, ∀y ∈ Rn, ∀t ≥ 0, for suitable bounds MPi of σPi(·).

Proposition 3.5 Consider system (3.1)-(3.2) taking u = u(t, q, q̇, ψ), with u as defined
in Eq. (3.57), under the satisfaction of Assumptions 3.1 and 3.2, and the conditions on
the vector function sd stated through expressions (3.59)–(3.62). Thus, for any positive
definite diagonal matrix KP , global uniform asymptotic stability of the closed loop trivial
solution q̄(t) ≡ 0n is guaranteed with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0. /

Proof. Observe that the satisfaction of (3.62), under the consideration of (3.2), shows
that Ti > |u(q, q̇, ψ)| = |ui| = |τi|, i = 1, . . . , n, ∀(q, ˙̄q) ∈ Rn×Rn. From this expression
we see that, along the system trajectories, |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.
This proves that under the proposed scheme, the input saturation values, Ti, are never
reached. Thus, under the consideration of Property 1.5, the closed-loop dynamics takes
the form

H(q)¨̄q +
[
C(q, q̇) + C

(
q, qd(t)

)]
˙̄q + F ˙̄q = −sd(q̄, ˙̄q, ψ)− sP (KP q̄) (3.63)

where Property 1.2.4 has been used and q = q̄ + qd(t) in the error variable space. Let
us define the scalar function

V0(t, q̄, ˙̄q) =
1

2
˙̄qTH

(
q̄ + qd(t)

)
˙̄q + ε ˙̄qTH

(
q̄ + qd(t)

)
sP (KP q̄) +

∫ q̄

0n

sTP (KP r)dr (3.64)
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with
∫ q̄

0n
sTP (KP r)dr =

∑n
i=1

∫ q̄i
0
σPi(kPiri)dri and ε being a positive constant satisfying

ε < εM , min{ε1, ε2} (3.65)

where

ε1 ,
√

µm
µ2
MβP

and ε2 ,
fm − kCBdv

βM +
(
kCBdv + fM+κ

2

)2

(note that the satisfaction of Assumption 2 ensures positivity of ε2) with

βP , max
i
{σ′PiMkPi} , βM , kCBP + µMβP , BP ,

√√√√ n∑
i=0

M2
Pi

σ′PiM being the positive bound of σPi(·) in accordance to item 2 of Lemma 2.4, κ as
defined through (3.60), and µm, µM , kC , fm, and fM as defined in Properties 1.1–1.3.
Observe that from Property 1.1, items 4 and 5 of Lemma 2.4, and Lipschitz continuity
of σ, V0(q̄, ˙̄q) can be bounded above and below by

W01(q̄, ˙̄q) + (1− α)

∫ q̄

0n

sTP (KP r)dr ≤ V0(q̄, ˙̄q) ≤ W02(q̄, ˙̄q)

where

W01(q̄, ˙̄q) =
µm
2
‖ ˙̄q‖2 − εµM‖sP (KP q̄)‖‖ ˙̄q‖+

α

2βP
‖sP (KP q̄)‖2

=
1

2

(
‖sP (KP q̄)‖
‖ ˙̄q‖

)T ( α
βP

−εµM
−εµM µm

)(
‖sP (KP q̄)‖
‖ ˙̄q‖

)
(3.66)

with α being a positive constant satisfying

ε2

ε2
1

< α < 1 (3.67)

(see (3.65)), and

W02(q̄, ˙̄q) =
µM
2
‖ ˙̄q‖2 + εµMβP‖q̄‖‖ ˙̄q‖+

βP
2
‖q̄‖2

=
1

2

(
‖q̄‖
‖ ˙̄q‖

)T (
βP εµMβP

εµMβP µM

)(
‖q̄‖
‖ ˙̄q‖

)
(3.68)

Notice that, by (3.67), W01(q̄, ˙̄q) and W02(q̄, ˙̄q) are positive definite (since with
ε < εM ≤ ε1, in accordance to (3.65), the matrix at the right-hand side of (3.68) is
positive definite; and, in conjunction with any α satisfying (3.67), the matrix at the
right-hand side of (3.66) is also positive definite). Further observe that W01(0n, ˙̄q)→∞
as ‖ ˙̄q‖ → ∞. From this, inequality (3.67) (whence 1 − α > 0), and items 6 and 7 of
Lemma 2.4 (through which one sees that the integral term in the right-hand side of
(3.64) is a radially unbounded positive definite function of q̄), V0(t, q̄, ˙̄q) is concluded
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to be positive definite and radially unbounded. Its upper-right derivative along the
system trajectories, is given by

V̇0(t, q̄, ˙̄q) = ˙̄qTH
(
q̄ + qd(t)

)
¨̄q +

1

2
˙̄qT Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q + εsTP (KP q̄)H(q)¨̄q

+ ε ˙̄qT Ḣ
(
q̄ + qd(t), ˙̄q + q̇d(t)

)
sP (KP q̄) + ε ˙̄qTH

(
q̄ + qd(t)

)
s′P (KP q̄)KP ˙̄q

+ sTP (KP q̄) ˙̄q

= ˙̄qT
[
− C

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q − C

(
q̄ + qd(t), q̇d(t)

)
˙̄q − F ˙̄q − sd(t, q̄, ˙̄q, ψ)

− sP (KP q̄)
]

+
1

2
˙̄qT Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q

+ εsTP (KP q̄)
[
− C

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q − C

(
q̄ + qd(t), q̇d(t)

)
˙̄q − F ˙̄q

− sd(q̄, ˙̄q, θ)− sP (KP q̄)
]

+ ε ˙̄qT Ḣ
(
q̄ + qd(t), ˙̄q + q̇d(t)

)
sP (KP q̄) + ε ˙̄qTH

(
q̄ + qd(t)

)
s′P (KP q̄)KP ˙̄q

+ sTP (KP q̄) ˙̄q

= − ˙̄qTC
(
q̄ + qd(t), q̇d(t)

)
˙̄q − ˙̄qTF ˙̄q − ˙̄qT sd(t, q̄, ˙̄q, ψ)

− εsTP (KP q̄)C
(
q̄ + qd(t), q̇d(t)

)
˙̄q − εsTP (KP q̄)F ˙̄q − εsTP (KP q̄)sd(t, q̄, ˙̄q, ψ)

− εsTP (KP q̄)sP (KP q̄) + ε ˙̄qT
[
C
(
q̄ + qd(t), ˙̄q

)
+ C

(
q̄ + qd(t), q̇d(t)

)]
sP (KP q̄)

+ ε ˙̄qTH
(
q̄ + qd(t)

)
s′P (KP q̄)KP ˙̄q

where H(q)¨̄q has been replaced by its equivalent expression from the closed-loop dy-
namics in (3.63), Properties 1.2.1 and 1.2.3 had been used, and

s′P (KP q̄) , diag[σP1(kP1q̄1), . . . , σPn(kPnq̄n)] (3.69)

Observe that from Assumption 3.2, Properties 1.1–1.3, the satisfaction of (3.60) and
(3.61), items (b) of Definition 2.4 and 2 of Lemma 2.4 (recall that for continuously
differentiable functions σPi, D

+σPi = σ′Pi), and the positive definite character of KP ,
we have that

V̇0(t, q̄, ˙̄q) ≤ −W1(q̄, ˙̄q)

with

W1(q̄, ˙̄q) = fm‖ ˙̄q‖2 − εfM‖sP (KP q̄)‖‖ ˙̄q‖ − εκ‖sP (KP q̄)‖‖ ˙̄q‖ − 2εkCBdv‖sP (KP q̄)‖‖ ˙̄q‖
+ ε‖sP (KP q̄)‖2 − εkCBP‖ ˙̄q‖2 − εµMβP‖ ˙̄q‖2 − kCBdv‖ ˙̄q‖2

=

(
‖sP (KP q̄)‖
‖ ˙̄q‖

)T (
ε −ε

(
fM+κ

2
+ kCBdv

)
−ε
(
fM+κ

2
+ kCBdv

)
fm − kCBdv − εβM

)(
‖sP (KP q̄)‖
‖ ˙̄q‖

)
(3.70)

Note further that, from the satisfaction of (3.65), W1(q̄, q̇) is positive definite (since
any ε < εM ≤ ε2 renders positive definite the matrix at the right-hand side of (3.70)).
Thus, by Lyapunov’s stability theory (applied to non-autonomous systems, see for
instance [22, Theorem 4.9]), the trivial solution q̄(t) ≡ 0 is concluded to be globally
uniformly asymptotically stable, which completes the proof. /
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Remark 3.12 Let KD ∈ Rn×n be a positive definite diagonal matrix, i.e. KD =
diag[kD1, . . . , kDn] with kDi > 0 for all i = 1, . . . , n. A generalized version of the
SP-SD+ and SPD+ controllers of [1] are retrieved from (3.57) by respectively defining

sd(t, q̄, ˙̄q, ψ) = sD(KD ˙̄q) (3.71)

where sD : Rn → Rn : x 7→
(
σD1(x1) , . . . , σDn(xn)

)T
, with σDi(·), i = 1, . . . , n,

being generalized saturation functions with bounds MDi; and the involved bound
values, MPi and MDi, satisfy

MPi +MDi < Ti −BDi (3.72)

i = 1, . . . , n, with
BDi = µMBda + kCB

2
dv + fMBdv +Bgi

and
sd(t, q̄, ˙̄q, ψ) = sP (KP q̄ +KD ˙̄q)− sP (KP q̄) (3.73)

with the generalized saturations σPi(·), i = 1, . . . , n, being strictly increasing, and
bound values satisfying

MPi ≤ Ti −BDi (3.74)

i = 1, . . . , n, both SP-SD+ and SPD+ cases under the consideration of sufficiently
small desired-trajectory-related bound values Bdv and Bda (see Assumption 3.2) as
stated in [1]. Furthermore a tracking version of the SPDgc-like controller proposed in
[47], that (in addition to the SP and D actions) includes the hybrid compensation terms
within a single saturation function (at each link) is obtained from (3.57) by defining

sd(t, q̄, ˙̄q, ψ) = s0

(
Y (q, q̇d(t), q̈d(t))ψ − sP (KP q̄)

)
− s0

(
Y (q, q̇d(t), q̈d(t))ψ − sP (KP q̄)−KD ˙̄q

)
(3.75)

where s0 : Rn → Rn : x 7→
(
σ01(x1) , . . . , σ0n(xn)

)T
, with σ0i(·), i = 1, . . . , n,

being linear saturation functions for (L0i,M0i), and the involved linear/generalized
saturation function parameters satisfying

BDi +MPi < L0i ≤M0i < Ti (3.76)

i = 1, . . . , n, with sufficiently small desired-trajectory-related bounds Bdv and Bda

as stated in [1]13. Observe from (3.76) that, by virtue of item (c) of Definition 2.4
(under the consideration of Properties 1.4 and 1.5), we have that s0

(
Y (q, q̇d(t), q̈d(t))ψ−

sP (KP q̄)
)
≡ Y (q, q̇d(t), q̈d(t))ψ − sP (KP q̄) (see (3.75) and (3.57)), giving rise to an

SPDhc+-like controller of the form

u = s0

(
Y (q, q̇d(t), q̈d(t))ψ − sP (KP q̄)−KDq̇

)
13Notice that the internal saturations, σPi(·), in (3.75) are allowed to be any function satisfying

Definition 2.4 and are consequently not tied to be linear saturations as originally formulated in [47].
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Furthermore from items (a) of Definition 2.4 and 8a and 9 of Lemma 2.4 (under the
satisfaction of inequalities (3.76) in the case SPDhc+-like controller obtained through
(3.75)), sd(t, q̄, ˙̄q, ψ) in every one of the above cases in (3.71), (3.73), and (3.75) satisfies
the expressions in (3.59) and (3.61). Further, notice that, through the satisfaction
of (3.72), (3.74) (under the consideration of the strictly increasing character of the
generalized saturation functions σPi involved in the SPD+ case), and (3.76), every
sd(t, q̄, ˙̄q, ψ) in expressions (3.71), (3.73), and (3.75) satisfies inequalities (3.62) too.
Moreover, from points 3 and 4 of Lemma 2.4, one sees that sd(t, q̄, ˙̄q, ψ) in every one
of the above cases in (3.71), (3.73), and (3.75) satisfies inequality (3.60) with

κ = max
i
{σ′iMkDi} (3.77a)

where

σ′iM =


σ′DiM in the SP-SD+ case

σ′PiM in the SPD+ case

σ′0iM in the SPDhc+-like case

(3.77b)

σ′DiM , σ′PiM , and σ′0iM respectively being the positive bounds of D+σDi(·), σ′Pi(·), and
D+σ0i(·), in accordance to item 2 of Lemma 2.4. /

3.3.2 Global adaptive tracking control

The result of the precedent section cannot be guaranteed as stated in Proposition 3.5
if the exact knowledge of the system parameters is not available. However, in such a
situation, global tracking avoiding input saturation can still be accomplished through
auxiliary dynamics in an adaptive control context. This is achieved by means of suitable
strict bounds on the elements of ψ, as described next.

Let Ma ,
(
Ma1, . . . ,Maρ

)T
and Ψa , [−Ma1,Ma1]× · · · × [−Maρ,Maρ], with Maj,

j = 1, . . . , ρ, being positive constants such that

ψj < Maj (3.78a)

∀j ∈ {1, . . . , ρ}, and
BMa
gi < Ti (3.78b)

∀i ∈ {1, . . . , n}, where, in accordance to Property 1.8a, BMa
gi are positive constants

such that |gi(w, z)| = |Ygi(w)z| ≤ BMa
gi , i = 1, . . . , n, ∀(w, z) ∈ Rn × Ψa, and consider

a small enough desired-trajectory-related bound values Bdv and Bda (in accordance to
Assumption 3.2) such that

|Yi(q, q̇d(t), q̈d(t))ϑ| ≤ BMa
Di < Ti (3.78c)

i = 1, . . . , n, ∀q ∈ Rn, ∀ϑ ∈ Ψa, ∀t ≥ 0, where BMa
Di , i = 1, . . . , n are positive

constants such that |Yi(w, x, y)z| ≤ BMa
Di , i = 1, . . . , n, for all (w, x, y, z) ∈ Rn ×

BBdv × BBda × Ψa. Let us note that Assumption 3.1 ensures the existence of such
positive valuesMaj, j = 1, . . . , ρ, satisfying inequalities (3.78a) and (3.78b) while, under
Assumption 3.2, through the fulfillment of (3.78b), inequalities (3.78c) can always be
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Figure 3.4: Block diagram of the proposed adaptive control scheme

satisfied through sufficiently small values of Bdv and Bda (see Remark 3.12). Notice
further that inequalities (3.78b) are satisfied if

∑p
j=1BGijMaj < Ti, BGi‖Ma‖ < Ti, or

BG‖Ma‖ < Ti, i = 1, . . . , n (see Property 1.8a.); actually,
∑p

j=1 BGijMaj, BGi‖Ma‖, or

BG‖Ma‖, may be taken as the value of BMa
gi as long as inequality (3.78b) is satisfied.

Similarly, inequalities (3.78c) are satisfied if
∑p

j=iBYijMaj < Ti, BYi‖Ma‖ < Ti, or
BY ‖Ma‖ < Ti, i = 1, . . . , n, where in accordance to Property 1.8b and Assumption 3.2,
BYij , BYi , and BY are positive constants such that |Yij(w, x, y)| ≤ BYij , ‖Yi(w, x, y)‖ ≤
BY , respectively, for all (w, x, y) ∈ Rn × BBdv × BBda ; in fact, BYijMaj, BYi‖Ma‖, or
BY ‖Ma‖, may be taken as the value of BMa

Di
as long as inequality (3.78c) is fulfilled.

Based on the generalized algorithm in Eq. (3.57), the proposed adaptive control
scheme is defined as

u(t, q, q̇, ψ̂) = −sd(t, q̄, ˙̄q, ψ̂)− sP (KP q̄) + Y (q, q̇d(t), q̈d(t))ψ̂ (3.79)

with sP (·), Kp, and sd(·) as previously defined, Y (q, q̇d(t), q̈d(t)) as defined in Section

3.3.1 (see Eq. (3.58)), and ψ̂ (the vector of estimated parameters) being the output
variable of an auxiliary dynamic subsystem defined as

φ̇ = −ΓY T (q, q̇d(t), q̈d(t))
[

˙̄q + εsP (KP q̄)
]

(3.80a)

ψ̂ = sa(φ) (3.80b)

where φ is the (internal) state of the auxiliary dynamics in Eq. (3.80a);

sa : Rp → Rp

x 7→
(
σa1(x1) , . . . , σaρ(xρ)

)T
σaj(·), j = 1, . . . , ρ, being strictly increasing generalized saturation functions
with bounds Maj as defined above, i.e. satisfying inequalities (3.78); Γ ∈ Rρ×ρ is a
positive definite diagonal constant matrix, i.e. Γ = diag[γ1 . . . , γρ] with γj > 0 for all
j = 1, . . . , ρ; and ε is a positive constant satisfying inequality (3.65). A block diagram
of the proposed adaptive control scheme is shown in Fig. 3.4.

Remark 3.13 Analogously to the adaptive regulation cases of Section 3.1 and 3.2,
one can see from expressions (3.79)-(3.80), (3.65) that the proposed adaptive tracking
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control scheme does not involve the exact values of the elements of ψ. Note further
that by previous arguments, the satisfaction of the restriction of Bdv stated through
Assumption 3.2 does not require the exact knowledge of the system parameters either.
/

Closed-loop analysis

Consider system (3.1)-(3.2) taking u = u(t, q, q̇, ψ̂) as defined through Eqs. (3.79)-
(3.80). Observe that, under Assumption 3.1 and the consideration in (3.2), if the
inequalities in (3.78) are satisfied, the fulfillment of (3.62) guarantees that

Ti >
∣∣ui(t, q, q̇, sa(φ)

)∣∣ = |ui| = |τi| i = 1, . . . , n ∀(t, q, ˙̄q, φ) ∈ R+ × Rn × Rn × Rρ

(3.81)
Thus, under the consideration of Property 1.5, the closed-loop system takes the form

H(q)¨̄q +
[
C(q, q̇)+C(q, qd(t))

]
˙̄q + F ˙̄q

=− sd
(
t, q̄, ˙̄q, sa(φ)

)
− sP (KP q̄) + Y (q, q̇d(t), q̈d(t))s̄a(φ̄)

(3.82a)

˙̄φ = −ΓY T (q, q̇d, q̈d)
[

˙̄q + εsP (KP q̄)
]

(3.82b)

where φ̄ = φ− φ∗ and
s̄a(φ̄) = sa(φ̄+ φ∗)− sa(φ∗) (3.83)

with φ∗ =
(
φ∗1, . . . , φ

∗
ρ

)T
such that sa(φ

∗) = ψ, or equivalently, φ∗j = σ−1
aj (ψj), j =

1, . . . , ρ. Observe that, by item 8b of Lemma 2.4, the elements of s̄a(φ̄) in (3.83), i.e.

σ̄aj(φ̄j) = σaj(φ̄j + φ∗j)− σaj(φ∗j)

j = 1, . . . , ρ, turn out to be strictly increasing generalized saturation functions.

Proposition 3.6 Consider the closed-loop system in Eqs. (3.82), under the satisfac-
tion of Assumptions 3.1 and 3.2, and the conditions on the vector function sd stated
through expressions (3.59)–(3.62). Thus, for any positive definite diagonal matrices KP

and Γ, and any ε satisfying (3.65), the trivial solution (q̄, φ̄)(t) ≡ (0n, 0ρ) is uniformly
stable and, for any initial condition

(
t0, q̄(t0), ˙̄q(t0), φ̄(t0)

)
∈ R+ × Rn × Rn × Rρ, the

closed-loop system solution (q̄, φ̄)(t) is bounded and such that q̄(t)→ 0n as t→∞ with
|τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ t0. /

Proof. By (3.81), we see that, along the system trajectories, |τi(t)| = |ui(t)| < Ti,
∀t ≥ 0. This proves that, under the proposed adaptive scheme, input saturation is
avoided. Now, in order to develop the stability/convergence analysis, let us define the
scalar function

V1(t, q̄, ˙̄q, φ̄) = V0(t, q̄, ˙̄q) +

∫ φ̄

0p

s̄Ta (r)Γ−1dr (3.84)

where
∫ φ̄

0ρ
s̄Ta (r)Γ−1dr =

∑ρ
j=1

∫ φ̄j
0
s̄aj(rj)γ

−1
j drj, and V0(t, q̄, ˙̄q) is as defined in Eq.

(3.64)14. Note that, from the positive definite and radially unbounded characters of

14The whole expression is given by V1(t, q̄, ˙̄q, φ̄) = 1
2

˙̄qTH
(
q̄ + qd(t)

)
˙̄q + ε ˙̄qTH

(
q̄ + qd(t)

)
sP (KP q̄) +∫ q̄

0n
sTP (KP r)dr +

∫ φ̄
0p
s̄Ta (r)Γ−1dr
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V0(t, q̄, ˙̄q) (shown in the proof of Proposition 3.5) and items 8b, 6, and 7 of Lemma 2.4
(through which the integral term in the right-hand side of Eq. (3.84) is concluded to
be a radially unbounded positive definite decrescent function of φ̄), V1(t, q̄, ˙̄q, φ̄) proves
to be positive definite, radially unbounded, and decrescent. Its derivative along the
system trajectories is given by

V̇1(t, q̄, ˙̄q, φ̄) = ˙̄qTH
(
q̄ + qd(t)

)
¨̄q +

1

2
˙̄qT Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q + εsTP (KP q̄)H

(
q̄ + qd(t)

)
¨̄q

+ ε ˙̄qT Ḣ
(
q̄ + qd(t), ˙̄q + q̇d(t)

)
sP (KP q̄) + ε ˙̄qTH(q)s′P (KP q̄)KP ˙̄q

+ sTP (KP q̄) ˙̄q + s̄Ta (φ̄)Γ−1 ˙̄φ

= ˙̄qT
[
− C

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q − C

(
q̄ + qd(t), q̇d(t)

)
˙̄q − F ˙̄q

− sd
(
q̄, ˙̄q, sa(φ)

)
− sP (KP q̄) + Y

(
q̄ + qd(t), q̇d(t), q̈d(t)

)
s̄a(φ̄)

]
+

1

2
˙̄qT Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q

+ εsTP (KP q̄)
[
− C

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
˙̄q − C

(
q̄ + qd(t), q̇d(t)

)
˙̄q − F ˙̄q

− sd
(
q̄, ˙̄q, sa(φ)

)
− sP (KP q̄) + Y

(
q̄ + qd(t), q̇d(t), q̈d(t)

)
s̄a(φ̄)

]
+ ε ˙̄qT Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
sP (KP q̄) + ε ˙̄qTH

(
q̄ + qd(t)

)
s′P (KP q̄)KP ˙̄q

+ sTP (KP q̄) ˙̄q − s̄Ta (φ̄)Y T
(
q̄ + qd(t), q̇d(t), q̈d(t)

)[
˙̄q + εsP (KP q̄)

]
= − ˙̄qTC

(
q̄ + qd(t), q̇d(t)

)
− ˙̄qTF ˙̄q − ˙̄qT sd

(
t, q̄, ˙̄q, sa(φ)

)
− εsTP (KP q̄)C

(
q̄ + qd(t), q̇d(t)

)
˙̄q − εsTP (KP q̄)F ˙̄q

− εsTP (KP q̄)sd
(
t, q̄, ˙̄q, sa(φ)

)
− εsTP (KP q̄)sP (KP q̄)

+ ε ˙̄qT
[
C
(
q̄ + qd(t), ˙̄q

)
+ C

(
q̄ + qd(t), q̇d(t)

)]
sP (KP q̄)

+ ε ˙̄qTH
(
q̄ + qd(t)

)
s′P (KP q̄)KP ˙̄q

where H(q)¨̄q have been replaced by their equivalent expression from the closed-loop ma-
nipulator dynamics in Eq. (3.82), Properties 1.2.1–1.2.3 have been used, and s′P (KP q̄)
was defined in (3.69). Observe that from Assumption 3.2, Properties 1.1–1.3, the sat-
isfaction of (3.60) and (3.61), items (b) of Definition 2.4 and 2 of Lemma 2.4, and the
positive definite character of KP , we have that

V̇1(t, q̄, ˙̄q, φ̄) ≤ −W1(q̄, ˙̄q)

where W1(q̄, ˙̄q) was defined in (3.70) and shown to be a positive definite function in
the proof of Proposition 3.5. Thus, we have that V̇1(t, q̄, ˙̄q, φ̄) ≤ 0, ∀(t, q̄, ˙̄q, φ̄) ∈ R+ ×
Rn × Rn × Rρ, with V̇1(t, q̄, ˙̄q, φ̄) = 0 ⇐⇒ (q̄, ˙̄q) = (0n, 0n). Therefore, by Lyapunov
stability theory (applied to nonautonomous systems, refer to Section 2.3, Theorem
2.3) the trivial solution (q̄, φ̄)(t) ≡ (0n, 0ρ) is concluded to be uniformly stable. Finally,
by Theorem 2.3, we conclude that for an initial condition

(
t0, q̄(t0), ˙̄q(t0), φ̄(t0)

)
∈

R+×Rn×Rn×Rρ, the closed-loop system solution (q̄, φ̄)(t) is bounded and such that
q̄(t)→ 0n as t→∞.

/
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Observe that even though the result stated through Proposition 3.6 does not permit
to analytically conclude anything on the convergence of the parameter estimators ψ̂(t),
it guarantees boundedness of the auxiliary states φ(t) (and actually of every closed-
loop system variable). Recall further, from Section 1.4, that parameter estimator
convergence is not part of the adaptive tracking goal. Further results in this direction
could be contemplated through additional excitation persistency conditions [30], which
is out of the scope of this work.

Remark 3.14 Adaptive versions of the SP-SD+ and SPD+ schemes of [47] and of
the SPDhc+-like algorithm described in Remark 3.12 are obtained by considering in
the proposed design method the expressions in (3.71), (3.73), and (3.75), respectively,
with suitable adjustments on the saturation function parameter conditions. Thus, the
adaptive SP-SD+ controller is obtained from (3.79) by taking

sd(t, q̄, ˙̄q, ψ̂) = sD(KD ˙̄q) (3.85)

with sD(·) and KD as defined in Remark 3.12, and the involved bound values, MPi and
MDi, satisfying

MPi +MDi < Ti −BMa
Di (3.86)

i = 1, . . . , n, the adaptive SPD+ scheme is gotten by taking

sd(t, q̄, ˙̄q, ψ̂) = sP (KP q̄ +KD ˙̄q)− sP (KP q̄) (3.87)

with sP (·) as defined for this case in Remark 3.12, and bound values satisfying

MPi ≤ Ti −BMa
Di (3.88)

i = 1, . . . , n, and the adaptive SPDhc+-like algorithm is obtained by taking

sd(t, q̄, ˙̄q, ψ̂) = s0

(
Y (q, q̇d(t), q̈d(t))ψ̂−sP (KP q̄)

)
−s0

(
Y (q, q̇d(t), q̈d(t))ψ̂−sP (KP q̄)−KD ˙̄q

)
(3.89)

with s0(·) as defined in Remark 3.12, and the involved saturation function parameters
satisfying

BMa
Di +MPi < L0i ≤M0i < Ti (3.90)

i = 1, . . . , n. For these cases, κ in (3.65) remains as specified in Remark 3.12 (see Eqs.
(3.77)). /
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4
Simulation results

The effectiveness of the proposed schemes was corroborated through computer simula-
tions considering the model of a 2-DOF manipulator corresponding to the experimental
robotic arm used in [1, 47]. For this robot, the various terms characterizing the system
dynamics in (3.1) are given by1

H(q) =

(
2.351 + 0.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)
[kg m2]

C(q, q̇) =

(
−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)
[kg m2/s]

F =

(
2.288 0

0 0.175

)
[kg m2/s]

and

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)
[Nm]

Thus, Properties 1.1, 1.2.5, 1.3, and 1.4 are satisfied with µm = 0.088 kg m2, µM =
2.533 kg m2, kC = 0.1455 kg m2, Bg1 = 40.29 Nm, Bg2 = 1.825 Nm, fm = 0.175

1A detailed procedure through which the generalized model of such a 2-DOF robotic arm is devel-
oped in Appendix A.
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kg m/s2, fM = 2.288 kg m/s2, and

Y T (q, q̇, q̈) =



q̈1 0

(2q̈1 + q̈2) cos(q2)− q̇2(2q̇1 + q̇2) sin(q2) q̈1 cos(q2) + q̇2
1 sin(q2)

q̈2 q̈1 + q̈2

q̇1 0

0 q̇2

sin(q1) 0

sin(q1 + q2) sin(q1 + q2)


ψT =

(
2.351 0.084 0.102 2.288 0.175 38.465 1.825

)
[Nm]

In particular

YH(q, q̈) =

(
q̈1 (2q̈1 + q̈2) cos(q2) q̈2 0 0 0 0
0 q̈1 cos(q2) q1 + q2 0 0 0 0

)

YC(q, q̇) =

(
0 0 −(2q̇1 + q̇2)q̇2 sin(q2) 0 0 0 0
0 0 q̇2

1 sin(q2) 0 0 0 0

)
YF (q̇) =

(
0 0 0 q̇1 0 0 0
0 0 0 0 q̇2 0 0

)
Yg(q) =

(
0 0 0 0 0 sin(q2) sin(q1 + q2)
0 0 0 0 0 0 sin(q1 + q2)

)
The maximum torques allowed (input saturation bounds) are T1 = 150 Nm and T2 = 15
Nm for the first and second links respectively. From these data one easily corroborates
that Assumption 3.1 is fulfilled.

4.1 State feedback regulation

The proposed adaptive scheme in Eqs. (3.24)-(3.25a) was tested in its SP-SD, SPD,
and SPDgc-like forms, under the respective consideration of expressions (3.34)-(3.35),
(3.36)-(3.37), and (3.38)-(3.39). The involved saturation functions were defined as

σPi(ς) = MPi sat(ς/MPi) and σDi(ς) = MDi sat(ς/MDi)

i = 1, . . . , n, in the SP-SD case;

σPi(ς) =

{
ς ∀|ς| ≤ LPi

sign(ς)LPi + (MPi − LPi) tanh
(
ς−sign(ς)LPi
MPi−LPi

)
∀|ς| > LPi

i = 1, . . . , n, with 0 < LPi < MPi, in the SPD case;

σPi(ς) = MPi sat(ς/MPi) and σ0i(ς) = M0i sat(ς/M0i)
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i = 1, . . . , n, in the SPDgc-like case; and

σaj(ς) =

{
ς ∀|ς| ≤ Laj

sign(ς)Laj + (Maj − Laj) tanh
(
ς−sign(ς)Laj
Maj−Laj

)
∀|ς| > Laj

j = 1, . . . , p, with 0 < Laj < Maj, in all the three cases. Let us note that with these
saturation functions we have σ′PM = σ′DM = σ′0M = 1 , and that in consequence, for
the three controllers, inequality (3.5) is satisfied with κ = maxi{kDi} (see Eqs. (3.22)).

The simulation implementations were run fixing the following saturation parameter
values2: MP1 = MD1 = 40 and MP2 = MD2 = 5 in the SP-SD case; MP1 = 80,
MP2 = 10, and LPi = 0.9MPi, i = 1, 2, in the SPD case; MP1 = 120, M01 = 50,
MP2 = 12, and M02 = 7 in the SPDgc-like case; and Ma1 = 50, Ma2 = 3, and
Laj = 0.9Maj, j = 1, 2, in all the three cases.

For comparison purposes, additional simulations were run considering the adaptive
controller proposed by [50] —referred to as Ze00—, i.e.

u = GT (q)θ̂ −KPTh(q̄)−KDTh(q̇)

˙̂
θ = P

(
Q(q̄, q̇), θ̂

)
where Th(x) =

(
tanh(x1), . . . , tanh(xn)

)T
, Q(q̄, q̇) = −ΓGT (q)[q̇+εTh(q̄)], the elements

of P are defined as

Pj(Q, θ̂) =

{
Qj if θjm < θ̂j < θjM or

(
θ̂j ≤ θjm and Qj ≥ 0

)
or
(
θ̂j ≥ θjM and Qj ≤ 0

)
0 if

(
θ̂j ≤ θjm and Qj < 0

)
or
(
θ̂j ≥ θjM and Qj > 0

)
j = 1, . . . , p, with θjm and θjM being known lower and upper bounds of θi respectively,

and the initial auxiliary state values are taken such that θ̂j(0) ∈ [θjm, θjM ], j = 1, . . . , p.
The parameter bounds were fixed at θ1m = 10, θ1M = 50, θ2m = 0.5, and θ2M = 3 [Nm].

Observe that —using Property 1.5— the gravity vector can be written as g(q, θ) =
G(q)θ with

G(q) =

(
sin q1 sin(q1 + q2)

0 sin(q1 + q2)

)
and θ =

(
38.465
1.825

)
[Nm]

The results of two simulation tests (for every considered controller) are presented.
The initial conditions and desired link positions in all the simulated cases were taken
as q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0; θ̂1(0) = 20, θ̂2(0) = 1 [Nm]; and qd1 = qd2 = π/4
[rad]. In the first implementation —referred to as Test 1.1—, a value of ε satisfying
(3.10) was fixed for the SP-SD, SPD, and SPDgc-like algorithms; the control parameters
(kPi, kDi, i = 1, 2) and adaptation gains (γi, i = 1, 2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests using the SPD
control law, and the same fixed values were kept for the SP-SD and the SPDgc-like

2 For the sake of simplicity, the units of the elements of the parameter vector θ, their estimation
variables and related bounds and saturation function parameters, the auxiliary states, and the control
and adaptation gains are omitted. The angles are expressed and measured in radians.
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Table 4.1: Control parameter values for the state-feedback regulation scheme

TEST 1.1 TEST 1.2
SP-SD SP-SD

Parameter SPD Ze00 SPD Ze00
SPDgc-like SPDgc-like

kP1 100 75 100 100
kP2 200 7 30 30
kD1 50 4.5 50 1000
kD2 3 3 3 250
γ1 1000 1000 15 250
γ2 750 750 0.35 20
ε 0.001 0.0001 0.1 0.1

algorithms. As for the Ze00 controller, the selection of ε, control parameters, and
adaptation gains was performed according to the tuning procedure of the algorithm as
presented in [50], taking into account the pre-specified initial conditions and desired
positions, and such that the greatest possible absolute value of the control signals
at every link was ensured to be lower than the corresponding input saturation value
(i.e.

∑2
j=1 BGijθjM + kPi + kDi < Ti, i = 1, 2); under these considerations, the fixed

parameters and gains were those giving rise to the best closed-loop performance after
numerous trial-and-error tests. With the aim at improving the closed-loop performance
obtained through Test 1.1, in the second implementation —referred to as Test 1.2—, a
higher value of ε, disregarding inequality (3.10), was fixed for all the tested controllers
(recall that the condition on ε, (3.10), is only sufficient, and that such a parameter is not
involved in the condition stated to avoid input saturation, (3.7)). For the SP-SD, SPD,
and SPDgc-like algorithms, the control parameters and adaptation gains were tuned
as in the previously described case. As for the Ze00 controller, the referred values
were fixed such that the best closed-loop performance was obtained from numerous
trial-and-error tests; the tuning conditions presented in [50] could not any longer be
satisfied for the value of ε that was taken, and saturation avoidance was disregarded
since control parameter tuning under such a consideration gave rise to extremely poor
closed-loop performances. The resulting values for all the implemented controller at
both tests are presented in Table 4.1.

Figures 4.1–4.3 show the position errors, control signals, and parameter estimators,
for all the considered controllers at Test 1.1. Observe that in all the cases, the control
objective is achieved avoiding input saturation. However, note that while around 100
sec is enough for the SP-SD, SPD, and SPDgc-like algorithms to achieve the desired
stabilization, more than 10000 sec are needed by the Ze00 controller. This can be
better appreciated in the zoom of the responses presented at the right hand side of
each figure. It can be also observed that the SPD algorithm converge faster than the
others tested. As for the parameter estimator response, shown in figure 4.3, notice
that even when the Ze00 algorithm approaches faster to the real parameter value it
never converges to it within the time the test was performed, i.e. 15000 sec, while the
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0 20 40 60 80
−20

0

20

40

60

80

0 20 40 60 80
−15

−7.5

0

7.5

15

 

 

�

1 1.1 1.2 1.3 1.4 1.5

x 10
4

28.8

29

29.2

29.4

0 500 1000 1500 2000
1.82

1.825

1.83

0 0.5 1 1.5 2
−20

0
20
40
60
80�

0 0.5 1 1.5 2
−15

−7.5
0

7.5
15�

Figure 4.2: Test 1: control signals

61



0 40 80 120 160
−60

−30

0

30

60

0 40 80 120 160
−4

−2

0

2

4

 

 

�

1 1.1 1.2 1.3 1.4 1.5

x 10
4

38

39

40

1 1.1 1.2 1.3 1.4 1.5

x 10
4

1.7

1.8

1.9

0 0.5 1 1.5 2 2.5
−50

0

50

�

0 0.5 1 1.5 2 2.5
−4
−2

0
2
4

�

� � � �

� � � �

� �

���

� �
��

Figure 4.3: Test 1: parameter estimators

SP-SD, SPD and SPDgc-like controllers reach the real parameter value in about 120
sec.

Figures 4.4–4.6 show the results obtained through Test 1.2 for all the considered
controllers. In all the simulated cases, the control objective is observed to be achieved
avoiding input saturation, with a stabilization time considerably lower than in the
previous test. Furthermore, the SP-SD, SPD, and SPDgc-like algorithms are still
observed to achieve the desired convergence much faster than the Ze00 controller. It
can be seen in the right hand side zoom of the response in figure 4.4 that the algorithm
Ze00 achieves the control objective in about 60 sec. On the other hand, figure 4.6
shows the parameter estimation response for all tested control schemes, notice that the
parametric convergence of the SP-SD, SPD, and SPD-gc like algorithms is faster than
that of the Ze00 controller.

Observe from Figures 4.3 and 4.6 that the parameter estimators converge to the
real values θi, i = 1, 2. This is so in view of the selected desired configuration which
gives rise to the satisfaction of the condition stated by Corollary 3.1.

4.2 Output feedback regulation

The saturation functions involved in the proposed scheme Eq. (3.40) —referred to as
SP-SDc-ga — were defined as

σPi(ς) = MPi sat(ς/MPi) and σDi(ς) = MDi sat(ς/MDi)
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Figure 4.6: Test 1.2: parameter estimators

i = 1, . . . , n, and

σaj(ς) =

{
ς ∀|ς| ≤ Laj

sign(ς)Laj + (Maj − Laj) tanh
(
ς−sign(ς)Laj
Maj−Laj

)
∀|ς| > Laj

j = 1, . . . , p, with 0 < Laj < Maj. Let us note that with these saturation functions we
have σ′PM = σ′DM = 1. The simulation implementations were run fixing the following
saturation parameter values (see footnote 2): MP1 = MD1 = 40 and MP2 = MD2 = 5;
and Ma1 = 50, Ma2 = 3, and Laj = 0.9Maj, j = 1, 2.

For comparison purposes, additional simulations were run considering the adaptive
controller proposed by [25] —referred to as L00—, i.e.

u = GT (qd)θ̂ −KPTh(λq̄)−KDTh(δϑ)

˙̂
θ = βG(qd)

T θ̂ [q̇ − ηTh(δϑ) + µTh(λq̄)]

ϑ̇ = χKϑ+Kq̇

where Th(x) =
(

tanh(x1), . . . , tanh(xn)
)T

, KD = diag[kD], KP = diag[kP ], and K =
diag[k], with λ, δ, kd, kp, β, η, µ, k, and χ being positive constants.

The results of two simulation tests (for every considered controller) are presented.
The initial conditions and desired link positions in all the simulated cases were taken
as q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0; φ̂1(0) = 20, φ̂2(0) = 1 [Nm]; qd1 = π/4, and
qd2 = π/2 [rad]. In the first implementation —referred to as Test 1—, a value of ε
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satisfying (3.44) was fixed for the SP-SDc-ga algorithm; the control parameters (kPi,
kDi, i = 1, 2) and adaptation gains (γi, i = 1, 2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests. As for the
L00 controller the selection of control parameters as described in [25] could not be
accomplished due to the impossibility of reconciling the inequalities proposed in their
tuning procedure. In an effort to fulfill as many conditions as possible two different
simulations were performed for the L00 controller, referred to as L00: Test A and
L00: Test B (each of them disregarding one different inequality of the tuning criterion
presented in [25]); under these considerations, the fixed parameters and gains were
those giving rise to the best closed-loop performance after numerous trial-and-error
tests.

With the aim at improving the closed-loop performance obtained through Test 1, in
the second implementation —referred to as Test 2—, condition (3.44) was disregarded
and hence a higher value of ε was fixed for the SP-SDc-ga controller (recall that the
condition on ε, (3.44), is only sufficient, and that such a parameter is not involved
in the condition stated to avoid input saturation) while all conditions presented in
the stability proof of [25] were disregarded for the L00 scheme. For the SP-SDc-ga
algorithm, the control parameters and adaptation gains were tuned as in the previously
described case. As for the L00 controller, the referred values were fixed such that the
best closed-loop performance was obtained from numerous trial-and-error tests; the
conditions presented in [25] could not be satisfied any longer and saturation avoidance
was disregarded since control parameter tuning under such a consideration gave rise
to poor closed-loop performances. The resulting values for all the tested controller at
both tests are presented in Table 4.2.

Figures 4.7–4.9 show the position errors, control signals, and parameter estimators,
for both considered controllers at Test 1. The SP-SDc-ga achieves the control objective
without reaching the saturation bound. In the L00: Test A experiment the input sat-
uration inequality considered in the tuning procedure and, as expected, the saturation
bound is not reached but slow convergence time is observed; while in the L00: Test B
trial convergence time is greatly improved but large oscillations and input saturation
could not be avoided. The slow convergence of system parameters and states, observed
in both tested controllers, is due to the small value of the selected control gains.

The responses obtained through Test 2 are shown in Figures 4.10–4.12, observe
that faster convergence time is achieved through the selected control gains without
oscillations notice however that a small overshoot is present and input saturation could
not be avoided in the case of the L00 controller.

Observe from Figures 4.9 and 4.12 that the parameter estimators converge to the
real values θi, i = 1, 2. This is so in view of the selected desired configuration which
gives rise to the satisfaction of the condition stated by Corollary 3.2.

4.3 State feedback trajectory tracking

Considering the main characteristics of the proposed scheme —bounded adaptive—
additional simulations were run for comparison purposes using an approach of analog
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Table 4.2: Control parameter values for the output-feedback regulation scheme

TEST 1 TEST 2
Parameter SP-SDc-ga L00: Test A L00: Test B SP-SDc-ga L00

kP1 11 7 180 180 40
kP2 11 7 180 150 40
kD1 1 7 90 50 50
kD2 3 7 90 6 50
γ1 300 80
γ2 120 20
ε 0.0035 0.035
a1 15 250
a2 15 200
b1 0.5 2.5
b2 0.025 17.5
β 100 120 25
χ 10 10 5
η 0.05 0.05 1
µ 0.05 0.1 2
k 50 40 20
λ 1 3 10
δ 1 1 6
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Figure 4.7: Test 1: position errors
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Figure 4.9: Test 1: parameter estimators
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Figure 4.11: Test 2: control signals
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Figure 4.12: Test 2: parameter estimators

features. The chosen scheme, proposed by [12] —referred to as De99— is given by

u = Yd(t)ψ̂ −KPTh(e)−KDTh(r)

˙̂
ψ = P

(
Q(q̄, ˙̄q, ψ̂)

)
where Yd(t) = Yd(qd, q̇d, q̈d), Th(x) =

(
tanh(x1), . . . , tanh(xn)

)T
; e = qd − q; r =

ė+ αTh(e); Q(q̄, q̇, ψ̂) = ΓY T
d (t)[ ˙̄q + εTh(q̄)]; the elements of P are defined as

Pj(Q, ψ̂) =

{
Qj if ψjm < ψ̂j < ψjM or

(
ψ̂j ≤ ψjm and Qj ≥ 0

)
or
(
ψ̂j ≥ ψjM and Qj ≤ 0

)
0 if

(
ψ̂j ≤ ψjm and Qj < 0

)
or
(
ψ̂j ≥ ψjM and Qj > 0

)
j = 1, . . . , ρ, with ψjm and ψjM being known lower and upper bounds of ψj respectively;

and the initial auxiliary state values are taken such that ψ̂j(0) ∈ [ψjm, ψjM ], j =
1, . . . , ρ. The parameter bounds were fixed at

(
ψ1m ψ2m ψ3m ψ4m ψ5m ψ6m ψ7m

)
=(

0.588 0.021 0.025 0.572 0.044 9.616 0.456
)

(see footnote 2), and ψjM = Maj,
j = 1, . . . , 7, (these values are specified below).

The results of two experimental tests are presented. The initial link positions and
velocities at all the executed simulations were q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0, the
auxiliary states were initiated at φT (0) =

(
2.88 0.103 0.125 2.803 0.214 47119 2.235

)
;

and the desired trajectory was defined as

qd1 =
π

2
+ sin(0.1t) [rad/s]

qd2 = cos(0.1t) [rad/s]
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Table 4.3: Control parameter values for the state-feedback tracking scheme: Test 1

Parameter SP-SD+, SPD+, SPDhc+-like De99

kP1 50 200
kP2 80 90
kD1 3 70
kD2 5 66
Γ diag[50, 0.5, 0.1, 1.5, 0.1, 60, 2.5] diag[30, 0.05, 0.01, 1.5, 0.1, 20, 0.1]
ε 0.00027 5

Le us note that with this desired trajectory Assumption 3.2 is satisfied with Bdv = ω <
1.2027 = fm/kC and Bda = ω2. The fixed saturation function parameters values for the
SP-SD+, SPD+, and SPDhc+-like schemes were (see footnote 2) MP1 = 40, MD1 = 40,
MP2 = 4, and MD2 = 4 for SP-SD+ scheme; MP1 = 85 and MP2 = 8.5 in the SPD+
case; M01 = 130, MP1 = 45, M02 = 13, and MP2 = 4 for the SPDhc+-like algorithm;
and LPi = 0.9MPi, i = 1, 2, MT

a =
(
2.939 0.105 0.127 2.86 0.219 48.081 2.281

)
,

Laj = 0.9Maj, j = 1, . . . , 7, in all three cases. With these values inequalities (3.78),
(3.86), (3.88), and (3.90) are satisfied with ω = 0.1 rad/s, taking BMa

gi =
∑7

j=1BGijMaj,
i = 1, 2, i.e.

BMa
g1 = Ma6 +Ma7 = 50.362 and BMa

g2 = Ma7 = 2.281

and BMa
Di =

∑7
j=1BYijMaj, i = 1, 2, i.e.

BMa
D1 =

(
Ma1 +

√
10Ma2 +Ma3

)
ω2 +Ma4ω +Ma6 +Ma7 = 58.6872

and
BMa
D2 =

(
Ma2 +

√
2Ma3

)
ω2 +Ma5ω +Ma7 = 2.9536

In the first implementation —referred to as Test 1— a sufficiently small value of
ε was taken, for the SP-SD+, SPD+, and SPDhc+-like, guaranteeing satisfaction of
inequalities (3.65). For the De99 algorithm, with the chosen auxiliary state variable ini-
tial condition, the inequality bounding the input torque stated in [12, Remark 3] could
not be met while selecting proportional and derivative gains which fulfill the control
objective, so it was disregarded. Under the stated considerations the tuning parame-
ter combination giving rise to the best closed-loop performance —in terms mainly of
stabilization time (as short as possible) and transient response (avoiding or lowering
down overshoot and oscillations as much as possible)— was determined from numerous
trial-and-error experiments for every implemented controller. The resulting values are
presented in Table 4.3.

Figures 4.13–4.17 show the results of Test 1 for every implemented controller. Ob-
serve that even when q(t) approaches qd(t) in short time for the De99 approach, the
control inputs reach their respective saturation limits, u2 remaining saturated all sim-
ulated time and in consequence giving rise to a small steady state error in q2(t). It
can be observed that the parameter estimators convergence rate is slow due to the
small value of ε, notice however that this fact does not prevent the tracking objective
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Figure 4.13: Test 1: position errors

Table 4.4: Control parameter values for the state-feedback tracking scheme: Test 2

Parameter SP-SD+, SPD+, SPDhc+-like De99

kP1 100 80
kP2 80 28
kD1 30 25
kD2 5 8
Γ diag[60, 3, 0.5, 1.5, 10, 35, 10] diag[30, 0.5, 0.1, 1.5, 0.1, 35, 6]
ε 0.02 2

to be reached. The SP-SD+, SPD+, and SPDhc+-like algorithms achieve the control
objective without saturating the inputs but in a long period of time due to the small
value of ε.

For the second implementation —referred to as Test 2—, in order to get faster
responses for the SP-SD+, SPD+, and SPDhc+-like controller, a high value of ε was
fixed (considerably higher than in the precedent tests) disregarding inequality (3.65)
(recall that the condition stated by inequality (3.65) is only sufficient); and for the De99
the tuning procedure was disregarded only respecting the input torque bound so that
an initial condition further away from the parameter real value could be chosen, the
auxiliary state variable initial condition was taken as φj(0) = 0.5ψj, for j = 1, . . . , 7,
for all controllers. The resulting values are presented in Table 4.4.

Figures 4.18–4.22 show the results of Test 2 for every implemented controller.
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Figure 4.14: Test 1: control signals
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Figure 4.15: Test 1: parameter estimators
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Figure 4.17: Test 1: parameter estimators
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Figure 4.19: Test 2: control signals
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Figure 4.21: Test 2: parameter estimators
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Figure 4.22: Test 2: parameter estimators

Observe that the SP-SD+, SPD+, and SPDhc+-like algorithms achieved the tracking
objective —avoiding input saturation— considerably faster than in Test 1, and that
the De99 controller failed to avoid input saturation. A suitable convergence of the
parameter estimators could not be ensured in view of the high number of elements
of ψ. This can be improved choosing desired trajectories satisfying persistency of
excitation conditions.
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5
Experimental results

Experimental implementations were carried out on two different manipulators: a 2-
DOF device located at the IT de la Laguna and on a 3-DOF manipulator located
at the BUAP. Experiments done in the 2-DOF robot were performed by Dr. Vı́ctor
Santibáñez while those obtained in the 3-DOF manipulator were carried out by the
author of the dissertation with the support of Dr. Fernando Reyes.

State-feedback adaptive scheme experiment description

For all carried out experiments, the proposed adaptive schemes in Eqs. (3.24)-(3.25)
was tested in its SP-SD, SPD, and SPDgc-like forms, under the respective consideration
of expressions (3.34)-(3.35), (3.36)-(3.37), and (3.38)-(3.39). The involved saturation
functions were defined as

σPi(ς) = MPi sat(ς/MPi) and σDi(ς) = MDi sat(ς/MDi)

i = 1, . . . , n (in accordance to the number of links), in the SP-SD case;

σPi(ς) =

{
ς ∀|ς| ≤ LPi

sign(ς)LPi + (MPi − LPi) tanh
(
ς−sign(ς)LPi
MPi−LPi

)
∀|ς| > LPi

with 0 < LPi < MPi, i = 1, . . . , n, in the SPD case;

σPi(ς) = MPi sat(ς/MPi) and σ0i(ς) = M0i sat(ς/M0i)

i = 1, . . . , n, in the SPDgc-like case; and

σaj(ς) =

{
ς ∀|ς| ≤ Laj

sign(ς)Laj + (Maj − Laj) tanh
(
ς−sign(ς)Laj
Maj−Laj

)
∀|ς| > Laj
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with 0 < Laj < Maj, j = 1, . . . , p (according to the number of the system parameters
involved in the gravity vector), in all the three cases. Let us note that with these
saturation functions we have σ′PiM = σ′DiM = σ′0iM = 1, ∀i = 1, . . . , n, and that in
consequence, for the three controllers, inequality (3.5) is satisfied with κ = maxi{kDi}
(see Eqs. (3.22)).

For comparison purposes, additional experiments were implemented considering the
adaptive controller proposed in [50] —referred to as Ze00—, shown in Eqs. (1.6), i.e.

u = G(q)θ̂ −KPTh(ΛP q̄)−KDTh(ΛDq̇)

˙̂
θ = P

(
Q(q̄, q̇, θ̂), θ̂

)
with

Pj(Q, θ̂) =

{
Qj if θjm < θ̂j < θjM or

(
θ̂j ≤ θjm and Qj ≥ 0

)
or
(
θ̂j ≥ θjM and Qj ≤ 0

)
0 if

(
θ̂j ≤ θjm and Qj < 0

)
or
(
θ̂j ≥ θjM and Qj > 0

)
j = 1, . . . , p.

For the Ze00 scheme the parameter bounds were fixed at θ1m = 10, θ1M = 50,
θ2m = 0.5, and θ2M = 3 [Nm].

Output-feedback adaptive scheme experiment description

As for the developed adaptive output feedback scheme in Eqs (3.40), (3.42)-(3.43), the
saturation functions involved at the implementations were defined as

σPi(ς) = MPi sat(ς/MPi) (5.2a)

σDi(ς) = MDi sat(ς/MDi) (5.2b)

i = 1, . . . , n, and

σaj(ς) =

{
ς ∀|ς| ≤ Laj

sign(ς)Laj + (Maj − Laj) tanh
(
ς−sign(ς)Laj
Maj−Laj

)
∀|ς| > Laj

j = 1, . . . , n, with 0 < Laj < Maj.
Let us note that with these saturations we have σ′PiM = σ′DiM = 1, ∀i = 1, . . . , n.

The saturation parameter values fixed at every implementation of the SP-SDc-ga were
corroborated to satisfy inequalities (3.23) and (3.41), taking BMa

gi =
∑2

j=1BGijMaj,
i = 1, . . . , n.

For comparison purposes, additional experiments were run implementing the output-
feedback adaptive algorithm proposed in [25] —referred to as the L00 controller—
(choice made in terms of the analog nature of the compared algorithms: output-
feedback adaptive schemes developed in a bounded input context; comparison of con-
trollers of different nature looses coherence) shown in Eq. (1.7), and briefly recalled
here:

u = −KPTh(λq̄)−KDTh(δϑ) +Gdθ̂
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q̇c = −αK(qc +Kq̄)

ϑ = qc +Kq̄

φ̇c = βGT
d

[
ηTh(δϑ)− µTh(λq̄)

]
θ̂ = φc − βGT

d q̄

At every implementation of the L00 algorithm, the P and D control gains, i.e. kP and
kD, were fixed small enough to avoid input saturation (note that they fix the bounds
of the SP and SD actions).

Trajectory tracking adaptive scheme experiment description

The proposed adaptive scheme in Eqs. (3.79)-(3.80) was tested in its SP-SD+, SPD+,
and SPDhc+-like forms, under the respective consideration of expressions (3.85)-(3.86),
(3.87)-(3.88), and (3.89)-(3.90). The involved saturation functions were defined as

σPi(ς) =

{
ς ∀|ς| ≤ LPi

sign(ς)LPi + (MPi − LPi) tanh
(
ς−sign(ς)LPi
MPi−LPi

)
∀|ς| > LPi

with 0 < LPi < MPi, 1, . . . , n, in all the three cases;

σDi(ς) = MDi sat(ς/MDi)

i = 1, . . . , n, in the SP-SD+ case;

σ0i(ς) = M0i sat(ς/M0i)

i = 1, . . . , n, in the SPDhc+-like case; and

σaj(ς) =

{
ς ∀|ς| ≤ Laj

sign(ς)Laj + (Maj − Laj) tanh
(
ς−sign(ς)Laj
Maj−Laj

)
∀|ς| > Laj

with 0 < Laj < Maj, j = 1, . . . , ρ, in all the three cases. Let us note that with these
saturation functions we have σ′PiM = σ′DiM = σ′0iM = 1, ∀i = 1, . . . , n, and that in
consequence, for the three controllers, inequality (3.60) is satisfied with κ = maxi{kDi}
(see Eqs. (3.77)).

For comparison purposes, additional simulations were implemented considering the
adaptive controller proposed by [12] —referred to as De99— (choice made in terms of
the analog nature of the compared algorithms: bounded adaptive), i.e.

u = Yd(t)ψ̂ −KPTh(ΛP q̄)−KDTh(ΛDr)

˙̂
ψ = P

(
Q(t, r), θ̂

)
where Yd(t) = Y

(
qd(t), q̇d(t), q̈d(t)

)
; Th(x) =

(
tanh(x1), . . . , tanh(xn)

)T
; ΛP =

diag[λP1, . . . , λPn] and ΛD = diag[λD1, . . . , λDn] with λPi = 1 [rad]−1 and λDi = 1
s/rad, for all i ∈ {1, . . . , n};

r = ˙̄q + εTh(q̄)

79



Figure 5.1: Experimental setup

with ε being a positive constant;

Q(t, r) = −ΓY T
d (t)r

KP , KD ∈ Rn×n and Γ ∈ Rρ×ρ are positive definite diagonal matrices; the elements of
P are defined as

Pj(Q, ψ̂) =

Qj if ψjm < ψ̂j < ψjM or
(
ψ̂j ≤ ψjm and Qj ≥ 0

)
or
(
ψ̂j ≥ ψjM and Qj ≤ 0

)
0 if

(
ψ̂j ≤ ψjm and Qj < 0

)
or
(
ψ̂j ≥ ψjM and Qj > 0

)
j = 1, . . . , p, with ψjm and ψjM being known lower and upper bounds of ψj respectively.

5.1 Experiments on a 2-DOF manipulator

In order to experimentally corroborate the efficiency of the proposed controllers, real-
time control implementations were carried out on a 2-DOF direct-drive manipulator.
The experimental setup, shown in Fig. 5.1, is a prototype of the 2-revolute-joint
robot arm used in [35] and [36], located at the Instituto Tecnológico de la Laguna.
The actuators are direct-drive brushless motors operated in torque mode, so they act
as torque source and accept an analog voltage as a reference of torque signal. The
control algorithm is executed at a 2.5 ms sampling period in a control board (based
on a DSP 32-bit floating point microprocessor) mounted on a PC-host computer. The
manipulator software is in open architecture, whose platform is based in C language
to run the control algorithm in real time.

For the considered experimental manipulator, Properties 1.4–1.5 are satisfied with
(details on the dynamic model and parameter values are given in [35, 36]):

G(q) =

(
sin q1 sin(q1 + q2)

0 sin(q1 + q2)

)
, θ =

(
38.465
1.825

)
[Nm] (5.4)

µm = 0.088 kg m2, µM = 2.533 kg m2, kC = 0.1455 kg m2, Bg1 = 40.29 Nm, Bg2 = 1.825
Nm, fm = 0.175 kg m2/s, fM = 2.288 kg m2/s, and

Υ(q) =
(

cos q∗1 − cos q1 , cos(q∗1 + q∗2)− cos(q1 + q2)
)
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with q∗ = (q∗1, q
∗
2)T being the reference configuration referred to in Property 1.5; in

particular, for the two degree of freedom experimental implementations reported in
this work, q∗1 = π/2 and q∗2 = 0 were taken. The maximum allowed torques (input
saturation bounds) are T1 = 150 Nm and T2 = 15 Nm for the first and second links
respectively. From these data, one easily corroborates that Assumption 3.1 is fulfilled.

5.1.1 State feedback regulation

The experimental implementations were run fixing the following saturation parameter
values (recall footnote 2 of Chapter 4): MP1 = 58, MD1 = 38, MP2 = 7, and MD2 = 4
in the SP-SD case; MP1 = 50, MP2 = 7, and LPi = 0.9MPi, i = 1, 2, in the SPD case;
M01 = 120, MP1 = 50, M02 = 12, and MP2 = 7 in the SPDgc-like case; and Ma1 = 50,
Ma2 = 3, and Laj = 0.9Maj, j = 1, 2, in all the three cases. These saturation function
parameter values were corroborated to satisfy inequalities (3.23), (3.35), (3.37), and
(3.39), taking BMa

gi =
∑2

j=1BGijMaj, i = 1, 2, i.e. BMa
g1 = 53 and BMa

g2 = 3.
The results of two experimental tests (for every implemented controller) are pre-

sented. The initial and desired link positions at all the executed experiments were
q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0 and qd1 = qd2 = π/4 [rad], while the auxiliary
state variable initial values were taken as φ1(0) = φ2(0) = 0 for the SP-SD, SPD,
and SPDgc-like algorithms, and φ1(0) = 20, φ2(0) = 2 [Nm] for the Ze00 controller.
Let us notice that through the selected desired configurations, the condition stated by
Corollary 3.1 is satisfied.

With the aim at getting fast position responses, in the first implementation —
referred to as Test 1—, high control gains were taken for the SP-SD, SPD, and SPDgc-
like algorithms, and a consequent considerably small value of ε satisfying inequality
(3.10) was fixed. As for the Ze00 scheme, a relatively small value of ε was also taken
(although several times higher than for the other algorithms) and reasonable values of
the rest of the tuning parameters were fixed disregarding the tuning procedure stated
in [50, Theorem 2] in order to prevent considerably slower responses, with control
gains small enough to avoid input saturation (recall that they fix the bounds of the SP
and SD actions). Under the stated considerations, the tuning parameter combination
giving rise to the best closed-loop performance —in terms mainly of stabilization time
(as short as possible) and transient response (avoiding or lowering down overshoot
and oscillations as much as possible)— was determined from numerous trial-and-error
experiments for every implemented controller. The resulting values are presented in
Table 5.1.

Figures 5.2–5.4 show the results of Test 1 for every implemented controller. Ob-
serve that the SP-SD, SPD, and SPDgc-like algorithms achieve the position regulation
objective —avoiding input saturation— in less than 2 seconds. On the other hand, the
parameter estimators present important steady-state errors. These parametric conver-
gence errors are mainly due to the unmodeled phenomena such as the static friction.
It is worth pointing out that the small value of ε importantly reduces the ability of the
adaptation auxiliary dynamics to decrease the parameter estimation steady state error.
However, it is important to note that this does neither prevent the position regulation
objective to be succeeded (avoiding input saturation), nor to achieve it in a consider-
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Table 5.1: Control parameter values for the state-feedback regulation scheme: Test 1

Parameter SP-SD SPD SPDgc-like Ze00

kP1 2900 3500 3700 70
kP2 225 250 250 9
kD1 40 80 40 6.5
kD2 3 6 3 2.5
γ1 2.5 2.5 9 500
γ2 0.05 0.05 0.15 2
ε 0.000021 0.000014 0.000017 0.0005
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Figure 5.2: Test 1: position errors
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Figure 5.3: Test 1: control signals
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Figure 5.4: Test 1: parameter estimators
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Table 5.2: Control parameter values for the state-feedback regulation scheme: Test 2

Parameter SP-SD SPD SPDgc-like Ze00

kP1 2100 1600 1850 75
kP2 225 125 250 9
kD1 40 80 40 6.5
kD2 3 6 3 2.5
γ1 0.5 0.5 9 375
γ2 0.015 0.015 0.25 15
ε 3 2.5 0.31 0.1

ably short time. As for the additional implementation, notice that the Ze00 controller
generates lower bias in the parameter estimator steady-state values but the size of the
errors is, however, observed to remain considerable and, more importantly, the position
responses could not be stabilized at the desired value throughout the duration of the
test.

In order to get an improved parameter estimation, in the second implementation
—referred to as Test 2—, a higher value of ε was fixed for the SP-SD, SPD, and
SPDgc-like algorithms (considerably higher than in the precedent tests) disregarding
inequality (3.10) (recall that the condition stated by inequality (3.10) is only sufficient)
keeping large control gains; in this context, for every one of the mentioned controllers,
the tuning parameter combination giving rise to the best closed-loop performance was
determined from numerous trial-and-error experiments. As for the Ze00 scheme, an
increased value of ε was also taken and adjustments in a control and the adaptation
gains were done, keeping the rest of the control parameters with the same value taken
in Test 1 but gains λPi, i = 1, 2, (inside the hyperbolic tangent functions involved
in the SP action) greater than unity were fixed; specifically: λP1 = 1.75, λP1 = 3.5
(rad−1). The resulting values are presented in Table 5.2.

Figures 5.5–5.7 show the results of Test 2 for every implemented controller. Observe
that, as in Test 1, the SP-SD, SPD, and SPDgc-like algorithms achieved the position
regulation objective —avoiding input saturation— in less than 2 seconds. Moreover,
an improved parameter estimation took place. In this direction, observe that, among
the referred schemes, the algorithm with greatest parameter estimation bias is the one
with the lowest value assigned to ε, corresponding to the SPDgc-like controller. As
for the Ze00 scheme, an improved parameter estimation, comparable to that obtained
through the algorithms that took the highest value of ε i.e. the SP-SD and SPD
controllers, is observed too. Nevertheless, position stabilization was not completely
achieved throughout the duration of the test.

5.1.2 Output feedback regulation

The results of two experimental tests with α = 0 are presented. The initial conditions
and desired link positions at all the implementations were: qi(0) = q̇i(0) = qci(0) =
φci(0) = 0, i = 1, 2, and qd1 = qd2 = π/4 [rad]. Let us notice that, through these
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Figure 5.5: Test 2: position errors
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Figure 5.6: Test 2: control signals
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Figure 5.7: Test 2: parameter estimators

desired configurations, the condition stated by Corollary 3.2 is satisfied.
With the aim at getting fast position responses, in the first implementation —

referred to as Test 1—, high control gains were taken for the SP-SDc-ga scheme, and a
consequent considerably small value of ε satisfying inequality (3.44) was fixed. As for
the L00 algorithm, analogous small values of η and µ were considered, and reasonable
values of the rest of the tuning parameters were fixed disregarding the tuning procedure
stated in [25, Expressions (19)] in order to prevent extremely slow responses. Under
the stated considerations, the tuning parameter combination giving rise to the best
closed-loop performance —in terms mainly of stabilization time (as short as possible)
and transient response (avoiding or lowering down overshoot and oscillations as much
as possible)— was determined from numerous trial-and-error experiments for every
implemented controller. For the SP-SDc-ga scheme, the resulting values were: KP =
diag[4000, 400] Nm/rad, KD = diag[50, 8] Nms/rad, A = diag[80, 60] rad/s2, B =
diag[20, 20] s−1, Γ = diag[40, 4] Nm, ε = 1.36 × 10−5 [Nms]−1; and the saturation
function bounds —all of them expressed in Nm— were: MP1 = 29, MP2 = 3, MD1 = 50,
MD1 = 6, Ma1 = 50, and Ma2 = 3, with Laj = 0.9Maj, j = 1, 2. For the L00 controller,
the resulting values were: kP = 9.2 Nm, kD = 2.7 Nm, λ = 20 [rad]−1, δ = 10 s/rad,
k = 20 [s]−1, α = 15, β = 25 Nm/rad, η = 0.015 rad/s, and µ = 0.05 rad/s.

Figures 5.8–5.10 show the results of Test 1 for both implemented controllers. Ob-
serve that the SP-SDc-ga scheme achieved the regulation objective —avoiding input
saturation— in less than 1 second. On the contrary, it took almost 80 seconds for
the L00 algorithm to achieve the desired convergence and it also reached the input
saturation limit. For the SP-SDc-ga case, the parameter estimators present impor-
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Figure 5.8: Test 1: position errors
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Figure 5.9: Test 1: control signals
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Figure 5.10: Test 1: parameter estimators

tant steady-state errors due to unmodeled phenomena and the adaptation dynamics
decreased action —this is mainly because of the small value of ε and the fast time
of response—. As for the L00 controller the parameter estimator were not observed
to converge during the test. However, it is important to note that this does neither
prevent the position regulation objective to be succeeded (avoiding input saturation),
nor to achieve it in a considerably short time. By contrast, the L00 controller could not
achieve a stabilization time shorter than 120 seconds, and the parameter estimation
steady-state bias remained considerable. This is mainly due to the small control gains
that the saturation avoidance inequality forces to take, particularly considering the
common values that the algorithm proposed in [25] forces to use at every link (which
prevents the possibility to take higher control gains at the links where Ti − BMa

gi does
not adopt its minimum value).

In the second implementation —referred to as Test 2—, large control gains and a
high value of ε (considerably higher than in the precedent tests) disregarding inequality
(3.44) (recall that the condition stated by inequality (3.44) is only sufficient) were fixed
for the SP-SDc-ga scheme. In this context, the tuning parameter combination giving
rise to the best closed-loop performance was determined from numerous trial-and-
error experiments. The resulting values were: KP = diag[2100, 225] Nm/rad, KD =
diag[50, 8] Nms/rad, A = diag[80, 60] rad/s2, B = diag[20, 20] s−1, Γ = diag[1, 0.1]
Nm, ε = 3 [Nms]−1; and the saturation function bounds —all of them expressed in
Nm— were: MP1 = 30, MP2 = 3, MD1 = 50, MD1 = 6, Ma1 = 50, and Ma2 = 3, with
Laj = 0.9Maj, j = 1, 2. As for the L00 scheme, considerably increased values of η and
µ were also taken, and the rest of the tuning parameters were kept as in Test 1 except

88



0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

 

 

� �

0 10 20 30
−0.8

−0.6

−0.4

−0.2

0

0.2

�

0 10 20 30
−0.8

−0.6

−0.4

−0.2

0

0.2

�

Figure 5.11: Test 2: position errors

for α and β which were adjusted adopting values that proved to be convenient during
trial-and-error tests.

Figures 5.11–5.13 show the results of Test 2 for both implemented controllers.
Observe that, similarly to Test 1, the SP-SDc-ga scheme achieved the position regu-
lation objective —avoiding input saturation— in around 1 second, and without the
overshoot of the position error response in Test 1. Moreover, an improved parameter
estimation took place; on the contrary, and similarly to that achieved in Test 1, longer
position stabilization and parameter estimator convergence times are observed for the
L00 controller.

5.1.3 State feedback trajectory tracking

At every experimental test, the initial link positions and velocities were taken as qi(0) =
qi(0) = 0, i = 1, 2. The auxiliary states were initiated at φT (0) =

(
2.88 0.103 0.125

2.803 0.214 47.119 2.235
)

(see footnote 2) in the SP-SD+, SPD+, and SPDhc+-like

cases and ψ̂T (0) =
(
2.88 0.103 0.125 2.803 0.214 47.119 2.235

)
in the case of the

De99 algorithm. The desired trajectory for all the implemented controllers was defined
as

qd(t) =

(
qd1(t)
qd2(t)

)
=

(
π
2

+ sin(ωt)
cos(ωt)

)
[rad] (5.5)

Let us note that with this desired trajectory, Assumption 2 is satisfied with Bdv = ω <
1.2027 rad/s and Bda = ω2.
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Figure 5.12: Test 2: control signals
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Figure 5.13: Test 2: parameter estimators
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Table 5.3: Control parameter values for the state-feedback tracking scheme

Parameter SP-SD+ SPD+ SPDhc+-like De99

ε 1.0167×10−7 1.0165×10−7 4.15×10−8 3
KD diag[20, 5] diag[150, 20] diag[10, 3.8]
KP diag[1500, 300] diag[70, 7.9]
Γ diag[20, 0.5, 0.1, 1.5, 0.1, 10, 0.25]

ΛP diag[20, 10]
ΛD diag[3, 3]

RMS 0.0138 0.0106 0.0172 0.0314

For the adaptive SP-SD+, SPD+, and SPDhc+-like algorithms, a sufficiently small
value of ε (satisfying inequality (3.65)) was taken and the saturation-function param-
eters as well as ω in (5.5) were fixed such that inequalities (3.72), (3.74), (3.76), and
(3.78) were satisfied. Within the consequent limits, the saturation function bounds re-
lated to the SP and SD actions and the control and adaptation gains in KP , KD, and
Γ were fixed after several trial-and-error simulation tests so as to have the best possible
closed-loop performance —in terms mainly of stabilization time (as short as possible)
and transient response (avoiding or lowering down overshoot and oscillations as much
as possible)— and then refined experimentally. As for the De99 controller, a similar
procedure was followed taking small enough control gains to avoid input saturation
(recall that in this approach, the control gains in KP and KD respectively bound the
P and D terms) but, with the aim to speed up the closed-loop responses, gains λPi and
λDi, i = 1, 2, (inside the hyperbolic tangent functions involved in the SP and SD ac-
tions) greater than unity were fixed. The resulting control parameter values for all the
implemented schemes are presented in Table 5.3 As for the saturation function param-
eters involved in the SP-SD+, SPD+, and SPDhc+-like algorithms, the selected values
were (refer to Chapter 4 footnote 2): MP1 = 40, MD1 = 40, MP2 = 4, and MD2 = 4 in
the SP-SD+ case; MP1 = 85 and MP2 = 8.5 in the SPD+ case; M01 = 130, MP1 = 45,
M02 = 13, and MP2 = 4.5 in the SPDhc+-like case; and LPi = 0.9MPi, i = 1, 2,
MT

a =
(
2.939 0.105 0.127 2.86 0.219 48.081 2.281

)
, and Laj = 0.9Maj, j = 1, . . . , 7,

in all three cases. With these values, inequalities (3.72), (3.74), (3.76), (3.78), and
Assumption 3.2 were corroborated to be satisfied with BMa

gi =
∑7

j=1 BGijMaj, i = 1, 2,

i.e. BMa
g1 = Ma6 + Ma7 = 50.362 Nm and BMa

g2 = Ma7 = 2.281 Nm, and BMa
Di =∑7

j=1BYijMaj, i = 1, 2, i.e. BMa
D1 =

(
Ma1 +

√
10Ma1 +Ma3

)
ω2 +Ma4ω +Ma6 +Ma7 =

58.6872 Nm and BMa
D2 =

(
Ma2 +

√
2Ma3

)
ω2 +Ma5ω +Ma7 = 2.9536 Nm.

Figures 5.14–5.15 show the position error evolution and control signals obtained
at every experimental test. Note that all the implemented controllers achieved the
trajectory tracking objective —avoiding input saturation— in less that 2 seconds, with
the SPD+ scheme being the one that gave rise to the fastest responses. This could
be achieved preventing overshoot on the position error responses through the SPD+
and SPDhc+-like algorithms, while the SP-SD+ and De99 controllers could not avoid
it. Let us further note that post-transient effects due to unmodelled phenomena, such
as Coulomb friction, were present at all the closed-loop responses. They are observed
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Figure 5.14: Test 2: position errors
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Figure 5.16: Experimental setup

in the position error graphs as small oscillations. In order to evaluate and compare
the performance of the implemented controllers in relation to such a post-transient

effect, the root mean square (RMS) of the position error, i.e.
√

1
t2−t1

∫ t2
t1
‖q̄(t)‖2dt, was

calculated from t1 = 2 s to t2 = 10 s. The values obtained from such a calculation
are shown in Table I. Note that under such a criterion, the best performance was
obtained through the SPDhc+-like algorithm, while the highest post-transient error
was generated by the De99 controller. As for the parameter estimators, a considerably
slow evolution was observed. This is due to the considerably small value of ε. Such a
slow adaptation rate together with the high number of elements in θ and the unmodelled
dynamics gave rise to parameter estimations with considerable bias. Improvements in
this direction could be contemplated through different desired trajectories leading to
the satisfaction of persistency of excitation conditions [30], which is out of the scope of
this work. However, accuracy on the parameter estimation is not part of the motion
control goal. Moreover, neither the slow evolution nor the biased convergence of the
parameter estimators prevented the trajectory tracking objective to be accomplished
—avoiding input saturation— or to be achieved in a considerably short time.

5.2 Experiments on a 3-DOF manipulator

The experimental setup used for the 3-DOF experiments, shown in Fig. 5.16, is a 3-
revolute-joint anthropomorphic arm located at the Benemerita Universidad Autonoma
de Puebla. The actuators are direct-drive brushless motors operated in torque mode, so
they act as torque source and accept an analog voltage as a reference of torque signal.
A more detailed technical description of this robot is given in [37].1

For the considered experimental manipulator, Properties 1.4 and 1.5 are satisfied
with

G(q) =

 0 0
sin q2 sin(q2 + q3)

0 sin(q2 + q3)

 , θ =

(
38.465
1.825

)
[Nm] (5.6)

Bg1 = 0, Bg2 = 40.29 Nm, and Bg3 = 1.825 Nm, and

Υ(q) =
(
1− cos q2 1− cos(q2 + q3)

)
1A detailed procedure through which the generalized model of such a 3-DOF anthropomorphic

manipulator is developed in Appendix A.
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(with q∗ ∈ U0 , {q ∈ R3 : q2 = q3 = 0}, i.e. such that U(q∗, θ) = 0, ∀q∗ ∈ U0; see
Property 1.5). The maximum allowed torques (input saturation bounds) are T1 = 50
Nm, T2 = 150 Nm, and T3 = 15 Nm for the first, second, and third links respectively.
From these data, one easily corroborates that Assumption 3.1 is fulfilled.

5.2.1 State feedback regulation

For all performed experiments the desired configurations were chosen such that the
condition stated by Corollaries 3.1 and 3.2 are satisfied. One can verify from G(q) in
(5.6) that, for the considered manipulator, the desired configurations are those qd ∈ R3

such that qd2 6= m1π and qd2 + qd3 6= m2π, for any m1,m2 = 0,±1,±2, . . . .
The experimental implementation referred as Test 1 was run fixing the following

saturation parameter values: MP1 = MD1 = 20, MP2 = MD2 = 40, and MP3 =
MD3 = 5 in the SP-SD case; MP1 = 40, MP2 = 80, MP3 = 10, and LPi = 0.9MPi,
i = 1, 2, 3, in the SPD case; M01 = 40, MP1 = 35 M02 = 120, MP2 = 50, M03 = 12,
and MP3 = 7 in the SPDgc-like case; and Ma1 = 50, Ma2 = 3, and Laj = 0.9Maj,
j = 1, 2, in all the three cases. For Test 2 saturation parameter values (in Nm) were
set as: MP1 = MD1 = 20, MP2 = MD2 = 35, and MP3 = MD3 = 4 in the SP-SD
case; MP1 = 40, MP2 = 60, MP3 = 8, and LPi = 0.9MPi, i = 1, 2, 3, in the SPD case;
M01 = 40, MP1 = 35 M02 = 130, MP2 = 40, M03 = 13, and MP3 = 6 in the SPDgc-like
case; and Ma1 = 70, Ma2 = 5, and Laj = 0.9Maj, j = 1, 2, 3, in all the three cases.

For comparison purposes, additional test were run considering the adaptive con-
troller proposed by [50] —referred to as Ze00—, described in Equations (1.6). The
parameter bounds were fixed at θ1m = 10, θ1M = 50, θ2m = 0.5, and θ2M = 3 [Nm] for
Test 1, and θ1m = 10, θ1M = 70, θ2m = 0.5, and θ2M = 5 [Nm] for Test 2.

The results of two experiments (for every implemented controller) are presented.
The initial conditions and desired link positions in the first simulated case, Test 1, were
taken as q1(0) = q2(0) = q3(0) = q̇1(0) = q̇2(0) = q̇3(0) = 0; φ1(0) = 20, φ2(0) = 1
[Nm]; qd1 = qd2 = π/4 [rad], and qd3 = π/2 [rad]. For Test 2 initial conditions and
desired link position were chosen as q1(0) = q2(0) = q3(0) = q̇1(0) = q̇2(0) = q̇3(0) = 0;
φ1(0) = 20, φ2(0) = 1 [Nm]; qd1 = −π/3 [rad], and qd2 = qd3 = π/3 [rad].

In the first implementation —referred to as Test 1—, a small value of ε satisfying
(3.10) was fixed for the SP-SD, SPD, and SPDgc-like algorithms; the control parameters
(kPi, kDi, i = 1, 2) and adaptation gains (γi, i = 1, 2) were determined from those giving
rise to the best closed-loop response from numerous trail-and-error tests using the SP-
SD control law, and the same fixed values were kept for the SPD and the SPDgc-
like algorithms. As for the Ze00 controller, the selection of ε, control parameters,
and adaptation gains was performed such that the greatest possible absolute value
of the control signals at every link was ensured to be lower than the corresponding
input saturation value (i.e.

∑2
j=1BGijθjM + kPi + kDi < Ti, i = 1, 2); under these

considerations, the fixed parameters and gains were those giving rise to the best closed-
loop performance after numerous trial-and-error tests.

With the aim at improving the closed-loop performance obtained through Test 1, in
the second implementation —referred to as Test 2—, a higher value of ε was fixed for
all the tested controllers (recall that the condition on ε, (3.10), is only sufficient, and
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Table 5.4: Control parameter values for the state-feedback regulation scheme

TEST 1 TEST 2
SP-SD SP-SD

Parameter SPD Ze00 SPD Ze00
SPDgc-like SPDgc-like

kP1 200 800 500 800
kP2 250 1800 350 1400
kP3 120 180 180 150
kD1 15 30 10 30
kD2 15 100 30 140
kD3 3 8 3 5
γ1 150 150 5 20
γ2 50 35 0.5 0.35
ε 0.0001 0.0001 1.5 1.5

that such a parameter is not involved in the condition stated to avoid input saturation,
(3.7)). For the SP-SD, SPD, and SPDgc-like algorithms, the control parameters and
adaptation gains were tuned as in the previously described case. As for the Ze00
controller, the referred values were fixed such that the best closed-loop performance was
obtained from numerous trial-and-error tests. Saturation avoidance was disregarded
since control parameter tuning under such a consideration gave rise to extremely poor
closed-loop performances. The resulting values for all the implemented controller at
both tests are presented in Table 5.4.

Figures 5.17–5.19 show the position errors, control signals, and parameter estima-
tors, for all the considered controllers at Test 1. Observe that in all the cases, the
control objective is achieved avoiding input saturation. Note that, even when a small
value of ε was used position error convergence is still achieved, however, this causes
the performance of the parameter estimators to become slower which in addition to
unmodeled phenomena results in biased estimations.

Figures 5.20–5.22 show the results obtained through Test 2 for all the considered
controllers. In every tested algorithm, the control objective is observed to be achieved
avoiding input saturation, with a stabilization time considerably lower than in the pre-
vious test. Nevertheless, the SP-SD, SPD, and SPDgc-like algorithms are still observed
to achieve the desired convergence much faster than the Ze00 controller.

Let us further note from Figures 5.19 and 5.22 that the parameter estimators con-
verge to the real values θi, i = 1, 2. This is so in view of the selected desired configu-
ration which gives rise to the satisfaction of the condition stated by Corollary 3.1.

5.2.2 Output feedback regulation

The results of two experimental tests α = −1 are presented. The initial conditions at
all the implementations were qi(0) = q̇i(0) = ϑi(0) = 0, i = 1, 2, 3, and φc1(0) = 20,
φc2(0) = 1 [Nm]; the desired link positions were taken as qd1 = qd2 = π/4, qd3 = π/2
[rad] in the first experiment, and qd1 = −π/3, qd2 = qd3 = π/3 [rad] in the second
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Figure 5.17: Test 1: position errors
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Figure 5.18: Test 1: control signals
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Figure 5.19: Test 1: parameter estimators
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Figure 5.20: Test 2: position errors
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Figure 5.21: Test 2: control signals
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Figure 5.22: Test 2: parameter estimators
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Figure 5.23: Test 1: position errors

one. Let us notice that, through these desired configurations, the condition stated by
Corollary 3.2 is satisfied. 2

In the first implementation —referred to as Test 1— a considerably small value of ε
was fixed for the SP-SDc-ga controller. With such a tiny value of ε, actually fixed at ε =
0.0035 [Nms]−1, the tuning parameter combination giving rise to the best closed-loop
performance —in terms mainly of stabilization time (as short as possible) and transient
response (avoiding or lowering down overshoot and oscillations as much as possible)—
was determined from numerous trial-and-error experiments. The resulting gains were:
KP = diag[250, 350, 60] Nm/rad, KD = diag[25, 70, 15] Nms/rad, A = diag[15, 50, 25]
rad/s2, B = diag[5, 10, 25] s−1, and Γ = diag[150, 35] Nm; and the saturation function
bounds were: MP1 = MD1 = 20, MP2 = MD2 = 40, MP3 = MD3 = 5, Ma1 = 50, and
Ma2 = 3, with Laj = 0.9Maj, j = 1, 2; these saturation function parameter values were
corroborated to satisfy inequalities (3.23) and (3.41), taking BMa

gi =
∑2

j=1 BGijMaj,

i = 1, 2, 3, i.e. BMa
g1 = 0, BMa

g1 = 53, and BMa
g2 = 3. As for the L00 controller, analogous

small values of η and µ were considered. More importantly, in this test, control gains
satisfying the saturation avoidance inequality, i.e. kP + kD ≤ mini∈{1,2,3}

{
Ti − BMa

gi

}
(as analogously or equivalently expressed in [25]), were taken. Unfortunately, this
condition was so restrictive, that the closed-loop system could not even react. For this
reason, corresponding results are not reported.

Figures 5.23–5.25 show the results of Test 1 for the SP-SDc-ga controller. Observe
that the regulation objective was achieved —avoiding input saturation— in less than
4 seconds. The parameter estimators took a considerably longer convergence time,
though. Furthermore, a (small) steady-state error can be appreciated at such param-

2One can verify from G(q) in (5.6) that, for the considered manipulator, the desired configurations
that satisfy the condition stated by Corollary 3.2 are those qd ∈ R3 such that qd2 6= m1π and
qd2 + qd3 6= m2π, for any m1,m2 = 0,±1,±2, . . .
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Figure 5.24: Test 1: control signals
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Figure 5.25: Test 1: parameter estimators
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eter estimation variables. Such convergence errors are mainly due to the unmodeled
phenomena such as the static friction.

With the aim at shortening the overall stabilization time (particularly considering
the parameter estimator convergence time at this point), in the second implementation
—referred to as Test 2—, a considerably higher value of ε was fixed for the SP-SDc-ga
controller (without any consideration on the possible satisfaction of inequality (3.44),
as long as the closed-loop stability is not lost; recall that the condition stated by such
inequality is only sufficient). With such a value of ε, actually fixed at ε = 1.5 [Nms]−1,
the tuning parameter combination giving rise to the best closed-loop performance was
again determined from numerous trial-and-error experiments. The resulting gains were:
KP = diag[350, 400, 75] Nm/rad, KD = diag[25, 50, 12] Nms/rad, A = diag[15, 50, 35]
rad/s2, B = diag[5, 10, 5] s−1, and Γ = diag[5, 0.5] Nm; and the saturation function
bounds —expressed in Nm— were: MP1 = MD1 = 20, MP2 = MD2 = 35, MP3 =
MD3 = 4, Ma1 = 70, and Ma2 = 5, with Laj = 0.9Maj, j = 1, 2; these saturation
function parameter values were corroborated to satisfy inequalities (3.23) and (3.41),
taking BMa

gi =
∑2

j=1BGijMaj, i = 1, 2, 3, i.e. BMa
g1 = 0, BMa

g1 = 75, and BMa
g2 = 5.

As for the L00 controller, in order to avoid considerably slow responses, the tuning
procedure presented in [25, Proposition 3] was not taken into account; not even the
saturation avoidance inequality was regarded in view of the considerably poor closed-
loop performance observed under its consideration. Moreover, in order to speed up the
closed-loop responses, different P and D control gains were considered at every input
control expression; in other words, KP and KD in (1.7) were taken in this test as KP =
diag[kP1, kP2, kP3] and KD = diag[kD1, kD2, kD3] with gains kPi and kDi, i = 1, 2, 3, that
may have each of them its own different positive value. Under such considerations, the
tuning parameter combination giving rise to the best closed-loop performance was
determined, for this controller too, from numerous trial-and-error experiments. The
resulting gains were: KP = diag[800, 1300, 200] Nm, KD = diag[5, 10, 10] Nm, λ = 30
[rad]−1, δ = 5 s/rad, k = 50 s−1, ω = 5, β = 25 Nm/rad, η = 5 rad/s, and µ = 10
rad/s.

Figures 5.26–5.28 show the results of Test 2 for both implemented controllers. Ob-
serve that the regulation objective was this time achieved —avoiding input saturation—
in less than 2 seconds. Moreover, the parameter estimators took a convergence time
considerably shorter than in Test 1. The parametric estimation steady-state errors
were however inevitable and could hardly be concluded to be smaller. Note on the
other hand that the regulation objective is also achieved through the L00 controller,
but that the position stabilization time was longer than 5 seconds. Moreover, a pa-
rameter estimator convergence time considerably longer than that obtained through
the proposed scheme is further observed.

5.2.3 State feedback tracking control

At every experiment, the initial link positions and velocities were taken as qi(0) =
q̇i(0) = 0, i = 1, 2, 3. The auxiliary states were initiated at φ(0) = 018 in the SP-SD+,
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Figure 5.26: Test 2: position errors
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Figure 5.27: Test 2: control signals
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Figure 5.28: Test 2: parameter estimators

SPD+, and SPDhc+-like cases and ψ̂T = 018 in the case of the De99 algorithm3. The
desired trajectory for all the implemented controllers was defined as

qd(t) =

qd1(t)

qd2(t)

qd3(t)

 =

−
π
4

+ π
4

cos(0.5t)
π
6

sin(0.5t)
π
4

+ π
6

sin(t)

 [rad]

Let us note that with this desired trajectory, Assumption 3.2 is satisfied with Bdv =
1.255 rad/s and Bda = 0.574 rad/s2.

For the adaptive SP-SD+, SPD+, and SPDhc+-like algorithms, the saturation-
function parameters were fixed such that inequalities (3.72), (3.74), (3.76), and (3.78)
were satisfied. The control gains in KP and KD were fixed after several trial-and-error
tests so as to have the best possible closed-loop performance. As for the De99 controller,
a similar procedure was followed disregarding the input saturation avoidance inequality
to achieve better closed-loop responses (recall that in this approach, the control gains
in KP and KD respectively bound the P and D terms). The resulting control parameter
values for all the implemented schemes are presented in Table 5.5. The elements of
the diagonal of Γ are given by Γj = 0.01, ∀j ∈ {1, . . . , 18}/{14, 15}, Γ14 = 2.75, and
Γ15 = 0.015 N m/rad, for the SP-SD+, SPD+ and the SPDhc+-like controllers, while
for De99 such values are given by Γj = 0.01, ∀j ∈ {1, . . . , 18}/{14, 15}, Γ14 = 20, and
Γ15 = 5 N m/rad.

As for the saturation function parameters involved in the SP-SD+, SPD+, and
SPDhc+-like algorithms, the selected values were (refer to footnote 2): MP1 = 11.5,
MD1 = 11.5, MP2 = 27.5, MD2 = 27.5, MP3 = 4.25, and MD3 = 4.25 in the SP-SD+

3Refer to Section A.2 of Appendix A for the description of the system parameters and consider the
viscous friction coeficientes.
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Table 5.5: Control parameter values for the state-feedback tracking scheme

Parameter SP-SD+, SPD+, SPDhc+-like De99

kP1 380 150
kP2 330 330
kP3 180 30
kD1 35 20
kD2 13 30
kD3 5 5
ε 1.5 1

ΛP diag[1, 1]
ΛD diag[1, 1]
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Figure 5.29: Position errors

case; MP1 = 23, MP2 = 60 and MP3 = 8.5 in the SPD+ case; M01 = 45, MP1 = 18,
M02 = 135, and MP2 = 41, M03 = 13.5, and MP3 = 7 in the SPDhc+-like case; and
LPi = 0.9MPi, i = 1, 2, 3, MT

a =
(
0.15 0.1 1.5 3 0.1 0.1 1.5 0.1 2 0.25

0.25 0.25 0.1 60 3 3.75 3 0.25
)

and Laj = 0.9Maj, j = 1, . . . , 18, in all the
three cases. With these values, inequalities (3.72), (3.74), (3.76), and (3.78) were
corroborated to be satisfied.

Figures 5.29 and 5.30 show the position error evolution and control signals ob-
tained through every implemented controller. Observe that the SP-SD+, SPD+,
and SPDhc+-type schemes achieve the trajectory tracking objective —avoiding input
saturation— in around 2 seconds with a post-transient oscillation of small amplitude,
and even though the De99 controller attains the goal with the same stabilization time,
the post-transient oscillation is wider. The evolution of the parameter estimators did
not converge in all implemented controllers, but implemented simulations showed that
only two estimators, those related to the parameters involved in the gravity force vec-
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Figure 5.30: Control signals

Table 5.6: RMS steady-state error

SP-SD+ SPD+ SPDhc+-like De99 units
RMS 0.0276 0.0311 0.0269 0.1157 rad

tor, converged to the real values, and that the convergence rate depends on the value
of ε, being faster for a higher value of ε. More estimators may be expected to converge
to the real values through different desired trajectories leading to the satisfaction of
persistency of excitation conditions [30] (this aspect is out of the scope of this work).
Let us point out that these observations on the parameter estimator behavior did not
prevent the trajectory tracking objective to either be accomplished —avoiding input
saturation— or to achieve it in a considerably short time. The input control signal
was observed to remain within the input saturation limits for the SP-SD+, SPD+, and
SPDhc+-type algorithms, and for the De99 scheme the input saturation bound of the
third link was reached.

To compare the performance of the implemented controllers the root mean square

(RMS) of the position errors, i.e.
√

1
t2−t1

∫ t2
t1
‖q̄(t)‖2dt, was calculated from t1 = 2 s

to t2 = 10 s to avoid the transient response. The resulting values are shown in Table
5.6. The best performance was obtained through the SPDhc+-like algorithm, while
the worst through the De99 scheme.

Figures 5.31 to 5.32 show the comparison results of the proposed controller in its
SP-SD+, SPD+, and SPDhc+-like forms and their respective non-adaptive version
using the nominal parameters, and tested with the same control gains (see Table 5.5)
for both versions of each control scheme. Notice how the performance is considerably
improved through the adaptive controller.
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Figure 5.31: Test 2: Position errors of the SPSD+ scheme
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Figure 5.32: Test 2: Control signals of the SPSD+ scheme
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Figure 5.33: Test 2: Position errors of the SPD+ scheme
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Figure 5.34: Test 2: Control signals of the SPD+ scheme
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Figure 5.35: Test 2: Position errors of the SPDhc+-like scheme
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Figure 5.36: Test 2: Control signals of the SPDhc+-like scheme
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6
Conclusions and perspectives

In this dissertation adaptive state feedback schemes for the global position and motion
control of robot manipulators with bounded inputs were proposed. Both control strate-
gies have a generalized structure that give rise to adaptive versions/extensions of several
PD-type saturating controllers previously developed under the consideration of the ex-
act knowledge of the system parameters. Furthermore, an output-feedback bounded
adaptive algorithm that achieves global regulation —avoiding input saturation— in
the absence of velocity measurements was also proposed. With respect to the previ-
ously developed approaches, the proposed algorithms guarantee the control objective:
for any initial condition (global results), avoiding discontinuities throughout the sche-
me, preventing the inputs to reach their natural saturation limits, and imposing no
saturation-avoidance restriction on the control gains. Moreover, the developed con-
trollers are not restricted to the use of a specific saturation function to achieve the
required boundedness, but may rather involve any one within a set of smooth and
non-smooth (Lipschitz-continuous) bounded passive functions that include the hyper-
bolic tangent and the conventional saturation as particular cases. Their efficiency
were corroborated through numerical simulations using a 2-DOF model, and through
several experimental implementations using two different experimental devices. The
results showed that it is always posible to reach the control objective —avoiding input
saturation— quickly enough.

The adaptation dynamics of the output feedback scheme was first designed in its
simplest form: involving only the position error vector. Then, an extended version
additionally involving the estimation of the velocity vector was further designed for
the sake of generality and since a previous approach included an analogous term. The
first approach guarantees the control objective through a simpler implementation. The
second one gives an additional degree of design flexibility that may be used for perfor-
mance adjustment purposes.

It is important to remark that while through suitable desired target positions the
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regulation designed schemes give rise to asymptotic approximations (happening to
be exact under ideal conditions) of the parameters involved in the gravity vector,
the tracking algorithm cannot ensure a similar convergence of the system dynamic
parameter estimators. This is essentially due to the non-invariant asymptotic behavior
that such estimators may have in the more general context of non-autonomous systems.
The referred convergence could be guaranteed under additional excitation-persistency
conditions. Nevertheless, the change rate and convergence properties of the parameter
estimators do not prevent the regulation/tracking objective to be achieved or that such
an achievement take place fast enough.

The adaptive tracking algorithm presented in this dissertation was designed assum-
ing the availability of all system states. An output feedback version of such scheme
proves to be convenient since not every manipulator is equipped with tachometers, and
when velocity measurements are available they are usually noisy.

Through the adaptive regulation algorithms, global position control is now possible
—avoiding input saturation— for manipulators with bounded inputs disregarding the
exact value of system parameters and even in the absence of velocity measurements
through the output-feedback version. However, the regressor matrix related to the
gravity force vector is involved in the control expressions. Stabilization schemes that
further avoid the system structure would prove to be a convenient future research work.
Some algorithms of such a kind are already found in the literature but they are usually
expressed though specific control expressions (for instance considering every term of
the controller within a saturation function) and they generally give rise to complex
tuning criteria. A generalized scheme that include multiple control structures with
simplified tuning conditions is still missing in the literature.
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A
Dynamics of two basic configurations

The intention of this appendix is to show a methodology to obtain the manipulator
dynamics through the Jacobian. The dynamic models presented here were used for the
experimental implementation of the adaptive tracking control scheme. The explicit
form of the regression matrix —of each configuration— is shown after the development
of the dynamics.

A.1 Dynamics of a 2-DOF robot manipulator

A two degree of freedom robot arm is shown in figure A.1. The intention of this section
is to illustrate how to obtain the manipulator dynamics using the Euler-Lagrange
equations of motion through the Jacobian using a well-known configuration in order to
apply this methodology on a manipulator with different kinematic chain arrangements.

Let us begin with the development of the forward kinematics. The derivation of
the dynamics by the Euler-Lagrange formulation requires the knowledge of the homo-
geneous matrices Ai, transforming the coordinates of some point from the reference
frame {XY Z}i to the reference frame {XY Z}i−1, for i = 1, ..., n, and whose product
represents the kinematic model of the manipulator. These matrices can be obtained
through the Denavit-Hartenberg (DH) convention. Consider the location of the inertial
frame {XY Z}0 and reference frames {XY Z}i, for i = 1, 2, 3, attached to the manip-
ulator joints as illustrated in Figure A.1. The resulting DH parameters are shown in
Table A.1, where ai is given by the distance between zi−1 and zi axes measured along
xi axis; di is defined as the distance between the xi−1 and xi axes measured along zi−1;
αi represents the angle between zi−1 and zi axes about the xi axis; and θi is the angle
between xi−1 and xi axes about the zi axis; αi and θi. The homogeneous matrices i−1Ai
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Figure A.1: 2 DOF Robot Manipulator

Table A.1: Denavit-Hartenberg parameters for the doble pendulum manipulator

i ai di αi θi

1 l1 0 0 q1

2 l2 0 0 q2

are obtained through four basic transformations,

i−1Ai = [Rotation(θi, Z)][Translation(di, Z)][Translation(ai, X)][Rotation(αi, X)]

=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 =

[
Ri di
03 1

]
(A.1)

For the considered manipulator, they are given by

0A1 =


cos(q1) − sin(q1) 0 l1 cos(q1)
sin(q1) cos(q1) 0 l1 sin(q1)

0 0 1 0
0 0 0 1

 =

[
R1 d1

03 1

]

1A2 =


cos(q2) − sin(q2) 0 l2 cos(q2)
sin(q2) cos(q2) 0 l2 sin(q2)

0 0 1 0
0 0 0 1

[ R2 d2

03 1

]

where Ri ∈ R3×3 and di ∈ R3, i = 1, 2. The homogeneous transformation matrix
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relating the origin of the inertial frame {XY Z}0 to the tip of the last link is given by1

0Tn =
n∏
i=1

i−1Ai = 0A1 . . .
n−1An

where

0T2 = 0A1
1A2 =


c12 −s12 0 l1c1 + l2c12

s12 c12 0 l1s1 + l2s12

0 0 1 0
0 0 0 1


The latter developments are useful to compute the dynamics using the Euler-

Lagrange equation (A.2)

τ =
d

dt

(
∂L
∂q̇

)
− ∂L
∂q

(A.2)

where τ represents the force applied to the system and L(q, q̇) is the difference between
the kinetic and potential energies, L(q, q̇) = T (q, q̇)−V (q), and it is called Lagrangian.

We first determine the kinetic energy by using the angular and linear velocities of
each link. Defining the Jacobian as a map from joint velocity q̇ to cartesian velocity,
the jacobian matrix might be partitioned into a translational and an rotational part[

v
ω

]
= Jq̇ =

[
Jv
Jω

]
q̇

Using this definition the kinetic energy can be written as

T (q, q̇) =
1

2
q̇T

n∑
i=1

[
miJ

T
vi(q)Jvi(q) + JTωi(q)Ri(q)IiR

T
i (q)Jωi(q)

]
q̇ (A.3)

where

Ii =

 Ixi Ixyi Ixzi
Ixyi Iyi Iyzi
Ixzi Iyzi Izi


is the inertia tensor and Jvi is the matrix formed from the first three rows of Ji and
represents the translational velocity, Jωi is the matrix formed with the last three rows
of Ji and it represents the part of the Jacobian due to angular velocity, the matrix Ri

represents a rotation to express the angular velocity in the frame attached to link i.
The Jacobian of joint i is computed supposing that joints i + 1 to n are not present
—because they do not contribute to the velocity of joint i— and that the last reference
frame is placed in the center of mass of the i-th link. With these, the Jacobian can be

1The following convention will be used ci , cos(qi), si , sin(qi), cij , cos(qi + qj), and sij ,
sin(qi + qj) ∀i, j ∈ {1, 2, 3}.
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written as

J1 =

[
Jv1
Jω1

]
=

[
z0 × (d1 − d0) 03

z0 03

]
=


−r1s1 0
−r1c1 0

0 0
0 0
0 0
1 0



J2 =

[
Jv2
Jω2

]
=

[
z0 × (d2 − d0) z1 × (d2 − d1)

z0 z1

]
=


−l1s1 − r2s12 −r2s12

l1c1 + r2c12 r2c12

0 0
0 0
0 0
1 1


with Jvi, Jωi ∈ R3×2, i = 1, 2. The kinetic energy due to rotational velocity is given by

Tω(q, q̇) =
1

2
q̇T
[
JTω1(q)R1(q)I1R

T
1 (q)Jω1(q) + JTω2(q)R2(q)I2R

T
2 (q)Jω2(q)

]
q̇

where

JTω1R1I1R
T
1 Jω1 = [ 0 0 1

0 0 0 ]
[
c1 −s1 0
s1 c1 0
0 0 1

]
I1

[
c1 s1 0
−s1 c1 0

0 0 1

] [
0 0
0 0
1 0

]
=

[
Iz1 0
0 0

]
JTω2R2I2R

T
2 Jω2 = [ 0 0 1

0 0 1 ]
[
c2 −s2 0
s2 c2 0
0 0 1

]
I2

[
c2 s2 0
−s2 c2 0

0 0 1

] [
0 0
0 0
1 1

]
=

[
Iz2 Iz2
Iz2 Iz2

]
The translational part of the kinetic energy is

Tv(q, q̇) =
1

2
q̇T
[
m1J

T
v1(q)Jv1(q) +m2J

T
v2(q)Jv2(q)

]
q̇

where

JTv1Jv1 =

[
−r1s1 −r1c1 0

0 0 0

]−r1s1 0
−r1c1 0

0 0


=

[
r2

1 0
0 0

]

JTv2Jv2 =

[
−l1s1 − r2s12 l1c1 + r2c12 0
−r2s12 r2c12 0

]−l1s1 − r2s12 −r2s12

l1c1 + r2c12 r2c12

0 0


=

[
l21 + r2

2 + 2l1r2c2 l1r2c2 + r2
2

l1r2c2 + r2
2 r2

2

]
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Hence

T (q, q̇) =
1

2
q̇TH(q)q̇

where the inertia matrix H(q) is given by

H(q) =

[
m1r

2
1 +m2(l21 + r2

2) + 2m2l1r2c2 + Iz1 + Iz2 m2l1r2c2 +m2r
2
2 + Iz2

m2l1r2c2 +m2r
2
2 + Iz2 m2r

2
2 + Iz2

]
Supposing that the potential energy, V(q), is equal to zero when both links are resting
downwards, it can be written as

V (q) = m1gr1(1− c1) +m2g
[
l1(1− c1) + r2(1− c12)

]
The Lagrangian is then

L(q, q̇) = T (q, q̇)− V (q)

Applying the Euler-Lagrange equation and defining

C(q, q̇)q̇ ,Ḣ(q, q̇)q̇ +
1

2

∂

∂q
(q̇TH(q)q̇)g(q) ,

∂

∂q

(
V T (q)

)
the dynamics are given by

τ = H(q)q̈ + C(q, q̇)q̇ + g(q)

The elements of the coriolis matrix C(q, q̇) are known as Christoffel symbols of the first
kind and are defined by

Cij(q, q̇) =
1

2

n∑
k=1

(
∂Hij

∂qk
+
∂Hik

∂qj
− ∂Hkj

∂qi

)
q̇k (A.4)

this representation is not unique and other definitions are posible. However, this par-
ticular choice has useful properties in control. The arrangement of the coriolis matrix
C(q, q̇), using Eq. (A.4) is given by

C(q, q̇) =

[
−m2l1r2s2q̇2 −m2l1r2s2(q̇1 + q̇2)
−m2l1r2s2q̇1 0

]
the gravity vector g(q) is

g(q) = g

[
m1r1s1 +m2(l1s1 + r2s12)

m2r2s12

]
Observe that g(q) may be rewritten as g(q) = G(q)θ with

G(q) =

(
s1 s12

0 s12

)
and θ =

(
gm2r2

g(m1r1 +m2l1)

)
The dynamics satisfies the linear parametrization property Y (q, q̇, q̈)ψ = τ with

Y (q, q̇, q̈) =

[
q̈1 q̈1 (2q̈1 + q̈2)c2 − q̇2s2(2q̇1 + q̇2) s12 s1

0 q̈1 + q̈2 q̈1c2 + q̇2
1s2 s12 0

]
115



and

ψ1 = m1r
2
1 +m2l

2
1 + Iz1

ψ2 = m2r
2
2 + Iz2

ψ3 = m2l1r2

ψ4 = gm2r2

ψ5 = g(m1r1 +m2l1)

A.2 Dynamics of a 3-DOF robot manipulator

Known as the anthropomorphic arm or articulated manipulator, its principal feature is
that the revolution axis of the second joint is parallel to that of the third, being both
perpendicular to the axis of revolution of the first joint. A common manipulator with
this configuration is the PUMA 560 (see [20]).

Consider the location of the inertial frame {XY Z}0 and reference frames {XY Z}i,
for i = 1, 2, 3, attached to the manipulator joints as illustrated in Figure A.2. Using
the resulting DH parameters —shown in Table A.2—, the homogeneous matrices i−1Ai
are obtained using Eq. (A.1). For the considered manipulator, they are given by Eqs.
A.5.

Figure A.2: Anthropomorphic manipulator
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Table A.2: Denavit-Hartenberg parameter values

i−th link ai di αi θi

1 0 0 90o q1

2 l2 0 0 q2

3 l3 0 0 q3

0A1 =


cos q1 0 sin q1 0
sin q1 0 − cos q1 0

0 1 0 0
0 0 0 1

 =

[
R1 d1

03 1

]
(A.5a)

1A2 =


cos q2 − sin q2 0 l2 cos q2

sin q2 cos q2 0 l2 sin q2

0 0 1 0
0 0 0 1

 =

[
R2 d2

03 1

]
(A.5b)

2A3 =


cos q3 − sin q3 0 l3 cos q3

sin q3 cos q3 0 l3 sin q3

0 0 1 0
0 0 0 1

 =

[
R3 d3

03 1

]
(A.5c)

The forward kinematics are described by

0T3 =
3∏
i=1

i−1Ai = 0A1
1A2

2A3

where

T 0
2 = T 0

1 T
1
2 =


c1c2 −c1s2 s1 l2c1c2

s1c2 −s1s2 −c1 l2s1c2

s2 c2 0 l2s2

0 0 0 1



T 0
3 = T 0

2 T
2
3 =


c1c23 −c1s23 s1 l3c1c23 + l2c1c2

s1c23 −s1s23 −c1 l3s1c23 + l2s1c2

s23 c23 0 l3s23 + l2s2

0 0 0 1


As described in the preceding section, these are used to compute the Jacobian of

each joint, and using the translational and rotational part of the Jacobian matrices the
kinetic energy can be expressed as in (A.6).

T (q, q̇) =
1

2
q̇T

3∑
i=1

[
miJ

T
vi(q)Jvi(q) + JTωi(q)Ri(q)IiR

T
i (q)Jωi(q)

]
q̇ (A.6)

Using the frame location shown in figures A.3 to compute the Jacobian matrices of

117



(a) Second joint (b) Third joint

Figure A.3: Frame placement to compute the Jacobian of each joint

joint i, we get

J1 =

[
Jv1

Jω1

]
=

[
z0 × (d1 − d0) 03 03

z0 03 03

]
=


0T3 0T3 0T3
0 0 0
0 0 0
1 0 0


J2 =

[
Jv2

Jω2

]
=

[
z0 × (d2 − d0) z1 × (d2 − d1) 03

z0 z1 03

]

=



−r2s1c2 −r2c1s2 0

r2c1c2 −r2s1s2 0

0 r2c2 0

0 s1 0

0 −c1 0

1 0 0


J3 =

[
Jv3

Jω3

]
=

[
z0 × (d3 − d0) z1 × (d3 − d1) z2 × (d3 − d2)

z0 z1 z2

]

=



−s1(r3c23 + l2c2) −c1(r3s23 + l2s2) −r3c1s23

c1(r3c23 + l2c2) −s1(r3s23 + l2s2) −r3s1s23

0 r3c23 + l2c2 r3c23

0 s1 s1

0 −c1 −c1

1 0 0


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where Jvi, Jωi ∈ R3×3, i = 1, 2, 3. With these, the products appearing in equation
(A.6) are

JTω1R1I1R
T
1 Jω1 =

[
0 0 1
0 0 0
0 0 0

] [
c1 0 s1
s1 0 −c1
0 1 0

]
I1

[
c1 s1 0
0 0 1
s1 −c1 0

] [
0 0 0
0 0 0
1 0 0

]
=

Iy1 0 0
0 0 0
0 0 0


JTω2R2I2R

T
2 Jω2 =

[
0 0 1
s1 −c1 0
0 0 0

] [
c1c2 −c1s2 s1
s1c2 −s1s2 −c1
s2 c2 0

]
I2

[ c1c2 s1c2 s2
−c1s2 −s1s2 c2
s1 −c1 0

] [
0 s1 0
0 −c1 0
1 0 0

]

=

Ix2s
2
2 + 2Ixy2s2c2 + Iy2c

2
2 Ixz2s2 + Iyz2c2 0

Ixz2s2 + Iyz2c2 Iz2 0

0 0 0


JTω3R3I3R

T
3 Jω3 =

[
0 0 1
s1 −c1 0
s1 −c1 0

] [
c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0

]
I3

[ c1c23 s1c23 s23
−c1s23 −s1s23 c23
s1 −c1 0

] [
0 s1 s1
0 −c1 −c1
1 0 0

]

=

Ix3s
2
23 + 2Ixy3s23c23 + Iy3c

2
23 Ixz3s23 + Iyz3c23 Ixz3s23 + Iyz3c23

Ixz3s23 + Iyz3c23 Iz3 Iz3

Ixz3s23 + Iyz3c23 Iz3 Iz3



JTv1Jv1 =

0 0 0
0 0 0
0 0 0


JTv2Jv2 =

[ −r2s1c2 r2c1c2 0
−r2c1s2 −r2s1s2 r2c2

0 0 0

] [ −r2s1c2 −r2c1s2 0
r2c1c2 −r2s1s2 0

0 r2c2 0

]
=

r2
2c

2
2 0 0

0 r2
2 0

0 0 0


JTv3Jv3 =

[
−s1(r3c23+l2c2) c1(r3c23+l2c2) 0
−c1(r3s23+l2s2) −s1(r3s23+l2s2) r3c23+l2c2
−r3c1s23 −r3s1s23 r3c23

] [
−s1(r3c23+l2c2) −c1(r3s23+l2s2) −r3c1s23
c1(r3c23+l2c2) −s1(r3s23+l2s2) −r3s1s23

0 r3c23+l2c2 r3c23

]

=

(r3c23 + l2c2)2 0 0

0 r2
3 + l22 + 2r3l2c3 r2

3 + r3l2c3

0 r2
3 + r3l2c3 r2

3


the kinetic energy is finally given by

T (q, q̇) =
1

2
q̇TH(q)q̇
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where H(q) ∈ R3×3 is the inertia matrix and its elements Hij ∈ R are given by

H11 = Iy1 + Ix2s
2
2 + 2Ixy2s2c2 + Iy2c

2
2 + Ix3s

2
23 + 2Ixy3s23c23 + Iy3c

2
23 +m2r

2
2c

2
2

+m3(r3c23 + l2c2)2

H12 = Ixz2s2 + Iyz2c2 + Ixz3s23 + Iyz3c23

H13 = Ixz3s23 + Iyz3c23

H21 = Ixz2s2 + Iyz2c2 + Ixz3s23 + Iyz3c23

H22 = Iz2 + Iz3 +m2r
2
2 +m3(r2

3 + l22 + 2r3l2c3)

H23 = Iz3 +m3(r2
3 + r3l2c3)

H31 = Ixz3s23 + Iyz3c23

H32 = Iz3 +m3(r2
3 + r3l2c3)

H33 = Iz3 +m3r
2
3

Assuming that V (q) = 0 with the second and third links resting downwards, the
potential energy is given by

V (q) = m2gr2(1− c2) +m3g
[
l2(1− c2) + r3(1− c23)

]
Using the Euler-Lagrange equation, the dynamics is obtained as

τ = H(q)q̈ + Ḣ(q, q̇)q̇ +
1

2

∂

∂q
(q̇TH(q)q̇) +

∂

∂q
(V (q))

With the vectors C(q, q̇)q̇ , Ḣ(q, q̇)q̇ + 1
2
∂
∂q

(q̇TH(q)q̇) and g(q) , ∂
∂q

(
V T (q)

)
, the

dynamics can be written as

τ = H(q)q̈ + C(q, q̇)q̇ + g(q)

The vector due to gravitational forces is given by

g(q) = g

 0
m2r2s2 +m3(l2s2 + r3s23)

m3r3s23


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The elements of the C(q, q̇), obtained through equation (A.4), are given by

C11 = −
[
(m2r

2
2 + Iy2 − Ix2)s2c2 +m3(r3c23 + l2c2)(r3s23 + l2s2) + (Iy3 − Ix3)s23c23

+ Ixy2(s2
2 − c2

2)
]
q̇2 −

[
(m3r

2
3 + Iy3 − Ix3)s23c23 +m3r3l2c2s23

]
q̇3

− Ixy3(s2
23 − c2

23)(q̇2 + q̇3)

C12 = −
[
(m2r

2
2 + Iy2 − Ix2)s2c2 +m3(r3c23 + l2c2)(r3s23 + l2s2) + (Iy3 − Ix3)s23c23

+ Ixy2(s2
2 − c2

2)
]
q̇1 + [Ixz2c2 − Iyz2s2] q̇2 + (Ixz3c23 − Iyz3s23)(q̇2 + q̇3)

+ (Ixz3c23 − Iyz3s23)(q̇2 + q̇3)

C13 = −
[
(m3r

2
3 + Iy3 − Ix3)s23c23 +m3r3l2c2s23

]
q̇1 + (Ixz3c23 − Iyz3s23)(q̇2 + q̇3)

C21 =
[
(m2r

2
2 + Iy2 − Ix2)s2c2 +m3(r3c23 + l2c2)(r3s23 + l2s2) + (Iy3 − Ix3)s23c23

+ Ixy2(s2
2 − c2

2)
]
q̇1

C22 = −m3r3l2s3q̇3

C23 = −m3r3l2s3(q̇2 + q̇3)

C31 =
[
(m3r

2
3 + Iy3 − Ix3)s23c23 +m3r3l2c2s23

]
q̇1

C32 = m3r3l2s3q̇2

C33 = 0

Notice that the location of the inertial frame does not play an important role in
the dynamics. For the developed dynamic model, the gravity vector satisfies the linear
parametrization property with

g(q) = G(q)ψ =

 0 0
s2 s23

0 s23

[g(m2r2 +m3l2)
gm3r3

]

Even more, the dynamic model can be expressed as the product of a matrix Y (q, q̇, q̈) ∈
R3×15 containing only states an a vector ψ ∈ R15 containing the system parameters.
Observe that this parametrization is not unique since the parameter grouping can be
arranged in many other ways, from all investigated parameterizations the presented
one was found to have the minimum size for vector ψ. The componentes of vector ψ
are as follows

ψ1 = Iz3 ψ2 = m3r
2
3 ψ3 = m3r3l2

ψ4 = m3l
2
2 +m2r

2
2 + Iz2 ψ5 = Ixz3 ψ6 = Iyz3

ψ7 = Iy2 − Ix2 +m3l
2
2 +m2r

2
2 ψ8 = Iy3 − Ix3 +m3r

2
3 ψ9 = Iy1 + Ix2 + Ix3

ψ10 = Ixy2 ψ11 = Ixz2 ψ12 = Iyz2

ψ13 = Ixy3 ψ14 = g(m2r2 +m3l2) ψ15 = gm3r3

and the entries of Y (q, q̇, q̈) are
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The first row elements are given by

Y1 1 = 0 Y1 2 = 0

Y1 3 = 2q̈1c2c23 − 2q̇1q̇2s(2q2 + q3)− 2q̇1q̇3c2s23 Y1 4 = 0

Y1 5 = (q̈2 + q̈3)s23 + (q̇2 + q̇3)2c23 Y1 6 = (q̈2 + q̈3)c23 − (q̇2 + q̇3)2s23

Y1 7 = q̈1c
2
2 − 2q̇1q̇2s2c2 Y1 8 = q̈1c

2
23 − 2q̇1(q̇2 + q̇3)s23c23

Y1 9 = q̈1 Y1 10 = 2q̈1s2c2 − 2q̇1q̇2(s2
2 − c2

2)

Y1 11 = q̈2s2 + q̇2
2c2 Y1 12 = q̈2c2 + q̇2

2s2

Y1 13 = 2q̈1s23c23 − q̇1(q̇2 + q̇3)(s2
23 − c2

23) Y1 14 = 0

Y1 15 = 0

The second row elements are

Y2 1 = q̈2 + q̈3 Y2 2 = q̈2 + q̈3 Y2 3 = 2q̈2c3 + q̈3c3 + q̇2
1s(2q2 + q3)

− q̇2q̇3s23 − q̇3(q̇2 + q̇3)s3

Y2 4 = q̈2 Y2 5 = q̈1s23 Y2 6 = q̈1c23

Y2 7 = q̇2
1s2c2 Y2 8 = q̇2

1s23c23 Y2 9 = 0

Y2 10 = q̇2
1(s2

2 − c2
2) Y2 11 = q̈1s2 Y2 12 = q̈1c2

Y2 13 = 0 Y2 14 = s2 Y2 15 = s23

And the third row elements are

Y3 1 = q̈2 + q̈3 Y3 2 = q̈2 + q̈3 Y3 3 = q̈2c3 + q̇2
1s23c2 + q̇2

2s3

Y3 4 = 0 Y3 5 = q̈1s23 Y3 6 = q̈1c23

Y3 7 = 0 Y3 8 = q̇2
1s23c23 Y3 9 = 0

Y3 10 = 0 Y3 11 = 0 Y3 12 = 0

Y3 13 = 0 Y3 14 = 0 Y3 15 = s23
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