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Abstract. The éffect of network topology on the transition between
dynamical behaviors is investigated for two basic networks: the small-
world and scale-[ree models. In our analysis, we consider a network of
identical dynamical systems where each node, prior to being coupled into
the network, has a stable equilibrium point. In a recent publication we
established that, as the number of nodes in the network increases, the
collective dynamics of a repellently coupled network trausit from stable
to bounded and ultimately to unbounded behavior. I this contribution
we investigate how these transitions are affected by the choice of network
model. We show that for small-world networks, the stable equilibrium
point behavior transits to bounded complex behavior for an interval of
network sizes, before becoming unbounded for a sufficiently large number
of nodes. While for scale-free networks, the transition from stable fixed
poiut to unbounded behavior occurs directly as the number of nodes
increases. To illustrate these results, we use numerical simulations of
well known chaotic benchmark systems.
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1 Introduction

Networks are ensembles of nodes connected by links. As such, representing func-
tional units as nodes and their interactions as links, a network can serve as
simplified models for many technological, social and even biological real-world
systems [1,2]. Recently, significant research efforts has been focus on analyzing
the structural characteristics of such representations. This has lead to the dis-
covery of the small-world [3] and scale-free [4] effects as common features of
real-world complex networks. Different construction algorithms have been pos-
tulated to capture these key topological aspects. One of the earliest network
models that successfully capture some aspects related to the small-world effect
was proposed by Erdés and Rényi (ER) in the 1960 s, in the ER random graph
model the structure of complex networks is counsider to be the result of a stochas-
tic process of assignment of links between a fixed population of nodes [5]. Watts
and Strogatz (WS) proposed in 1998 a network model designed to improve on
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" neous, with all nodes having about the same number of nodes. In 1999, Barabasi
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ER model [3]. In particular, as to the inability of the ER model to capture the
density characteristics of real-world networks. To achieve this, the WS network
model proposes the combination of a regular nearest neighbors graph with a
stochastic process of rewiring or add a small number of nodes. Since this model
is a much better representation of the small-world effect, the WS construction
algorithm is also refer to as the small-world network model. The ER and WS
network models share a common feature, in both cases the degree distribution
follows a Poisson distribution, that is, their connectivity is basically homoge-

and Albert (BA) proposed an alternative construction algorithum that consists on
two processes [4]: growth and preferential attachment. In the BA algorithm starts
with a small number of nodes, at each iteration a new node is added and is cou-
pled to a number of the nodes already existing on the network with a probability
directly related to its node degree. The main characteristics of the BA model
is that the number of links per node is not fixed to the average for the whole
network. In fact, the BA model has a heterogeneous connectivity that follows a
Power-law distribution [2], for these reasons the BA construction algorithm is
usually refer to as the scale-free network model.Recent works have consider the
effect of topological complexity on dynamics for different specific scenarios, from
uniformly coupled small-world networks [6], to adaptively weighted scale-free
networks [7]; among many others [1,2,8,9]. Unlike most of the previously cited
works, we are concern with the transitions of the collective behavior of the net-
work from a synchronized common stable equilibrium point to the emergence of
bounded complex behavior, and ultimately, unbounded trajectories. In a recent
publication, condition for these transitions, on a network with regular topology,
were established in terms of the coupling strength and the number of nodes
[10]. In this contribution, we extend those results to consider the effect of com-
plex connectivity. In particular, we investigated how the criteria for transition is
changed by choosing small-world or scale-free complex networks.

Throughout the paper, we will consider a network of identical dynamical sys-
tems, linearly and diffusively coupled, where each node prior to being coupled
into the network has a stable equilibrium point. Under these conditions, the syn-
chronized solution for the entire network, which describes the synchronization
manifold, coincides with the dynamical evolution of a single node in isolation
[11,6], that is, when synchronization is achieved every node follows a comimoi
stable equilibrium point. Then, expressing the dynamics of the network in terms
of its deviation from the synchronized solution, a direct relationship can be found
between the transverse Lyapunov exponents (tLe) [9], the Lyapunov exponents
of an isolated node, and the eigenvalues of the coupling matrix. Furthermore,
the network connectivity can chosen such that some of the tLes become posi-
tive, resulting on transitions from the synchronized equilibrium point solution
to bounded complex oscillations, or even unbounded trajectories. In [10], the
criteria for these transitions is express as limit values of the coupling sti‘ength ‘
and the number of nodes in the network. Using this criteria, we show the effect of"
complex topology on the conditions for transition between dynamical behaviors
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In Section 2, the conditions for transition are derive as a relation between
the tLes of the entire network, the Lyapunov exponents of an isolated node, and
the network connectivity, described by the eigenvalue spectrum of the coupling
matrix. In Section 3, the small-world and scale-free models are described and
their effect on the transition between collective behaviors is establish. These
results are illustrated with numnerical simulations in Section 4. Finally, in Section
5 this contribution is concluded with comments and remarks.

2 Transitions Between Dynamical Behaviors

Consider a network of N linearly and diffusively coupled identical nodes, where
each node is a m-dimensional dynamical system with a stable equilibrium point.
The state equations describing the dynamics of the entire network are given by
[10}:

N
&i(t) = f(zi(t) — ¢ _aiz;(t), $=1,2,., N (1)

=1

where z;(t) = [xil(t),xig(t),...,:c,-m(t)]T € R™ are state variables of the ith
node; f(-) : R™ — R™ describes the dynamics of an isolated node; the constant
¢ > 0 is the coupling strength between any two nodes in the network. The
network connectivity is describe by its coupling matrix A = {a;;} € RV*V,
where a;; € [0, 1] is set to one if there is a link between ith and jth nodes and
to zero if they are not connected. Diffusive coupling refers to:

(I) Symmetric entries (ai; = aji, Vi, 4,7 # );

(II) Null sum by rows and columns (Z?]=1 aij = Zjvzl aj; = 0, Vi), with the
diagonal elements are given by

N

N ”
Qj; = — E Q5 = — E aji, 1=1,2, .

j=lgi J=Li#i

For a diffusively coupled network with no isolated nodes, the eig
are [12]: o
0=A1>A22A32...ZAN B

An isolated node, described by £ = f(z), can be characterized in termy
Lyapunov exponents, h;, given by [13]:

.1 .
hy = lim Z|J(t, zo)uif, 1=1,2,..,m

where J(t,%o) is the Jacobian matrix of f() evaluated at a randomly selected
initial condition g with {u1,u2,...,un} is a set of orthonormal vectors in the
tangent space of the system. Notice that the m Lyapunov exponents of a node,
prior to being coupled into the network, are strictly negative and can be ordered
as:

0> 2R > hn (5)
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A network is said to be synchronized if the trajectories of every node move
at unison, in the sense that:

z;(t) = z;(t) = E(t), Vi,jast— oo. (6)

where Z(t) is the synchronized state, which coincides with the dynamics of a
node in isolation (Z(t) = f(&) and by construction is a solution for the entire
network. '

In the m/NV-dimensional state space the synchronized solution describes a
diagonal m-dimensional manifold usually called the synchronization manifold
[6,11]. The collective dynamics of the network can be characterized in terms of
the divergence of the trajectories of its nodes from the synchronized solution
Z. Furthermore, the stability of the synchronized behavior can be determine
directly from the transverse Lyapunov exponents [9,14,10], which are obtained
as follows:

Defining the synchronization error as £;(t) = ;(t) — Z(t). A variational equa-
tion is obtained linearizing around the synchronized state

N
) A =TEOE®) — ) angit), i=1,2,.,N ()
‘ L J=1
7 c:bf)r form becomes
| X(t) = J(z(t) X () — cX(t) AT ®)

= [61(t),&2(2), ..., En(t)] € R™ N, Notice that by construction the
fnatrix satisfies: '
e A=TAl? :
ere I = [v1,793, .., Yn] € RV*V; and A = diag(A1, Az, ..., Ayy) € RV*N,; wit

the i-th eigenvector of .4 and J; its corresponding eigenvalue. .
In terms of (9), the variational equation (8) becomes:

Ue(t) = J(z(8))vg(t) — chpn(t), k=1,2,..,N (10

where vz (t) = X(t)yx € R™. Then, applying the definition of Lyapunov expt
nent in (4) to the variational equation (10). One gets the entire spectrum of ¢L
for the network as: '

wi(Ak) = hy — cA,

fori=1,2,..,m,and k=1,2,...,N.
The spectrum of ¢Les inherit, from (3) and (5), the following order:

wi(AN) 2 pi(An-1) 2 oo 2 pi(A2) > ps(Ar)
p1(Ak) = pa(Ak) = oo 2 pm—1(Ak) 2 (k)

fori=1,2,...,mand k=1,2,...,,N.
The stability of the collective behavior around the synchronization manif
O can be determine from the sign of the ¢Les. From (12), the largest tLe is p1 (A
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Then, if g1(An) < 0, all the nodes synchronize to a common stable equilibrium
point. However, if the connectivity is such the eigenvalues of A make some of the
tLes positive, then, some of the trajectories move away from the synchronized
solution, but if the synchronization manifold remains attractive the trajectories
remain bounded. In [10] this situation is refer to as the emergence of bounded
belhavior. Alternatively, if the eigenvalues of the coupling matrix make a large
enough number of ¢Le positive, then the trajectories become unbounded at least
for one node.

These conditions for transition between behaviors can be expressed as follows
[10}:
(I) The network will synchronize to a common stable equilibrium point if g1 (An) <
0, or equivalently

|h1] > c|]AN] (13)

(II) Bounded behavior will emerge in the network if:
(11.1) A small number (7 T with 1 < 7 < mand 1 < T < N) of tLes are positive
with the remaining tLes are negative (u-(Ar) < 0), or equivalently

<l|hs| (14)

|h1] < c|An| and e|Ar

(11.2) Additionally, the overall sumn of tLes for each node must be negative for
every node; that is,
m )
o = Zhi — ek < 0 for every k (15)
=1
It should be noted that in this case the network is not synchronized, the tra-
jectories move away from the equilibrium point, yet they remain bounded since
the equilibrium solution remains attractive. In this situation, the folding and
stretching mechanisms may allow for the network to exhibit complex chaotic
oscillations.
(IIT) Ultimately, unbounded trajectories result if the positive {Les are such that
the suin of any of the nodes is positive, that is

m
;= Zhi —cA; > 0 for any k (16)

i=1

These conditions for the transition from one behavior to another depend
directly on the eigenvalues of the connectivity matrix. Since different topologies
have different eigenvalue spectrums, in the following section we investigate the
effect of two conventional network models on the transitions between collective

behaviors.

3 Models of Network Topology

In order to investigate the effect of network topology on the trans
behaviors, we look at two benchmark models: small-world.
works. From the criteria for transition in (13)-(16) one can e
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nvalue spectrum of the coupling matrix
obtained using each of § I particular, two aspects must be con-
sidered: (1) the value of' t ; (nost negative) eigenvalue, Ay, since it
determines the stability of $yiishronization towards the equilibrium point. And
(2) the dispersion of the eigeriviiliies, 8s can be seen from (15) and (16) a larger
dispersion makes it more likely to have a positive overall sum even with only a
few positive tLes. In this contribution, we measure the dispersion of the eigen-
values of A calculating the following indicator:

important aspect to considi

IAn] = o

= e 17
[An] a7

Then, the dispersion has its minimum (p = 0) when the eigenvalues are equal,
which is the case for a regular globally coupled network; and its maximum (p = 1)
when their difference is largest, this happens for a regular star coupled network.

3.1 Small-World Network Model

The coupling matrix of a network with small-world coupling structure can be
constructed using the following two-step process {11]:

1. Regular: Construct a regular nearest-neighbors connectivity matrix Ay, of
size N, by symmetrically letting the two neighboring entries forwards and back-
wards of each node be turn to one.

2, Random: With probability 0 < p_ < 1, add connections to the network by
symmetrically making the corresponding zero entries of A, into ones (a;; =
a;; = 1) and adjusting the diagonal elements of the resulting matrix A, , such
that the diffusive requirements (2) and (3) are satisfied.

0
" 2, P, =0.05
A' =
ook P, ~0-05
~150 A
2p =015
- p
A
Ny o
- p,,=0.15
-0 4
¢ 100 200 3(‘)0 400 500 800 700 800 960 1000 100 200 34')0 400 5130 ) e’no 700 8;0 an 10‘00
N (pumber of nodes) N (number of nodes) -

Fig. 1. Left The largest non zero (A,,.2) and smallest (A, ~) eigenvalues of A, .
Right The dispersion of the eigenvalue spectrum of A, for different number of nodes.
(Average over twenty realizations for each probability p,. )
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In Figure 1-Left, the largest (A, 2) and smallest (A ~) nonzero eigenvalues
of A, are presented as a function of the number of nodes in the network for a
given probability of adding conuections. Examining the nonzero eigenvalues of
Asw 1t can be seen that all of them growth along with the size of the network. In
Figure 1-Right, the dispersion of the eigenvalues of A,,, is shown as a function of
the number of nodes in the network. It can be seen that as the network growths
the eigenvalues become more compacted.

From the observations above, the following can be established for a network
with a small-world coupling configuration (A4, ):
(I) There will be a critical value of N after which positive ¢Les will be generated
for any given coupling strength. (II) The number of positive tLes will growth
larger as the number of nodes in the network increases.
(III) Since the dispersion of the eigenvalues tends to be more compacted, there
will be a set of values for which 7T positive tLes will be such that at the same time
the sum (15) remains negative. In this situation, complex bounded trajectories
can be generated in the overall behavior of the network (See Figure 3 in the
following Section).
Ultimately, for a large enough number of nodes, the trajectories will become
unbounded. (See Figure 3 in the following Section)

3.2 Scale-Free Networks

The connectivity matrix of a network with a scale-free topology can be con-
structed using the following algorithm [4]:
1. Growth: Initially there are mg nodes, then every time step a new node is
added and connected to m; of the existing nodes by setting the entries of the
connectivity matrix A_; to one (a;; = aj; = 1) and adjusting the diagonal ele-
nents (a; = — Z#i a;;) such that the sum by rows remains zero.
2. Preferential Attachment: The nodes in the network, which are connected
to the new node, are chosen with a probability 0 < p,.; < 1. The probability p,,
is a function of the node degree (k;), which is defined as the number of edges
connecting to a node. In this way, the probability of connecting the new node j
to the existing node 4, is given by p,, (j — i) = E%Lk—z

In Figure 2-Left, the largest non-zero (A, 2) and the smallest (A,,,~) eigen-
values of the connectivity matrix for a scale-free network (A,,) are shown for
different number of nodes. In- this case one can observe that as the number
of nodes increases, the largest Tnon zero eigenvalue remains basically constant
(A,;2 = —1), while the smallest eigenvalue growths proportionally with the net-
work size ()\a;,N ~ —N ). -In Figure 2-Right, the dispersion of the eigenvalues
tniction of the number of nodes in the network.

One can see th of nodes in the network growths the dispersion
tends towards it one (p,, ~ 1).
Taking into Its, for a network with scale-free coupling struc-

(A) There i N after which positive tLes will be generated
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Fig. 2. Left The largest non zero (A,;,2) and smallest (A, n) eigenvalues of Asy.
Right The dispersion of the eigenvalue spectruin of A, for different number of nodes.
(The nuinerical values are average over twenty realizations with mo =4 m; =4, 2)

for any given coupling strength, yet this will be the case only for some of the
eigenvalues of A, (the ones near Ay) with the remaining eigenvalues remaining
constant (the ones near As).

(B) The number of positive tLes will remain basically the same as the number
of nodes increases, yet the value for the smallest eigenvalues will growth with
the number of nodes.

(C) The large dispersion between the eigenvalues will allow for a large enough
number of nodes that there will be positive ¢Les with a negative sum for (15), in
this situation the trajectories remain bounded but no complex oscillations can
be observed.

Finally, for a sufficiently large N the positive tLes will be large enough to make
the sum (16) positive. In this case, the network will transit from a stable equi-
librium point to a unbounded trajectories for the hub nodes (See Figure 4 in the
Section 5). '

0.5
0.5 (a) a000p  (€)
o 1000
5>
. o
0.4 1000
oF -20004
b 5 7 5 10 15 20 25

Fig. 3. Illustrative example of the effect of topology on the transitions between behavior
for a small-world network of Lorenz systems with a stable equilibrium point. (a) four
(b) fifteen and (c) Twenty five nodes.
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4 Ilustrative Example

For illustrative purposes consider a network with each node is a Chen system [15]
with a stable equilibrium point. We assume that the nodes are coupled linearly
and diffusively according to the small-world algorithm presented in the previous
Section, and further consider that the coupling strength is fixed at ¢ = 0.2.
As discussed in the above, under these conditions for a small number of nodes,
all nodes will have a common equilibrium point (See Figure 3(a) N = 4), as
the number of nodes increases the conditions on (14) and (15) are satisfied and
bounded complex oscillations can be observed (See Figure 3(b) N = 15); finally
for a large number of nodes, the trajectories become unbounded (See Figure 3(c)
N = 25)

600} c
o. (a) 0. (b) ( )
o. o 400
; .0.3 i
%3 5 x

0.2 02 200)
0.1 o

) 0

. - = = b3 I 55 5 10 15

Fig. 4. Ilustrative example of the effect of topology on the transitions between behavior
for a scale-free network of Lorenz systems with a stable equilibrium point. (a) Four (b)
Fifteen and (c) Twenty nodes.

Then, consider that the nodes are coupled linearly and diffusively according
to the scale-free algorithm presented above for a fixed coupling strength ¢ = 0.2.
In this case, for a small number again all nodes will have a common equilibrium
point (See Figure 4(a) N = 4), as the number of nodes increases where both
conditions (14) and (15) are satisfied, the trajectories of the network remain
bounded but only the hub node is moves away from the synchronized solution
(See Figure 4(b) N = 15); finally for a large number of nodes, the trajectories
of the hub node become unbounded long before the rest of the nodes move away
from the common equilibrium point (See Figure 4(c) N = 20)

5 Concluding Remarks

We extended the results on the transition between behaviors for networks of
coupled dynamical systems presented in [10] to include the cases of networks
with small-world and scale-free topology. Analyzing differences,in terms of values
and dispersion of the eigenvalue spectrums generated by each of these network
models, we established that network with small-world topology tend to have an
interval of values for the number of no les (N) such that complex oscillations can
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be observed. On the other hand, nétiork-with seale-free topology will tend to
transit directly from a stable bounded behavior 10 a dtate where at least the hub
nodes become unbounded. Therefore, scale-fre@ networks do not have a window
of values where complex oscillations may 6¢eur. This difference in the transitions
results from a fundamental difference in' the:connectivity of these models and
may have significant implications for the design of real-world networks. These
issues require further investigation, which will be reported elsewhere.
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