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Abstract. We obtain a class of parametric oscillation modes that we call K-modes with
damping and absorption that are connected to the classical harmonic oscillator modes through
the “supersymmetric” one-dimensional matrix procedure similar to relationships of the same
type between Dirac and Schrodinger equations in particle physics. When a single coupling
parameter, denoted by K, is used, it characterizes both the damping and the dissipative features
of these modes. Generalizations to several K parameters are also possible and lead to analytical
results. If the problem is passed to the physical optics (and/or acoustics) context by switching
from the oscillator equation to the corresponding Helmholtz equation, one may hope to detect
the K-modes as waveguide modes of specially designed waveguides and/or cavities.

PACS number(s): 12.60.Jv, 11.30.Pb

1. Introduction.
Factorizations of differential operators describing simple mechanical motion have been only
occasionally used in the past, although in quantum mechanics the procedure led to a vast
literature under the name of supersymmetric quantum mechanics initiated by a paper of Witten
[1]. However, as shown by Rosu and Reyé€s [2], for the damped Newtonian free oscillator the
factorization method could generate interesting results even in an area settled more than three
centuries ago. In the following, we apply some of the supersymmetric schemes to the basic
classical harmonic oscillator. In particular, we show how a known connection in particle
physics between Dirac and Schrodinger equations could lead in the case of harmonic motion
to chirped (i.e., time-dependent) frequency oscillator equations whose solutions are a class
of oscillatory modes depending on one more parameter, denoted by K in this work, besides
the natural circular frequenay,. The parameter K characterizes both the damping and the
losses of these “supersymmetric” partner modes. Moreover, we do not limit this study to one
K parameter extending it to several such parameters still getting analytic results. Guided by
mathematical equivalence, possible applications in several areas of physics are identified.

2. Classical harmonic oscillator: The Riccati approach.
The harmonic oscillator can be described by one of the simplest Riccati equation

u,+u2+f<aw§:0, k==1, (2)
where the plus sign is for the normal case whereas the minus sign is for the up side down case.

Indeed, employing = *- one gets the harmonic oscillator differential equation

w4 Kwaw =0, (2)

with the solutions
] Wicos(wot+¢y) ifr=1
Wb = Wosinh(wot +¢_) if k= —1,
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whereW.. andy.. are amplitude and phase parameters, respectively, whichegnored in
the following.
The particular Riccati solution of Eq.](1) are

| —wetan(wet) if k=1
" T wocoth(wpt) if k= —1.

It is well known that the particular Riccati solutions entes nonoperatorial part in the
common factorizations of the second-order linear difféegrequations that are directly
related to the Darboux isospectral transformatidns [3].

Thus, for Eq. [2) one getd} = &

(D¢ +up) (Dy —up,) w=w + (—u; —w)w=0. (3)

To fix the ideas, we shall use the terminology of Witten’s sapemetric quantum mechanics
and call Eq.[(B) the bosonic equation. We stress here thatupbersymmetric terminology
is used in this paper only for convenience and should not kentditerally. Thus, the
supersymmetric partner (or fermionic) equation of HG. @)obtained by reversing the
factorization brackets

(Dy —up) (Dy +up) we = w + (u; —u
which is related to the fermionic Riccati equation

u—u?—wi(t)=0, 5)
where the free term? is the following function of time

2

S)w = w + wi(t)w =0, 4)

2

W) = 1, — 2 { wi(—1 — 2tan?wet) if kK =1
f — Y

P | w2(1 - 2coth’wot) if k= —1.

The solutions (fermionic zero modes) of Eg. (4) are given by

Wi = { COS_(U‘:%t) ifx=1

sinl?i?uot) if v =—1 !

and thus present strong periodic singularities in the fiassecand just one singularity at the
origin in the second case. These ‘partner’ oscillators, ai &as those to be discussed in
the following, are parametric oscillators, i.e., of timepg&ndent frequency. Moreover, their
frequencies can become infinite (periodically). In genesanals of this type are known
as chirps. ‘Infinite’ chirps could be produced, in principle very special astrophysical
circumstances, e.g., close to black hole horizbhs [4].

3. Matrix formulation.
—1

Using the Pauli matrices, = < ? 0 ) ando, = < (1) (1) ) , we write the matrix equation

DoW = [0yDy + oy (iup)]W =0, (6)

w1

where W = is a two component spinor. Ed.(6) is equivalent to the foltmyv

decoupled equations
(iDy + iuy)wy = 0 (7)
(—iD¢ +iup)wy = 0. (8)



Classical Harmonic Oscillator with Dirac-like Parameters and Possible Applications 3

Solving these equations one getso wy/ cos(wot) andwy o wy cos(wpt) for thex = 1 case
andw; o wy/sinh(wgt) andws o wesinh(wpt) for thex = —1 case. Thus, we obtain

w=( )=o) ©

This shows that the matrix equation is equivalent to the teaaped-order linear differential
equations of bosonic and fermionic type, Hq. (2) and Hq.rébpectively, a result quite well
known in particle physics. Indeed, a comparison with the firac equation with a Lorentz
scalar potentiab(x)

[—ioyDy + ox(m + S(x))|]W = EW , (10)

shows that Eq.[{6) corresponds to a Dirac spinor of ‘zero hasd ‘zero energy’ in an
imaginary scalar ‘potentialiu, (t). We remind that a detailed discussion of the Dirac equation
in the supersymmetric approach has been provided by Cebpkj5] in 1988. They showed
that the Dirac equation with a Lorentz scalar potential isoamted with a susy pair of
Schroedinger Hamiltonians. This result has been usedibgtenany authors in the particle
physics context]6].

4. Extension through parameter K.
We now come to the main issue of this work. Consider the dlightre general Dirac-like
equation

DxW = [0yDy + oy (iu, + K)|W = KW | (11)

where K is a (not necessarily positive) real constant. Orldfihand side of the equation,
K stands as an (imaginary) mass parameter of the Dirac spit@reas on the right hand
side it corresponds to the energy parameter. Thus, we hagguation equivalent to a Dirac
equation for a spinor of masK at the fixed energy = iK. This equation can be written as
the following system of coupled equations

iDywy + (fup, + K)wy = Kwy (12)
—iDyws + (iu, + K)wy = Kwy . 13)

The decoupling can be achieved by applying the operator i(E) to Eq. (12) . For
the fermionic spinor component one gets

2K
Diw] — wi [(1 + 2tan’ wot) + iw_o tan wot} wi =0 forr=1 (14)

2K
DZw; + wg[(l — 2coth?wyt) + i~—coth wot} w; =0 fore=-1, (15)
Wo

whereas the bosonic component fulfills

2K

DZwy + wg[l —i— tan wot} wy =0 fork=1 (16)
Wo
2K

DZw, — ws [1 - i—cothwot} w, =0 fork=-1. 17)
wo

The solutions of the bosonic equations are expressed instasfnthe Gauss
hypergeometric functiong;

1 1 1
Wy (tag, By) = 04+ng Q)Zéq ,F, {PWL%p +q- 1,2p?_§zl]

. iyl _1 1
—5+e_2lpw4(p_%)zl ® Q)Zéq ) 2y {q —p,q—p+1,2—2p; —§Z1} (18)
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and

1
wy (t;a_, ) = a_z57; oF4 {r +s,r+s+ 1,1+ 2r; 523}

1
+0_4"z3"7; o F4 {s —r+1,s—r,1—2r 523] , (29
where the variables; (: = 1, ..., 4) are given in the following form:
71 = itan(wet) — 1, zy =itan(wet) + 1, 23 = coth(wet) + 1, 24 = coth(wet) — 1,

respectively. The parameters are the following:

1 2K 1 2K
p==(1+4/1——], qg==(1+ 1+— 1+1— 1—1—.
2 0% 2

The fermionic zero modes can be obtained as the inverse bbi@nic ones. Thus

1 1
= W = . 20
L= S Gant) " T wEenp) (20)
A comparison ofw;” with the commonl / cost fermionic mode is displayed in Figures (3)
and (4).
In the smallK regime K < wq, one gets

K 1
wy (t; g, By) = 04+ng Q)Zéq ? 2F1 {2 1,2—— __Zl(t)}_
Wo 2
. 1y —(p=1) (q—1 K K K 1
Bye2mgo3) P77 [— A4+ —,— ——21(t)} (21)
wWo Wy Wo 2
and K 1
wy (b, o) =~ a_z3z) oF [1, 2,2+1i—; —23(t)}+
wWo 2

. K K K 1
B_4"z5"7; gFl[l - lw_o _lw_o _lw_o 523(t)} :

Examining the bosonic equations, one can immediately sg¢¢tth resonant frequencies
acquired resistive time-dependent losses whose reldtsegth is given by the parameter K.
The fermionic equations having time-dependent real pdittssdfrequency can be interpreted

as parametric oscillators which are also affected by lo$sesigh the imaginary part.

(22)

5. More K parameters.
A more general case in this scheme is to consider the follpwiatrix Dirac-like equation

0 —i 01)[i+K 0 wi )
l(i 0)Dt+<1 0)( 0 iup+K2>]<W2>_
K, 0 W
<01 K2><W;> 23)

The system of coupled first-order differential equationis lvé now

| — Dy + iy, + K| wy = Kjwy (24)
[iDt + iu, + Kl]w1 = K,w, (25)
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and the equivalent second-order differential equations

D *wi+ [ —1AK| Dyw;+ Dy, (K +Ka )y + (K1 Ky — Ky Kj)—u2|w; = 0, (26)
where the subindex= 1,2 andAK = K; — K,. Under the gauge transformation

w; = Z; exp (—% /t [— iAK] dT) = Zi(t)e%itAK , 27)
one gets

D.*Z; + Qi(t)Z; = 0, (28)
where the ‘potentials’ have the form

Qi(t) = | £ Dyt +i(Ky + Ko, + (K Ky — K Kp) — 1| - i | —iAK] *(29)

()12 are functions that differ from the nonoperatorial parts gs H30 {3B) only by constant
terms. Indeed, one can obtain easily the following equation
For the fermionic spinor component one gets
Ky —Ki)?2 KK, — KK, N K+ Ko

D271 — w2 |1 + 2tan® wot — —
e 0[ 0 4w w3 Wo

tanwot] Z{ = 0(30)

forx =1, and

(Ky — Ky)? N K K, — K(K, N iK1 + K,

27— 2 2
D{7Z7 + wq [1 — 2coth’wot + e 2 o

coth wot}Zl_ =0(31)
fork = —1.
The bosonic component fulfills
Ky —K;)? KKy —KK, K +K,
+ —1
4w Wi Wo

DIZ§ +wi|1+ tanwot| 2§ =0, (32)

forx =1, and

K, —K)? KK, —KK, K +K
DfZ;—w§[1—<2 21)_ 122 19 . 1+ Ko
4w; wp Wo
for r = —1. WhenK; = K, = K one gets the particular case studied in full detail above.
The more general ‘bosonic’ modes have the form:

coth wot} Zy; =0,(33)

9

231
73 (t;ay, By) = aptan(wet) — i) 50 [tan(wot) + i] ™o

NERVRVERY
2F1 )

O 1 -

114~ Z(tan(wot) — i

g dog T +2w072<an<“") 1)
29

8, (—1) 2% [tan(wot) — i] 50 [tan(wot) + 1] =5

[y — Qp Q9 — Q1 N
F 1,1 — —;—(t t) —
T Ty T T g tan(et) = 1)
(34)
and
S5 g
Zs (t;a—, f-) = a_[coth(wpt) — 1]*o0 [coth(wpt) 4 1]%0
Qs + Q4 Qs + Q4 Qs 1 }
F 1 14+ —:;——(coth(wpt) — 1
? 1{ oy TV Ty U gy pleoth(wet) = 1)
_f3 Q3 _ 93 g
+6_(—1) 2%04%0 [coth(wpt) — 1] %0 [coth(wet) + 1]%0
Qs —Qy Q— Q5 Qs 1 }
F 1,1 — —:——(coth(wpt) — 1
2 |: 40)0 ’ 4WQ 5 20}0’ 2<CO (Wo ) ) ’

(35)
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where 1/2
Ql = (4w§+(K1+K2) —|—4[(K1+K2 wO—K K )
1/2
Qp = (4 + (Ky + Ka)? — 4[(Ky + Ko + K{K3])
9 9 1/2
Qs = (4w — (K + Kg)® — 4[i(K; + Ka)wp — K{K)] )
1/2
Q = (468 — (K + Ko)? + 4[i(K; + Ka)wo + KiKj])
6. Applications.
6.1 Waveguides.

In view of the correspondence between mechanics and opmiits,can also provide an
interpretation in terms of the Helmholtz optics for lighbpagation in waveguides of special
profiles. The supersymmetry of the Helmholtz equation hanbsudied by Wolf and
collaborators|[i7]. To get the waveguide application, oneusth switch from the temporal
independent variable to a spatial variable> x along which we consider the inhomogeneity
of the fiber whereas the propagation of beams is along anangplementary spatial
coordinatez. Thus, we turn the equations (14-17) into Helmholtz waveglequations of
the type (we take = 1)

(07 + 0% + win*(x)]p(x,2) =0, (36)

where the modeg(z, z) can be written in the forny, »(x)e~* for a fixed wavenumbeik,
in the propagating coordinate that is common to both wawfans and the index profiles
correspond to two pairs of bosonic-fermionic waveguidesane given by

2K 2K
n?(x) ~ 1 — ik—0 tan(kox), nF(x) ~ —(1+ 2tan*(wex)) — ik—o tan(kox) , (37)

and

2K 2K
n?(x) ~ —1 — ik—ocoth(kox) , ni(x) ~ 1 —2coth?(kex) + 1k—ocoth(kox) , (38)

respectively. In our unit®, = wy. Egs. [3¥[3B) can be obtained from Riccati equations of
the type ¢ # 1)
wonfb( )/ =k TR, —R?, (39)

whereR(x) are Riccati solutions directly related to the Riccati siolu$ discussed in the
previous sections.

According to Chumakov and Woli[7] a second waveguide in&giion is possible
describing two different Gaussian beams, bosonic and @maji whose small difference in
frequency is given in terms of a small paramet@wavelength/beam width), propagating in
the same waveguide. In this interpretation, the index profile is tlaene for both beams.
For illustration, let us take the normal oscillator Riccadilution in the space variable
i.e., tankox that we approximate to first order linear Taylor tekgx. Then, the two beam
interpretation leads to the following Riccati equatiorr (@etails, see the paper of Chumakov
and Wolf)

wiznz( ) — win?(0) = Fko — k2x*(1 F¢) . (40)

An almost exact, up to nonlinear corrections of orefeand higher, supersymmetric pairing
of thez wavenumbers (propagating constants) occurs, exceptédgtbund state’ one. As
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noted by Chumakov and Wolf, supersymmetry connects in e ¢tight beams of different
frequencies but having the same wavelength in the progagdirectionz. This approach is
valid only in the paraxial approximation. Therefore, onewld know the small x behaviour
of the K-modes in order to hope to detect them through stalvdeference patterns along the
waveguide axis.

6.2 Cavity physics.
Another very interesting application of the K-modes in aabdariable could be Schumann’s
resonances, i.e., the resonant frequencies of the speaedly provided by the Earth’s
surface and the ionosphere plasma layer [8]. The Schumanuhepn can be approached as a
spherical Helmholtz equatioiV? + £?]¢ = 0 with Robin type (mixed) boundary condition

g—i|5 = C(w)¢s, WhereC'(w) is expressed in terms of the skin depth= /2/(p.ow) of
the conducting wally. is its permeability andr is its conductivity. The eigenfrequencies
fulfilling such boundary conditions can be written as folkow

w? ~wi[(1 = 1) +il], (41)

wherel! is a complicated expression in terms of skin depths andseidad volume integrals
of Helmholtz solutions with Neumann boundary conditicgﬁ?s;s = 0. It is worth noting
the similarity between these improved values of Schumaeigenfrequencies and the K-
eigenfrequencies. Moreover, using tegparameter of the cavity, one can write Hg.l(41) in

the form
wzzwgul—é)ﬂa. (42)

This form shows that the modification of the real part.oleads to a downward shift of the
resonant frequencies, while the contribution to the imagirtomponent changes the rate of
decay of the modes.

We point out that Jackson mentions in his textbook that tlze equality of the real and
imaginary parts of the change it is a consequence of the employed boundary condition,
which is appropriate for relatively good conductors.Thing,changing the form of’(w)
that could result from different surface impedances, tlative magnitude of the real and
imaginary parts of the changedrt can be made different. It is this latter case that correspond
better to the K-modes.

6.3 Crystal models.
There is also a strong mathematical similarity between thmd¢les and the solutions of
Scarf’s crystal model 9] based on the singular poteritiat) = —Vjcosec?(nx/a), where
a is an arbitrary lattice parameter. For this model the omeedisional Schrodinger equation
has the form

V" + (a/7)? [)\2 + (i — 82) cosecz(ﬂm/a)}w =0. (43)

For0 < x < a/2, the general solution is

V=@ R[] + 505+ 0, + 55— Vs 2]+
F@ R[5 — 55— X — s+ X515 2)] (44)

where f(x) = sin(mx/a) corresponds to the(¢) functions, ands and A corresponding to
-p and -q, respectively, are related to the potential annbdéitand energy spectral parameter.
Thus, by turning the K-oscillator equations into corresfinog Schroedinger equations, one
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could introduce another analytical crystal model with assapplications in photonics
crystals.

6.4 Cosmol ogy.
Two of the authors applied the K-mode approach to barotréit®V cosmologies|[10].
K- Hubble cosmological parameters have been introducedexpdessed as logarithmic
derivatives of the K-modes with respect to the conformaletinFor K — 0 the ordinary
solutions of the common FRW barotropic fluids have been obthi

It is also worth noticing the analogy of the nonzekob oscillator case with the
phenomenon of diffraction of atomic waves in imaginary tais of light (crossed laser
beams) [[11]. In fact, thé< parameter Is a counterpart of the modulation param@ter
introduced by Berry and O’Dell in their study of imaginarytigal gratings. Roughly
speaking, the nonzerd modes could ocurr in ammaginary crystal of time that could occur
in some exotic astrophysical conditions.

7. Conclusion.

By a procedure involving the factorization connection bedw the Dirac-like equations and
the simple second-order linear differential equations afmonic oscillator type, a class
of classical modes with a Dirac-like parameters descriilrejr damping and absorption
(dissipation) has been introduced in this work. While farozealues of the Dirac parameters
the highly singular fermionic modes are decoupled fromrtim@rmal bosonic harmonic

modes, at nonzero values a coupling between the two typesadsis introduced at the level
of the matrix equation. These interesting modes are giveth&olutions of the Eqd.{B0)
- 33) and in a more general way by Egs.](27, 34-35) of this wanmld are expressed in
terms of hypergeometric functions. Several possible apptins in different fields of physics
are mentioned as well. Finally, similar to the fact that tie qgantum mechanics can be
considered as a complex extension of standard quantum meshwe notice that what we
have done here is a particular type of complex extensioneoldsssical harmonic oscillator.
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Figure 1. The real part of the bosonic mod¢ (y; 3, 3) for t € [0,10] andK € [0, 4].
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Figure 2. The imaginary part of the bosonic modg (y; 1, 3) fort € [0,10] andK € [0, 4].

Figure 3. The real part of the bosonic modg (y; 1, 3) for t € [0,20] andK = 0.01.
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Figure 4. The imaginary part of the bosonic modg (y; 3, 3) for t € [0,20] andK = 0.01.
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Figure 5. The real part of the bosonic modg (y; 1, 3) for t € [0,20] andK = 2.
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Figure 6. The real part of the bosonic mode (y; 3, 3) for t € [0,20] andK = 2 in the
vertical strip [-0.5, 0.5].
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Figure 7. The imaginary part of the bosonic modg (y; 3, 3) for t € [0,20] andK = 2.
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Figure 8. The fermionic zero mode 1/ cost, (red curve), and the real part ofl /w3, (blue
curve), forK = 0.01.
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Figure 9. The fermionic zero mode 1/ cost, (red curve), and the imaginary part-ef /wJ,
(blue curve), folK = 2.





