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[1] Applying the linearized equations of motion,
projection on the complex plane and a representation of
the velocity vector and the forcing sea surface elevation
gradient in function of the eigenvectors of the homogeneous
system, we developed a theory that explains essential
properties of tidal currents. We found the existence of a
fundamental vector which we call sense of rotation s. The
ellipticity, until now defined as a scalar quantity, results
from the theory as a vector e, normalized from s. e is a
measure of the eccentricity and sense of rotation of tidal
ellipses and has some properties that are similar to those of
the angular velocity. We derived an expression for the major
and minor semi-axis in function of physical properties and
characteristics of amphidromic systems. These and other
results of the theory allow the analysis of important aspects
of tidal currents. Citation: Carbajal, N., and J. H. Gaviño

(2007), A new theory on tidal currents rotation, Geophys. Res.

Lett., 34, L01609, doi:10.1029/2006GL027670.

1. Introduction

[2] A lot of work has been done to investigate the
generation of tides and to explain the rich spectrum of their
manifestations in the world. All this research has been
summarized, among others, in known books on tides
[Defant, 1961; Melchior, 1966; Godin, 1972; Pugh, 1987;
Cartwright, 1999]. The observed tides in the oceans consist
fundamentally of two parts; oscillations induced by the tide-
generating forces associated to the gravitational potentials
of sun and moon and the free oscillations induced by the
interaction of the primary tides with the ocean basins.
Loading effects should also be considered in more precise
studies of tides. Numerical simulations and data assimila-
tion played an important role in reproducing observed
patterns and in understanding relevant phenomena associ-
ated to the propagation of tides [Gotlib and Kagan, 1982;
Zahel, 1991, 1997; Zahel and Müller, 2005]. Another
important research target has been the estimation of the
resonance modes of the world’s oceans [Platzman et al.,
1981; Gaviño, 1984]. The modes explain the magnification
of the oscillations induced by the gravitational potentials in
all regions of the oceans. The modes of resonance are free
oscillations described by the homogeneous equations of
motion. The importance of the free modes of resonance is
that they allow the reproduction of the so called synthetic
tide.

[3] The principal manifestations of tides in the world’s
oceans, i.e., the up and down movement of the sea surface
elevation and the behavior of currents are summarized by
the amphidromic systems of the different tidal constituents
and their respective distribution of tidal ellipses. The
amphidromic system describes the patterns of amplitudes
and phases of the oscillating sea surface elevation. The tidal
ellipses contain information on amplitude, phase and sense
of rotation of the tidal currents. There have been several
attempts to find a direct mathematical link between features
of amphidromic systems and properties of tidal currents
[Prandle, 1982; Carbajal, 2000, 2004]. In this research
work, a new theory has been developed by treating the
equations in a more fundamental form. It gives a new
interpretation of important parameters associated to tidal
currents. The calculation of tidal currents from satellite
altimetry is an important issue [Ray, 2001]. We suggest
how the theory can be applied to calculate tidal currents
from gradients of the sea surface elevation.

2. Theory

[4] Consider the vertically averaged and linearized
equations of motion, @tv = Av + b, where the vectors
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have been introduced. t is the time, (x, y) are space
variables, (u, v) are the components of the current velocity
in the x and y directions, respectively, z is the sea surface
elevation, f = 2Wsin8 is the Coriolis parameter, W is the
angular velocity of the Earth, 8 is the latitude, g is the
acceleration due to gravity and r is the linear friction
coefficient. We characterize column vectors as v and row
vectors as its transposed vt. The variable b can be consid-
ered as a forcing vector. The free modes contained in the
equation @tv = Av + b are obtained with b = 0 and a
harmonic oscillation of the form: v = v0e

st, where s is the
eigenfrequency. v0 is the space depending part of the
velocity vector. We obtain the well known eigenvalues of
the matrix A; to the first eigenvalue, s1 = �r + i f,
corresponds the eigenvector v1

t = [1 i] where i =
ffiffiffiffiffiffiffi
�1

p
.

From the second eigenvalue s2 = �r � i f, the eigenvector
v2
t = [1 � i] is obtained. v1 and v2 have the absolute valueffiffiffi
2

p
. In order to develop the theory, we consider the velocity

vector to have in the complex plane the general form: vt =
[ur + iui vr + ivi] = [ur vr] + i[ui vi] = vr

t + ivi
t. The sense of

rotation of this vector is given by the cross product of the
real by the imaginary part, i.e. [ur vr] � [ui vi] = vr

t � vi
t =

(urvi � vrui)k
t, where k is a unit vector parallel to vr � vi.

We now apply this concept to the eigenvectors v1
t = [1 + 0i
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0 + i] and v2
t = [1 + 0i 0 � i]. The cross product of the real

by the imaginary part of the v1
t is [1 0] � [0 1] = 1kt. The

result is positive and therefore this eigenvector rotates
cyclonically (C). We obtain for the second eigenvector v2

t ,
[1 0] � [0 �1] = �1kt, i.e. the sense of rotation of this
vector is anticyclonic (AC). Any velocity vector v0 can be
written as a linear combination of the eigenvectors v1 and
v2, i.e. v0 = v1a1 + v2a2. This mathematical form is
equivalent to representing the vector as a function of its
C (a1) and AC (a2) components. To calculate the a1 and a2,
we carry out the below indicated interior products: 2a1 =
v1
t*v0 = (ur + vi) + i(ui � vr) and 2a2 = v2

t*v0 = (ur � vi) + i
(ui + vr), where the symbol * means complex conjugation.
By taking absolute values in the last two equations, we have

2a1j j2¼ uj j2 þ vj j2 þ 2 urvi � uivrð Þ ¼ v0j j2 þ 2kt vr � við Þ
ð2Þ

2a2j j2¼ uj j2 þ vj j2 � 2 urvi � uivrð Þ ¼ v0j j2 � 2kt vr � við Þ
ð3Þ

[5] Subtracting (3) from (2) and considering that ja1j and
ja2j are the C and AC components of the velocity vector, we
conclude that

s ¼ vr � við Þ ¼ a1j j þ a2j jð Þ a1j j � a2j jð Þk ¼ Mmk ð4Þ

[6] Where we have introduced the sense of rotation
vector s. M = ja1j + ja2j and m = ja1j � ja2j are the major
and minor semi-axes of the tidal ellipses, respectively. s is a
vector pointing normal to the plane formed by vr and vi.
When m > 0, s points upwards and the sense of rotation is
cyclonic (C) and when m < 0, s points downwards and the
sense of rotation is anticyclonic (AC). The scalar parameter
ellipticity e, defined as the ratio e = m/M, can be seen as a
normalization of the vector s = (vr � vi). In this way, we
introduced the ellipticity vector

e ¼ vr � við Þ
a1j j þ a2j jð Þ2

¼ a1j j � a2j jð Þ
a1j j þ a2j jð Þk ¼ m

M
k ð5Þ

[7] The ellipticity vector e has some similar features to
those of the angular velocity (Figure 1).

[8] This is an important result since the derivation of the
sense of rotation of tidal currents as a vector results directly
from fundamental properties of the equations of motion and
not as a scalar quantity with a purely kinematic character
[Godin, 1972; Pugh, 1987].
[9] In the particular case that the forcing term is the

barotropic pressure gradient, we proceed as follows:

bt ¼ �grtz ¼ �g @x @y 
 zr þ iz ið Þ ¼ �g zrx þ iz ix zry þ iz iy 
:




[10] Where zr and z i are the real and the imaginary
components of the pressure gradient, respectively. Further,
considering b = [v1b1 + v2b2]e

�iwt results

�2b1 ¼ �vt1
*b ¼ g zrx þ z iy

� �
þ i z ix � zry

� �
 

ð7Þ

�2b2 ¼ �vt2
*b ¼ g zrx � z iy

� �
þ i z ix þ zry

� �
 

ð8Þ

[11] Taking absolute values in the previous equations and
after some algebraic manipulations, we obtain expressions
for b1 and b2 as a function of the amplitude jzj = (&r

2 + & i
2)1/2

and of the phase � = arctan(&i/&r), i.e.

b1j j2¼ g2

4
rzj j2 þ et r zj j2 � r�

� �� �

b2j j2¼ g2

4
rzj j2 � et r zj j2 � r�

� �� � ð9Þ

[12] Where e is a unit vector parallel to rjzj2 � r�.
The term rzr � rz i = (1/2)rjzj2 � r�, which appears
in the algebraic calculations, is of fundamental importance
since it determines the influence of the gradients of phases
and amplitudes of the sea surface elevation on the sense
of rotation of tidal currents associated to a particular
constituent.
[13] The equation @tv = Av + b can be solved with v =

(v1a1 + v2a2)e
�iwt and the forcing term b = [v1b1 +

v2b2]e
�iwt. From these equations, we obtain the relations

a1 ¼
b1

r � i wþ fð Þ ; a2 ¼
b2

r � i w� fð Þ ð10Þ

[14] Combining equations (9) and (10) and developing
the product rjzj2 � r�, it results

a1j j2¼
g2 rzj j2 þ r zj j2

�� �� r�j j sin g
h i

4 r2 þ wþ fð Þ2
h i

a2j j2¼
g2 rzj j2 � r zj j2

�� �� r�j j sin g
h i

4 r2 þ w� fð Þ2
h i

ð11Þ

[15] These last two equations relate the C and AC
components of the velocity with physical parameter and
features of the amphidromic systems. g is the angle between
rjzj2 and r�. Since ja1j and ja2j are the cyclonic and

Figure 1. Rotation of tidal currents. Conceptual represen-
tation of tidal ellipses with the vector s = vr � vi, indicating
the sense of rotation, cyclonic or anticyclonic, of tidal
currents and the ellipticity vector e, specifying both, sense
of rotation of tidal currents and the eccentricity of the
ellipses.

(6)
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anticyclonic components of the velocity vector, we also get
expression for the major (M) and minor (m) semi-axes of the
ellipses. These are given by

a1j j þ a2j j ¼ M ¼ g

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzj j2 þ r zj j2

�� �� r�j j sin g
r2 þ wþ fð Þ2

s"

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzj j2 � r zj j2

�� �� r�j j sin g
r2 þ w� fð Þ2

s #
ð12Þ

a1j j � a2j j ¼ m ¼ g

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzj j2 þ r zj j2

�� �� r�j j sin g
r2 þ wþ fð Þ2

s"

�
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�� �� r�j j sin g
r2 þ w� fð Þ2

s #
ð13Þ

[16] If one substitutes equations (12) and (13) in equation (5),
the sense of rotation and eccentricity of the ellipses can be
calculated. Although we have derived expressions for all
properties of tidal currents, we also gain information on the
sense of rotation by defining the parameter

F ¼ a1j j
a2j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ w� fð Þ2

r2 þ wþ fð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzj j2 þ r zj j2

�� �� r�j j sin g
rzj j2 � r zj j2

�� �� r�j j sin g

vuut ¼ ab

ð14Þ

with

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ w� fð Þ2

r2 þ wþ fð Þ2

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rzj j2 þ r zj j2

�� �� r�j j sin g
rzj j2 � r zj j2

�� �� r�j j sin g

vuut :

ð15Þ

a contains information on the physical properties and b
includes only features of the amphidromic system. In fact,
starting from equation (14), a similar formula obtained by
Carbajal [Carbajal, 2004] can be derived. For F = 1,
rectilinear motion occurs. For F > 1 the cyclonically sense
of rotation takes place in the northern hemisphere and for
F < 1 it is anticyclonic.
[17] A possible and interesting application of this theory

can be further derived. With the sea surface elevation
gradient b0e

�iwt measured, for example, by satellite altim-
etry and using the equation @tv = Av + b0e

�iwt, the velocity
vector can be calculated with a solution of the form v =
(v1a1 + v2a2)e

�iwt. b0 is the time independent part of b.
With the a’s given by the equations (10), we have

2a1 ¼
2b1

r � i wþ fð Þ ¼
vt1
*b

r � i wþ fð Þ

¼ �
r þ i wþ fð Þð Þf zrx þ z iy

� �
þ i z ix � zry

� �
g

r2 þ wþ fð Þ2

ð16Þ

2a2 ¼
2b2

r � i w� fð Þ ¼
vt2
*b

r � i w� fð Þ

¼ �
r þ i w� fð Þð Þf zrx � z iy

� �
þ i z ix þ zry

� �
g

r2 þ w� fð Þ2

ð17Þ

[18] Once a1 and a2 are known, the velocity vector can
be calculated using v = (v1a1 + v2a2)e

�iwt. In a future work
we will present the application of this theory.

3. Conclusions

[19] The fact that the sense of rotation s and the ellipticity
e are vectors should have consequences in the analysis of
tidal currents. Since in the theory the major and minor semi-
axes of the ellipses, the sense of rotation and the ellipticity
depend on physical parameters like frequency, Coriolis
parameter and friction coefficient and on properties of
amphidromic systems, it will allow investigating more
explicitly the influence of all these parameters on the
behavior of tidal currents. Further, we have derived new
expressions for calculating tidal currents from known sea
surface elevation gradients, for example from measured
satellite altimetry in ocean regions. It would be of interest
extending this theory to include eddy viscosity terms and
direct gravitational forcing. Finally, although the continuity
equation is not necessary for the analysis of properties of
tidal currents, we have obtained, of course, expressions for
it in function of fundamental quantities. It will be the subject
of future research work.
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