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In this paper, we present a new class of dynamical system without equilibria which possesses a

multiscroll attractor. It is a piecewise-linear system which is simple, stable, displays chaotic

behavior and serves as a model for analogous non-linear systems. We test for chaos using the 0-1

Test for Chaos from Gottwald and Melbourne [SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)].

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983523]

Piecewise-linear (PWL) systems are switching systems

composed of linear affine subsystems along with a rule

which determines the acting subsystem. These systems

are known to be capable of producing chaotic attractors,

as in the well studied Chua’s circuit. This paper discusses

the generation of multiscroll attractors without equilibria

based on PWL systems.

I. INTRODUCTION

In recent years, the study of dynamical systems with

complicated dynamics but without equilibria has attracted

attention. Since the first dynamical system of this kind with a

chaotic attractor was introduced in Ref. 1 (Sprott case A), sev-

eral works have investigated this topic. Several three-

dimensional (3D) autonomous dynamical systems which

exhibit chaotic attractors and whose associated vector fields

present quadratic nonlinearities have been reported, for exam-

ple, Ref. 2 and the 17 NE systems given in Ref. 3. Also, four-

dimensional (4D) autonomous systems have been exhibited,

such as the four-wing non-equilibrium chaotic system Ref. 7

and the systems with hyperchaotic attractors (equivalently

two positive Lyapunov exponents) in Refs. 5 and 6, whose

vector fields have quadratic and cubic nonlinearities.

These studies have not been restricted to integer orders;

in Ref. 4, a new fractional-order chaotic system without

equilibrium points was presented; this system represents the

fractional-order counterpart of the integer-order system NE6

studied in Ref. 3.

The first piecewise linear system without equilibrium

points with an hyperchaotic attractor was reported in Ref. 8.

This system was based on the diffusion-less Lorenz system

by approximating the quadratic nonlinearities with the sign

and absolute value functions. Recently, in Ref. 9, a class of

PWL dynamical systems without equilibria was reported.

The attractors exhibited by these systems can be easily

shifted along the x axis by displacing the switching plane.

In fact, the attractors generated by these systems without

equilibria fulfill the definition of hidden attractor given in

Ref. 10.

In this paper, we present a new class of PWL dynamical

system without equilibria that generates a multiscroll attractor.

It is based on linear affine transformations of the form Axþ B,

where A is a 3� 3 matrix with two complex conjugate eigen-

values with positive real part and the third eigenvalue either

zero, slightly negative or positive. The construction for A hav-

ing a zero eigenvalue is presented in Section II, and the case

when no eigenvalue of A is zero due to a perturbation is pre-

sented in Section III; numerical simulations are provided for

both cases.

II. PWL DYNAMICAL SYSTEM WITH MULTISCROLL
ATTRACTOR: SINGULAR MATRIX CASE

We will first present the construction where A has two

complex conjugate eigenvalues with positive real part and

the third eigenvalue is zero. In section III, we will study the

effect of allowing the zero eigenvalue to become slightly

negative –� or slightly positive � for a parameter �> 0. In

order to introduce the new class of PWL dynamical system,

we first review some useful theorems used in the construc-

tion. The next theorem gives necessary and sufficient condi-

tions for the absence of equilibria in a system based on a

linear affine transformation. These systems will be used as

sub-systems for the PWL construction.

Theorem 1.9 Given a dynamical system based on an
affine transformation of the form _x ¼ Axþ B, where x 2 Rn

is the state vector, B 2 Rn is a nonzero constant vector, and
A 2 Rn�n is a linear operator, the system possesses no equi-
librium point if and only if

• A is not invertible and
• B is linearly independent of the set of non-zero vectors

comprised by columns of the operator A.

The next theorem tells us, for a specific type of linear

operator, which vectors are linearly independent of the non-

zero column vectors of the associated matrix of the operator

which will help us to fulfill the conditions in Theorem 1.
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Theorem 2. Suppose A 2 R3�3 is a linear operator
whose characteristic polynomial has zero as a single root
(so that zero has algebraic multiplicity one). Then, any
eigenvector associated with zero is linearly independent of
the column vectors of the matrix A.

Proof. By considering the Jordan Canonical Form, there

is an invariant subspace U of two dimensions corresponding

to the other non-zero eigenvalues (either two real eigenvalues

or a complex conjugate pair of eigenvalues aþ ib, a – ib with

b 6¼ 0) and a one dimensional invariant subspace V corre-

sponding to the eigenvalue k¼ 0. Thus, U � V ¼ R3 and A
restricted to U is invertible; hence, AU � U. If x 2 R3, then

we may write (uniquely) x¼xu �xv, where xu 2 U and xv 2 V.

Then, Ax¼AxuþAxv¼Axu as Axv¼0. Since Axu�U, we can-

not solve Ax¼w, where w 2 V is a nonzero vector. �

We will illustrate our mechanism for producing multi-

scroll chaotic attractors via a detailed example.

A. Example

Consider a dynamical system whose associated vector

field is the linear system

_x ¼ Ax; (1)

where x 2 R3 is the state vector, and A 2 R3�3 is a linear

operator. The matrix A has eigenvalues ki, i¼ 1, 2, 3, where

k1, k2 are complex conjugate eigenvalues with positive real

part while k3¼ 0.

To illustrate this class of dynamical systems with multi-

scroll attractors, consider the model system with a vector

field of the form (1) in R3 whose matrix A is given as

follows:

A ¼
m �n 0

n m 0

0 0 0

2
4

3
5; A ¼ a1; a2; a3½ �; (2)

where a1, a2, and a3 are the column vectors of the matrix A
and we suppose m> 0 and n 6¼ 0. The eigenvectors V associ-

ated with the eigenvalue k¼ 0 are given as follows:

V ¼ 0; 0; vð ÞT ; (3)

with v 6¼ 0.

Note that A is of rank two and its column space equals the

two-dimensional unstable subspace ha1, a2i. We will now con-

sider the vector field formed by adding a vector k1a1þ k2a2 in

the span of the column vectors of the linear operator A

_x ¼ Axþ k1a1 þ k2a2: (4)

Using the matrix A given by (2), we have the following lin-

ear system:

_x ¼
m �n 0

n m 0

0 0 0

2
4

3
5 x1 þ k1

x2 þ k2

x3

2
4

3
5: (5)

Considering the following change of variables y1¼ x1þ k1,

y2¼ x2þ k2, and y3¼ x3, the system (5) is given as follows:

_y ¼
m �n 0

n m 0

0 0 0

2
64

3
75 y1

y2

y3

2
64

3
75 ¼ Ay; (6)

so that the rotation in the unstable subspace is around the

axis given by the line

�k1

�k2

0

2
64

3
75þ t

0

0

1

2
64
3
75:

If a non-zero vector V in the neutral direction is added, then

the point

�k1

�k2

0

2
64

3
75

is no longer an equilibrium, and the vector field at this point

is equal to

V ¼
0

0

v

2
64
3
75;

so that

_y ¼ Ayþ V: (7)

The solution of the initial value problem X0 for (7) is

given by

y tð Þ ¼
emt cos ntð Þ �emt sin ntð Þ 0

emt sin ntð Þ emt cos ntð Þ 0

0 0 0

2
64

3
75 y1 0ð Þ

y2 0ð Þ
y3 0ð Þ

2
64

3
75

þ
0

0

v � t

2
64

3
75; (8)

x tð Þ ¼ emt

cos ntð Þ �sin ntð Þ 0

sin ntð Þ cos ntð Þ 0

0 0 0

2
64

3
75 x1 0ð Þ þ k1

x2 0ð Þ þ k2

x3 0ð Þ

2
64

3
75

þ
�k1

�k2

v � t

2
64

3
75: (9)

We wish to generate a “saddle-focus like” behavior

which bounds motion, and so, a piecewise linear system is

constructed as follows. A switching surface S will be a

hyperplane oriented by its positive normal. S divides R3 into

two connected components, if a point x lies in the component

pointed to by the positive normal of S we will write x > S.

To illustrate we take our switching surface to be x3¼ 0

and define a flow on S by

_x ¼ AxþW; if x1 < 0;

Ax�W; if x1 � 0:

(
(10)
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The vector W is chosen in the plane S (hence in the unstable

subspace of A), with sign such that the x1 component of p1

:¼ �A�1
jS W is positive. This ensures that the flow on S \

fx1 < 0g has an unstable focus at p1, while the flow on S \
fx1 � 0g has an unstable focus at –p1. Thus, there is no equi-

libria for the PWL flow on S. Next, we define the flow on

x > S and x < S

_x ¼

Axþ V þW; if x < S; x1 < 0;

Axþ V �W; if x < S; x1 � 0;

Ax� V þW; if x > S; x1 < 0;

Ax� V �W; if x > S; x1 � 0;

8>>><
>>>:

(11)

where we choose the direction of V so that the dynamical

system defined by (11) / : R�R3 ! R3 gives the motion

of the points towards the switching plane S.

See Figure 1 where W¼ k1a1þ k2a2 and the plane S is

given by x3¼ s. With a pair of systems F1(x), F3(x) defined

by parallel switching surfaces S1, S3, respectively, similar to

those described by (10) and (11) along with another switch-

ing surface S2 transverse to the other two, it is possible to

generate multiscroll attractors. For example, a double scroll-

attractor can be generated with the following Piecewise

Linear System provided that F3 xð Þ is correctly displaced:

_x ¼ F1 xð Þ; if x < S2;

F3 xð Þ; if x � S2:

(
(12)

Note that switching surfaces S1 and S3 are used to generate

two “saddle-focus like” behavior, and switching surface S2 is

used to commute between these two “saddle-focus like”

behavior (see Fig. 2). The surface S2 is responsible for the

stretching and folding behavior in the system in order to gen-

erate chaos. This switching surface is constrained to be trans-

verse to the unstable manifold and neutral manifold. Note

that the planes S1, S2, and S3 are not invariant under the flow

defined by (12).

It is possible to define a system with 3-scroll attractors,

for example, as follows (see Fig. 3):

_x ¼
F1 xð Þ; if x < S2;

F2 xð Þ; if S2 � x < S4;

F3 xð Þ; if x � S4:

8><
>: (13)

Such a system demonstrates the chaotic nature of the

associated flow via symbolic dynamics. If we take small

�-neighborhoods of the surfaces S1, S3, and S5 and record a 1,

FIG. 1. A “saddle-focus like” locate at the point Q¼ (–k1, –k2, s).

FIG. 2. A mechanism to generate a double-scroll chaotic attractors without

equilibria.

FIG. 3. A mechanism to generate a triple-scroll chaotic attractors without

equilibria.
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3, or 5 each time a trajectory under the flow crosses into that

neighborhood from outside that neighborhood we generate a

shift on the space {1, 3, 5}N. Both the symbol sequences

135, 131 and correspondingly 535 and 531 may occur, and

the symbol sequences generated are complex, non-periodic

and we call them “chaotic.” How disordered the system is in

terms of entropy, for example, is a subject for another paper.

B. Numerical simulations

Example 1. Figure 4 shows a double scroll attractor

which was obtained by using 4th order Runge Kutta (0.01

integration step) and considering the following matrix A and

vector V:

A ¼
0:5 �10 0

10 0:5 0

0 0 0

2
64

3
75; V ¼

0

0

5

2
64
3
75 (14)

with PWL system (details can be seen in Appendix A)

_x ¼ Fi xð Þ; i ¼ 1;…; 12: (15)

The switching surface are given by the planes S1 : x3

¼ 0; S2 : x1 þ x3=2 ¼ 1 and S3 : x3 ¼ 2. The vectors Wi,

with i¼ 1,…, 4 are given in Table III (see Appendix A).

The resulting attractor with a double scroll is shown in

the Figure 4(a) and its projections on the planes (x1, x2),

(x1, x3), and (x2, x3) in Figures 4(b)–4(d), respectively.

Its largest Lyapunov exponent calculated is k¼ 0.97

(Figure 4(e)).

It can be extended to a triple scroll attractor by consider-

ing the system given by (13) with the additional surfaces S4 :
x1 þ x3=2 ¼ 3 and S5 : x3 ¼ 4 and Wi, with i¼ 1,…, 6 given

in Table III (see Appendix A).

The resulting attractor with a triple scroll is shown in

the Figure 5(a) and its projections on the planes (x1, x2), (x1,

x3) and (x2, x3) in Figures 5(b)–5(d), respectively. Its largest

Lyapunov exponent calculated is k¼ 1.056 (Figure 5(e)).

Assigning the numbers 1, 3, and 5 to the regions where

x < S2; S2 � x < S4, and x � S4, respectively, the symbol

FIG. 4. Attractor of the system (15)

with A and V given in (14) for the ini-

tial condition (0, 0, 0) in (a) the space

(x1, x2, x3) and its projections onto the

planes: (b) (x1, x2), (c) (x1, x3), and (d)

(x2, x3). In (e), the largest Lyapunov

exponent.
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sequences 135, 131, 535, and 531 may be produced. Table I

shows three sequences for different close initial conditions.

Later, we show that this system passes the 0–1 Test for

Chaos of Ref. 11, justifying our description of chaotic

motion.

III. SMALL PERTURBATIONS OF THE ZERO
EIGENVALUE: PWL DYNAMICAL SYSTEM _x 5Ax1B
WITH MULTISCROLL ATTRACTOR AND INVERTIBLE A

Now we consider perturbing the real eigenvalue.

Consider the matrix Ag, where

A ¼
m �n 0

n m 0

0 0 g

2
64

3
75; A ¼ a1; a2; a3½ �; (16)

where a1, a2, and a3 are the column vectors of the matrix A
and we suppose m> 0 and n 6¼ 0. The eigenvectors V associ-

ated with the eigenvalue k¼ g are given as follows:

V ¼ 0; 0; vð ÞT ; (17)

with v 6¼ 0.

The column space of A equals the two-dimensional

unstable subspace ha1, a2i. As before, we consider the vector

field formed by adding a vector k1a1þ k2a2 in the span of the

column vectors.

_x ¼ Axþ k1a1 þ k2a2: (18)

FIG. 5. Triple scroll attractor for the

initial condition (0, 0, 0) in (a) the

space (x1, x2, x3) and its projections

onto the planes: (b) (x1, x2), (c) (x1, x3),

and (d) (x2, x3). In (e), the largest

Lyapunov exponent.

TABLE I. Sequences produced by the system from example 1 starting from

three close to zero initial conditions for a 50 s simulation with a RK4 of

step¼ 0.01.

x(0) Sequence

(0.0,0.0,0.0) 13135313135353531313535

(0.0, 0.1, 0.0) 131313535313135313135

(–0.1, 0, –0.1) 13135353135313531353531
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Using the matrix A given by (16), we have the following lin-

ear system:

_x ¼
m �n 0

n m 0

0 0 g

2
64

3
75 x1 þ k1

x2 þ k2

x3

2
64

3
75: (19)

As before the solution of the initial value problem is given by

x tð Þ ¼
emt cos ntð Þ �emt sin ntð Þ 0

emt sin ntð Þ emt cos ntð Þ 0

0 0 egt

2
664

3
775

�
x1 0ð Þ þ k1

x2 0ð Þ þ k2

x3 0ð Þ

2
664

3
775þ

�k1

�k2

v
g

egt � 1ð Þ

2
6664

3
7775: (20)

Consider the equation _x ¼ gxþ w which has solution

x tð Þ ¼ egt x 0ð Þ þ w
g

h i
� w

g. Suppose that the sign of v is such

that the flow is directed toward S1 in Figure 1. So, _x3

¼ gx3 � jvj if x3(0)> 0 and _x3 ¼ gx3 þ jvj if x3(0)< 0. If

g< 0 and x3(0)> 0 then limt!1 x3 tð Þ ¼ jvjg , so that the flow

in Figure 1 still intersects S1 from an initial condition

x3(0)> 0. Similarly, if x3(0)< 0 then the flow intersects S1.

Thus, the topological structure of the flow is unchanged for

small jgj; g < 0

However, if g> 0 then limt!1 x3 tð Þ ! 1 if x3 0ð Þ > jvj
g

and limt!1 x3 tð Þ ! �1 for x3 0ð Þ < � jvjg . So, in this case,

there is a neighborhood of S1 of points closer than j jvjg j to S1

consisting of points attracted to S1. Otherwise, points are

repelled from S1.

Consider now the solution where the sign of v is such

that the flow is directed away from S1 in Figure 1. So, _x3

¼ gx3 þ jvj if x3(0)> 0 and _x3 ¼ gx3 � jvj if x3(0)< 0.

Clearly, if g> 0 and x3(0)> 0 then limt!1 x3 tð Þ ¼ 1
and if g> 0 and x3(0)< 0, then limt!1 x3 tð Þ ¼ �1.

However, if g< 0 and x3(0)> 0 then limt!1 x3 tð Þ ¼ �jvjg and

if g< 0 and x3(0)< 0 then limt!1 x3 tð Þ ¼ jvjg . Thus, for small

jgj the multi-scroll attractors persist.

FIG. 6. Attractor of the system (21)

with A given in (22) for the initial con-

dition (0.1, 0.1, 0.1) in (a) the space

(x1, x2, x3) and its projections onto the

planes: (b) (x1, x2), (c) (x1, x3), and (d)

(x2, x3). In (e), the largest Lyapunov

exponent.
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A. Numerical simulations

Example 2. As an example of this construction with an

invertible matrix, consider the system described by

_x ¼ Fi xð Þ; i ¼ 1;…; 18: (21)

Details of the function (21) are given in Appendix B. The

linear operator and the vector V are given as follows:

A ¼
0:5 �10 0

10 0:5 0

0 0 0:1

2
64

3
75; V ¼

0

0

5

2
64
3
75: (22)

The switching surfaces are given by the planes S1 : x3

¼0; S2 : x1þx3=2¼1; S3 : x3¼2; S4 : x1þx3=2¼3; S5 : x3¼4.

The vectors Wi, with i¼1,…, 6 are given in Table III (see

Appendix A).

The resulting attractor obtained by using a 4th order

Runge Kutta (0.01 integration step) is shown in Figure 6.

Assigning the numbers 1, 3, and 5 to the regions where

x < S2; S2 � x < S4, and x � S4, respectively, the symbol

sequences 135, 131, 535, and 531 may be produced. Table II

shows three sequences generated from different close to zero

initial conditions.

As for the previous system, we show in Sec. IV that this

system passes the 0–1 Test for Chaos of Ref. 11, justifying

our description of chaotic motion.

IV. DYNAMICS OF THE PROPOSED SYSTEMS

To test for chaotic dynamics in the systems we have

investigated, we used the test algorithm proposed in Ref. 11.

The input for the test is a one dimensional time series / nð Þ
which drives a two-dimensional system PQ / nð Þ; cð Þ as

described in Ref. 11, namely,

pc nð Þ ¼
Xn

j¼1

/ jð Þ cos jcð Þ;

qc nð Þ ¼
Xn

j¼1

/ jð Þ sin jcð Þ;

where c 2 (0, 2p) is a real parameter. The rate of growth of

the variance of this system distinguishes between chaotic

(K¼ 1) and regular motion (K¼ 0) as determined by a

derived quantity K.

For both systems with a triple scroll attractor previously

introduced, three-dimensional time series were generated by

means of a RK4 integrator with a time step equal to 0.01,

which was then sampled T time s¼ 0.25 to get three-

dimensional time series of length N¼ 2000. The one-

dimensional time-series was given by / 	 Tn p0ð Þ for initial

conditions p0 ¼ x0
1; x

0
2; x

0
3

� �
and / x1; x2; x3ð Þ ¼ x3, so that we

were observing the z-component of a trajectory under the

time-T map of the flow.

The growth rates calculated were K¼ 0.9930 and

K¼ 0.9962 for the first and second example, respectively. As

described in Ref. 11, K is calculated as the median value of the

asymptotic growth rates of a growth rate Kc for different values

of the parameter c belonging to the two-dimensional driven

system. In Figures 7(a) and 7(b), the Kc values are shown.

Thus, our system, according to the 0–1 test, is chaotic.

FIG. 7. Asymptotic growth rates Kc calculated for the triple scroll attractor

systems presented in Secs. II(a) and III(b).

TABLE II. Sequences produced by the system from example 2 starting from

three close to zero initial conditions for a 50 s simulation with a RK4 of

step¼ 0.01.

x(0) Sequence

(0.1,0.1,0.1) 123232121232121232323

(0.0, 0.1, 0.0) 1212321232121212123

(–0.1, 0, –0.1) 123212121212321232321

TABLE III. Vectors Wi for i¼ 1,…, 6.

Wi k1 k2

W1 –0.1 0

W2 0.1 0

W3 –1.1 0

W4 –0.9 0

W5 –2.1 0

W6 –1.9 0
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V. CONCLUSION

In this paper, new classes of piecewise linear dynamical

systems (with no equilibria) which present multiscroll attrac-

tors were introduced. The systems are very simple geometri-

cally and stable to perturbation. The attractors generated by

these classes have a similar chaotic behavior. Further investi-

gation, via perhaps symbolic dynamics, is needed to quantify

the disorder of the system.
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APPENDIX A: PWL DESCRIPTION OF A SYSTEM WITH
DOUBLE SCROLL ATTRACTOR

System described by (15)

_x ¼

Axþ V þW1; if x < S1; x1 < 0;

Axþ V þW2; if x < S1; x < S2; x1 � 0;

AxþW1; if x 2 S1; x1 < 0;

AxþW2; if x 2 S1; x < S2; x1 � 0;

Ax� V þW1; if x > S1; x < S2; x1 < 0;

Ax� V þW2; if x > S1; x < S2; x1 � 0;

Axþ V þW3; if x < S3; x � S2; x1 < 1;

Axþ V þW4; if x < S3; x � S2; x1 � 1;

AxþW3; if x 2 S3; x � S2; x1 < 1;

AxþW4; if x 2 S3; x1 � 1;

Ax� V þW3; if x > S3; x � S2; x1 < 1;

Ax� V þW4; if x > S3; x1 � 1:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(A1)

The switching surface are given by the planes S1 : x3

¼ 0; S2 : x1 þ x3=2 ¼ 1 and S3 : x3¼ 2. The vectors Wi, with

i¼ 1,…, 4 are given in Table III.

APPENDIX B: PWL DESCRIPTION OF A SYSTEM WITH
TRIPLE SCROLL ATTRACTOR

System described by (21)

_x ¼

Axþ V þW1; if x < S1; x1 < 0;

Axþ V þW2; if x < S1; x < S2; x1 � 0;

AxþW1; if x 2 S1; x1 < 0;

AxþW2; if x 2 S1; x < S2; x1 � 0;

Ax� V þW1; if x > S1; x < S2; x1 < 0;

Ax� V þW2; if x > S1; x < S2; x1 � 0;

Axþ V þW3; if x < S3; x � S2; x1 < 1;

Axþ V þW4; if x < S3; x � S2; x < S4; x1 � 1;

AxþW3; if x 2 S3; x � S2; x1 < 1;

AxþW4; if x 2 S3; x < S4; x1 � 1;

Ax� V þW3; if x > S3; x � S2; x < S4; x1 < 1;

Ax� V þW4; if x > S3; x < S4; x1 � 1;

Axþ V þW5; if x < S5; x � S4; x1 < 2;

Axþ V þW6; if x < S5; x � S4; x1 � 2;

AxþW5; if x 2 S5; x � S4; x1 < 2;

AxþW6; if x 2 S5; x1 � 2;

Ax� V þW5; if x > S5; x � S4; x1 < 2;

Ax� V þW6; if x > S5; x1 � 2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(B1)
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