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Abstract

In this work, an output-feedback scheme for the global stabilization of the PVTOL aircraft with bounded inputs is developed
taking into account the positive nature of the thrust. The global stabilization objective is proven to be achieved avoiding input
saturation and by exclusively considering the system positions in the feedback. To cope with the lack of velocity measurements,
the proposed algorithm involves a finite-time observer. The generalized versions of the involved finite-time stabilizers have not
only permitted to solve the output-feedback stabilization problem avoiding input saturation, but also provide additional flexibility
in the control design that may be used in aid of performance improvements. With respect to previous approaches, the developed
finite-time-observer-based scheme guarantees the global stabilization objective disregarding velocity measurements in a bounded
input context. Simulation tests corroborate the analytical developments. The study includes further experimental results on an
actual flying device.
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I. INTRODUCTION

Vertical/short take-off and landing (V/STOL) are capabilities of certain type of aircraft designed for particular strate-
gic purposes. This is the case, for instance, of the YAV-8B Harrier (McDonnell Aircraft Company) [Hauser et al.(1992)],
[Chemori and Marchand (2008)], [Wang et al.(2008)] (a long list of V/STOL aircraft can be found for instance in
[Saeed and Gratton (2010)]). The development of control algorithms dealing with the basic dynamic features of such type of
physical systems could hardly be carried out under the simultaneous consideration of the whole set of involved phenomena, as
pointed out for instance in [Hauser et al.(1992), §2.1]. For this reason, a prototype of a Planar Vertical Take-off and Landing
(PVTOL) aircraft has been introduced in [Hauser et al.(1992)], where it is claimed to model the natural restriction of a V/STOL
aircraft to jet-borne operation (e.g. hover) in a vertical-lateral plane. Such a prototype has a particular well-posed dynamic
model (to be presented in Section II) whose complexities have attracted numerous researchers, becoming a benchmark in the
study on the control of underactuated systems [Liu and Yu (2013)], [Fantoni and Lozano (2002)].

The design of a suitable control algorithm for a PVTOL aircraft has proven to constitute a challenging task. This is mainly due
to the complexities characterizing its dynamic model: it is highly nonlinear, underactuated, and has a signed input (unidirectional
thrust). The efforts devoted to such a particular study case have given rise to diverse approaches. For instance, in view of the
unstable non-zero dynamics obtained through the application of conventional geometric control techniques, an approximate
input-output design procedure dealing with non-minimum phase nonlinear systems has been proposed in [Hauser et al.(1992)].
Through the definition of a suitable output variable that renders the PVTOL aircraft dynamics a flat system, a scheme for output
tracking has been developed in [Martin et al.(1996)]. By means of a suitable problem formulation, an optimal control technique
is applied in [Lin et al.(1999)]. Based on a reference model and the consideration of particular variable transformations, global
uniformly ultimately bounded tracking is achieved in [Setlur et al.(2001)]. An error feedback dynamic controller being robust
with respect to parametric uncertainties was proposed in [Marconi et al.(2002)] for autonomous vertical landing on oscillating
platforms. Applying a decoupling change of coordinates, global stabilization was proven to be achieved through backstepping
under the consideration of input coupling (generally neglected) in [Olfati-Saber (2002)]. A regulation algorithm that uses
the thrust to force an approximately linear vertical motion behavior and the torque input to control the rest of the system
variables was presented in [Lozano et al.(2004)]. A globally stabilizing nonlinear feedback control law that casts the system
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into a cascade structure was proposed in [Wood and Cazzolato (2007)]. By transforming the system dynamics into a chain
of integrators with nonlinear perturbations, global stabilization was also proven to be achieved in [Ye et al.(2007)] through a
control technique that involves saturation functions. An open-loop exact tracking scheme ensuring bounded internal dynamics
was developed in [Consolini and Tosques (2007)] through a Poincaré map approach. Based on partial feedback linearization and
optimal trajectory generation to enhance the behavior and the stability of the system internal dynamics, a nonlinear prediction-
based stabilization algorithm was proposed in [Chemori and Marchand (2008)]. Through a geometrical control approach, output
tracking was achieved in [Wang et al.(2008)]. A path following controller with the properties of output invariance of the path
and boundedness of the roll dynamics was proposed in [Consolini et al.(2010)]. Alternative stabilization approaches based
on non-embedded saturation functions were presented in [Sanahuja et al.(2010)] disregarding lateral coupling effects. Output
tracking with input disturbance rejection is achieved through the method developed in [Su and Lin (2011)]. Further stabilization
results were achieved through Lyapunov-based design in [Turker, Gorgun and Canserver (2012)] for the uncoupled dynamics,
and in [Turker, Olfaz, Gorgun and Canserver (2012)] under the consideration of the whole dynamics.

Other works have considered additional constraints that commonly arise in real applications. For instance, state-feedback ap-
proaches have been developed in [Zavala-Rı́o et al.(2003)], [Lopez-Araujo et al.(2010)], [Ailon (2010)] under the consideration
of bounded inputs: in [Zavala-Rı́o et al.(2003)], global stabilization was achieved neglecting the lateral force coupling through
the use of embedded (linear) saturation functions; this approach was further proven to achieve the global stabilization objective
under the additional consideration of the lateral force coupling in [Lopez-Araujo et al.(2010)] (for sufficiently small values
of the parameter characterizing such a coupling); in [Ailon (2010)], a semiglobal tracking controller was developed involving
smooth sigmoidal functions. Furthermore, schemes that achieve the control objective through output feedback have been
proposed in [Do et al.(2003)], [Wang et al.(2009)], [Su and Lin (2013)], [Frye et al.(2010)], [Wang et al.(2010)]: design and
analysis procedures were developed disregarding velocity measurements in [Do et al.(2003)] for tracking, [Wang et al.(2009)]
and [Su and Lin (2013)] for tracking with delayed outputs, and [Frye et al.(2010)] for stabilization, under the consideration
of Luenberger-type, two-step structured, full-order, and finite-time observers respectively; furthermore, a tracking controller
that avoids angular motion (position and velocity) variables in the feedback is presented in [Wang et al.(2010)] based on
linear observer and sliding mode techniques. However, these output-feedback approaches were developed disregarding input
constraints.

Inspired by the techniques involved in [Frye et al.(2010)], this work proposes an output-feedback control scheme for the
global stabilization of the PVTOL aircraft, taking into account the unidirectional nature of the thrust, under the consideration of
bounded inputs. First, a state-feedback algorithm is presented and proven to globally stabilize the closed-loop system avoiding
input saturation. Then, the same algorithm is proven to achieve the global stabilization objective —avoiding input saturation—
by replacing the velocity variables by auxiliary states coming from a finite-time observer, which is analytically proven (under
ideal conditions) to exactly reproduce the aircraft positions and velocities after a finite-time transient during which the system
variables remain bounded. The finite-time stabilizers considered in this work are generalized versions of those involved in
[Frye et al.(2010)]. Such a generalized structure gives rise to an additional degree of design flexibility that has not only permitted
to solve the output-feedback stabilization problem in a bounded input context, but may also be used in aid of performance
improvements. Simulation tests corroborate the efficiency of the proposed scheme. Furthermore, experimental results on an
actual flying device are additionally included. It is worth pointing out that experimental corroborations of algorithms designed
for the control of the PVTOL aircraft are scarcely included in the literature. For instance, from all the above cited works only
those in [Lozano et al.(2004)], [Sanahuja et al.(2010)], [Lopez-Araujo et al.(2010)] include experimental tests. Such works
have thus corroborated the implementability of their proposed schemes despite the evident effects of modelling and technical
imprecisions.

The paper is organized as follows. Section II presents the PVTOL aircraft dynamics. Section III states the notation, definitions,
and results used to develop the proposed result. Sections IV and V respectively present the proposed state- and output-feedback
stabilization schemes. Simulation and experimental results are respectively shown in Sections VI and VII. Finally, conclusions
are given in Section VIII.

II. THE PVTOL AIRCRAFT DYNAMICS

The PVTOL aircraft dynamics is given by the following equations [Hauser et al.(1992)]:

ξ̈ =−u1 sinθ + εu2 cosθ (1a)

ζ̈ = u1 cosθ + εu2 sinθ −1 (1b)

θ̈ = u2 (1c)

where ξ and ζ respectively denote the center of mass horizontal and vertical positions, and θ is the roll angle of the aircraft
with the horizon. The control inputs u1 and u2 are respectively the thrust —non-negative by nature [Hauser et al.(1992)]—
and the rolling moment. The constant “−1” is the normalized gravitational acceleration. The parameter ε is a coefficient
characterizing the coupling between the rolling moment and the lateral acceleration of the aircraft. Its value is generally so
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small that it is often neglected (see for instance [Hauser et al.(1992), §2.4]). However, provided that its value is available, the
following translational coordinate transformation [Olfati-Saber (2002)]

x = ξ −ξ0− ε sinθ (2a)
y = ζ −ζ0 + ε(cosθ −1) (2b)

with ξ0 and ζ0 respectively being horizontal and vertical positions mapped to the origin of the transformed coordinate space,
and input variable redefinition in terms of an auxiliary input variable ū1

u1 = ū1 + εθ̇
2 (3)

give rise to the following ε-free equivalent dynamics

ẍ =−ū1 sinθ (4a)
ÿ = ū1 cosθ −1 (4b)

θ̈ = u2 (4c)

Under the consideration of bounded inputs, i.e. 0≤ u1 ≤U1 and |u2| ≤U2 for some constants1 U1 > 1 and U2 > 0, we state the
control objective as being the global stabilization of the solution (ξ ,ζ ,θ)(t)≡ (ξd ,ζd ,0) of system (1), for any constant desired
horizontal and vertical positions ξd and ζd respectively, through a bounded control scheme that only feeds back configuration
variables and avoids input saturation i.e. such that 0 < u1(t)<U1 and |u2(t)|<U2, ∀t ≥ 0.

Remark 1. Note from Eqs. (2) with (ξ0,ζ0) = (ξd ,ζd) that (ξ ,ζ ,θ) = (ξd ,ζd ,0) ⇐⇒ (x,y,θ) = (0,0,0), in view of which the
control objective can be equivalently achieved through an analog global stabilization of the trivial solution (x,y,θ)(t)≡ (0,0,0)
of system (4), as long as the designed control law guarantees that ū1 can be suitably bounded and (3) ultimately holds.

III. PRELIMINARIES

The following notation is used throughout the paper. Let N be the set of natural numbers and Z+ stand for the set of
nonnegative integer numbers. For particular values m ∈ N and n ∈ Z+, Nm and Z+

n will represent the subsets of natural
numbers up to m and nonnegative integer numbers up to n respectively, i.e. Nm = {1, . . . ,m} and Z+

n = {0, . . . ,n}. Let 0n
stand for the origin of Rn. For any x ∈ Rn, xi represents its ith element, while ‖ · ‖ is used to denote the standard Euclidean
vector norm, i.e. ‖x‖ =

[
∑

n
i=1 x2

i
]1/2. Let Rn

>0 , {x ∈ Rn : xi > 0,∀i ∈ Nn} and Rn
≥0 , {x ∈ Rn : xi ≥ 0,∀i ∈ Nn}. Let A and

E be subsets (with nonempty interior) of some vector spaces A and E respectively. The image of B ⊂A under ν : A → E
is denoted ν(B). As conventionally, the inverse of an invertible function ν is expressed as ν−1. We denote C m(A ;E ) the
set of m-times continuously differentiable functions from A to E , with C 0 the set of continuous functions. Consider a scalar
function ζ ∈ C m(R;R) with m ∈ Z+. The following notation will be used: ζ ′ : s 7→ d

ds ζ , when m ≥ 1; ζ ′′ : s 7→ d2

ds2 ζ , when
m≥ 2; and more generally ζ (n) : s 7→ dn

dsn ζ , ∀n ∈Nm, and ζ (0) = ζ . We denote sat(s) the standard (unitary) saturation function,
i.e. sat(s) = sign(s)min{|s|,1}. In the rest of this section, some definitions and results that underlie the contribution of this
work are stated.

Definition 1. [Hong (2002)], [Bacciotti and Rosier (2005)], [Bhat and Bernstein (2005)], [Aeyels and de Leenheer (2002)]
A family of dilations δ r

ε is defined as δ r
ε (x) = (εr1x1, . . . ,ε

rnxn), ∀x ∈ Rn, ∀ε > 0, where r = (r1, . . . ,rn), with the dilation
coefficients r1, . . . ,rn being positive real numbers. A function V : Rn→ R, resp. vector field f : Rn→ Rn, is homogeneous of
degree α with respect to the family of dilations δ r

ε —or equivalently, it is said to be r-homogeneous of degree α— if

V (δ r
ε (x)) = ε

αV (x) (5)

resp.
f (δ r

ε (x)) = ε
α

δ
r
ε ( f (x)) (6)

∀x ∈ Rn, ∀ε > 0.

Definition 2. [Zavala-Rı́o and Fantoni (2014)] Given r ∈Rn
>0, a neighborhood of the origin D⊂R is said to be δ r

ε -connected
if, for every x ∈D, δ r

ε (x) ∈D for all ε ∈ (0,1). A function V : Rn→R, resp. vector field f : Rn→Rn, is locally homogeneous
of degree α with respect to the family of dilations δ r

ε —or equivalently, it is said to be locally r-homogeneous of degree α—
if there exists a δ r

ε -connected open neighborhood of the origin D ⊂ Rn —referred to as the domain of homogeneity— such
that Eq. (5), resp. (6), is satisfied for every x ∈ D and all ε ∈ R>0 such that δ r

ε (x) ∈ D.

Observe that a locally r-homogeneous function or vector field with domain of homogeneity D ⊂ Rn is not necessarily r-
homogeneous, unless D =Rn, while an r-homogeneous function or vector field is locally r-homogeneous for any δ r

ε -connected

1As pointed out in [Zavala-Rı́o et al.(2003)] and [Lopez-Araujo et al.(2010)], notice from the vertical motion equation (1b) that U1 > 1 is a necessary
condition for the system in Eqs. (4) to be stabilizable, since any steady-state condition implies that the aircraft weight be compensated.
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open neighborhood of the origin D⊂ Rn. Let us further notice that the degree of homogeneity α of a function V or a vector
field f is generally determined by the (vector) value of r through which Definition 1 or 2 is satisfied. In other words, α in
Definitions 1 and 2 is generally a function of r.

Definition 3. [Hong (2002)], [Bacciotti and Rosier (2005)], [Bhat and Bernstein (2005)], [Bhat and Bernstein (2000)] Con-
sider an n-th order autonomous system

ẋ = f (x) (7)

where f : D →Rn is continuous on an open neighborhood D ⊂Rn of the origin and f (0n) = 0n, and let x(t;x0) represent the
system solution with initial condition x(0;x0) = x0. The origin is said to be a finite-time stable equilibrium of system (7) if it is
Lyapunov stable and there exist an open neighborhood N ⊂D being positively invariant with respect to (7), and a positive
definite function T : N →R≥0, called the settling-time function, such that x(t;x0) 6= 0n, ∀t ∈

[
0,T (x0)

)
, ∀x0 ∈N \{0n}, and

x(t;x0) = 0n, ∀t ≥ T (x0), ∀x0 ∈N . The origin is said to be a globally finite-time stable equilibrium of system (7) if it is
finite-time stable with N = D = Rn.

Theorem 1. [Zavala-Rı́o and Fantoni (2014)] Consider system (7) with D = Rn. Suppose that f is a locally r-homogeneous
vector field of degree k with domain of homogeneity D ⊂ Rn. Then, the origin is a globally finite-time stable equilibrium of
system (7) if and only if it is globally asymptotically stable and k < 0.

The proof of Theorem 1 has been thoroughly developed in [Zavala-Rı́o and Fantoni (2014)]. A partial version —namely,
the sufficiency implication— of this theorem was used in [Frye et al.(2010)] to support the result presented therein.

Definition 4. 1) A continuous scalar function σ : R→ R will be said to be:
a) bounded by M if |σ(s)| ≤M, ∀s ∈ R, for some positive constant M;
b) strictly passive if sσ(s)> 0, ∀s 6= 0;
c) strongly passive if it is a strictly passive function satisfying

|σ(s)| ≥ κ
∣∣asat(s/a)

∣∣α = κ
(

min{|s|,a}
)α

∀s ∈ R, for some positive constants κ , α , and a.
2) A nondecreasing strictly passive function being bounded by M, locally r-homogeneous of degree α > 0 for some r > 0,

and locally Lipschitz-continuous on R\{0}, will be said to be a homogeneous saturation (function) for (α,r,M).
3) A nondecreasing Lipschitz-continuous strictly passive function being bounded by M will be said to be a generalized

saturation (function) with bound M.
4) A generalized saturation function, σ , with bound M is said to be a linear saturation (function) for (L,M) if there is a

positive constant L≤M such that σ(s) = s, ∀|s| ≤ L [Teel (1992)].
For a generalized or homogeneous saturation function σ(s), M+ , lims→∞ σ(s) and M− ,− lims→−∞ σ(s), which are called

the limit bounds of σ , while M̄ , max{M+,M−} and M
¯

, min{M+,M−}.

Observe that M
¯
≤ M̄ ≤M, i.e. M+ and M− does not necessarily have the same value (but could be different), and M is not

necessarily equal to M̄ (but could be greater).

Remark 2. Let us note that a nondecreasing strictly passive function σ is strongly passive. Indeed, notice that the strictly
passive character of σ implies the existence of a sufficiently small a > 0 such that |σ(s)| ≥ κ|s|α , ∀|s| ≤ a, for some positive
constants κ and α , while from its non-decreasing character we have that |σ(s)| ≥ |σ(sign(s)a)| ≥ κaα , ∀|s| ≥ a, and thus
|σ(s)| ≥ κ

(
min{|s|,a}

)α
= κ

∣∣asat(s/a)
∣∣α , ∀s ∈ R.

Lemma 1. Let σ ∈ C m(R;R), for some m ∈ N, be a generalized saturation function with bound M. Then:
1) lim|s|→∞ spσ (q)(s) = 0 for all p ∈ Z+ and all q ∈ Nm;

2) for all p ∈ Z+ and all q ∈ Nm, there exist Ap,q ∈ (0,∞) such that
∣∣∣spσ (q)(s)

∣∣∣≤ Ap,q, ∀s ∈ R.

Proof: See Appendix A.

Lemma 2. Let σ : R→ R, σ1 : R→ R, and σ2 : R→ R be strongly passive functions and k be a positive constant. Then:
1)

∫ s
0 σ(kν)dν > 0, ∀s 6= 0;

2)
∫ s

0 σ(kν)dν → ∞ as |s| → ∞;
3) σ1 ◦σ2 is strongly passive.

Proof: See Appendix B.

Lemma 3. Let σ0 : R→R be a strictly increasing function, σ1 : R→R be strictly passive, and k be a positive constant. Then:
s1
[
σ0
(
σ1(ks1)+ s2

)
−σ0(s2)

]
> 0, ∀s1 6= 0, ∀s2 ∈ R.

Proof: See Appendix C.
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Lemma 4. Consider the second-order system

ẋ1 = x2 , f1(x1,x2) (8a)

ẋ2 =−σ3
(
σ1(k1x1)+σ2(k2x2)

)
, f2(x1,x2) (8b)

where σ3 : R→ R is a strictly increasing strictly passive function, σ1 : R→ R is strongly passive, and σ2 : R→ R is strictly
passive, all three being locally Lipschitz on R \ {0}, and k1 and k2 are (arbitrary) positive constants. For this dynamical
system, (0,0) is a globally asymptotically stable equilibrium. If in addition, for every i ∈ N2, σi(s) is locally ri-homogeneous
of degree α with domain of homogeneity Di ,

{
s ∈ R : |s| < ρi ∈ (0,∞]

}
, and σ3(s) is locally α-homogeneous of degree α3

with domain of homogeneity D3 ,
{

s ∈ R : |s|< ρ3 ∈ (0,∞]
}

, for some dilation coefficients such that

α3 = 2r2− r1 > 0 > r2− r1 (9)

then (0,0) is globally finite-time stable.

Proof: See Appendix D.

Corollary 1. For every i ∈ N3, let σi(s) = κi sign(s)|s|βi , ∀|s| < ρi ∈ (0,∞], with κi and βi being positive constants. Thus,
for any (r1,r2) ∈ R2

>0 such that r1β1 = r2β2 = α , σ j(s) is locally r j-homogeneous of degree α with domain of homogeneity
D j = {s ∈ R : |s|< ρ j}, for every j ∈ N2, and σ3(s) is α-homogeneous of degree α3 with domain of homogeneity D3 = {s ∈
R : |s|< ρ3}, guaranteeing the satisfaction of (9), if and only if

β3 =
2
β2
− 1

β1
> 0 >

1
β2
− 1

β1
(10)

Proof: See Appendix E.

Remark 3. Let us note, from Lemma 4 and Corollary 1, that for system (8) with a strictly increasing strictly passive σ3(s),
a strongly passive σ1(s), and a strictly passive σ2(s), all three being locally Lipschitz-continuous on R \ {0}, such that, for
every i ∈N3, σi(s) = κi sign(s)|s|βi , ∀|s|< ρi ∈ (0,∞], with κi > 0 and positive values of βi satisfying (10), (0,0) is a globally
finite-time stable equilibrium. In particular, for the special case generated by taking σ3(s) = s, ∀s ∈ R, and, for every i ∈ N2,
σi(s) = ki sign(s)max{|s|βi , |s|}, ∀s ∈R, under the satisfaction of (10) with β3 = 1 —equivalently expressed as: 0 < β1 < 1 and
β2 = 2β1/(1+β1)— global finite-time stability of the origin was stated in [Frye et al.(2010), Lemma 2.2]. Furthermore, for the
particular case obtained by defining σ3(s) = s, ∀s∈R, and, for every i∈N2, σi(s) = sign(s)|s|βi , ∀s∈R, with positive values of
βi satisfying (10) with β3 = 1 as well, finite-time stability of the origin was previously proved in [Bacciotti and Rosier (2005),
Example 5.6]. Interesting enough, the dynamical system generated in this latter special case was previously considered in
[Haimo (1986), Corollary 1] where, by means of a different analysis —which does not take into account the homogeneity
properties of the involved functions—, finite-time stability of the trivial solution was proven to take place provided that
0 < β1 < 1 and 0 < β2 < 2β1/(1+β1).

Lemma 5. Consider the second-order system

ẋ1 = x2−σ1(k1x1), f1(x1,x2) (11a)

ẋ2 =−σ2(k2x1) , f2(x1,x2) (11b)

where σ1 : R→R is a strictly passive function and σ2 : R→R is strongly passive, both being locally Lipschitz on R\{0}, and
k1 and k2 are (arbitrary) positive constants. For this dynamical system, (0,0) is a globally asymptotically stable equilibrium.
If in addition, for every i ∈ N2, σi(s) is locally r0-homogeneous of degree αi, with domain of homogeneity Di = {s ∈ R : |s|<
ρi ∈ (0,∞]}, for some (common) dilation coefficient such that

α2 = 2α1− r0 > 0 > α1− r0 (12)

then (0,0) is globally finite-time stable.

Proof: See Appendix F.

Corollary 2. For every i∈N2, let σi(s) = κi sign(s)|s|βi , ∀|s|< ρi ∈ (0,∞], with κi and βi being positive constants. Thus, σi(s),
i = 1,2, are locally r0-homogeneous of degree αi, for some (common) dilation coefficient r0 such that (12) is satisfied if and
only if

β2 = 2β1−1 > 0 > β1−1 (13)

Proof: See Appendix G.

Remark 4. Let us note, from Lemma 5 and Corollary 2, that for system (11) with strictly passive σ1(s) and strongly passive
σ2(s), both being locally Lipschitz-continuous on R\{0}, such that, for every i ∈N2, σi(s) = κi sign(s)|s|βi , ∀|s|< ρi ∈ (0,∞],
with κi > 0 and positive values of βi satisfying (13) —equivalently expressed as: 0.5 < β1 < 1 and β2 = 2β1− 1—, (0,0)



A. ZAVALA-RÍO ET AL. 6

is a globally finite-time stable equilibrium. In particular, for the special case of system (11) generated by taking σi(s) =
ki sign(s)max{|s|βi , |s|}, ∀s ∈ R, i = 1,2, with positive values of βi satisfying (13), global finite-time stability of the origin
was stated in [Frye et al.(2010), Lemma 2.3]. Furthermore, for the alternative case obtained by defining σi(s) = ki sign(s)|s|βi ,
∀s∈R, i = 1,2, with positive values of βi satisfying (13) as well, global finite-time stability of the origin was previously stated
in [Hong et al.(2001), Proposition 1].

IV. STATE-FEEDBACK GLOBAL STABILIZER

We define the following state-feedback controller

u1 = ū1 + ε
[
σ0(θ̇)

]2 (14)

ū1 =
√

v2
1 +(1+ v2)2 (15)

v1 =−k0σ12
(
k12ẋ+σ11(k11x)

)
(16)

v2 =−σ22
(
k22ẏ+σ21(k21y)

)
(17)

u2 = σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
(18)

θd = arctan(−v1,1+ v2) (19)

where (based on the variable relations stated through Eqs. (2))

x = ξ −ξd− ε sinθ (20a)

ẋ = ξ̇ − εθ̇ cosθ (20b)

y = ζ −ζd + ε(cosθ −1) (20c)

ẏ = ζ̇ − εθ̇ sinθ (20d)

(recall that in the stabilization context considered in this work, the horizontal and vertical desired positions ξd and ζd are
considered constant), arctan(a,b) represents the (unique) angle φ such that sinφ = a/

√
a2 +b2 and cosφ = b/

√
a2 +b2; ki j,

i = 1,2,3, j = 1,2, are positive constants; k0 is a positive constant less than unity, i.e.

0 < k0 < 1 (21a)

σ0 is a linear saturation for (L0,M0), and σ11, σ12, σ21, and σ22 are strictly increasing twice continuously differentiable
generalized saturations with bounds M11, M12, M21, and limit bounds M+

22 and M−22 such that√
M2

12 +(1+M−22)
2 + εM2

0 ≤U1 (21b)

M+
22 < 1 (21c)

σ30 is a linear saturation for (L30,M30), σ31 a homogeneous saturation for (α31,r31,M31), and, for every j ∈ {2,3}, σ3 j is
a strictly increasing strictly passive function being locally Lipschitz on R \ {0} and locally r j-homogeneous of degree α j
satisfying

B33 , lim
s→∞

max
{

σ33
(
M+

31 +σ32(s)
)
,−σ33

(
−M−31 +σ32(−s)

)}
< ∞ (22a)

—notice that the satisfaction of (22a) implies that among σ32 and σ33, at least one of them must be bounded (and, consequently,
a strictly increasing homogeneous saturation)—, such that2

M30 +B33 ≤U2 (22b)

lim
s→−∞

σ33(s)<−M−30 , lim
s→∞

σ33(s)> M+
30 (22c)

lim
s→−∞

σ32(s)<−M−31 +σ
−1
33 (−M−30) , lim

s→∞
σ32(s)> M+

31 +σ
−1
33 (M+

30) (22d)

r33 = α31 = α32 , α33 = 2r32− r31 > 0 > r32− r31 (22e)

and θ̇d and θ̈d are given by
θ̇d = k0

˙̄
θd (23a)

2Let us note that their strictly increasing character renders σ32 and σ33 invertible functions mapping R onto σ32(R) and σ33(R) respectively, and consequently
σ
−1
32 and σ

−1
33 are well-defined functions respectively mapping σ32(R) and σ33(R) onto R. In particular, observe that, by (22c), we have that M+

30 ∈ σ33(R)
and −M−30 ∈ σ33(R).
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with
˙̄
θd =

v̄1v̇2− (1+ v2) ˙̄v1

ū2
1

(23b)

and
θ̈d = k0

¨̄
θd (24a)

with
¨̄
θd =

v̄1v̈2− (1+ v2) ¨̄v1

ū2
1

− 2 ˙̄u1
˙̄
θd

ū1
(24b)

where v̄1 , v1/k0, ˙̄v1, ¨̄v1, v̇2, v̈2, and ˙̄u1 are given by

v̄1 =−σ12(s12) (25a)

˙̄v1 =−σ
′
12(s12)ṡ12 (25b)

¨̄v1 =−σ
′′
12(s12)ṡ2

12−σ
′
12(s12)s̈12 (25c)

v̇2 =−σ
′
22(s22)ṡ22 (25d)

v̈2 =−σ
′′
22(s22)ṡ2

22−σ
′
22(s22)s̈22 (25e)

˙̄u1 =
v1v̇1 +(1+ v2)v̇2

ū1
(25f)

with v̇1 , k0 ˙̄v1, and si2, ṡi2, and s̈i2, i = 1,2, given by

s12 = k12ẋ+σ11(k11x) (26a)

ṡ12 = k12ax +σ
′
11(k11x)k11ẋ (26b)

s̈12 = k12ȧx +σ
′′
11(k11x)(k11ẋ)2 +σ

′
11(k11x)k11ax (26c)

s22 = k22ẏ+σ21(k21y) (26d)

ṡ22 = k22ay +σ
′
21(k21y)k21ẏ (26e)

s̈22 = k22ȧy +σ
′′
21(k21y)(k21ẏ)2 +σ

′
21(k21y)k21ay (26f)

and ax, ȧx, ay, and ȧy given by3

ax =−ū1 sinθ (27a)

ȧx =− ˙̄u1 sinθ − ū1θ̇ cosθ (27b)

ay = ū1 cosθ −1 (27c)

ȧy = ˙̄u1 cosθ − ū1θ̇ sinθ (27d)

Let us note that the design of the proposed scheme is based on the observation that the (actual, transformed and auxiliary)
input expressions in Eqs. (14)–(17) define θ = θd(x, ẋ,y, ẏ) (with θd as in Eq. (19)) as a manifold where the translational
motion dynamics has a globally asymptotically stable equilibrium at the desired configuration, with the consequent trajectories
simultaneously leading the rotational motion variables to zero. Hence, through the control law in Eq. (18) (under the consider-
ation of the rest of the expressions and conditions involved in the algorithm), θ is made attain θd after a finite time avoiding
discontinuities throughout the scheme (contrarily, for instance, to sliding-mode-based approaches). The control objective is
thus achieved. Moreover, through the control expressions in Eqs. (14)-(15), u1 is ensured to remain positive in accordance to
the unidirectional nature of the thrust. Furthermore, through the use of suitably bounded functions σi j in the definition of the
auxiliary and torque inputs in Eqs. (16)–(18), input saturation is avoided. Such analytical features of the proposed scheme are
formally stated a proven next.

Proposition 1. Consider the PVTOL aircraft dynamics in Eqs. (1) with input saturation bounds U1 > 1 and U2 > 0. Let the
input thrust u1 be defined as in (14), with the involved auxiliary (input) variables ū1, v1, and v2 in turn defined as in Eqs.
(15)–(17), under the satisfaction of inequalities (21), and positive gains ki j, i, j = 1,2. Let the input rolling moment u2 be
defined as in (18), where θd , θ̇d , and θ̈d are defined through Eqs. (19), (23)-(24), with the involved intermediate (auxiliary)

3Let us note that the dotted ( ˙ ) and double-dotted ( ¨ ) variables defined through Eqs. (23)–(27) do not a priori correspond to the first- and second-order
change rate of the referred variables. However, such a correspondence will be later on proven to (ultimately) hold from some finite time t1 on.
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variables in turn defined as in Eqs. (25)–(27), under the fulfillment of conditions (22), and positive gains k3l , l = 1,2. Then,
for any (ξ ,ζ ,θ , ξ̇ , ζ̇ , θ̇)(0) ∈ R6:

1. 0 < 1−M+
22 ≤ u1(t)< Bu1 ,

√
(k0M12)

2 +
(
1+M−22

)2
+ εM2

0 <U1 and |u2(t)|< Bu2 , M30 +B33 ≤U2, ∀t ≥ 0;
2. the closed-loop system solutions (ξ ,ζ ,θ)(t) are bounded on [0,τ] for any τ ∈ (0,∞);
3. there exist initial-condition-independent positive constants B ˙̄v1

, Bv̇2 , B ˙̄u1
, and B ˙̄

θd
such that (along the closed-loop system

trajectories) |v̇1(t)|< | ˙̄v1(t)| ≤ B ˙̄v1
, |v̇2(t)| ≤ Bv̇2 , | ˙̄u1(t)| ≤ B ˙̄u1

, and |θ̇d(t)|< | ˙̄θd(t)| ≤ B ˙̄
θd

, ∀t ≥ 0;
4. there exists a finite time t1 ≥ 0 such that:

a) |θ̇(t)| ≤ B
θ̇

, ∀t ≥ t1,
b) | ¨̄v1(t)| ≤ B ¨̄v1

, |v̈2(t)| ≤ Bv̈2 , |θ̈d(t)| ≤ k0B ¨̄
θd

, ∀t ≥ t1,
for some initial-condition-independent positive constants B

θ̇
, B ¨̄v1

, Bv̈2 , and B ˙̄
θd

;
5. provided that k0 and ki j, i, j = 1,2, are sufficiently small and k32 is sufficiently high, from t1 on, θd(t) is globally finite-time

stabilized in the rotational coordinate space, i.e. θd(t) becomes a stable solution of the rotational motion closed-loop
dynamics and, for any (θ , θ̇)(t1) ∈ R2, there exists a finite time t2 ≥ t1 such that θ(t) = θd(t), ∀t ≥ t2;

6. provided that ε is sufficiently small, from t2 on, (ξ ,ζ )(t)≡ (0,0) becomes a stable solution of the translational motion
closed-loop dynamics and, for any (ξ ,ζ , ξ̇ , ζ̇ )(t2) ∈ R4, (ξ ,ζ ,θ)(t)→ (0,0,0) as t→ ∞.

Proof:
1. Item 1 of the statement follows directly from the definition of u1, u2, ū1, v1, and v2 in Eqs. (14)–(18), the consideration of

inequalities (21) and (22b), and the strictly increasing character of σi j, i, j = 1,2, σ32 and σ33. Its proof is consequently
straightforward.

2. Observe from the system dynamics in Eqs. (4), the control expression defined for ū1 (Eq. (15)), and inequality (21a) that

|ẍ(t)|<
√

M2
12 +

(
1+M−22

)2
, Bū1

|ÿ(t)|< Bū1 +1

|θ̈(t)|< M30 +B33 = Bu2

Hence, for any τ ∈ (0,∞):

|ẋ(t)|< |ẋ(0)|+Bū1τ , |x(t)|< |x(0)|+ |ẋ(0)|τ +Bū1τ
2/2

|ẏ(t)|< |ẏ(0)|+(Bū1 +1)τ , |y(t)|< |y(0)|+ |ẏ(0)|τ +(Bū1 +1)τ2/2

|θ̇(t)|< |θ̇(0)|+Bu2τ , |θ(t)|< |θ(0)|+ |θ̇(0)|τ +Bu2τ
2/2

∀t ∈ [0,τ]. Thus, from equations (2), we get that for any τ ∈ (0,∞):

|ξ (t)|< |ξ (0)|+2ε +
(
|ξ̇ (0)|+ ε|θ̇(0)|

)
τ +Bū1τ

2/2 (28)

|ζ (t)|< |ζ (0)|+4ε +
(
|ζ̇ (0)|+ ε|θ̇(0)|

)
τ +(Bū1 +1)τ2/2 (29)

|θ(t)|< |θ(0)|+ |θ̇(0)|τ +Bu2τ
2/2 (30)

3. Note that Eq. (25b) may be rewritten as

˙̄v1 =−σ
′
12(s12)

[
k12ax +

k11

k12
σ
′
11(k11x)(s12−σ11(k11x))

]
Then, by applying Lemma 1, we have that (along the closed-loop system trajectories)

| ˙̄v1(t)| ≤ k12A0,1
12 Bū1 +

k11

k12
A0,1

11

(
A1,1

12 +A0,1
12 M11

)
, B ˙̄v1

(31a)

∀t ≥ 0; recall further that v1 = k0v̄1 and consequently, under the consideration of (21a), we have that

|v̇1(t)|< | ˙̄v1(t)| ≤ B ˙̄v1

∀t ≥ 0. Following an analog procedure for Eq. (25d), we get

|v̇2(t)| ≤ k22A0,1
22 (Bū1 +1)+

k21

k22
A0,1

21

(
A1,1

22 +A0,1
22 M21

)
, Bv̇2 (31b)

∀t ≥ 0. Observe now that Eq. (25f) may be rewritten as

˙̄u1 = v̇2 cosθd− v̇1 sinθd =
√

v̇2
1 + v̇2

2 cos(θd + arctan(v̇1, v̇2))
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wherefrom we have that
| ˙̄u1(t)| ≤

√
B2

˙̄v1
+B2

v̇2
, B ˙̄u1

∀t ≥ 0. Furthermore, notice that Eq. (23b) may be rewritten as

˙̄
θd =

v̄1v̇2

ū2
1
−

˙̄v1 cosθd

ū1

whence we get that

| ˙̄θd(t)| ≤
M12Bv̇2

(1−M+
22)

2 +
B ˙̄v1

1−M+
22

, B ˙̄
θd

(31c)

∀t ≥ 0. Observe further from Eq. (23a) that, under the consideration of (21a), we have that

|θ̇d(t)|< | ˙̄θd(t)| ≤ B ˙̄
θd

∀t ≥ 0.
4a. Let σ34 be a generalized saturation function with limit bounds such that4

M−34 <− lim
s→−∞

σ33
(
M−31 +σ32(s)

)
−M−30 (32a)

and
M+

34 < lim
s→∞

σ33
(
−M+

31 +σ32(s)
)
−M+

30 (32b)

Let us further define the positive scalar function V1 = θ̇ 2/2. Its derivative along the trajectories of the closed-loop rotational
motion dynamics is given by

V̇1 = θ̇ θ̈ = θ̇

[
σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))]
which may be rewritten as

V̇1 =−θ̇σ34(θ̇)+ θ̇

[
σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
+σ34(θ̇)

]
(33)

Observe, from item 3 of the statement, inequalities (32), and the strictly increasing character of σ32 and σ33,5 that

θ̇ ≥ B+
θ̇
,

σ
−1
32

(
M+

31 +σ
−1
33 (M+

30 +M+
34)
)

k32
+B ˙̄

θd
> 0 (34a)

=⇒ θ̇ − θ̇d ≥
σ
−1
32

(
M+

31 +σ
−1
33 (M+

30 +M+
34)
)

k32
+B ˙̄

θd
− θ̇d

≥
σ
−1
32

(
M+

31 +σ
−1
33 (M+

30 +M+
34)
)

k32

=⇒ σ32
(
k32(θ̇ − θ̇d)

)
≥M+

31 +σ
−1
33 (M+

30 +M+
34)

=⇒ σ32(·)+σ31(·)≥ σ
−1
33 (M+

30 +M+
34)+M+

31 +σ31(·)
≥ σ

−1
33 (M+

30 +M+
34)

=⇒ σ33
(
σ32(·)+σ31(·)

)
≥M+

30 +M+
34

=⇒ σ33
(
σ32(·)+σ31(·)

)
−σ30(·)−σ34(·)≥M+

30−σ30(·)+M+
34−σ34(·)≥ 0

=⇒ σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
+σ34(θ̇)≤ 0

while analogous developments show that

θ̇ ≤ B−
θ̇
,

σ
−1
32

(
−M−31 +σ

−1
33 (−M−30−M−34)

)
k32

−B ˙̄
θd

< 0 (34b)

=⇒ σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
+σ34(θ̇)≥ 0

4Let us note that the satisfaction of inequalities (22c) and (22d) ensures positivity of the right-hand-side expressions of inequalities (32).
5Recall that, in view of the strictly increasing character of σ32 and σ33, σ

−1
32 and σ

−1
33 are well-defined functions respectively mapping σ32(R) and σ33(R)

onto R. In particular, by inequalities (32), we have that M+
30+M+

34 ∈σ33(R), −M−30−M−34 ∈σ33(R), M+
31+σ

−1
33 (M+

30+M+
34)∈σ32(R), and −M−31+σ

−1
33 (−M−30−

M−34) ∈ σ32(R).
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From these expressions we see that

|θ̇ | ≥max
{

B+
θ̇
,−B−

θ̇

}
=⇒ θ̇

[
σ30(θ̈d)−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
+σ34(θ̇)

]
≤ 0

whence, in view of (33), we conclude that

V̇1 ≤−θ̇σ34(θ̇) ∀|θ̇ | ≥max
{

B+
θ̇
,−B−

θ̇

}
with θ̇σ34(θ̇) being a positive definite function of θ̇ in view of the strictly passive character of σ34. Then, according to
[Khalil (2002), Theorem 4.18],6 there exists a finite time t1 ≥ 0 such that

|θ̇(t)| ≤max
{

B+
θ̇
,−B−

θ̇

}
, B

θ̇

∀t ≥ t1.
4b. Notice that Eq. (25c) may be rewritten as

¨̄v1 = −σ
′′
12(s12)

[
− k12ū1 sinθ +

k11

k12
σ
′
11(k11x)

(
s12−σ11(k11x)

)]2

−σ
′
12(s12)

[
−
(
k12 ˙̄u1 + k11ū1σ

′
11(k11x)

)
sinθ − k12ū1θ̇ cosθ

+

(
k11

k12

)2

σ
′′
11(k11x)

(
s12−σ11(k11x)

)2
]

Thus, by applying Lemma 1 and considering items 3 and 4a of the statement, we obtain (along the closed-loop system
trajectories)

| ¨̄v1(t)| ≤ k2
12A0,2

12 B2
ū1
+2k11Bū1A0,1

11 (A
1,2
12 +A0,2

12 M11)

+

(
k11A0,1

11
k12

)2

(A2,2
12 +2A1,2

12 M11 +A0,2
12 M2

11)+A0,1
12 C1

+

(
k11

k12

)2

A0,2
11 (A

2,1
12 +2A1,1

12 M11 +A0,1
12 M2

11), B ¨̄v1

∀t ≥ t1, with

C1 ,

√(
k12B ˙̄u1

+ k11Bū1 A0,1
11

)2
+
(
k12Bū1B

θ̇

)2

Following a similar procedure for Eq. (25e), we get

|v̈2(t)| ≤ k2
22A0,2

22 (Bū1 +1)2 +2k21(Bū1 +1)A0,1
21 (A

1,2
22 +A0,2

22 M21)

+

(
k21A0,1

21
k22

)2

(A2,2
22 +2A1,2

22 M21 +A0,2
22 M2

21)+A0,1
22 (C2 + k21A0,1

21 )

+

(
k21

k22

)2

A0,2
21 (A

2,1
22 +2A1,1

22 M21 +A0,1
22 M2

21), Bv̈2

∀t ≥ t1, with

C2 ,

√(
k22B ˙̄u1

+ k21Bū1 A0,1
21

)2
+
(
k22Bū1B

θ̇

)2

Furthermore, note that Eq. (24b) may be rewritten as

¨̄
θd =

v̄1v̈2

ū2
1
−

¨̄v1 cosθd +2 ˙̄u1
˙̄
θd

ū1

whence we get that

| ¨̄θd(t)| ≤
M12Bv̈2

(1−M+
22)

2 +
B ¨̄v1

+2B ˙̄u1
B ˙̄

θd

1−M+
22

, B ¨̄
θd

6Theorem 4.18 of [Khalil (2002)] is being applied by considering the closed-loop rotational motion dynamics a first order subsystem with respect to θ̇ , i.e.
d
dt θ̇ = u2(t, θ̇) where (along the closed loop trajectories) the rest of the system variables, involved in u2, are considered time-varying functions.
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∀t ≥ t1. Hence, from Eq. (24a), we conclude that

|θ̈d(t)|= k0| ¨̄θd(t)| ≤ k0B ¨̄
θd

∀t ≥ t1.
5. Note, from the proof of item 4a (more precisely, see expressions (31) and (34)), that with sufficiently small gains ki j,

i, j = 1,2, and a high enough value of k32 —such that7 B
θ̇
≤ L0— we have (along the system trajectories) that σ0

(
θ̇(t)

)
=

θ̇(t), ∀t ≥ t1. Hence, from t1 on, u1 in (14) adopts the form expressed in (3) and consequently the system dynamics in
Eqs. (4) becomes an equivalent representation of the system model in Eqs. (1) under the coordinate and input variable
changes defined through Eqs. (2) and (3). This in turn entails that, from t1 on, the dotted ( ˙ ) and double-dotted ( ¨ )
variables defined through Eqs. (23)–(27) correspond to the first- and second-order change rate of the referred variables; in
particular θ̇d(t) = d

dt θd(t) and θ̈d(t) = d
dt θ̇d(t), ∀t ≥ t1. Furthermore, from items 4b of the statement and 4 of Definition

4, one sees that by choosing a sufficiently small value of k0 —such that k0B ¨̄
θd
≤ L30—, we obtain (along the system

trajectories) σ30(θ̈d(t)) = θ̈d(t), ∀t ≥ t1. Then, from t1 on, the rotational motion dynamics becomes

θ̈ = θ̈d−σ33

(
σ31
(
k31(θ −θd)

)
+σ32

(
k32(θ̇ − θ̇d)

))
By defining e1 = θ −θd and e2 = θ̇ − θ̇d , this subsystem adopts a state-space representation of the form

ė1 = e2

ė2 =−σ33
(
σ31(k31e1)+σ32(k32e2)

)
Thus, under the satisfaction of (22e), by Lemma 4 and Remark 2, we conclude that (e1,e2) = (0,0) is a globally finite-time
stable equilibrium of this subsystem. Hence, θd(t) becomes a globally finite-time stable solution of the rotational motion
closed-loop dynamics, or equivalently, it becomes a stable solution of the referred subsystem and, for any (θ , θ̇)(t1) ∈R2,
there exists a finite time t2 ≥ t1 such that θ(t) = θd(t), ∀t ≥ t2.

6. Observe from item 2 of the statement that up to t2 (and actually for any arbitrarily long finite time), the closed-loop system
solutions exist and are bounded (which holds in both considered coordinate spaces). Further, from item 5 of the statement,
the definitions of θd in (19) and ū1 in (15), and Eqs. (4), one sees that, from t2 on, we have that ẍ1 =−ū1 sinθd = v1 and
ÿ1 = ū1 cosθd−1 = v2 with v1 and v2 as defined in Eqs. (16)-(17), i.e. the translational motion closed-loop dynamics in
the transformed coordinates becomes

ẍ =−k0σ12
(
k12ẋ+σ11(k11x)

)
ÿ =−σ22

(
k22ẏ+σ21(k21y)

) (35)

By defining z ,
(
x, ẋ,y, ẏ

)T , this subsystem adopts a consequent state-space representation ż = f (z) with f (04) = 04. More
precisely,

ż1 = z2 (36a)

ż2 =−k0σ12
(
k12z2 +σ11(k11z1)

)
(36b)

ż3 = z4 (36c)

ż4 =−σ22
(
k22z4 +σ21(k21z3)

)
(36d)

Let us now define the continuously differentiable scalar function

V2(z) =
z2

2
2k0

+
∫ z1

0
σ12
(
σ11(k11s)

)
ds+

z2
4
2
+
∫ z3

0
σ22
(
σ21(k21s)

)
ds

Note, under the consideration of Lemma 2 and Remark 2, that V2(z) is radially unbounded and positive definite. Its
derivative along the system trajectories is given by

V̇2(z) =
z2ż2

k0
+ z2σ12

(
σ11(k11z1)

)
+

z4ż4

k0
+ z4σ22

(
σ21(k21z3)

)
= − z2

[
σ12
(
k12z2 +σ11(k11z1)

)
−σ12

(
σ11(k11z1)

)]
− z4

[
σ22
(
k22z4 +σ21(k21z3)

)
−σ22

(
σ21(k21z3)

)]
From Lemma 3 —in view of the strictly increasing character of σi2, i = 1,2— one sees that V̇2(z) ≤ 0, ∀z ∈ R4, with
V̇2(z) = 0 ⇐⇒ z2 = z4 = 0, whence 04 is concluded to be a stable equilibrium of the state equations (36), or equivalently

7Let us notice that generalized saturation functions with sufficiently low slope in v1 and v2 and small enough bounds in u2 would also be helpful to get
B

θ̇
≤ L0.
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(x,y)(t) ≡ (0,0) is concluded to be a stable solution of subsystem (35). Further, from Eqs. (36) and the strictly passive
character of the involved generalized saturation functions, one sees that

(
z2(t)≡ 0

)
∧
(
z4(t)≡ 0

)
=⇒

(
ż2(t)≡ 0

)
∧
(
ż4(t)≡

0
)

=⇒
(
z1(t) ≡ 0

)
∧
(
z3(t) ≡ 0

)
. Then, from La Salle’s invariance principle, one concludes that, for any z(t2) ∈ R4,

z(t) → 04 as t → ∞. Moreover, observe from this asymptotic convergence that, since (along the closed-loop system
trajectories) (θ , θ̇)(t) = (θd , θ̇d)(t), ∀t ≥ t2, and, as functions of the system variables, θd(z)

∣∣
z=04

= θ̇d(z)
∣∣
z=04

= 0, then
(θ , θ̇)(t) = (θd , θ̇d)(t)→ 02 as t→ ∞. Let us finally note that under the consideration of Eqs. (20) we have, from t2 on,
that (ξ , ξ̇ ,ζ , ζ̇ ) = T (z) with

T (z) =


z1 + ε sin

(
θd(z)

)
z2 + εθ̇d(z)cos

(
θd(z)

)
z3 + ε

[
1− cos

(
θd(z)

)]
z4 + εθ̇d(z)cos

(
θd(z)

)


From this expression one gets that

∂T
∂ z

(z)
∣∣∣∣
z=04

=


1+ εb1 εb2 0 0
−εb1b2 1+ ε(b1−b2

2) 0 0
0 0 1 0
0 0 0 1


with b1 = k0k11σ ′11(0)σ

′
12(0)> 0 and b2 = k0k12σ ′12(0)> 0, and consequently

∣∣∣ ∂T
∂ z (04)

∣∣∣= (1+εb1)
2−εb2

2 whence one can

see that for sufficiently small ε we have that
∣∣∣ ∂T

∂ z (04)
∣∣∣ 6= 0 and consequently ∂T

∂ z (04) is non-singular. Hence, we conclude
that, for a sufficiently small value of ε , stability holds for the trivial solution (ξ ,ζ )(t)≡ (0,0) in the original coordinates
(see for instance [Khalil (2002), Exercise 4.26] and [Apostol (1974), Theorem 13.6]) and, from Remark 1, that for any
(ξ , ξ̇ ,ζ , ζ̇ )(t2) ∈ R4, (ξ ,ζ ,θ)(t)→ (0,0,0) as t→ ∞.

V. OUTPUT FEEDBACK GLOBAL STABILIZER

With u , (u1,u2)
T , let u(ξ , ξ̇ ,ζ , ζ̇ ,θ , θ̇) represent the (state) feedback controller presented in the precedent section. Suppose

now that position measurements are available while the velocity signals are not. In this case we show that the globally stabilizing
objective is achievable through the precedent algorithm with the velocities replaced by estimation variables coming from a finite-
time observer defined through a generalized dynamics that includes those used in [Frye et al.(2010)] and [Hong et al.(2001)]
as particular cases. More specifically, we consider the closed loop generated by taking u = u(ξ , ŵ2,ζ , ŵ4,θ , ŵ6) under the
additional consideration of the auxiliary dynamics

˙̂w1 = ŵ2 +σ41
(
k41(ξ − ŵ1)

)
(37a)

˙̂w2 =−u1 sinθ + εu2 cosθ +σ42
(
k42(ξ − ŵ1)

)
(37b)

˙̂w3 = ŵ4 +σ51
(
k51(ζ − ŵ3)

)
(37c)

˙̂w4 = u1 cosθ + εu2 sinθ −1+σ52
(
k52(ζ − ŵ3)

)
(37d)

˙̂w5 = ŵ6 +σ61
(
k61(θ − ŵ5)

)
(37e)

˙̂w6 = u2 +σ62
(
k62(θ − ŵ5)

)
(37f)

where, for every i ∈ {4,5,6}, ki1 and ki2 are (arbitrary) positive constants, σi1(s) is a strictly passive function and σi2(s)
is strongly passive, both being locally Lipschitz-continuous on R \ {0} and locally ri-homogeneous of degree αi1 and αi2,
respectively, for some ri such that

αi2 = 2αi1− ri > 0 > αi1− ri (38)

The states of such an auxiliary dynamics will be proven to attain the variables of the PVTOL aircraft motion variables after a
finite time. From that moment on, the conditions of the case treated in the precedent section are retrieved, consequently guar-
anteeing the control objective. Subsequently, we denote w = (ξ , ξ̇ ,ζ , ζ̇ ,θ , θ̇)T , while we define ŵ , (ŵ1, ŵ2, ŵ3, ŵ4, ŵ5, ŵ6)

T .

Proposition 2. Assuming input saturation bounds U1 > 1 and U2 > 0, consider the PVTOL aircraft dynamics in Eqs. (1) with
u = u(ξ , ŵ2,ζ , ŵ4,θ , ŵ6), i.e. in closed loop with the output-feedback scheme generated from the control algorithm considered
in Proposition 1, with the horizontal, vertical, and rotational velocity variables in the control law expressions (14) and (18)
respectively replaced by estimation variables ŵ2, ŵ4, and ŵ6 dynamically computed through the auxiliary subsystem represented
in Eqs. (37), under the satisfaction of the parametric conditions (38) (concerning the previously described functions σi1 and
σi2, i = 4,5,6) and the consideration of (arbitrary) positive constants ki j, i = 4,5,6, j = 1,2. Then, for any (wT , ŵT )T (0)∈R12:
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1. items 1 and 2 of Proposition 1 hold, i.e. the closed loop trajectories exist and are bounded at any finite time and, along
them, input saturation is avoided;

2. there exists a finite time t0 ≥ 0 such that ŵ(t) = w(t), ∀t ≥ t0;
3. from t0 on, items 3–6 of Proposition 1 are retrieved with t1 ≥ t0, i.e. in particular, there exist a finite time t1 ≥ t0 such that
|θ̈d(t)| ≤ k0B ¨̄

θd
, ∀t ≥ t1, and a finite time t2 ≥ t1 such that, provided that k0 and ki j, i, j = 1,2, are sufficiently small and

k32 is sufficiently high, θ(t) = θd(t), ∀t ≥ t2, and such that, provided that ε is sufficiently small, from t2 on, (ξ ,ζ )(t)≡
(0,0) becomes a stable solution of the translational motion closed-loop dynamics and, for any (ξ ,ζ , ξ̇ , ζ̇ )(t2) ∈ R4,
(ξ ,ζ ,θ)(t)→ (0,0,0) as t→ ∞.

Proof:
1. By reproducing the proof of items 1 and 2 of Proposition 1 under the consideration of estimation auxiliary states replacing

the velocity variables in the control law expressions, one observes that both items hold, whence item 1 of the statement
is concluded.

2. Let us define the observation error variables w̄i = wi − ŵi, i = 1, . . . ,6. From the closed-loop system equations, the
observation error variable dynamics is obtained as

˙̄wi = w̄ j−σi1(ki1w̄i)

˙̄w j =−σ j2(k j2w̄i)

for all i∈ {1,3,5}, with j = i+1. Hence, under the satisfaction of (38), by Lemma 5, item 2 of the statement is concluded.
3. Let us first note that in view of item 1 of the statement and the stability properties of the observation error dynamics,

up to t0 (and actually for any arbitrarily long finite time), all the closed-loop system variables, and consequently all the
expressions involved in the definition of the control algorithm, exist and are bounded. On the other hand, in view of
item 2 of the statement, from t0 on, the state-feedback closed-loop dynamics considered in Proposition 1 is retrieved,
and it is further mirrored by the auxiliary subsystem in Eqs. (37). Hence, from Proposition 1, item 3 of the statement is
concluded.

VI. SIMULATION TESTS

The proposed scheme was tested through simulation taking ε = 0.2 and ξd = ζd = 0. Thrust and rolling moment saturation
bounds U1 = 10 and U2 = 10 were considered (for the sake of simplicity, units will be omitted). Following the proposed
design methodology, two controllers with different structures —more precisely, with different choices of σ32 and σ33 in
u2— were implemented. The specific functions σ0(s), σi j(s), i, j = 1,2, σ3l(s), l = 0, . . . ,3, and σmn(s), m = 4,5,6, n = 1,2,
that were involved at every implemented controller, are presented in Appendix H. Their parameter values were fixed —
under the consideration of conditions (21) and (22)— for both controllers as: M0 = 0.7, M11 = M21 = 3, M12 = 7, M−22 = 6,
M+

22 = 0.9, M30 = M31 = 2, β31 = 1/3, β32 = 1/2, β33 = 1, β41 = β51 = β61 = 2/3, and β42 = β52 = β62 = 1/3, while for
controller 1: M32 = 6 and L32 = 2, and for controller 2: M33 = 8 and L33 = 3. The control gains were taken as: k0 = 0.1,
k11 = k21 = 2, k12 = k22 = 3, and ki j = 1, i = 3, . . . ,6, j = 1,2. For comparison purposes, the output-feedback algorithm of
[Frye et al.(2010)] was implemented too with parameter values β1 = α2 = 1/3, β2 = 1/2, α1 = 2/3, and control gains fixed
as k1 = k2 = 1; input saturation bounds were not included for this controller. The simulation was run taking initial conditions
w(0) = (ξ , ξ̇ ,ζ , ζ̇ ,θ , θ̇)(0) = (0,0,0,8,4π,0) and ŵ(0) = (3,0,3,0,0,0). The results are shown in Fig. 1. Observe that for both
controllers obtained through the proposed design method, the control objective is achieved with |ui(t)|<Ui, i = 1,2, ∀t ≥ 0. On
the contrary, the rolling moment u2 generated by the algorithm of [Frye et al.(2010)] takes absolute values greater than U2 = 10
during the transient; in a bounded input context, this controller would have undergone input saturation. It is important to note
that the boundedness of the proposed scheme restricts the closed loop response speed, which is a natural consequence of the
power supply limitations of constrained inputs. This is corroborated through Fig. 1 whence one perceives the contrast among
the velocity estimation error vanishing, achieved in around 10 seconds via the considered finite-time observer with unbounded
dynamics, and the position stabilization completed in almost 50 seconds in view of the considered initial conditions (with a
considerable vertically upwards initial impulsion). Long stabilization times have been characteristic of bounded approaches
in the face of demanding initial conditions even in state-feedback contexts [Ye et al.(2007)], [Zavala-Rı́o et al.(2003)]. The
longer stabilization arisen through the algorithm of [Frye et al.(2010)] is rather a consequence of the controller structure in
view of the expressions used for the auxiliary (input) variables v1 and v2 —denoted r1 and r2 in [Frye et al.(2010)]—, which
become very small when (at least) one of the system states get considerably high values during the transient which causes
the horizontal or vertical motion closed-loop dynamics to become very slow. Let us further note that with respect to the
performance obtained through controller 1, a shortest stabilization time takes place with controller 2, which is particularly
seen through the horizontal position responses; such performance improvement corroborates the usefulness of the freedom to
adjust the controller structure furnished through the generalized versions of the involved finite-time stabilizers —which is more
significant in (but not exclusive to) the case of that of Lemma 4, directly used in the design of u2 in (18)—.
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Fig. 1. Simulation results. Left: position responses (ξ , ζ , θ ) and control signals (u1, u2). Right: velocity estimation errors (w̄i, i = 2,4,6).

VII. EXPERIMENTAL RESULTS

Experimental implementation of the developed algorithm was an important challenge of the present work. Realization of a
PVTOL-type task on an actual unmanned aerial vehicle (UAV) has been stated to be the main goal of the test. The closed-loop
performance could hardly be expected to look like that perceived in Section VI in the face of structural differences with
respect to a PVTOL device or technical inaccuracies. Indeed, it is important to take into account that the analysis and synthesis
developed in the previous sections did not include perturbation terms in the system dynamics or measurement imprecisions
such as delays. However, the test itself (whether the results are close to or far from ideal ones) would be helpful to evaluate
the implementability of the algorithm and the closed-loop performance under model and/or technical discrepancies.

The experimental UAV where the proposed scheme was implemented on, shown in Fig. 2, is a quadrotor based on the
Mikrokopter frame (but with modifications). It has four brushless motors driven with BLCTRLV2 controllers. The total weight
is 1.2 kg, using a 11.1 V LiPO battery of 6000 mAh, giving about 15 minutes of flight time. The main electronic board is
based on an IGEP module, equipped with a System On Chip (SOC) DM3730 from Texas Instruments. This SOC has one ARM
Cortex A8 core running at 1 GHz and one DSP C64x+ core running at 800 MHz (which allows embedded image processing,
but this is not used in our application). The ARM processor allows to run Linux and its real-time extension Xenomai. Thus,
the control law runs in real time at 100 Hz. The UAV is also equipped with a Microstrain 3DMGX3-25 IMU giving Euler
angles and rotation speed measurements at 100Hz. In order to measure the UAV position we used an external sensor, namely a
motion capture system. More specifically, we used an Optitrack system composed of 12 cameras fixed in a 5m×7m room. All
cameras are linked to a server computing the UAV position in turn delivered through a wireless connection (XBee modem).
This system is able to deliver position at up to 250 Hz, but in our experiments the frame rate was fixed at 100 Hz. Higher
frame rates are not useful because of the delay introduced through the wireless connection. Let us note that the motion capture
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Fig. 2. Experimental quadrotor

system does not deliver translational velocity measurements. The only speed measurements available are the angular ones,
through the IMU.

The quadrotor may be seen as two coupled PVTOL aircraft, each of them at every one of its axes. This is suitably illustrated
through a thorough technical description in [Lozano et al.(2004)]. Moreover, [Castillo et al.(2004)] shows that, by keeping a
motionless yaw angle at zero, the quadrotor dynamics becomes equivalent to that of a PVTOL aircraft under a motionless zero
roll angle, with the depth position and pitch angle characterizing the horizontal and angular displacements (on the corresponding
plane) —ξ and θ— under the described conditions, while a similar PVTOL aircraft dynamics is obtained under a motionless
zero pitch angle, with the lateral position and roll angle characterizing ξ and θ in this latter case. In view of this, one of the
axis of the experimental quadrotor considered here was held stabilized —so as to keep motionless zero depth displacements and
pitch rotations— through the previously-tested state-feedback controller presented in [Sanahuja et al.(2010)]. The remaining
axis moved on its corresponding plane with a behavior similar to that of a PVTOL aircraft (as shown in [Castillo et al.(2004)]
and described in [Lozano et al.(2004)]). It was on this axis that the proposed approach was tested.

The stabilization scheme was implemented taking ε = 0 in the control expressions, (14)–(21), and adopting the structure
of both controllers 1 and 2 of the precedent section. The functions σ0(s), σi j(s), i, j = 1,2, σ3l(s), l = 0, . . . ,3, and σmn(s),
m = 4,5,6, n = 1,2, were defined as correspondingly specified in Appendix H. The parameter and gain values were fixed
—under the consideration of conditions (21) and (22)— (as in the previous section, units will be omitted for the sake of
simplicity) as: M11 = 0.5, M21 = 1.3, M−22 = M+

22 = 0.8, M30 = M31 = 2, β33 = 1, β41 = β51 = 0.9, β42 = β52 = 0.8, β61 = 0.99,
β62 = 0.98, k11 = k22 = 4.9, k21 = 5.9, k31 = 3, k32 = 0.15, k41 = k51 = 490.5, k61 = 20, k42 = k52 = 4905 and k62 = 500 for
both controllers, while: M32 = 20, L32 = 0.5, M11 = 0.5, k0 = 0.4 and k12 = 4.9 for controller 1, and: M33 = 27, L33 = 0.75,
M11 = 0.7, k0 = 0.3 and k12 = 2.94 for controller 2. The initial conditions for all the estimation variables were fixed at zero,
i.e. ŵi(0) = 0, ∀i = 1, . . . ,6. The values of ξd and ζd were fixed such that stabilization was performed towards horizontal and
vertical target positions of 1 m and 0.4 m respectively. The test was implemented with the quadrotor initially close to the home
(reference) location.

Results are shown in Fig. 3. The stabilization objective is observed to be achieved by both controllers. In particular, the rolling
moment control signal generated by controller 1 is noticed to be oscillating during the transient, having a slight (vanishing) effect
on the angular position response. There are two main arguments for this phenomenon. The model and technical inaccuracies,
on the one hand, may give rise to important position-error and velocity-error control actions in u2 during the transient. On the
other hand, by directly saturating each of the referred control actions in u2, controller 1 considerably limits its ability to cope
with important initial errors; by rather bounding the addition of both referred terms, controller 2 avoids a direct saturation on
the velocity-error action and releases the saturation bound on the position-error action from design constraints, permitting more
suitable reactions to such errors. Controller 1 may consequently be concluded to be more sensitive to important initial errors
as well as model and technical inaccuracies, while controller 2 proves to overcome such limitation. It is worth pointing out
that the effects related to model and technical imprecisions have been present in experimental results shown in previous works
[Lozano et al.(2004)], [Sanahuja et al.(2010)], [Lopez-Araujo et al.(2010)], where oscillating angular position responses have
generally arisen even under the availability of all the system variables considered by such state-feedback approaches.

VIII. CONCLUSIONS

In this work, an output feedback scheme for the global stabilization of the PVTOL aircraft with bounded inputs has been
developed taking into account the positive nature of the thrust. With respect to previous approaches, the proposed controller
guarantees the global stabilization objective disregarding velocity measurements simultaneously avoiding input saturation. To
deal with the lack of velocity measurements, the proposed algorithm involves a finite-time observer. Finite-time roll-angle
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Fig. 3. Experimental results: position responses (horizontal, vertical, θ ) and control signals (u1, u2).

tracking is simultaneously performed to achieve the stabilization objective in the underactuated natural context of the PVTOL
aircraft. Successful simulation results have confirmed the efficiency of the proposed scheme, as well as the usefulness —
for performance improvement purposes— of the freedom to adjust the controller structure furnished through the generalized
versions of the involved finite-time stabilizers. Achievement of the stabilization objective was further corroborated through
experimental tests on an actual UAV system despite model and technical discrepancies. The effects of such inaccuracies,
generally observed in actual applications, may be expected to be improved by considering perturbation terms and/or technical
imprecisions (such as measurement delays) in the system dynamics. A formal work in that direction as well as the extension of
the techniques developed/involved in this paper to UAV’s with more complex dynamics (such as quadrotor aircraft) constitute
potential topics for future research.

APPENDIX A
PROOF OF LEMMA 1

For any j ∈ Z+
m , let σ

( j)
∞ = lim|s|→∞ σ ( j)(s).

1) a) p = 0:
i) q = 1:

Observe that since σ is a strictly passive function that is nondecreasing and bounded by M, there exist positive
constants c− ≤M and c+ ≤M such that

lim
|s|→∞

σ(s) =

(
sign(s)−1

)
c−+

(
sign(s)+1

)
c+

2
= σ∞



A. ZAVALA-RÍO ET AL. 17

Hence,

lim
|s|→∞

σ
′(s) = lim

|s|→∞

lim
h→0

σ(s+h)−σ(s)
h

= lim
h→0

lim
|s|→∞

σ(s+h)−σ(s)
h

= lim
h→0

σ∞−σ∞

h
= 0

ii) Suppose that m≥ 2 and let q ∈ Nm \{1}. Observe that

lim
|s|→∞

σ
(q)(s) = lim

|s|→∞

lim
h→0

σ (q−1)(s+h)−σ (q−1)(s)
h

= lim
h→0

lim
|s|→∞

σ (q−1)(s+h)−σ (q−1)(s)
h

= lim
h→0

1
h

[
lim
|s|→∞

σ
(q−1)(s+h)− lim

|s|→∞

σ
(q−1)(s)

]
In view of the result of point 1(a)i of the proof, by analyzing this expression in order from q = 2 to q = m,
one sees that σ (q−1)(s+h)→ σ (q−1)(s)→ 0 as |s| → ∞, ∀q ∈ Nm \{1}, and consequently lim|s|→∞ σ (q)(s) = 0,
∀q ∈ Nm \{1}.

b) p≥ 1:
Observe that spσ (q−1)(s)→ spσ

(q−1)
∞ as |s| →∞ where, according to point 1a of the proof, σ

(q−1)
∞ is a well-defined

finite value for all (q−1) ∈ Z+
m . Then, d

ds spσ (q−1)(s)→ d
ds spσ

(q−1)
∞ = psp−1σ

(q−1)
∞ as |s| → ∞. Consequently,

lim
|s|→∞

d
ds

sp
σ
(q−1)(s) = lim

|s|→∞

(
psp−1

σ
(q−1)(s)+ sp

σ
(q)(s)

)
= lim
|s|→∞

psp−1
σ
(q−1)
∞ + lim

|s|→∞

sp
σ
(q)(s) = lim

|s|→∞

psp−1
σ
(q−1)
∞

wherefrom one sees that lim|s|→∞ spσ (q)(s) = 0, ∀p≥ 1, ∀q ∈ Nm.
2) Note that, in view of its continuity, spσ (q)(s) is bounded on any compact subset of R. Thus, its boundedness holds on

R if lim|s|→∞

∣∣∣spσ (q)(s)
∣∣∣< ∞. Since, according to item 1 of the statement, lim|s|→∞ spσ (q)(s) = 0, ∀p ∈ Z+, ∀q ∈Nm, we

conclude that, for all p ∈ Z+ and all q ∈ Nm, there exist Ap,q ∈ (0,∞) such that
∣∣∣spσ (q)(s)

∣∣∣≤ Ap,q, ∀s ∈ R.

APPENDIX B
PROOF OF LEMMA 2

1) Note that in view of the analytical properties that define a strongly passive function, we have that∫ s

0
σ(kν)dν ≥

∫ s

0
sign(ν)κ

∣∣asat(kν/a)
∣∣α dν

=
∫ s

0
sign(ν)κ

(
min{|kν |,a}

)α dν

, Σ
¯
(s) =


κkα

α+1 |s|
α+1 ∀|s| ≤ a

k

κaα

(
|s|− aα

k(α+1)

)
∀|s|> a

k

(39)

From this expression one sees that Σ
¯
(s)> 0, ∀s 6= 0, and consequently

∫ s
0 σ(kν)dν > 0, ∀s 6= 0.

2) Notice from (39) that Σ
¯
(s)→ ∞ as |s| → ∞ and consequently

∫ s
0 σ(kν)dν → ∞ as |s| → ∞.

3) Observe that since σ1 and σ2 are strictly passive, we have that(
∀s 6= 0

)(
sσi(s)> 0

)
⇐⇒ sign(σi(s)) = sign(s)

∀i ∈ N2. Then,
sign(σ1(σ2(s))) = sign(σ2(s)) = sign(s) ⇐⇒

(
∀s 6= 0

)(
sσ1(σ2(s))> 0

)
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whence one sees that σ1 ◦σ2 is strictly passive. On the other hand, since there are positive constants κi, αi, and ai such
that

(
∀s ∈ R

)(
|σi(s)| ≥ κi|ai sat(s/ai)|αi

)
, ∀i ∈ N2, then

|σ1(σ2(s))| ≥ κ1
∣∣a1 sat(σ2(s)/a1)

∣∣α1 = κ1
(

min{|σ2(s)|,a1}
)α1

≥min
{

κ1
(
κ2|a2 sat(s/a2)|α2

)α1 ,κ1aα1
1

}
= min

{
κ1κ

α1
2

(
min{|s|,a2}

)α1α2 ,κ1aα1
1

}
= min

{
κ1κ

α1
2 |s|

α1α2 ,κ1
(

min{κ2aα2
2 ,a1}

)α1
}

≥ κ◦
(

min{|s|,a◦}
)α◦ = κ◦

∣∣a◦ sat(s/a◦)
∣∣α◦

∀s ∈ R, for positive constants

κ◦ ≤ κ1κ
α1
2 , α◦ ≥ α1α2 , and a◦ ≤

(
min{κ2aα2

2 ,a1}
κ2

)1/α2

Thus α1 ◦α2 is strongly passive.

APPENDIX C
PROOF OF LEMMA 3

Let s1,s2,s3 ∈R. Since σ0 is strictly increasing, we have that σ0(s3)> σ0(s2) ⇐⇒ s3 > s2 and σ0(s3)< σ0(s2) ⇐⇒ s3 < s2.
From this and the strictly passive character of σ1 we have, by letting s3 = σ1(ks1)+s2, that σ0(σ1(ks1)+s2)−σ0(s2)> 0 ⇐⇒
σ1(ks1) > 0 ⇐⇒ s1 > 0 and σ0(σ1(ks1)+ s2)−σ0(s2) < 0 ⇐⇒ σ1(ks1) < 0 ⇐⇒ s1 < 0, ∀s2 ∈ R, whence it follows that
s1
[
σ0(σ1(ks1)+ s2)−σ0(s2)

]
> 0, ∀s1 6= 0, ∀s2 ∈ R.

APPENDIX D
PROOF OF LEMMA 4

Let us define the continuously differentiable scalar function

V1(x1,x2) =
x2

2
2
+
∫ x1

0
σ3
(
σ1(k1s)

)
ds

From Remark 2 and Lemma 2 one sees that V1(x1,x2) is a positive definite radially unbounded function. Its derivative along
the trajectories of system (8) is given by

V̇1(x1,x2) = x2ẋ2 +σ3
(
σ1(k1x1)

)
ẋ1

=−x2σ3
(
σ1(k1x1)+σ2(k2x2)

)
+σ3

(
σ1(k1x1)

)
x2

=−x2
[
σ3
(
σ1(k1x1)+σ2(k2x2)

)
−σ3

(
σ1(k1x1)

)]
From Lemma 3, one sees that V̇1(x1,x2) ≤ 0, ∀(x1,x2) ∈ R2, with V̇1(x1,x2) = 0 ⇐⇒ x2 = 0. Further, from the system
dynamics in Eqs. (8), taking into account that σi, i = 1,2,3, are strictly passive, one sees that x2(t) ≡ 0 =⇒ ẋ2(t) ≡
0 =⇒ σ3

(
σ1
(
k1x1(t)

))
≡ 0 =⇒ x1(t) ≡ 0. Then, by the Invariance Theory [Michel et al.(2008), §7.2] (more specifically,

by [Michel et al.(2008), Corollary 7.2.1]), one concludes that (0,0) is a globally asymptotically stable equilibrium. Let us
now additionally suppose that, for every i = 1,2, σi(s) is locally ri-homogeneous of degree α , with domain of homo-
geneity Di = {s ∈ R : |s| < ρi ∈ (0,∞]}, and σ3(s) is locally α-homogeneous of degree α3 with domain of homogeneity
D3 =

{
s ∈R : |s|< ρ3 ∈ (0,∞]

}
, for some dilation coefficients such that (9) is satisfied. Let x = (x1,x2)

T , D = {x ∈R2 : |x1|<
ρ1 , |x2|< ρ2 , |σ1(k1x1)+σ2(k2x2)|< ρ3}, r , (r1,r2), and f (x),

(
f1(x), f2(x)

)T . Observe that for every x∈D and all ε ∈R>0
such that δ r

ε (x) ∈ D, we have that

f1(ε
r1x1,ε

r2x2) = ε
r2x2

= ε
r2−r1+r1x2

= ε
(r2−r1)+r1 f1(x1,x2)

and

f2(ε
r1x1,ε

r2x2) =−σ3
(
σ1(k1ε

r1x1)+σ2(k2ε
r2x2)

)
=−σ3

(
ε

α
σ1(k1x1)+ ε

α
σ2(k2x2)

)
=−ε

α3σ3
(
σ1(k1x1)+σ2(k2x2)

)
=−ε

2r2−r1σ3
(
σ1(k1x1)+σ2(k2x2)

)
= ε

(r2−r1)+r2 f2(x1,x2)
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Thus, f (x) is locally r-homogeneous —with domain of homogeneity D— of degree k = r2−r1 < 0, and consequently, according
to Theorem 1, (0,0) is globally finite-time stable.

APPENDIX E
PROOF OF COROLLARY 1

Let us begin by noting that, for every i ∈ N3:

σi(ε
ris) = κi sign(εris)|εris|βi

= ε
riβiκi sign(s)|s|βi

= ε
riβiσi(s)

for any ri > 0, every s∈Di, and all ε > 0 such that εris∈Di. Hence, for any (r1,r2,r3)∈R3
>0 such that r3 = r1β1 = r2β2 =α , one

sees on the one hand that, for every i ∈N2, σi(s) is locally ri-homogeneous of degree α , and σ3(s) is locally α-homogeneous
of degree α3 = αβ3, while it follows that

β3 =
2
β2
− 1

β1
> 0 >

1
β2
− 1

β1
⇐⇒ αβ3 =

2α

β2
− α

β1
> 0 >

α

β2
− α

β1

⇐⇒ α3 = 2r2− r1 > 0 > r2− r1

APPENDIX F
PROOF OF LEMMA 5

Let us define the continuously differentiable scalar function

V2(x1,x2) =
x2

2
2
+
∫ x1

0
σ2(k2s)ds

Under the consideration of items 1 and 2 of Lemma 2, one sees that V2(x1,x2) is a positive definite radially unbounded function.
Its derivative along the trajectories of system (11) is given by

V̇2(x1,x2) = x2ẋ2 +σ2(k2x1)ẋ1

=−x2σ2(k2x1)+σ2(k2x1) [x2−σ1(k1x1)]

=−σ1(k1x1)σ2(k2x1)

Since σ1 and σ2 are strictly passive, one sees that V̇2(x1,x2) ≤ 0, ∀(x1,x2) ∈ R2, with V̇2(x1,x2) = 0 ⇐⇒ x1 = 0. Further,
from the system dynamics in Eqs. (11), taking into account that σ1 and σ2 are strictly passive, one sees that x1(t) ≡ 0 =⇒(
ẋ1(t) ≡ 0

)
∧
(
σ1(k1x1(t)) ≡ 0

)
=⇒ x2(t) ≡ 0. Then, by the Invariance Theory [Michel et al.(2008), §7.2], one concludes

that (0,0) is a globally asymptotically stable equilibrium. Let us now additionally suppose that, for every i ∈ N2, σi(s) is
locally r0-homogeneous of degree αi, with domain of homogeneity Di = {s∈R : |s|< ρi ∈ (0,∞]}, for some (common) dilation
coefficient such that (12) is satisfied. Let x = (x1,x2)

T , D = {x∈R2 : |xi|< ρi,∀i∈N2}, r = (r0,α1), and f (x) =
(

f1(x), f2(x)
)T .

Observe that for every x ∈ D and all ε ∈ R>0 such that δ r
ε (x) ∈ D, we have that

f1(ε
rx1,ε

α1x2) = ε
α1x2−σ1(k1ε

rx1)

= ε
α1x2− ε

α1σ1(k1x1)

= ε
α1−r+r [x2−σ1(k1x1)]

= ε
(α1−r)+r f1(x1,x2)

and

f2(ε
rx1,ε

α1x2) =−σ2(k2ε
rx1)

=−ε
α2σ2(k2x1)

=−ε
2α1−r

σ2(k2x1)

= ε
(α1−r)+α1 f2(x1,x2)

Thus, f (x) is locally r-homogeneous —with domain of homogeneity D— of degree k =α1−r < 0, and consequently, according
to Theorem 1, (0,0) is globally finite-time stable.



A. ZAVALA-RÍO ET AL. 20

APPENDIX G
PROOF OF COROLLARY 2

Let us begin by noting that, for every i ∈ N2:

σi(ε
r0s) = κi sign(εr0s)|εr0 s|βi

= ε
r0βiκi sign(s)|s|βi

= ε
r0βiσi(s)

for any r0 > 0, every s ∈ Di, and all ε > 0 such that εr0s ∈ Di. Hence, for any r0 > 0, one sees that σi(s), i = 1,2, are locally
r0-homogeneous of degree αi = r0βi, whence one further corroborates that

β2 = 2β1−1 > 0 > β1−1 ⇐⇒ r0β2 = 2r0β1− r0 > 0 > r0β1− r0

⇐⇒ α2 = 2α1− r0 > 0 > α1− r0

APPENDIX H
FUNCTIONS INVOLVED IN THE SIMULATION TESTS

Let
σu(s;βu), sign(s)|s|βu

and

σb(s;βb,Lb,Mb),


sign(s)

L1−βb
b
βb
|s|βb ∀|s|< Lb

sign(s)
Lb

βb
+

(
Mb−

Lb

βb

)
tanh

(
s− sign(s)Lb

Mb−Lb/βb

)
∀|s| ≥ Lb

with Lb < βbMb. For both controllers, designed through the proposed methodology:

σ0(s) = M0 sat(s/M0)

σi j(s) = Mi j tanh(s/Mi j) ∀(i, j) ∈ N2×N2 \{(2,2)}

σ22(s) =

M−22 tanh(s/M−22) ∀s < 0

M+
22 tanh(s/M+

22) ∀s≥ 0

σ30(s) = M30 sat(s/M30)

σ31(s) = sign(s)min{|s|β31 ,M31}

σmn(s) = σu(s;βmn) ∀(m,n) ∈ {4,5,6}×{1,2}

For controller 1:
σ32(s) = σb(s;β32,L32,M32) and σ33(s) = σu(s;β33)

For controller 2:
σ32(s) = σu(s;β32) and σ33(s) = σb(s;β33,L33,M33)
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