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One of the most effective mechanisms to contain the spread of an infectious disease10

through a population is the implementation of quarantine policies. However, its effi-11

ciency is affected by different aspects, for example, the structure of the underlining12

social network where highly connected individuals as the more likely to become in-13

fected, therefore the speed of the transmission of the decease is directly determine by14

degree distribution of the network. Another, aspect that influences the effectiveness15

of the quarantine is the self-protection processes of the individuals in the popula-16

tion, that is, they try to avoid contact with potentially infected individuals. In this17

paper we investigate the efficiency of quarantine and self-protection processes in pre-18

venting the spreading of infectious diseases over complex networks with a power-law19

degree distribution (P (k) ∼ k−ν) for different ν values. We propose two alternative20

scale-free models that result in power-law degree distributions above and below the21

exponent ν = 3 associated with the conventional Barabási-Albert model. Our results22

show that the exponent ν determines the effectiveness of these policies on controlling23

the spreading process. More precisely, we show that for ν exponent below three, the24

quarantine mechanism loses effectiveness. However, the efficiency is improved if the25

quarantine is jointly implemented with a self-protection process driving the number26

of infected individual significantly lower.27
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Infectious diseases are by far one of the leading causes of death worldwide.29

In this sense, one of the most effective mechanisms to contain the spread of an30

infectious disease in a population is the implementation of quarantine policies.31

However, other aspects must be considered, for example, degree distribution of32

the underlining social network points towards the most connected individuals as33

the more likely to become infected and determine the speed of the transmission34

of the decease. Additionally, self-protection processes influence the individuals35

in the population resulting on alterations in their behavior, in particular they try36

to avoid contact with potentially infected individuals. In this paper, we inves-37

tigates the efficiency of quarantine and self-protection processes as controllers38

of the spreading of infections in power-law networks with degree distribution39

below and above the exponent of the classic Barabási-Albert model. Our results40

show that the efficiency of these control processes does depend directly on the41

exponent of the degree distribution with the quarantine being less effective in42

controlling the infection on networks with low degree distributions exponents.43

However, the inclusion of the self-protection process compensates this effect and44

further increases the effectiveness of the control process. These results imply45

that a good strategy to avoid the emergence of epidemics is the awareness of the46

population of its presence through social communication programs to activate a47

self-protection process along with the quarantine protocol.48

I. INTRODUCTION49

In recent years, evolutionary dynamics in complex networks have attracted the attention50

of researchers of different areas. In particular, with regards to their effect on the resulting51

dynamical features of their collective behaviors, such as synchronization or consensus1–3. In52

this sense, epidemic spreading can be modeled as a process occurring on top of a contact53

network with a given structure, be it fixed, time-varying, having stochastic or even multi-54

network features4–7. As such, major contributions have been made in the mathematical55

description of how a computer virus spreads in a network of computers, or how a rumor56

becomes entrenched within a social network; which in turn have impacted the way we model57

the spread of diseases in our population8,10. Moreover, the use of mathematical models better58
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informs the determination of the control measures that need to be taken to stop a disease59

from spreading. A considerable number of epidemic models have been proposed, the majority60

of them use the concept of population compartments11. That is, the population is partition61

into different compartments accordingly to health status4,12, for example: Susceptible (S,62

the group of individual that can contract the disease), Exposed (E, made of individuals63

that have been infected but are not infectious, that is, they are in a latent period of the64

disease), Infected (I, individuals that can infect susceptible individuals), and Removed (R,65

the part of the population that have recovered from the disease and can not become infected66

again or individuals that have died). The mathematical models describe the evolution67

of the concentrations of these compartments usually under the assumption of a fixed size68

population. Additionally, in several epidemic models the use of control mechanisms to69

contain the spread of a disease is considered. In this sense, the effect of using a vaccination70

or a quarantine scheme on the evolution of the disease can be evaluated in terms of the71

number of infected individuals after the infection process has run its course.72

Classical epidemic models consider that the population is totally homogeneous11–13. In73

other words, all individuals have the same probability of contracting the disease, recover from74

it, or die. As such a constant average rate of infection and recovery can be use for the entire75

population. However, in a real scenario individuals who interact with a greater number of76

individuals are more likely to contract a disease than individuals that are relatively isolated77

from their neighbors. In short, the distribution of connection within a population has a78

great influence in the spreading process of a disease. For this reason, it is important to take79

into account the degree of interaction of each individual in determining its probability of80

contracting a disease. One way to incorporate the complex topology of social networks in81

epidemic models is to consider its degree distribution, that is, the number of connections of82

each node has. Recent investigation have confirm that the degree distribution of a social83

network is well described by a power-law P (k) ∼ k−ν . Therefore, its characteristics can be84

use to establish the probability of infection for each node in the network. This allows to take85

into account the existence of a few “hub” individuals that concentrate a greater number and86

therefore are the main contributors of the spreading of the disease, while the contribution to87

the spread of the majority of the individuals with a relatively low number of connections is88

less significant. In this context, a particularly interesting investigation was reported by Liu89

and Zhang17, where in order to investigate the influence of heterogeneity of the network on90
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the epidemic spreading of a disease, the underlining social network was modeled as a scale-91

free network generated with the Barabási-Albert (BA) model16. That is, the underlining92

social network was modeled as a non-directed network with degree distribution that follows a93

power-law P (k) ∼ k−ν with a fixed exponent ν = 3. In the work by Li et al.15 the quarantine94

control mechanism was also considered in the epidemic model, the proposed model was called95

SIQRS, to indicate the different compartments of the population, with Q referring to the96

infected individuals placed in quarantine. The effectiveness of the quarantine strategy in97

stopping the spread of the disease was measured by the authors in terms of the density of98

infected nodes in steady state (I∞), they showed that I∞ decreases as the quarantine rate99

increases. However, the effect that different exponents ν have on the density of infected100

nodes in steady state I∞ was not investigated. As the exponent of the degree distribution101

gives a clear indication of the formation of hub nodes in the network and these are the102

individuals that promote the spreading of the disease, it stands to reason that the degree103

distribution exponent is also a determining factor in the efficiency of the quarantine policy104

in stopping epidemic spreading. Another assumption in15, is that only infected individuals105

can be quarantined. However, in a real scenario individuals tend to protect themselves by106

temporally avoiding contacts with infected individuals that is, individuals can quarantine107

themselves (self-quarantine process) or in other situations, the individuals can permanently108

disconnect from their infected neighbors (deleting-infected-links process).109

In order to investigate the quarantine and self-protection processes effectiveness in stop-110

ping the epidemic spreading, in this paper we investigate the steady state solutions of the111

SIQRS model over complex networks with different ν values. Considering three cases. In112

the first, we define quarantine as the only control action. In the second, we implement113

the quarantine jointly with a self-quarantine process. Finally, the quarantine in joint with114

deleting-infected-links process is implemented. Our results show that as the ν exponent115

decreases, the density of infected individuals in steady state increases for all the cases. In116

other words, the control mechanisms lose effectiveness as the ν exponent decreases. This is117

particularly significant when one consider that social networks do not have a fixed power118

law distribution exponent, and it definitely is not exactly equal to three18. However the best119

results are obtained when both a quarantine and a self-protection processes are implemented.120

As mentioned above, in recent years, several works about the spread of diseases in complex121

networks have been published. For example, in19, Shang et.al. study the effect of changes122
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on the network structure in the spread of disease using the well known SIS model. In123

particular, they study the effect of the community structure over the spread. They found124

that, epidemics spread faster on networks with higher level of overlapping communities and125

degree distributions with power law exponents equals to two and three. In5–7 the SIS model126

was also considered, but analyzing the effect of the awareness diffusion in the network, and127

they found that the awareness diffusion plays an important role in the epidemic transmission.128

In these published works, the numerical experiments are based in complex networks with a129

fixed power-law exponent equal to 2.5. In this paper, we consider that the topology is fixed130

during the spread and the awareness is adopted by the individuals that can be in contact131

with the infected. Another important difference is that we analyze the effect of different132

power-law exponents in the spreading dynamics of the disease. To his end, in the following133

Section two alternative versions of the BA model are presented which will be the basis for134

our investigation on the efficiency of quarantine and self-protection as control processes of135

the spreading dynamics136

The remainder of this paper is organized as follows. An alternative scale-free network137

model where the degree distribution exponent can be assign to be larger or smaller that138

three are described in Section II. While the SIQRS epidemic model along with the analysis139

of the effect of the underlining degree distribution is presented in Section III. Our results140

and numerical simulations are shown in Section IV. Finally, our results and conclusions are141

discussed in Section V.142

II. PROPOSED NETWORK MODELS WITH A PRESCRIBED DEGREE143

DISTRIBUTION144

In order to investigate the efficiency of the quarantine policy to contain the spread of145

disease on scale free networks, we propose two network models with power law degree dis-146

tributions where the exponents is in the range 1 < ν < 6. These models are described147

bellow:148

A. Model I. Network with an exponent less than three149

In a similar way as the classical BA model, our proposed model consists of two steps:150
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1. Growth: Starting from a set of three fully connected nodes at each subsequent time151

step one node is added, and152

2. Preferential attachment: In our model the links between the new node and those153

already existing in the network are added according to the following rules:154

a. With probability p the new node nnew is connected with m = 3 links, and with155

the complementary probability 1 − p the number of links of the new node nnew156

is taken to be the node degree of a randomly selected node in the network;157

b. The number of links determine in the previous step connect nnew node to different158

nodes already existing in the network with a probability given by159

Π(ni) =
ki∑
j kj

, (1)160

where ki is the degree of the node ni and Π(ni) describes the probability that161

node ni gets a new link.162

It is work noting that (1) is similar to the attachment probability proposed in the original163

BA model16. However, by changing the number of connections our proposed model produces164

networks with degree distribution that follows a power-law with an exponent ν ≤ 3.165
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FIG. 1. Growth (from t0 to t3) of a network using the Model I. In the Figure the circles represent167

nodes of the network, the solid lines links and filled circles nodes that have been randomly selected168

to copy their degree for the new node.169
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The growth process of a network using the proposed Model 1 is shown in Figure 1. In170

the first time step t0, the network consists of three nodes n0, n1 and n2. In the next time171

step t1, the node n3 is added to the network lets assumed that it copies the degree from the172

node n0 which is selected randomly. Then, node n3 is connected randomly to m = 2 of the173

existing nodes in the network with probability 1. In the figure it is assumed that the node174

n3 connects to nodes n0 and n2. In time step t2, the node n4 is added to the network and175

in this case se assume that m = 3, then is connected randomly to the nodes n0, n1 and n3.176

In t3, the node n5 is added to the network and it is assumed that it copies the degree from177

the node n4 and connects to the nodes n1, n3 and n4. This process is continued for all the178

following time steps until the number of nodes in the network is sufficiently large and the179

structural properties of the network become fixed.180

I order to get the behavior of the mean degree k̄ as the network growth in the proposed181

model, we propose the following differential equation,182

dk̄(N)

dN
= p

2m− k̄
N

+ (1− p)p2k̄ − k̄
N

. (2)183

with the initial condition k̄(3) = 2, which describes the initial network of three nodes fully184

connected; one gets,185

k̄(N) = 2mp[
1

2p− 1
− p+ 1

(2p− 1)p32(1−p)N
1−2p]. (3)186

In Figure 2 we show the degree distribution P (k) and the average degree 〈k〉 obtained from187

two different realizations of Model I. For each one, the network was growth to N = 10000188

nodes. In the first realization the probability of having m = 3 links for each new node is set189

at p = 0.3, for the second realization the probability was p = 0.7. As shown in Figures 2a190

and 2b, the degree distribution of the generated network follows a power law with exponents191

ν ∼ 1.4 for p = 0.3 and ν ∼ 2.3 for p = 0.7. It is also important to mention that for p = 0.3192

the average degree grows more rapidly than for p = 0.7 (see Figures 2c and 2d), this indicates193

that as the value of p decreases the network becomes to be more densely connected.194

B. Model II: Network with an exponent larger than three195

As before the network model consist of two steps. The network growths one node each196

time step beginning with three fully connected nodes. However, in this model each new197
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FIG. 2. a) Degree distribution and c) Average degree. Both measured at different sizes of the

generated network using Model I with p = 0.3. b) Degree distribution and d) Average degree.

Measured at different sizes of the generated network using Model I with p = 0.7.

node is born with the maximum number of links possible m = 3 and with an attractiveness198

factor A ≥ 0, which is equal for all the nodes in the network. In the second step, the links of199

each new node are connected to different nodes already in the network using the attachment200

probability given by201

Π(ni) =
ki + A

Σj(kj + A)
, (4)202

where ki is the degree of a node ni and A is the initial attractiveness of the nodes in the203

network. Due to the addition of links is constant at each time step, the last equation can204

be written as:205
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Π(ni) =
ki + A

(2m+ A)N
. (5)206

This version of the scale-free model is inspired by the model proposed by Dorogovtsev207

and Mendez20, using the attractiveness factor A the resulting scale-free network can be make208

to have a degree distribution exponent ν ≥ 3. In order to obtain the analytical solution for209

P (k) in this model, it is necessary to know the number Qi of nodes with i links with respect210

to the total number N of nodes in the network, that is,211

P (k) =
Qi(N)

N
(6)212
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FIG. 3. Growth of a network using the Model II from t0 to t4. In the Figure the circles represent214

to the nodes of the network and the solid lines to the links. It also shows the probability Π for215

each node.216

To get an expression forQi(N), the continuum method21 was employed using the following217

differential equation:218

dQi(N)

dN
=m

g1︷ ︸︸ ︷
(i− 1 + A)Qi−1(N)

(2m+ A)N
219

−m

g2︷ ︸︸ ︷
(i− 1)

(i+ A)Qi(N)

(2m+ A)N
+

g3︷︸︸︷
δi,m .220

(7)221
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The variation of the number Qi of nodes with i links with respect to the number N222

of nodes in the network is described by (7). The term g1 represents how the number of223

nodes with i links increases and the term g2 describes how the number of nodes with i links224

decreases. Finally, the term g3 models the effect of adding a new node with m links.225

In order to obtain Qi(N), Eq. 7 is solved for i = m, i = m + 1, and so on. For i = m,226

(7) takes the form,227

dQm(N)

dN
= − m(m+ A)

(2m+ A)N
Qm + 1. (8)228

Solving (8), we obtain229

Qm(N) =
2m+ A

m(m+ A) + (2m+ A)
N. (9)230

For the following i value produces:231

Qm+1 ≈232

m(m+ A)(2m+ A)

[m(m+ A) + (2m+ A)][m(m+ 1 + A) + (2m+ A)]
N233

Qm+2(N) ≈234

m(m+ A)m(m+ 1 + A)(2m+ A)

[m(m+ A) + (2m+ A)][m(m+ 1 + A) + (2m+ A)]
235

1

[m(m+ 2 + A) + (2m+ A)]
N,236

(10)237

with the last results we can deduce,238

Qi(N) ≈(2m+ A)

i−1∏
x=m

[m(x+ A)]N

i∏
x=m

[m(x+ A) + 2m+ A]

239

≈
(2m+ A)Γ(2 + A+ A

m
+m)N

mΓ(m+ A)
(i+ A)−(3+

A
m
).240

(11)241

Then, the degree distribution P (k) obtained with the proposed model has the form

P (k) ∼ i−(3+
A
m
)
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decaying as a power law with exponent ν ≥ 3. Another important characteristic of a growth242

model is to know the mean degree k̄ as the network growth. For the model, k̄ can be obtained243

solving the following differential equation,244

dk̄(N)

dN
=

2m− k̄
N

. (12)245

with the initial condition k̄(3) = 2 that describes the initial network consisting of three246

nodes fully connected. Which yields,247

k̄(N) = 2m+
3(2− 2m)

N
. (13)248

Figure 3 shows the growth of a network with the Model II. As can be seen, in the first time249
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FIG. 4. a) Degree distribution and c) Average degree measured at different sizes of the generated251

network using Model II with A = 0. b) Degree distribution and d) Average degree measured at252

different sizes of the generated network using Model II with A = 6.253
254

255

step t0, the network consists of three nodes n0, n1 and n2. In the next time step t1, the256
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node n3 is added to the network and the probabilities from nodes in the network to get a257

new link from n3 are showed in t′1, in this case all nodes have the same probability and it258

is assumed that n3 connects to all (t′′). A similar process occur in t2 and t3. However, in259

t′4 it is possible to see that difference in the probabilities of nodes n0 to n5 depend of the A260

value. That is, as the value of A becomes to be greater the probabilities for the nodes tends261

to be more uniform and as the network grows the emergence of hub nodes is less frequent.262

In Figure 4 are showed the degree distribution P (k) and the average degree k̄ obtained263

from two different realization of the model. Each realization of the network was grown to264

N = 10000 nodes for the first realization A = 0, while for the second the attractiveness value265

was set to A = 6. As shown in Figures 4a and 4b, the degree distribution of the generated266

network follows a power law with exponent ν ∼ 3 for A = 0 and ν ∼ 5 for A = 6. Also, it267

is important to mention that the average degree has the same behavior in both cases (see268

Figs. 4c and 4d), that is 〈k〉 ∼ 6 as N � 1 in both cases.269

III. QUARANTINE AND SELF-PROTECTION PROCESSES270

In this section we investigate the quarantine and self-protection processes efficiency to271

stop the epidemic spreading in networks with the structure given by Models I and II. We272

study three cases:273

A. Quarantine as the only control action274

In order to contain the spread of infectious diseases, one of the most effective control275

actions is the quarantine policy, that consists in isolate several infected individuals to im-276

paired the contagion process and reduce the emergence of new infected individuals. In this277

section is considered an epidemic model that implements the quarantine as a control action.278

In particular, we focus in a SIQRS model and analyze its efficiency in scale-free networks279

with different degree distributions. In the model, it is assumed that the network consist280

in N nodes and each node of the network can only exist in one of the four discrete states,281

namely, susceptible, infected, quarantined or removed, and the infection spreads over the282

links of the network. Another assumption is that the population is fixed, that is, births and283
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deaths of nodes are not considered, and thus284

S(t) + I(t) +Q(t) +R(t) = 1, (14)285

where S(t) describes the density of susceptible nodes, I(t) the density of infected nodes,286

Q(t) the density of quarantine nodes, and R(t) the density of recovered nodes at time t,287

respectively.288

289

FIG. 5. Flow diagram of the SIQRS epidemic model.

In Figure 5 the flow diagram of the SIQRS epidemic model is described and the transitions290

between the different states are explained bellow:291

S → I : A susceptible node is infected with probability βkθ. In which β is the292

infective probability of the disease, k is the degree of the node and θ is the293

fraction of links over which the infection can spread. In other words, the294

fraction of links pointing to infected nodes. As such, a node is more likely295

to contract the disease as its node degree is larger.296

S → R: Susceptible nodes become recovered (removed) with probability α. In this297

model we considered that several susceptible nodes have temporary immu-298

nity, ether because of vaccination or natural immunity, in either case, the299

immunity is only temporary.300

I → Q: To contain the spreading of the infection, infected nodes are quarantined301

with probability σ.302
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I → R: Infected nodes recover spontaneously with probability γ.303

Q → R: As a result of antiviral treatment or other mechanisms some of the quar-304

antine nodes become recovered with probability ε and this gives them a305

temporary immunity.306

R → S: With probability δ, nodes in the recovered state lose their temporary im-307

munity and become again susceptible nodes.308

In analyzing the dynamics of the epidemic model we consider that the probability for309

a node to become infected depends directly on its node degree. Additionally, since the310

network connectivity is heterogeneous the presence of nodes with different degrees needs311

to be taken into consideration. As such, it is convenient to assume that the population is312

organized in classes. In particular, we will consider that within each class all nodes have the313

same node degree k, with k ∈ [m : kmax] where kmax is the highest node degree value for314

the entire network. Also, within each class, the nodes can be in only one of four different315

compartments, Sk(t), Ik(t), Qk(t) and Rk(t) which represent the densities of susceptible,316

infected, quarantined and removed nodes with degree k at time t, respectively. Furthermore317

the density of susceptible, infected, quarantined and recovered nodes in the entire network318

is defined as:319

S(t) =
∑

k Sk(t)P (k), I(t) =
∑

k Ik(t)P (k),

Q(t) =
∑

kQk(t)P (k), R(t) =
∑

k Rk(t)P (k).

Under the assumptions described above, the mean-field reaction rate dynamical equations320

for class k, can be written as:321

dSk(t)
dt

= −βkSk(t)θ(t)− αSk(t) + δRk(t)

dIk(t)
dt

= βkSk(t)θ(t)− γIk(t)− σIk(t)
dQk(t)
dt

= σIk(t)− εQk(t)

dRk(t)
dt

= γIk(t) + εQk(t) + αSk(t)− δRk(t)

(15)322

where the fraction θ(t) of links pointing to infected nodes is given by323

θ(t) =
ΣkkP (k)Ik(t)

ΣsP (s)
=

1

k̄
ΣkkP (k)Ik(t). (16)324

in which P (k) is the degree distribution and k̄ is the average degree within the network and325

denotes the normalization factor.326
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In order to get the equilibrium solution in steady state, E+(S∞k , I
∞
k , Q

∞
k , R

∞
k ), is needed327

make the right side of equation (7) equals to zero,328

−βkS∞k θ∞ − αS∞k + δR∞k = 0

βkS∞k θ
∞ − γI∞k − σI∞k = 0

σI∞k − εQ∞k = 0

γI∞k + εQ∞k + αS∞k − δR∞k = 0

(17)329

with,330

θ∞ =
ΣkkP (k)I∞k

k̄
. (18)331

Solving for S∞k , Q∞k and R∞k we obtain,332

S∞k =
γ + σ

βkθ∞
I∞k333

Q∞k =
σ

ε
I∞k334

R∞k =
βkθ∞ + α

δ
S∞k335

=
(βkθ∞ + α)(γ + σ)

δβkθ∞
I∞k . (19)336

337

Taking into account the normalization condition338

S∞k + I∞k +Q∞k +R∞k = 1, (20)339

and substituting equation (19) in equation (20), we obtain for I∞k340

I∞k

[
γ + σ

βkθ∞
+
σ

ε
+

(βkθ∞ + α)(γ + σ)

δβkθ∞ + 1

]
= 1, (21)341

I∞k =
δβkθ∞

βkθ∞
[
δ(1 + σ

ε
) + (γ + σ)

]
+ (γ + σ)(δ + α)

. (22)342

Then, inserting equation (22) in equation (18), one gets343

θ∞ =
1

k̄

∑
k

δβk2P (k)θ∞

βkθ∞
[
δ(1 + σ

ε
) + (γ + σ)

]
+ (γ + σ)(δ + α)

344

,f(θ∞). (23)345
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Obviously, the last equation has a trivial solution θ∞ = 0. To ensure that equation (23)

has a non trivial solution, that is 0 < θ∞ ≤ 1. The following conditions must be both

satisfied [
df(θ∞)

dθ∞

]
θ∞=0

> 1, f(1) ≤ 1,

so, we have
δβ

(α + δ)(γ + σ)

k̄2

k̄
> 1

We can obtain the epidemic threshold βc using the last equation as,

δβ

(α + δ)(γ + σ)

k̄2

k̄
> 1,

β > (1 +
α

δ
)(γ + σ)

k̄

k̄2︸ ︷︷ ︸
βc

.

as it can be seen, the epidemic threshold βc depends on the fluctuations in the degree346

distribution and mean degree of the network. And, if β < βc the epidemic disappears, in347

otherwise an epidemic outbreak occurs.348

B. Quarantine jointly with self-quarantine process349

In the epidemic model described before, is considered that only infected individuals can be350

quarantined. However, in a real scenario individuals tend to protect themselves by avoiding351

contacts with infected individuals temporally, we call this process self-quarantine. In this352

sense, the flow diagram of the SIQRS model is shown in Fig. 6, where η describes the353

probability that a susceptible individual is quarantined. Then, the mean-field reaction rate354

dynamical equations for class k (Eq. 15), takes the form:355

dSk(t)
dt

= −βkSk(t)θ(t)− (α + η)Sk(t) + δRk(t)

dIk(t)
dt

= βkSk(t)θ(t)− γIk(t)− σIk(t)
dQk(t)
dt

= σIk(t)− εQk(t)

dRk(t)
dt

= γIk(t) + εQk(t) + (α + η)Sk(t)− δRk(t)

, (24)356

the density I∞k and the epidemic threshold, take the form:357

I∞k =
δβkθ∞

βkθ∞
[
δ(1 + σ

ε
) + (γ + σ)

]
+ (γ + σ)(δ + (α + η))

. (25)358
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β > (1 +
(α + η)

δ
)(γ + σ)

k̄

k̄2︸ ︷︷ ︸
βc

,

respectively.359

360

FIG. 6. Flow diagram of the SIQRS epidemic model including the self-quarantine process.

C. Quarantine in joint with deleting-infected-links process361

Another process present in a real scenario is that several susceptible individuals can dis-362

connect permanently of its neighbor infected individuals. In order to investigate the impact363

of this process, we include the probability ψ that one susceptible individual disconnects from364

its neighbor infected individuals. In this case, the flow diagram is the same of Fig. 6, but365

due to the fluctuation of the degree in the network, the θ probability also depends on ψ.366

IV. NUMERICAL RESULTS367

In order to investigate the effect of network topology on the steady state behavior of the368

proposed SIQRS epidemic models we chose the parameter set α = 0.1, δ = 0.4, γ = 0.5,369

and ε = 0.6 and let the influence of the node degree and the probability of quarantine vary370

between σ = 0, 0.2, 0.4 and β = 0.01, 0.02, ..., 0.5, respectively. As a point of comparison,371
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we first investigate the case with the quarantine as the only control process and using a372

scale-free network with degree distribution following a power-law exponent ν = 3. That is,373

the underlining network is a realization of the classical BA model. The simulations were for374

networks of 10000 nodes with m = 3 and three values for σ = 0, 0.2 and 0.4. The dynamics375

of the spreading process were started with an initial infection of I0 = 100 nodes, the infected376

nodes were selected randomly. It is important to mention that, each simulation was repeated377

1000 times and averaged the results obtained are presented in Figure 7.378
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379

FIG. 7. a) Degree distribution of the network. b) Relation between I∞ and β with σ = 0, 0.2 and380

0.4. c) Comparison between numerical simulations and the analytical solution given by equation381

(31).382
383

384

In particular, Figure 7a) shows the degree distribution of the network considered in the385

simulations, as can be seen the degree distribution P (k) ∼ k−3 as expected for a realization386

of the BA model. Figure 7b) shows the relation between I∞ and β for three different values387

of σ = 0, 0.2 and 0.4. As it can be seen, as the quarantine rate σ increases, the density of388

infected nodes decreases for all values of β.389

In order to validate the results indicated by the numerical simulations, an analytical390

solution is derived for I∞ =
∑

k I
∞
k (t)P (k) using equations (22), (23) and the values of391

the degree distribution P (k) and the average degree k̄ of the network. For the networks392
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generated using the BA model16 we have:393

P (k) ∼ 2m2k−3, k̄ =

∫ ∞
m

kP (k) = 2m. (26)394

Substituting equation (26) in equation (23) we get,395

θ∞ = mθ∞396 ∑
k

δβ

k
[
βkθ∞

[
δ(1 + σ

ε
) + (γ + σ)

]
+ (γ + σ)(δ + α)

] .397

(27)398

Integrating over all k values, results in399

1

m
= βδ lim

b→∞
400 ∫ b

m

1

k
[
βkθ∞

[
δ(1 + σ

ε
) + (γ + σ)

]
+ (γ + σ)(δ + α)

]dk,401

(28)402

and solving for θ∞, we obtain403

θ∞ =
(γ + σ)(δ + α)

mβ
[
δ(1 + σ

ε
) + (γ + σ)

] [
e

(γ+σ)(δ+α)
mβδ − 1

] . (29)404

Using equation (29) and (22) and integrating for all k values, we obtain for I∞ as,405

I∞ =
2m2βδ

δ(1 + σ
ε
) + (γ + σ)

406

lim
b→∞

∫ b

m

dk

k2
[
k +m

(
e

(γ+σ)(δ+α)
mβδ − 1

)]dk,407

(30)408

I∞ =
2
[
mβδ

(
e

(γ+σ)(δ+α)
mβδ − 1

)
− (γ + σ)(δ + α)

]
mβ

(
e

(γ+σ)(δ+α)
mβδ − 1

)2 [
δ(1 + σ

ε
) + (γ + σ)

] (31)409

Figure 7c) shows that the analytical predictions 31 and the numerical simulations fit appro-410

priately.411
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With the aim of analyze the effect of the network topology on the quarantine efficiency,412

we repeat the previous simulations but using scale-free networks with power-law exponents413

ν = 1.4, 2.3 and 5. For the growth of these networks, we use the Model I with p = 0.3 and414

p = 0.7 and the Model II with A = 6 respectively.415
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416

FIG. 8. Comparison of the densities I∞ retrieved from the simulations for different values of β, σ417

and ν.418

In Figure 8 are shown the results of the simulations described above. In 8a and 8b are419

showed the degree distribution of the network with ν ∼ 1.4 and the relation between I∞420

and β obtained from the SIQRS model over this network. Similarly, in Figs. 8c and 8d for421

the network with ν ∼ 2.3, Figs. 8e and 8f for the network with ν ∼ 3 and Figs. 8g and 8h422

for the network with ν ∼ 5.423

As it can be seen in Figs. 8b, 8d, 8f and 8h, as the exponent ν decreases, the density424

I∞ increases significantly for all the σ values. In contrary, for ν = 3 and ν = 5, the density425

I∞ have a similar behavior as β increases. Another interesting phenomenon is that, for426
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FIG. 9. Comparison of the densities I∞ retrieved from the simulations for different values of β, σ,

ν and η.

ν = 5, I∞ starts to grow later that for ν = 3. A possible cause for this behavior is that,427

as the exponent ν increases, the quantity of nodes hardly connected decreases and as a428

consequence, the emergence of super spreader nodes is less likely for β ≈ 0.429

In order to investigate the efficiency of quarantine in joint with the self-quarantine process430

we reproduce the numerical simulations of the Fig. 8 including the self-quarantine process431

with η = 0, 0.1, 0.2. The results of the numerical simulations are showed in Figure 9. In432433434

Figure 9a, 9b and 9c is showed the I∞ obtained using the complex network with power-law435

exponent ν ∼ 1.4 defining σ = 0, 0.2 and 0.4 respectively, and with η = 0, 0.1, 0.2. Similarly436

for ν ∼ 2.3 in Figs. 9d, 9e, 9f, for ν ∼ 3 in Figs. 9g, 9h, 9i and for ν ∼ 5 in Figs. 9j,437

9k, 9l. As can be seen, in all the cases the density of infected individuals decreases as the438
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FIG. 10. Comparison of the densities I∞ retrieved from the simulations for different values of β, σ,

ν and ψ.

η probability increases. However, the best efficiency in the contain the spread is obtained439

when the self-quarantine process and the quarantine as a global process are implemented in440

joint. Finally, to investigate the efficiency of quarantine in joint with the deleting-infected-441

links process we reproduce the numerical simulations of the Fig. 8 including the probability442

ψ = 0, 0.1, 0.2 in the spreading process. The results of the numerical simulations are showed443

in Figure 10. In Figure 10a, 10b and 10c is showed the I∞ obtained using the complex444

network with power-law exponent ν ∼ 1.4 defining σ = 0, 0.2 and 0.4 respectively, and with445

ψ = 0, 0.1, 0.2. Similarly for ν ∼ 2.3 in Figs. 10d, 10e, 10f, for ν ∼ 3 in Figs. 10g, 10h,446

10i and for ν ∼ 5 in Figs. 10j, 10k, 10l. As can be seen, in all the cases the density of447

infected individuals decreases as the ψ probability increases. However, the best efficiency in448

the contain the spread is obtained when the deleting-infected-links and the quarantine as a449
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FIG. 11. Relation between the density I∞ and the power-law exponent ν for β = 0.3, and different

values for σ, η and ψ.

global processes are implemented together. The previous results indicate that quarantine is450451

an effective measure to contain the spread of a disease, however its effectiveness increases if it452

is combined with the implementation of some self-protection process by the individuals of the453

population. Figure 11 shows a clearer view of this conclusion. That is, in Fig. 11 is showed454

the relation between the density I∞ and the power-law exponent ν of the degree distribution455

in the network. From the figure, it is possible to see that the worst efficiency (solid triangles)456

is obtained when the quarantine is defined as the only control action. However, when it is457

combined with self-protection processes as the self-quarantine (solid squares) and deleting-458

infected-links (solid circles) processes the best efficiency is obtained.459
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V. CONCLUDING REMARKS460

In summary, in this paper we have investigated the efficiency of the quarantine policy461

in networks with different topologies. More precisely, we have proposed a SIQRS epidemic462

model and we measured the density of infected individuals in steady state generated with463

that model in networks with degree distribution following a power-law P (k) ∼ k−ν with464

different ν values. We found that the efficiency of the SIQRS model is strongly related465

with the ν value. More exactly, we found that as the exponent ν decreases lower three, the466

efficiency of the quarantine decreases. Also, in this paper we investigated the efficiency of467

the quarantine in joint with self-protection processes and we found that the addition of self-468

protection process improves the efficiency in containing the spread of the decease. That is,469

the density of infected individuals in steady state considerably reduces. This result implies470

that the awareness of the population through social health programs can be a good strategy471

to reduce the number of infected individuals during the spread of a disease.472
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