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Resumen 

La luz en la biología como una herramienta de medición y como un estímulo 

medioambiental 

Tanto en los organismos como en la biología las interacciones de la luz con la 

materia tienen varias consecuencias. Para los organismos, una de las 

consecuencias ha sido el desarrollo de proteínas fotorreceptoras, con las cuales 

los organismos pueden adaptase mejor a las condiciones impuestas por la 

radiación solar. Por otro lado, la biología actual se beneficia de las interacciones 

luz-materia por medio de técnicas ópticas como la microscopía, la espectroscopia 

y los ensayos de fluorescencia entre muchos otros. En este trabajo se presentan 

dos técnicas ópticas para el estudio de procesos biológicos y se describe un 

nuevo efecto de la luz azul sobre el fotorreceptor VIVID (VVD). Primero, se 

presenta un método para potenciar la microscopía de campo claro por medio del 

procesamiento digital de imágenes, el cual permite visualizar objetos de fase con 

suficiente contraste tal que, por primera vez, fue posible adquirir la función de 

dispersión de punto para objetos de fase (FDPf) y se mostró que es posible aplicar 

algoritmos de deconvolución estándar para mejorar la calidad de las imágenes de 

células no teñidas. En segundo lugar, se construyó un sistema de pinzas ópticas 

para el estudio de moléculas individuales. El correcto funcionamiento de nuestro 

sistema de pinzas ópticas fue validado por medio de dos ensayos estándar: se 

midieron las propiedades elásticas de una cadena de ADN y se midió la fuerza 

máxima ejercida y el tamaño de paso del motor molecular cinesina. En tercer 

lugar, se trabajó con la flavoproteína fotorreceptora de luz azul VVD, la cual 

pertenece al hongo filamentoso Neurospora crassa. Se mostró que en condiciones 

in vitro VVD presenta agregación al ser oxidada por especies reactivas de oxígeno 

producidas por la misma proteína. Encontramos que la sensibilidad de VVD a la 

luz, el oxígeno y la temperatura regulan la cinética de agregación de la proteína. 

Con base en nuestras observaciones dilucidamos la ruta de agregación de VVD y 

proponemos que su agregación podría tener efectos en el hongo N. crassa. 

PALABRAS CLAVE: Microscopía de campo claro | Función de dispersión de 

punto | Molécula única | fotorreceptores|  
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Abstract 

Light in biology as a measuring tool and as an environmental cue 

For organisms as for biology the light-matter interactions have several 

consequences. For organisms, one of these consequences has been the 

development of proteins specialized in light detection which provide organisms with 

a better fit to sunlight cues. On the other hand, current biology exploits the light-

matter interactions through optical techniques such as microscopy, spectroscopy, 

and fluorescence assays among many others. Herein two optical techniques to 

study biological processes and a new effect of blue light over the photoreceptor 

protein VIVID (VVD) are presented. First, the power of bright field light microscopy 

was enhanced by digital image processing, which allows us to visualize sub-

diffraction phase objects with enough contrast to acquire, for the first time, the 

phase point-spread function (PSFP) of a bright field light microscope. As a proof of 

concept, we used the measured PSFP to apply conventional deconvolution to 

bright field  images, increasing image contrast and the definition of boundaries in 

unstained cellular samples. Second, an optical tweezers apparatus for single-

molecule studies was built and tested by performing two standard single-molecule 

assays: stretching single dsDNA molecules, and measuring the step size and 

maximum sustainable load for the molecular motor kinesin. Third, the flavin-binding 

blue-light (BL) photoreceptor VIVID from the filamentous fungus Neurospora 

crassa was shown to present an in vitro aggregation mechanism triggered by a 

self-produced reactive oxygen species (ROS). We found that VIVID (VVD) is 

sensitive to light, oxygen and temperature and these factors modulate the 

aggregation of the protein. Based on our observations we elucidate an aggregation 

pathway for VVD and propose aggregation as a possible mechanism to regulate 

diverse processes in N. crassa.  

 

Keywords: Bright field microscopy | Point spread function | Single molecule | 

photoreceptors| 
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Chapter 1. Introduction 

How to define what is alive? Clearly, it is an important question. However, to set a 

precise definition is a tricky task. In the best of cases a list of characteristic traits 

common to all organisms has been proposed. These seven traits are: organization, 

metabolism, homeostasis, sensitivity, growth, reproduction, and evolution1 with the 

condition that all these traits must be present to consider the system to be alive. 

This list helps to establish a border that separates the living from the non-living. 

However, this is not a satisfactory definition, since examples of obviously living 

organisms escape from the rule (such as mules, lacking the reproduction trait). 

Daniel Koshland proposes a set of seven traits that include the previously 

mentioned traits but provides a more open definition of what means being alive. 

These seven traits are: program, improvisation, compartmentalization, energy, 

regeneration, adaptability, and seclusion2. Surprisingly, all the traits described are 

sustained at the molecular level by only four kinds of macromolecules: lipids, 

carbohydrates, proteins and nucleic acids. So we can say that if something is 

formed by these four molecules of life and presents the enlisted common traits, 

then that entity has a good probability of being alive. 

Molecular biology, biochemistry and biophysics are endeavored to provide a 

bottom-top approach to understand living beings, and have been focused in 

explaining processes involving the four macromolecules of life. Accordingly, a 

proper set of experimental tools and measuring probes that allow reproducible and 

quantitative measurement are required -- and light has become the keystone to 

fulfill that demand. The convergence between optics and biology started with the 
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development of the microscope by Leeuwenhoek and his incursion into the 

microscopic world. Nowadays, main experimental techniques in molecular biology, 

biochemistry and biophysics are related to optics: light microscopy, spectroscopy, 

flow cytometry, and fluorescence-based methods. Furthermore, other light-based 

techniques such as optical tweezers have helped to enlarge the strategies to study 

the macromolecular functioning. Until 20 years ago, all the biological experimental 

techniques were focused on the behavior of many macromolecules (in bulk) at the 

same time, producing macroscopic measurements where millions of 

macromolecules are involved. The power of these bulk techniques has been 

questionless, but recently optical tweezers and other single-molecule techniques 

have allowed performing measurements on the mechanisms of individual 

molecules, providing a new and complementary approach to the bulk perspective 

of macromolecular functioning3.  

The role of light in biology goes further than just being a convenient probe to 

perform measurements. On Earth light is a ubiquitous environmental factor, thus 

life has evolved to respond, to fit and to flourish under the influence of sunlight. The 

living trait of being able to adapt or respond to environmental cues, such as light, is 

performed at the molecular level by proteins. Proteins have developed the ability to 

harvest light, transforming the energy of photons into chemical energy through 

photosynthesis, or performing the transduction of light cues into the organism, 

triggering a biological response. Both cases are examples of the effects of light 

over life and highlight the biological importance of understanding how light-

sensitive macromolecules work4. 

Herein I present the three main results obtained during my enrollment at the 

Doctoral Molecular Biology program at IPICYT. Over this entire dissertation the 

connection between light and biology is noticeable. First using light as a tool for 

visualization of biological samples and to perform single molecule assays, and then 

focusing on fungal blue light photoreceptors and how aggregation can take place 

among these proteins. 
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In Chapter 2, I describe how digital imaging processing in bright field microscopy 

images was implemented to allow the visualization of small objects that lack 

contrast. We developed Computer enhanced bright field microscopy (CEBFM), 

allowing us to obtain the point spread function of the microscope, enabling us to 

perform deconvolution on images of Escherichia coli cells, improving the overall 

image quality of unstained samples. In Chapter 3 the construction of an optical 

tweezers for single-molecule studies is presented, together with our realization of 

two standard single-molecule assays, which confirmed that our instrument is fully 

functional. In Chapter 4 the blue light receptors VIVID and ENVOY from 

Neurospora crassa and Trichoderma atroviride, respectively, were characterized in 

vitro. For ENVOY, stable recombinant protein was obtained and the mean lifetime 

of the photoadduct was measured. For VIVID, the aggregation pathway and factors 

regulating its aggregation were elucidated in a comprehensive way. In each 

chapter a proper introduction and a summary of the published results are 

presented. The detailed protocols and the corresponding front page of the 

published papers are presented as appendixes.  
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Microscopy quickly became a milestone for biology and many different microscopy 

techniques have been developed to increased image quality and the magnification 

power. Nowadays, microscopes can be divided in two main kinds: light microscopy 

and electron microscopy. Electron microscopy is the most powerful microscopy 

technique allowing the visualization of subcellular structures with resolution in the 

nanometer scale, with the drawbacks of being incompatible with biological samples 

in its hydrated state and that laborious processes have to be performed to prepare 

the samples6. Light microscopy, even when it is not (yet!) as powerful as electron 

microscopy, fits to a wider scope of biological requirements, allowing direct 

observation even in living samples. 

Regarding light microscopy, fluorescent microscopy techniques and the 

development of engineered fluorescent proteins have enhanced molecular biology 

research in the last 25 years7,8. Currently, super-resolution fluorescent microscopy 

techniques allow to obtain images of subcellular structures with outstanding 

definition and lateral resolution ~20 nm9. On the other hand, bright field 

microscopy (BFM), the first and simplest configuration of light microscopes, is still 

commonly found at biology labs, or coupled to more complex microscopy 

techniques (e.g. differential interference contrast, dark field, phase contrast, among 

others) as a way to get a first look of the sample. The biggest limitation for 

biological applications of BFM is its lack of contrast for thin and transparent 

samples such as cells. Herein we present a simple way to overcome lack of 

contrast, allowing the visualization of transparent objects and the improvement of 

image quality for unstained bacteria. 

2.1  Bright field microscopy 

Bright field microscopy is the simplest and most widespread light microscopy 

modality. It consists of a compound microscope formed by an illumination system, 

a condenser lens, an objective lens, the ocular lens, and the detector. Light from 

the illumination system is sent by the condenser lens to the sample, where light 

passes through or interacts with the sample. The outcome light is collected by the 

objective lens and sent to the ocular lens which provides a second amplification of 
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conjugate focal planes known as the image-forming conjugate focal planes, and 

the illumination conjugate focal planes (Figure 2-2)10. 

In Koehler illumination the image of the lamp is formed in the condenser aperture 

and at the back focal aperture of the objective lens, preventing the overlapping of 

the lamp and sample images. It is important to notice that since the illumination 

system is focused in the back focal plane of the condenser, the light will emerge 

collimated, providing a homogenous field at the sample plane. In an ideal situation 

when the condenser aperture is almost completely closed the sample is illuminated 

by a punctual source of light and the contrast in the image sample increases, but 

resolution is lower. 

2.2  Abbe´s theory of image formation in the microscope 

In the second part of XIX century Carl Zeiss and Ernest Abbe studied the wave 

nature of light and the effects exhibited by light when it interacts with matter, such 

as interference, diffraction, transmission, absorption, reflection, refraction and 

dispersion. They understood that these common matter-wave interaction effects 

are responsible for the image formation in a light microscope. 

Abbe proposed that for a transmission microscope as BFM, the specimen acts like 

the overlay of multiple diffraction gratings, where the different details in the 

specimen correspond to gratings with different spacing between the slits. So the 

finest details of the specimen correspond to a grating with a smaller spacing 

between the slits, thus producing diffraction orders with a higher angle () with 

respect to the normal of the grating (Figure 2-3 A). If the information of the fine 

details wants to be recorded then the diffracted orders need to be collected and an 

objective lens with a high numerical aperture is required. More important, Abbe 

showed that the image is formed by the interference of the multiple diffraction 

orders that emerge from the sample. According to Abbe´s theory the image will be 

formed only if at least 2 orders of the diffracted light are captured by the objective 

lens, so they can interfere on the image plane. The greater the numbers of 

diffracted orders are collected by the objective lens then more accurately the image 
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2.3  Computer enhanced bright field microscopy 

Computer-based image processing started in 1960´s as part of the NASA’s Jet 

Propulsion Laboratory to support its early unmanned space probes15. However, 

digital imaging processing remained underexploited until standard computers were 

powerful enough to perform the image processing in a daily fashion. Nowadays, 

digital imaging processing is used to improve image quality reducing noise, 

improving contrast, and restoring images among other processes. Digital imaging 

processing is also used for pattern recognition, with important applications to 

industrial production lines, military intelligence, and object recognition for blind 

people16 among many other applications. 

For BFM, we recently introduced a digital image processing method called 

Computer enhanced bright field microscopy (CEBFM)14, showing increased 

contrast and reduced noise, allowing the visualization of thin and transparent 

unstained objects.  

To perform CEBFM, a background (BG) image is first acquired, and then this BG 

image is subtracted from all the incoming frames. Next, a number (N) of these 

background-free frames are averaged to get the final image. This simple procedure 

reduces noise and enhances contrast, allowing the visualization of objects that 

cannot be observed by simple BFM. CEFBM has been used to visualize small, 

thin, and transparent objects such as microtubules (MTs), which are filaments of 

the cellular cytoskeleton of 25 nm in diameter and tens of micrometers long. Figure 

2-5 shows how in vitro polymerized unstained MTs are clearly visualized after the 

CEBFM digital image process. 

 CEBFM has been used to allow the visualization of MTs, but we propose that this 

method can also improve the quality of bright field image of thin and transparent 

objects, through a deconvolution process. For deconvolution, the image of a 

punctual object has to be obtained; before our work, the lack of contrast in BFM 

had been the major impediment for its acquisition.  
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definition of the image cannot be increased even when we increase the 

magnification. The ability to distinguish small details in the specimen is described 

by the resolution of the microscope. Resolution is defined as the minimum 

distance between distinguishable objects in an image. 

A more precise definition of a microscope resolution is established from the 

microscope impulse response. When the light from a point object (the impulse) is 

collected by the objective lens it is diffracted and the formed image is a 3D intensity 

distribution named Point Spread Function (PSF)13. 

For fluorescence microscopy, the point object imaged is a small (below the 

diffraction limit) fluorophore that acts as a point source of light, resulting in a 

pattern of concentric rings that corresponds to the Airy function and to the two 

dimensional (2D) image of the PSF. This pattern of concentric lit and dark rings is 

due to constructive and destructive interference of light diffracted by the circular 

apertures in the microscope. The resolution of the microscope will be given by the 

size of the central spot in the Airy pattern and two point sources will be 

distinguishable only if they are apart by a distance higher than the radius of the first 

disk in the Airy pattern (Figure 2-6). This criterion to quantify resolution is known as 

the Rayleigh criterion: 

d��� =
�.�� �

�����
 ,    2 

where dmin is the minimum distance between two distinguishable particles in the 

sample,  is the wavelength of illumination, NAobj is the numerical aperture of the 

objective lens.  

The consequences of diffraction in a microscope are that objects closer than the 

resolution of the microscope are undistinguishable, so the fine details in the 

specimen cannot be distinguished, and secondly that all the objects smaller than 

the resolution limit size will look the same, being its image the PSF of the 

microscope. 
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ℱ(������) =
ℱ(�����)

ℱ(���)
     4 

Where ℱ(������), ℱ(�����), ℱ(���) are the object, image and PSF in the Fourier 

space. However, problems to compute the object arise when ℱ(���) is zero. 

Wiener filter can be used as a first guess of the deconvolved image and then other 

iterative deconvolution methods can be used26.  

2.6  Deconvolution in Bright field microscopy 

Contrary to fluorescence microscopy, the application of deconvolution in bright field 

microscopy has been scarce. In transmitted optical microscopy, specimens can be 

ideal absorptive objects, ideal phase objects or more commonly, the specimen is 

formed by the concurrence of non-ideal phase and amplitude structures. Ideal 

absorptive objects completely absorb the light that passes through the sample, 

producing high contrast images. On the other side, ideal phase objects do not 

absorb light but they induce a phase shift in the light and, unless the phase shift is 

transformed to an amplitude output (as in phase-contrast microscopy), phase 

objects lack of contrast.  

In transmitted optical microscopy, absorption structure and phase structure of the 

specimen determine the three-dimensional intensity distribution of the image and, 

unlike fluorescence, in BF microscopy the PSF is not unique, as it has absorptive 

and phase components27. In BF microscopy the image is formed by the convolution 

of each component of the PSF with the absorptive and phase structures of the 

object  

image = object� ⊗ PSF� + object� ⊗ PSF� ,   5 

where the image is the convolution of the absorptive structures of the sample 

(objectA) with the corresponding PSF for ideal absorptive objects (PSFA), plus the 

convolution of the phase structures of the sample (objectP) with the corresponding 

PSF for ideal phase objects (PSFP).  

Standard fluorescence deconvolution algorithms cannot be applied in this case 

unless one of the components of the image could be neglected. Stained samples 
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have been used to obtain a purely absorptive object, so the phase component can 

be neglected and standard fluorescence deconvolution methodologies can be 

applied 28,29,30. The opposite case, where only the phase contributions are taken 

into account, presents the limitation that an ideal phase object lacks contrast so the 

corresponding PSFp has not been obtained. For biological applications phase 

objects such as cells are usually observed via staining of the sample or by 

techniques different from BFM.  

Herein we present CEBFM as a digital image process capable to overcome lack of 

contrast limitation in BFM, allowing the first experimental measurement of the 

PSFp, and the application of a standard fluorescence deconvolution process in 

unstained bacterial cells. 

2.7  Results 

This section summarizes the results published in: Hernández Candia CN, 

Gutiérrez-Medina B (2014) Direct Imaging of Phase Objects Enables Conventional 

Deconvolution in Bright Field Light Microscopy. PLoS ONE 9(2): e89106. 

doi:10.1371/journal.pone.0089106.  

2.7.1 Abstract 

Although deconvolution is a powerful method to improve image quality its 

application to bright field microscopy images has been limited, mainly for the 

difficulty in assessing the corresponding impulse responses of the microscope. In 

our lab we have built a bright field microscope fitted with a computer-enhanced 

bright field microscopy (CEBFM) that affords real-time sample visualization with 

reduced noise and enhanced contrast, allowing us to present the first direct 

measurements of the PSFp of a high-aperture microscope operating in bright field. 

Polystyrene nanoparticles of 100 nm in diameter serve as point objects to acquire 

the impulse response of the microscope. The measured point-spread function 

allows us to demonstrate conventional deconvolution in the bright field images of 
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living, unstained bacteria, showing improved definition of cell boundaries and sub-

cellular features. 

2.7.2 Motivation 

Unlike in fluorescence, in BF microscopy the PSF is not unique, as it has 

absorptive and phase components27. However, standard deconvolution can be 

used to restore images of pure phase or pure absorptive objects. So if the phase 

PSF is obtained, a linear deconvolution algorithm could be applied to restore 

images of phase objects such as unstained cells, increasing image quality by a 

simple and accessible method to nearly all biological labs. 

2.7.3 Main results 

We built an inverted microscope, composed by an objective lens (100x, NA=1.3, oil 

immersion), a condenser lens (NA=0.1) and an illumination system in Koehler 

configuration with a blue light-emitting diode (LED) as the light source. The 

microscope was fitted with a x-y-z piezoelectric stage which allowed the movement 

of the sample with a nanometric resolution in a range of up to 100 m, and images 

were acquired with a 8-bit charge-coupled device (CCD) camera and transferred to 

a computer to perform CEBFM processing31. 

To improve CEBFM during background acquisition a total of 250 frames were 

captured and averaged to produce the background frame that was subtracted from 

all incoming frames. Background subtraction was optimized by displacing the 

piezoelectric stage along non-closed paths covering distances of a few 

micrometers while background frames were taken. Once the background image 

was acquired 50 background-free frames were arithmetically averaged, increasing 

the SNR. Background removal and frame averaging were performed in real time 

allowing the direct visualization of the phase objects. However, frame averaging 

can be time consuming so final image refreshment presented a delay of tens of 

seconds. Image acquisition and digital processing was performed using LabView 

8.5. 
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The Bright field PSFp presents important differences with respect to the 

Fluorescence PSF:  

1. In fluorescence microscopy the PSF intensity values are always above the 

background signal, contrary to the bright field PSFp which presents both 

positive and negative intensity values (Figure 2-10 B). Even when intensity 

is a defined positive magnitude (intensity is the squared value of light 

electric field) here we have negative values due to the subtraction of the 

background image. In other words, herein having negative intensity values 

means that the intensity is lower than the background so a destructive 

interference, according to Abbe’s theory of image formation, is taking place. 

Conversely, having a positive value of the intensity means that constructive 

interference is occurring. 

2. The PSFp is symmetric along the z axis (Figure 2-10 C), presenting positive 

intensity values above the focal plane and negative intensity values below 

the focal plane, and  becoming zero at the middle, which corresponds to the 

fact that thin phase objects are invisible at the focus32. 

3. The 2D lateral images of the PSFp do not fit an Airy function as in 

fluorescence microscopy (Figure 2-10 B). The Airy function is always 

positive, contrary to the plot profiles of the axial images of bright field PSFp. 

To fit our experimental results we proposed a model for the PSFp based of Abbe’s 

image formation theory (Equation 1). Since the intensity of the non-diffracted light 

(illumination light) is removed by background subtraction, and the intensity of the 

light diffracted by small thin objects is small, the most important contribution for the 

formation of CEBFM images is the interference term (2Re[EdiffractedEnon-diffracted]). 

This is important because interference translates changes in phase into changes in 

intensity, thus we can detect phase objects. Noticeable our proposed model for the 

PSFp was in a good agreement with our measured PSFp (Figure 2-10 D,E,F). 
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work as a cytoskeleton in prokaryotic cells35,36, and are required for the 

maintenance of the rod-shaped of the bacteria and has been shown to form spirals 

that travel along the longitudinal axis of E. coli cells. 

One attractive feature of BFM deconvolution is the potential to observe unstained 

specimens over extended periods of time. We show this aspect by following 

changes in E. coil shape as cell division proceeds under continuous illumination 

(Figure 2-11 C).  

2.7.1 Novel contribution 

CEBFM was improved by acquiring a better background image. For this, the 

piezoelectric stage that supports the sample was moved meanwhile bright field 

frames used to set the background image were acquired. Improved CEBFM was 

used to perform the first experimental assessment of the phase point-spread 

function in BFM. The measured PSFp allows us to apply already developed 

deconvolution algorithms on the bright field images of living, unstained Escherichia 

coli cells, making possible the extension of standard deconvolution processing 

beyond fluorescence microscopy. In addition, we were able to integrate the same 

digital imaging processing technique to an optical tweezers setup designed to 

perform single-molecule experiments (see Chapter 3). 

2.7.2 Conclusions 

The results presented here introduce practical methodologies in BF microscopy to 

directly measure the corresponding phase point spread function, from where 

conventional deconvolution processing is demonstrated. Our procedures are 

applicable to the imaging of thin, transparent specimens such as living, unstained 

cells.  
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2.7.3 Unpublished data 

The CEBFM capabilities proved to be effective to observe MTs (Figure 2-5) and 

100 nm diameter beads (Figure 2-9). However, we asked ourselves if smaller 

object such as 40-nm diameter beads or viruses can be detected.  

First, we tried to visualize 40 nm diameter beads and since a low SNR was 

expected, fluorescent polystyrene beads were used to assure that the bright field 

images correspond to the 40-nm beads and not to undetermined sub-diffraction 

particles in the sample. Scanning electron microscopy (SEM) images were used to 

measure the distribution size of the beads and to standardize the conditions to get 

a homogenous and disperse sample (Figure 2-12A and B). Fluorescence 

microscopy was coupled to our bright field microscope and the image fields of view 

for both microscopy methods were matched. Dispersed 40-nm beads were 

attached to a clean coverslip and the CEBFM image was compared with the 

fluorescent image. Preliminary results show that averaging 100 background-free 

images, the 40-nm diameter beads can be detected. However, its contrast was not 

good enough to acquire the PSF (Figure 2-12C). One important concern was the 

detection of a single bead instead of bead clusters that remained in a sub-

diffraction size. Several attempts were made to correlate the field of view of the 

bright field microscope with an image acquired by electron microscopy. As a first 

try, beads of 1.8 m in diameter and beads of 500 nm in diameter were mixed and 

light microscopy images were correlated with electron microscopy images using 

recognizable beads patterns (Figure 2-12D). However this procedure turns to be 

extremely inefficient and only once I succeed in matching light and electron 

microscopy images, so a more reproducible method is needed. 

As an alternative, the fluorescence intensity of the spots produced by the sub-

diffraction dispersed beads was plotted into a histogram. Fluorescence intensity 

was distributed in an approximated multimodal distribution (Figure 2-12E), and 

assuming that each bead presents the same fluorescence intensity then, it was 
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capsid with a fluorescent probe and secondly by correlation of the bright field 

image with TEM to corroborate that we are detecting single virus, and not bundles 

of viral particles.  

2.8  Future work 

We proved that standard deconvolution of bright field images provide a define 

boundary of the cells, but it is not clear if this boundary matches the cell 

membrane. If we prove that BFM deconvolution actually presents the real 

boundary of the cell, then this simple method can be used to perform quantitative 

studies over cell shape and colony grow over extended periods of time without the 

toxic effects and photo bleaching effects of fluorescence probes. For this, the cell 

membrane has to be tagged with a specific florescence probe and fluorescence 

microscopy images have to be compared with bright field images after 

deconvolution. 

CEFBM proved to be a simple and inexpensive method for the detection of small 

nanometric objects, but to determine if CEBFM can be used to detect the presence 

of single viruses or transparent particles below the 100 nm diameter further work 

has to be performed. 
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Chapter 3. Optical tweezers for single-

molecule assays 

Experimental biology relies on laboratory methods that allow having reproducible 

and quantitative measurements. The selected methods or instruments will depend 

on the questions that want to be answered. For us, an instrument that allows in 

vitro single-molecule measurements of forces and displacements in real time was 

required to follow the dynamics of molecular motors (which convert chemical 

energy into mechanical work), DNA-protein interactions, and the conformational 

change of proteins. From the wide number of single-molecule techniques, we 

decided to work with a laser-based methodology known as optical tweezers, this 

technique allows us to measure displacements and forces on the correct expected 

scales (10-9 m and 10-12 N, respectively) and can provide a direct mechanical 

characterization of molecular behavior. 

3.1  Single-molecule Techniques 

Single-molecule techniques are based on methods that allow studying one 

molecule at the time and have become a powerful complementary approach to 

standard bulk measurements. Single-molecule approach allows following the 

dynamic of molecules for periods of time larger than milliseconds which bulk 

methods cannot since it is not possible to keep an ensemble synchronized due to 

the stochastic nature of the system3.  

For bulk methods only the average trajectory of the population can be known, 

masking rare but potentially important molecular trajectories. On the other hand, 

single-molecule techniques can follow the real-time trajectories of individual 

molecules and, upon observing very many of them, a histogram of the dynamical 

properties over the population could be constructed avoiding the loss of less 
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represented trajectories38. Cases where molecules can populate more than one 

state can also get benefited from a single-molecule approach. In bulk methods the 

measured property correspond to the average of that property over the ensemble, 

meanwhile in single-molecule methods the multimodal nature of the distribution of 

states can be recovered from an histogram of any property measured one 

molecule at the time3. 

Single-molecule methods have directly measured important mechanism previously 

established by standard bulk methods39 and have brought a way to elucidating 

reaction mechanisms38. Single-molecule experiments have become a key stone to 

understand molecular motors40, the spatial and temporal distribution of molecules 

within a cell with an outstanding resolution41,42, and the energy landscape during 

folding of macromolecules43. 

An inconvenience of single-molecule techniques is the technical challenge of 

measuring the signal produced by just one molecule with enough signal to noise 

ratio (SNR). Techniques developed for single-molecule experiments can be divided 

in force spectroscopy methods and fluorescence methods. Force spectroscopy 

methods include atomic force microscopy (AFM), optical tweezers and magnetic 

tweezers44. Single-molecule fluorescence methods include Förster resonance 

energy transfer (FRET)45, photo-activated localization microscopy (PALM)46, 

stochastic optical reconstruction microscopy (STORM)47, and stimulated emission 

depletion (STED)48. Optical tweezers was our choice to perform force spectroscopy 

measurements due to the scale of forces (pN) and displacements (nm) that optical 

tweezers allows to measure.  

3.2  Optical Tweezers 

An optical tweezers (or optical trap) consists of a laser beam that is tightly focused 

by a high numerical aperture microscope objective, so all optical tweezers setups 

are basically an adapted standard bright field microscope. The focused laser beam 

is capable of trapping micrometer-sized objects in 3D, and can also be used for the 

transduction of displacements and forces.  
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The history of optical tweezers started in 1970 when Arthur Ashkin reported that 

micro-sized particles were accelerated and trapped using only the force of radiation 

pressure from a laser beam49. One year later, using the force of radiation pressure, 

Ashkin made glass spheres particle levitate, equilibrating the attractive gravitational 

force over the glass bead with the force of radiation pressure exerted in the 

opposite direction by the laser beam50. In 1986 Ashkin reported, for the first time, 

the trapping of dielectric beads suspended in water by a single tightly focused laser 

beam, in other words he reported the first optical tweezers51. 

The physical principle behind optical trapping is the conservation of total 

momentum. Light carries a linear momentum that is in the direction of the 

propagation of light and is proportional to light’s energy. This is the reason why 

light can exert forces over microscopic objects. When light interacts with a non-

absorbing object, it can be reflected or refracted, changing its linear momentum, 

and since total momentum is conserved, the object recoils in the opposite 

direction52. If a proper profile of light as a tightly laser beam is used, then the 

momentum transferred by the light will confine the microscopic object spatially. 

When the trapping beam has a Gaussian profile, it turns out that the force exerted 

by optical tweezers over a trapped object is a restitution force proportional to 

displacements Ftrap=-kx, where Ftrap is force, k is known as the stiffness of the trap, 

and x is the displacement of the trapped object from its equilibrium position (x0)
53 

(Figure 3-1). This behavior is analogous to a spring characterized by Hooke’s Law. 

In optical tweezers, displacement in any direction produces a restitution force in the 

opposite direction with its corresponding stiffness constant, performing stable 

trapping in 3D. 

The laser propagating direction is referred to as the z coordinate and its orthogonal 

plane is formed by the x,y coordinates. The displacements along any direction 

(x,y,z) and the corresponding stiffness of the trap (kx, ky, kz) can be measured by 

well-established methods summarized in next sections. 

The capability to manipulate micron-sized objects and exert forces and measure 

displacements (in the order of 10-12 N and 10-9 m, respectively) opened the door to 
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Regarding to the laser beam, it is important to have a laser that supplies a stable 

power to avoid force fluctuations, an excellent pointing stability to avoid unwanted 

displacements, a Gaussian mode to tightly focuses the beam and performs stable 

trapping along the x,y plane, and for biological applications, an infrared (IR) 

wavelength is preferred to diminish light toxicity53,60.  

To build a functional optical tweezers it is necessary to have an objective lens and 

a condenser lens with high numerical apertures (NA), the trapping laser beam, a 

method to visualize the sample, a method to detect the position of the trapped 

bead, and a piezoelectric stage to hold the sample. All these requirements are 

fulfilled by an inverted bright field microscope modified to couple the trapping laser 

beam and the position detection method.  

A sensitive position detection method and its proper calibration are the most 

important differences between an optical tweezers that can be used to perform 

force and displacement measurements and those that can only be used to trap.  

3.4  Trapped bead position detection 

The position of a trapped bead can be determined by video microscopy, although 

this is a simple method, it is limited by the speed of the camera and depends on 

the efficiency to track the bead position. As an alternative, the trapping laser can 

also be used to track the bead position, since the bead acts as a lens inducing 

small deflections into the laser whenever the bead is moved apart from its 

equilibrium position (x0). Those deflections can be detected by a position-sensitive 

detector (PSD) placed in a plane conjugated to the Back Focal Plane (BFP) of the 

condenser lens. This BFP detection method is only sensitive to relative 

displacements of the bead from its equilibrium position (x0, y0, z0).  

When the trap bead is displaced from the equilibrium position along the x,y plane, 

the laser is deflected, reaching a different place at the PSD. When the bead is 

displaced along z, the divergence of the laser beam is modified. A diaphragm (D1) 

placed in front of the PSD limits the size of the spot that reaches the detector, 

making the total intensity that reaches the PSD a function of the position of the 

trapped bead along z direction (Figure 3-2). 
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3.5  Methods to measure the stiffness of an optical tweezers 

Important aspects to be considered to determine the stiffness of a trap (k) is that 

the stiffness value depends on the size of the bead, the intensity of the trapping 

beam, the temperature of the sample, and the viscosity of the sample buffer. Thus 

it is important to control the trapping laser power stability and perform the stiffness 

calibration under the same experimental conditions than the molecular assay. For 

single-molecule assay with macromolecules, the standard temperature condition is 

usually 25°C and the buffer composition is mainly water (with a viscosity at 25°C of 

0.89 mPa s). In the following pages three standard methods to obtain the stiffness 

of an optical tweezers are summarized.  

Navier Stokes 

A spherical particle exposed to a constant laminar flow feels a drag force given by 

the Stokes’ law. If a bead trapped by the optical tweezers is exposed to a constant 

flow then the bead will reach a new equilibrium position where the force of the trap 

equilibrates the drag force. At the equilibrium condition, both forces can be 

matched: 

F������ = 6πφrv = F���� = k����x ,    6 

where r is the radius of the bead, φthe viscosity of the fluid, v the velocity of the 

flow, x the new equilibrium position of the trapped bead, and ktrap is the stiffness of 

the trap. The stiffness of the trap can be obtained as the slope of the linear relation 

between the final equilibrium positions of the trapped bead as a function of the 

velocities of the flow. 

Power spectrum  

For a bead trapped in an optical tweezers, its motion is not completely restricted. 

Even when the bead is confined to a certain volume, the bead presents a motion 

that depends on the force of the trap, the friction force given by the Stokes’ law, 

and the thermal force due to the collisions of the surrounding particles with the 

trapped bead (Brownian motion). So the confined movement of the trapped bead 

depends on Stokes’s constant, temperature, and the stiffness of the trap.  
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Given a set temperature, viscosity and bead size, the stiffness of the trap is the 

only parameter that determines which positions can be explored by the trapped 

bead. This relationship between the positions explored by the trapped bead and 

the stiffness of the trap is best appreciated by plotting the positions’ Fourier power 

spectrum. As the stiffness increases, high frequency components start to dominate 

the movement of the object and the bead is confined to a smaller volume.  

The positions power spectrum of a trapped bead can be fitted to a Lorentzian 

profile from where cut-off frequency (f0) is obtained as a fitting parameter that is 

directly related to the stiffness of the trap 

k���� = 2πγf�,     7 

where γ is the drag coefficient � = 6���. Typically, the characteristic frequencies of 

motion for atrapped bead go up to several kHz, so a detector bandwidth of at least 

10-100 kHz is generally used. 

Equipartition theorem 

In general, for small displacements (x) from the equilibrium position (x0), the optical 

trap is considered to be a harmonic potential, which means that trapped bead 

experiences a Hookean restoring force (F = -ktrapx) and its harmonic potential 

energy is given by: 

U= ½ ktrapx
2     8 

The equipartition theorem establishes that the thermal bath provides the same 

energy to all the components of motion that present a quadratic dependence on its 

potential energy, for a trapped bead this means: 

k����〈x�〉 = k�T    9 

Where 〈x�〉 is the variance of the position of a trapped bead and ktrap is the stiffness 

of the trap, kB is the Boltzmann constant, and T is the temperature. It is important to 

note that this method does not depend explicitly on drag coefficient (γ), so the 

viscosity (φ) of the fluid and the size of the bead do not need to be known. 

Once the stiffness of the trap and the displacements detection method is 

calibrated, optical tweezers can be used to perform single-molecule studies to 
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learn about mechanical properties of diverse macromolecules. Herein, stretching of 

a single DNA molecule and the measurement of the stepping of one kinesin 

molecular motor along a MT are performed to corroborate the correct functioning of 

our built optical tweezers system. These two standard single-molecule assays 

have also provided important information regarding the elastic properties of DNA 

and the functioning of kinesin proteins. Section 3.6 highlights the importance of the 

DNA elasticity properties and section 3.7 summarizes the current knowledge of 

kinesin mechanism functioning.  

3.6  DNA stretching 

In the last 25 years the elastic properties of DNA have been explored by force 

spectroscopy single-molecule techniques, allowing the direct measurement of the 

force/extension profile of a single DNA molecule. Single-molecule stretching of 

DNA (dsDNA) has been performed using magnetic beads61, AFM62, and also using 

optical tweezers63,64.  

DNA is a biopolymer composed by repeated subunits of nucleotides that presents 

unique polymer qualities. It is strongly charged due to its phosphate backbone and 

its characteristic base stacking provides DNA with an unusual stiffness, taking ~50 

times more energy to bend a double-stranded DNA (dsDNA) molecule into a circle 

than to perform the same operation on single stranded DNA (ssDNA)65. Also, 

elasticity of DNA has been proved to depend on the nucleotide sequence66,67 and 

on the buffer ionic strength68.  

These unusual elastic properties have diverse effects over the DNA-protein 

interactions. It has been proved that the bending of DNA can modify the affinity of a 

transcription factor for its DNA recognition sequence, making DNA elasticity an 

important factor in the control of transcription69. Also, DNA is often bent when 

complexed with proteins, and during cell division DNA gets tightly packed wrapping 

around histone proteins, arising one central question: How DNA stiffness and 

electrostatic repulsion effects are overcome by proteins? It was proved that 

proteins with cationic surfaces can induce substantial DNA bending toward the 

bound protein by neutralizing the phosphate groups on one face of the DNA 
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molecule70. These examples highlight the necessity of a profound understanding of 

the DNA physical properties to fully understand life molecular processes. In this 

regard DNA has been modeled as a polymer chain and different models have been 

proposed to fit DNA elastic properties. 

Polymers can be described as a continuous line that bends smoothly, like a worm. 

The inextensible worm-like chain (WLC) model, characterizes polymer elasticity 

using a single parameter, the persistence length (Lp). Persistence length measures 

the tendency of a uniform, flexible polymer to point in the same direction under 

thermal fluctuations; the stiffer the chain, the longer the persistence length. 

Also a polymer can be represented by a chain of inextensible fragments of length 

(l), where each fragment has an independent orientation. In this inextensible freely 

jointed chain (FJC) model the fragment length l is known as Kuhn length and it is a 

measure of the chain stiffness. Each fragment in the chain can freely be oriented at 

any direction, but the chain tends to be in a configuration with its ends closer. 

When the chain ends are forced into a configuration with its ends farther apart, an 

entropic force returns the chain into its initial configuration. The emergence of this 

entropic force can be understood as a thermodynamic consequence. For a flexible 

but inextensible polymer chain, there is only one configuration where the distance 

between its ends is equal to the total length or contour length (Lo) of the polymer 

(when all its fragments point in the same direction). Furthermore, the number of 

possible configurations increases as the distance between ends decreases (Figure 

3-3A). The second law of thermodynamics establishes that in a closed system 

entropy increases, this means that the system tends to a macroscopic state where 

the maximum numbers of microscopic configurations are possible.  

Thus for DNA a compact configuration instead of an extended configuration is 

favored and an external force has to be applied to beat the entropic force. If the 

external force equals the entropic force, then the DNA molecule can be totally 

aligned and its end-to-end distance is the contour length (Lo) of the molecule. For 

an inextensible molecule its Lo cannot be increased, no matter the amount of force 

applied, but DNA is not an inextensible molecule.  
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When an extensible polymer is pulled farther its Lo, the polymer resists the 

stretching with an enthalpic force characterized by its elastic modulus K0. For 

dsDNA when stretching forces between 5-50 pN are applied, chemical bonds are 

slightly modified by the strong stretching, leading to a small linear increase in the 

length of the molecule71. dsDNA stretching assays have been performed by 

applying wide range forces, from 0.01 pN using magnetic tweezers61 to forces up 

to 150 pN using AFM microscopy and two transitions have been reported. The first 

transition occurred at a longitudinal stress force of 65 pN, where the distance 

between per base pair (bp) increased from 3.8 Å to 5.8 Å, overstretching the 

dsDNA64 (Figure 3-3B). The second transition occurred at forces of 150 pN where 

the dsDNA turns into single strand DNA (ssDNA)72. For forces below 65 pN, four 

models have been proposed to fit the dsDNA force/extension curves (Figure 3-3C). 

Each of these models is best fitted to experimental data under different regimes of 

applied forces, where the entropic and/or enthalpic contributions to dsDNA 

elasticity have to be considered. 

Notably dsDNA is a charge polymer and its own electrostatic repulsion increases 

its stiffness. Ionic charges can screen DNA charge, making that the Lp depends on 

the ionic strength. The persistence lengths of a dsDNA molecule can go from 53 

nm in a 10 mM Na+ buffer73 to 15 nm in a 80 mM Na+ buffer74. At physiological 

conditions the dsDNA Lp is around 50 nm, implying that a fragment smaller than 50 

nm, for example a fragment of 100 bp, will not bend by thermal fluctuation at room 

temperature. In other words, a 100 bp dsDNA fragment is rigid and to bend it, 

mechanical work has to be performed.  

Elasticity of other important biopolymers as actin and MTs, have been measured. 

For actin the Lp is 17m and for MTs the Lp is 5200 m75. Even when MTs 

presents the highest Lp value, dsDNA is considered one of the most rigid polymers 

proportionally to its size.  
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answered to understand the molecular mechanism of force generation76. Single-

molecule techniques have contributed to a fast progress in the understanding of 

how motor proteins work. In particular, optical tweezers has become a powerful 

tool to study the molecular mechanisms of molecular motors, via direct 

measurement of forces and displacements. 

Within eukaryotic cells vesicles, chromosomes, and organelles are actively 

transported by molecular motors which translocate along cytoskeletal tracks of 

actin filaments or microtubules (MTs). Three different types of molecular motors for 

intracellular transport have been found: myosin, dynein and kinesin. All of them 

have a catalytic motor domain where ATP is hydrolyzed, providing the chemical 

energy to perform mechanical work. Each of these molecular motors comprises a 

superfamily of highly conserved ATP-dependent motor proteins77,78,79. Myosin 

proteins bind to actin filaments, while dynein and kinesin proteins bind to MTs. 

Detailed information about myosin and dynein can be found at references80,81,82,83. 

Kinesin was the last one of these three molecular motors to be discovered. In 

1985, a series of studies of the fast axonal transport in giant squid neurons 

culminated with the identification of kinesin, a novel ATP-dependent molecular 

motor responsible for the anterograde transport of organelles along 

microtubules84,85,86.  

Currently kinesins form a superfamily composed by 15 kinesin families, which are 

termed kinesin1 to kinesin 14B and can be grouped into: N-kinesins that have a 

motor domain in the amino-terminal region, M-kinesins that have a motor domain in 

the middle, C-kinesins that have a motor domain in the carboxy-terminal region79, 

and the bipolar kinesins with motor domains at each end of the protein. N-kinesins 

(e.g. kinesin-1) present anterograde transport, moving toward the plus end of MTs, 

unlike C-kinesins (e.g. kinesin-14) which transport their cargo toward the minus 

end of MTs. Meanwhile the M-kinesins. (e.g. kinesin-13) depolymerize 

microtubules and are associated to the mitotic spindle87 as well as the bipolar 

kinesins (e.g. kinesin-5 or BimC) which are essential for the formation and 

functioning of a normal bipolar spindle88 (Figure 3-4). Nowadays, the first kind of 
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mechanism99,100. In this model one head is detached from the MT meanwhile the 

other head remains bound to the MT. Once the rear head passed through the front 

and bounds to the MT, the other head can get detached and repeat the process, so 

heads are alternated one in front of the other along the same protofilament of the 

MT101. Notably, a single kinesin molecule can take on average 100 of steps before 

it dissociates from the MT. Behind this processivity, a tightly coordination between 

the two heads of kinesin is essential, thus when one head passed to the leading 

position the other remain attached to the MT. Otherwise both heads will remain 

attached without movement or both heads will be unattached to the MT and the 

motor will diffuse away from the MT102. Figure 3-6 presents the known kinesin 

processivity mechanochemical cycle. 

Optical tweezers have been used to directly measure that the maximum load that a 

single kinesin motor supports before it dissociates from the MT is ~7 pN103; that 

kinesin translocates along MTs with steps of 8.2 nm104; and that for each kinesin 

step one molecule of ATP is hydrolyzed105. The 8.2 nm size step corresponds 

directly to the lattice spacing of tubulin dimers along the MT101 and was an 

important piece of information to set the current model of kinesin stepping. 

In this work kinesin single-molecule assays were performed to validate the fully 

functionality of our optical tweezers setup, measuring the step size and the 

maximum load supported by a single kinesin while it translocates along a MT. 

3.1  Results 

This section summarizes the results published in Hernández Candia CN, Tafoya 

Martínez S, Gutiérrez-Medina B (2013) A Minimal Optical Trapping and Imaging 

Microscopy System. PLoS ONE 8(2): e57383. doi:10.1371/journal.pone.0057383.  

3.8.1  Abstract 

We have constructed and tested a simple and versatile optical tweezers apparatus 

made from individual optical components, capable of visualizing individual 

microtubules (MTs, ~25 nm in diameter) and of studying macromolecules at the 

single-molecule level, using a minimal set of parts. Our design is based on a  
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conventional, inverted microscope operating under plain bright field illumination. 

The illuminating system of the microscope is composed by a current-stabilized LED 

source, a collector lens system, a field diaphragm, a condenser iris diaphragm, a 

relay lens (LR) that images the condenser iris diaphragm onto the condenser back 

focal plane (BFP), and the condenser. All of these elements are adjusted for 

Koehler illumination. On the other hand, a single IR laser beam, coupled into the 

microscope, enables both standard optical trapping and BFP detection for the 

measurement of molecular displacements and forces. We are able to optimize 

imaging of the microscope by using computer-based digital image processing, 

effectively removing the background, reducing noise, and enhancing contrast. 

Altogether, our system yields excellent sample visualization in real-time, without 

the use of any specialized optics and without affecting the optical tweezers optical 

path. We have tested the optical trapping instrument by measuring the persistence 

length of dsDNA at high ionic strength and by following the stepping of the motor 

protein kinesin on clearly imaged MTs. Proving that our optical tweezers has 

spatial resolution of ~1 nm, maximum load of ~10 pN and time resolution of ~10 

s, and it is fully functional for single-molecule studies. 

3.8.2  Motivation 

Optical tweezers provides a unique approach to study at a single-molecule level 

the mechanical properties of macromolecules and also to follow its dynamic and 

conformational changes in real time. In particular we are interested in 

understanding how two or more molecular motor coordinate to allow efficient 

intracellular transportation, how DNA binding proteins recognize specific DNA 

sequences, and also we are interested in how blue light photoreceptors performed 

the conformational change that transduct the detected stimulus of light (see 

chapter 4). However, in Mexico or Latin America there was not an optical tweezers 

able to perform single-molecule assays, so we took on the task of building a fully 

functional instrument and at the same time we improved the imaging capabilities of 

the optical tweezers through CEBFM.  
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Regarding the optical tweezers setup, usually a bright field microscope is used to 

build it providing a way to get a highly focused laser beam and at the same time 

the microscope can be used to visualize the sample. This dual function of the 

microscope is limited by the visualization capabilities of bright field microscopy. If 

small or thin and transparent object is wanted to be observed then a different 

microscopy modality has to be implemented to overcome the lack of contrast in 

bright field. Differential interference contrast (DIC), dark field, and phase contrast 

microscopy allow visualization of transparent samples, however extra elements 

have to be added to the optical path, thus impairing constraints like polarization or 

phase into the optical trapping beam and increase the cost and complexity of the 

system. We propose that implementation of CEBFM to an optical tweezers will 

allow the visualization of transparent objects without modifying the optical path of 

the trapping beam. 

3.8.3  Main results 

An optical trapping system with exceptional visualization features at minimal cost 

and complexity was developed. Our optical tweezers system is based on a 

conventional inverted microscope that satisfies Koehler illumination and position 

detection of the trapped particle through BFP method53. High contrast imaging was 

implemented by CEBFM (see chapter 2)14, where no extra optics are present in the 

trapping beam path. A convenient feature of our optical setup is that a relay lens 

LR effectively decouples the illuminating system from the optical tweezers 

detection stage (Figure 3-7). In practice, we can close the condenser iris 

diaphragm almost entirely (~90%) to maximize contrast for sample visualization, 

while simultaneously using the full numerical aperture of the condenser for BFP 

detection. 

Stiffness of the trap was estimated by Equipartition method, Stokes’ method and 

Power spectrum method, and to verify the functionality of our optical tweezers, two 

standard single-molecule assays were performed. First, we stretched single 

dsDNA molecules, and from the force/extension records, the persistence length 

and the contour length were obtained. 
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3.8.4  Novel contribution 

To overcome bright field microscopy limitations we implemented a CEBFM during 

the acquisition of the images, which allowed us to visualize transparent objects as 

MTs without modifying the optical path of the trapping beam. Our optical tweezers 

configuration shows that the improvement of bright field imaging via digital image 

processing can benefit single-molecule techniques such as optical tweezers. 

3.8.5 Conclusions 

An optical trapping system has been developed with exceptional visualization 

features at minimal cost and complexity. The technique of CEBFM provides an 

alternative to elaborate microscopy techniques for high-contrast visualization, 

avoiding the inclusion of optical elements in the instrument (such as prisms, 

apertures or polarizers) that could compromise operation of optical trapping. Using 

our instrument, it is possible to achieve independent control of BFP detection (in 

optical trapping) and Koehler illumination (in sample visualization). The approach 

presented here is uniquely suited for single-molecule experiments and the setup 

can also be readily expanded to incorporate additional features, such as a second 

trapping beam (to perform off the surface, multiple-bead assays), or strategies to 

maintain a constant force during experiments (a ‘force clamp’). 

3.2   Future work 

Future work included studies to understand the coordination of kinesin motors 

between heads and between motors coupling more than one motor to the same 

cargo. Also the conformational change of a blue light photoreceptor named 

ENVOY (see chapter 4) and the interaction of the transcription factor Catabolite 

Activator Protein (CAP) with its consensus promoter region are planned. 
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Chapter 4. Fungal Blue-Light 

Photoreceptors: VIVID and ENVOY 

Sunlight provides Earth with a constant flux of energy and it has been a factor for 

life evolution, leading to positive selection of organisms able to detect, harvest or 

respond to light. Organisms have developed structures capable of performing 

photosynthesis, harvesting the energy of light and transforming it into chemical 

energy, which can be stored and consumed later by the organism itself or by other 

organisms. A side effect of photosynthesis has been the production of molecular 

oxygen (O2), which transformed Earth’s atmosphere composition and helped to 

rise an explosion and diversification of life organisms with metabolism dependent 

on O2 chemical reactions107 and with molecular strategies to avoid, regulate or 

repair collateral damage of reactive oxygen species (ROS). Also, photosynthetic 

and non-photosynthetic organisms must accurately sense and respond to their 

environment and have developed strategies to decode sunlight cues into 

information of their position, food availability, presence of danger and, in general, 

organisms have developed circadian rhythms due to lit-dark periods for Earth’s 

rotation movement108. 

Filamentous fungi do not perform photosynthesis, but they present pigment 

synthesis109, phototropism110, photomorphogenesis111, circadian rhythm of 

conidiation112, among other responses as an adaptation to live under light 

conditions. These easily detectable phenotypes have made filamentous fungi like 

Neurospora crassa and Trichoderma atroviride model organisms to learn about 

perception, adaptation and response to light in eukaryotic cells. 
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classes: flavin-based UV/blue-light receptors, retinal-based green-light receptors, 

and linear tetrapyrrole-based red-light receptors121. 

Three different classes of flavin-based photoreceptors have been described: 

Proteins carrying a Light Oxygen Voltage (LOV) domains, Blue Light sensor 

Using FAD (BLUF) proteins, and Cryptochromes (CRYs)122. 

4.1   Fungal blue light photoreceptors 

In N. crassa primary proteins for fungus response to light are the transcription 

factors White collar-1 (WC-1) and White collar-2 (WC-2), of which WC-1 is a LOV-

domain photoreceptor123. WC-1 presents one LOV domain, two Per-Arnt-Sim 

(PAS) domains, a GATA Zinc finger domain, a nuclear localization signal (NLS), 

and two transcription activation domains (AD) each one at opposite sides of the 

protein124. Meanwhile the WC-2 protein presents one PAS domain, a transcription 

AD, a NLS, and a GATA Zinc finger125.  

The current model126 for N. crassa light perception establishes that after a 

day/night entrainment of the circadian rhythm, under dark conditions WC-1 and 

WC-2 form a heterodimer complex named White Collar Complex (WCC). WCC 

activates transcription of the gene frequency (frq), necessary to keep the circadian 

timing in constant darkness, by binding to the Clock box (C-Box) within the gene 

promoter127. After a blue light pulse, the LOV domain in WC-1 proteins is activated, 

allowing the interaction between LOV domains and the assembly of the Large 

White Collar Complex (L-WCC)124. This L-WCC transiently activates the 

transcription of light regulated genes as albino genes (al-1, al-2 al-3) involved in 

the carotenoid pigments biosynthesis, the vivid gene (vvd) that encodes for a small 

photoreceptor with a LOV domain, and also increased the transcription of the frq 

gene to entrain the circadian rhythm. After a BL pulse, the L-WCC binds to the light 

response elements (LREs) in the promoter of light activated genes and unbind 

through a rapidly hyperphosphorylation of the WC proteins128.The VIVID (VVD) 

LOV-domain protein interacts with the WCC inhibiting the formation of the L-WCC, 

thus repressing the expression of BL activated genes.  
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Besides working as a negative repressor of transcription, VVD is proposed to work 

as a positive regulator of transcription. Inhibiting the formation of the L-WCC, VVD 

also inhibits the phosphorylation and consequent degradation of the WC proteins, 

leaving them available for a second response to a higher blue-light stimulus129. 

Figure 4.2 summarizes a simplified model for the N. crassa light perception 

mechanism. 

 

Figure 4-2. Simplified model of the N. crassa light perception 
mechanism. In N. crassa circadian rhythm is entrained by light 
stimulus. Under dark phase a White collar-1 (WC-1) and White collar-2 
(WC-2) complex is formed activating the transcription of the frq gene. 
After a blue-light pulse the Large White Collar complex (L-WCC) is 
formed, activating the transcription of blue-light responsive genes.  

In T. atroviride two WC homologous proteins have been found to be essential for 

the photoconidation as well as the regulation of some genes expression. These 

proteins have been called Blue Light Regulated proteins BLR-1 and BLR-2. 

Accordingly, T. atroviride strains that have a deletion of any of these two genes 

present a loss of the blue light-dependent responses130. The sequence of BLR-1 

presents one LOV domain, two PAS domains, and one GATA Zinc finger domain. 

The BLR-2 protein has one PAS domain, a coiled-coil (C-C) structure, one histone 

deacetylase (HDAC) binding domain, and one GATA Zinc finger domain119. The 

presence of the GATA Zinc finger domain in both BLR-1 and BLR-2, the HDAC 

domain in BLR-2, and the missing genetic regulation in the mutant strains suggest 
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can increase presenting new peaks due to the polarity (hydrophobic/hydrophilic) of 

the solvents or the protein environment135 (Figure 4-4 C). Therefore, flavoproteins 

present a characteristic absorption profile which is dependent on two properties: 

the redox state of the flavin and the presence of the cofactor in a protein context. 

Flavin molecules are good electron donors and have been implicated in the 

production of ROS. ROS include the superoxide anion (O2
−•) which is the product 

of a one-electron reduction of oxygen, the hydrogen peroxide (H2O2) which is the 

dismutation of O2
−•, and the hydroxyl radical (OH•) which is partial reduction of 

H2O2. ROS also include singlet oxygen (1O2), which is not a reduced state of O2, 

instead the spin orientation of the two unpaired electrons in the outer shell is 

flipped, producing two electrons with opposing spins that are highly reactive. 

Besides being good electron carriers, flavin molecules can work as 

photosensitizers, absorbing the light and producing a photochemical change in 

other molecules without affecting themselves. As a photosensitizer the absorbed 

BL sends the flavin molecule to a singlet state which decays to a highly reactive 

triplet state. The triplet state can react with other molecules via electron transfer 

reaction (Type 1 mechanism) or via the transfer of the triplet state energy from 

flavin to another molecule (Type 2 mechanism). When oxygen is involved, flavin 

triplet state reactions can produce ROS, either reduced oxygen species or singlet 

oxygen (Figure 4-5), both of which are highly reactive and can interact with 

macromolecules as proteins, DNA and lipids137,138,139. Proteins constitute ~68% of 

the dry weight of a cell and therefore represent potentially major targets for 

oxidative damage140. 

Since flavin molecules are very reactive, mainly due to their triplet state, they are 

usually buried within the protein to protect them from reacting with O2 or with 

potential exogenous electron donors or distal redox amino acids which may deviate 

flavins reaction from their standard enzymatic activity. In fact, how flavoproteins 

regulate the flavin reactivity, how these proteins avoid the production of ROS, and 

how often an off-pathway ROS producing reaction occurs are current open 

questions141. 
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Flavins are also fluorescent molecules, since the singlet state can decay through 

fluorescence (Figure 4-5). Lately, this fluorescent feature has been exploited using 

some flavoproteins as a new class of genetically encoded fluorescent probes 

characterized by their small size and oxygen-independent maturation of 

fluorescence142. 

In the last decade, the chemical reactions diversity of flavin-binding photoreceptors 

have been explored, studying and using these proteins as engineered transducers 

of light input, fluorescent proteins, and ROS producers.  

 

Figure 4-5. Photosensitizer scheme reaction. For photosensitizer 
molecules as flavins, absorbed light induces an excited singlet state 
that decays through fluorescence, or through an intermediate triplet 
state. Excited triplet state can decay emitting phosphorescence or 
reacting with O2to produce ROS. Images reproduced from reference143 

4.3  LOV domains 

Photoreceptors with LOV domains are flavoproteins specialized on BL detection. 

LOV domains are widely distributed144, present in plants145, algae146, fungi147, and 

bacteria148. LOV domains are light allosteric regulators of a wide range of effector 

domains including kinases149, DNA- binding domains150 and transcription factors 

among others151. The biological activity of photoreceptors that contain only one 
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LOV domain (without a predicted effector domain) is performed in trans, interacting 

with other cellular proteins152.  

LOV domains form a subgroup of the PAS domain superfamily that bind as a 

cofactor a flavin molecule. LOV domain core structure resembles the Photoactive 

Yellow Protein (PYP) protein, which is define as the canonic structure of a PAS 

domain153 (Figure 4-6 A). The core LOV domain structure is composed of a -

scaffold with 5 antiparallel -strands (A,B,G,H,I) and 4 -helices that connect 

these elements (C,D,E,F)122. The flavin cofactor is bound noncovalently in the 

interior of the LOV domain by a network of hydrogen bonds, van der Waals and 

electrostatic interactions154. Variability between LOV domains is found in core 

flanking helices at N-and/or C-terminal ends122 (Figure 4-6 B), in the bound flavin 

cofactor (FMN or FAD), and in an additional loop of 9-11 amino acids only present 

in FAD binding LOV domains151, since it allows the accommodation of the large 

terminal adenine moiety of FAD (Figure 4-6 C). 

As previously mentioned, the LOV domain flavin cofactor is a photosensitizer, so 

BL changes the electronic properties of the flavin isoalloxazine ring, sending the 

flavin to a transient singlet state that decays to a triplet state where flavin reacts 

with the thiol group of a highly conserved cysteine in the LOV domain, inducing the 

formation of a reversible covalent union between the carbon C4a of the flavin and a 

conserved cysteine151 (Figure 4-7). The formation of this flavin-cysteine adduct 

propagates a conformational change that triggers the biological function of the 

protein. The standard photocycle of LOV domains implies a flavin transition from its 

oxidized redox state to its reduced state, although it has been reported that 

mutations of the adduct cysteine results in the one-electron neutral semiquinone 

form of the cofactor155,156. 

Flavin-cysteine adduct kinetics can be followed through UV-VIS spectroscopy, 

thanks to the characteristic absorption spectrum of the flavin cofactor which reflects 

the flavin redox state (Figure 4-4). Under dark conditions the flavin-cysteine adduct 

is not formed and the flavin cofactor is oxidized presenting a characteristic 

absorption profile with three main peaks between 400-500 nm. Upon BL 
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cysteine adduct spontaneously decays with a rate that may vary by several 

be 

broken down into two groups based on their lifetime adduct state: the fast cyclers 

lived 

Since LOV domains have been reported to be involved in a variety of biological 

130 

it has been proposed that the variability in the lifetime of 

the adduct state is important for the correct tuning of the biological function. Where 

the fast cycling could allow rapid attenuation and reversal of signaling, and the 
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slow cycling could be employed for a specific one-time event such as gating of the 

circadian clock157. Recently it was proved that the photocycle length of a LOV 

domain protein in N. crassa has biological implications, modifying fungal adaptation 

to light intensity changes158. 

The first LOV domain perception mechanism reported was for the phototropin-1 

protein of Avena sativa (AsPhot), a multi-domain blue light receptor that induces 

the phototropism in plants145. AsPhot has two LOV domains named LOV1 and 

LOV2, which bind a FMN cofactor, and at the C-terminal AsPhot has a Ser/Thr 

kinase domain. Nuclear Magnetic Resonance (NMR) showed that after adduct 

formation an alpha helix situated at the C-terminus of the LOV2 domain (the Ccap 

J helix) presents a displacement. This conformational change of the LOV2 

domain allosterically regulates the kinase activity of AsPhot, acting as a light 

regulated switch159.  

This result highlights the power of LOV domains as light regulated molecular 

switches and recently, this characteristic has been exploited in optogenetic 

experiments, where engineered fusion proteins can be regulated through the light 

activation of the LOV domains160. 

In this work we are interested in studying the case of two fungal LOV domains, 

VVD from N. crassa and TaENV1 from T. atroviride. Both are one-domain proteins 

and their biological function is related to the photoadaptation of the fungus, 

attenuating the light response on prolonged light exposure while remaining 

sensitive to increasing changes in light intensity161,119.  

4.4  The VIVID protein 

VVD is a single LOV domain protein that has been shown to take part in the 

regulation of some circadian clock properties, most likely through its effects on the 

WCC transcriptional activation, including clock resetting and gating of light input to 

the clock162, maintenance of the clock during the light phase163, and temperature 

compensation of the circadian phase164. VVD also regulates the photoadaptation, 

keeping the fungus sensitive to a second blue light pulse with higher intensity, even 

under constant illumination conditions, by down-regulating the initial acute phase of 
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genes induction161. Furthermore, VVD can also have a role intercrossing light and 

osmotic stress responses pathways. In N. crassa glycerol accumulation is triggered 

as a response to hyperosmotic stress conditions by two pathways that involved the 

osmosensing proteins which are: the high osmolarity glycerol (HOG)-like mitogen-

activated protein (MAP) kinase165, and the putative phosphatase protein encoded 

by the cut gene166 which expression is down-regulated by blue light through the 

WCC167.  

Under dark conditions VVD presents the characteristic absorption profile of 

oxidized flavin in a LOV domain context (Figure 4-4 C), with absorption peaks at 

428, 450 and 478 nm. After BL illumination, adduct formation leads to a single 

peak at 390 nm that correspond to a reduced form of the flavin cofactor (Figure 

4-8A). Size-exclusion chromatography (SEC), dynamic light scattering (DLS), 

small-angle X-ray scattering (SAXS)168, and X-ray crystallography147,169 indicate 

that adduct formation induces a conformational change in the VVD LOV domain, 

taking the protein from its inactive state (dark state) to its active state (lit state). 

Regarding to the conformational change of VVD, X-ray crystallography studies 

have shown that after a BL pulse the adduct state is induced, the side chain 

carbonyl of glutamine 182 (Gln182) is flipped, and the cysteine 71 (Cys71) rotates 

into a more exposed position to interact with the asparagines 68 (Asp68). All these 

rearrangements, triggers the detachment of two motifs called ahelix and 

bstrand, located at the N-terminus of VVD147(Figure 4-8B). This conformational 

change exposes VVD regions that interact with the LOV domain in WC-1152, 

allowing the in trans action of VVD as a regulator of the WCC. VVD conformational 

change contrasts with the reported conformational change of Avena sativa LOV2 

that occurred at the C-terminus instead of at the N-terminus170 (Figure 4-8C). 

Two cysteines have been proposed to play a major role in the conformational 

change of the VVD LOV domain. The first cysteine (C108), located in the pocket 

core, forms the adduct with the FAD molecule, and the second cysteine (C71) acts 

as a hinge allowing the displacement of the ahelix and bstrand motif.  
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A mutation in any of these two cysteins looks like a knockout strain, leading to the 

loss of function of the protein and avoiding the VVD repression of BL genes 

expression147. VVD is a slow cycling LOV domain, with an adduct mean lifetime 

between 6,000-10,000 s147.To elucidate the underlying reason of VVD slow cycling, 

several engineered mutant versions of VVD have been produced, proving that the 

electronic flavin environment and solvent accessibility to the flavin binding pocket 

are factors that regulate the adduct lifetime. Also it has been proved that the 

addition of small bases as imidazole reduces the adduct mean lifetime157,158. 

Currently, the crystallographic structure of the lit state and dark state of VVD are 

known169,147.However, it seems that in solution VVD acquires a third state. This 

third state is a loose dark state conformation different from the crystallized dark 

state168, so it is proposed that in solution and in dark conditions VVD alternates 

between a closed and open conformation171.  

Until now, it is not fully understood: how is VVD involved in the regulation of many 

biological processes?, how do the external factors modify the adduct stability?, 

how many intermediate states are visited by VVD?, how is the dynamic of the 

conformational change?, which is the redox potential of the flavin in the VVD 

context?, and as a general question for all flavoproteins, how does VVD regulate 

the reactivity of its flavin cofactor with molecular oxygen?. All these questions have 

to be answered to fully understand the light perception mechanism of VVD and 

also to improve biotechnological applications of VVD as part of the optogenetic 

toolkit.  

4.5  The ENVOY protein 

For the ENVOY protein in T. atroviride (TaENV1), reports of the protein purification 

and characterization of its photocycle are missing. Sequence comparison shows 

that TaENV1 does not present the Jhelix motif as AsLOV2. Instead, it presents 

the sequences for the two motifs ahelix and bstrand, which support the idea of 

a light activation mechanism similar to VVD (Figure 4-9). 
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significant differences in the photoperception mechanism between these LOV 

domains.  

Recently, TrENV1 was expressed and purified using the Glutathione S-Transferase 

(GST) protein as a tag to increase TrENV1 solubility. Purified TrENV1 presents the 

characteristic absorption profile of a LOV domain, and its crystallographic structure 

resembles VVD structure more than the AsLOV2 structure (Figure 4-10). However, 

TrENV1 binds FMN instead of FAD which correlates with the shorter amino acids 

sequence between the E and F motifs, which are necessary for the 

accommodation of FAD moiety (Figure 4-9). Interestingly TrENV1 turns to be 

sensitive to oxidative conditions due to the oxidation of a thiol group of a cysteine 

(Cys96)175and is also sensitive to osmotic stress conditions through a threonine 

(Thr101) which is involved in recruiting water molecules in the LOV active site172. 

 

Figure 4-10. Crystallographic structure of TrENV1. As VVD, this 
protein presents the a-helix and b-strand motifs (dark blue) at the N-
terminus of the LOV domain (light blue), but unlike VVD, TrENV1binds 
as cofactor FMN (yellow) instead of FAD. PDBID: 4WUJ175. 

The natural sequence variations among different LOV domains can become a 

powerful resource to explore and fully understand the mechanism of light 

perception at a molecular level, and can also be used to identify additional 

functions of the LOV domains as C96 and T101 in TrENV1 which are not 
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conserved in VVD. Furthermore, it has been proved that some punctual key 

mutations can modify LOV domains functioning (for example the C71A mutation in 

VVD147) or can be tolerated by the LOV domains (C71V of VVD147). All of the 

above highlight the importance of studying diverse LOV domains. The LOV domain 

TaENV1 provides a natural sequence variation of LOV domains which can act 

together as a photoreceptor, and also provides an opportunity to learn about 

possible functionality of specific amino acid variations. 

4.6  Protein aggregation 

Even when the biological function of proteins is performed within their native state, 

this conformation is marginally stable, only 5-15 kcal/mol above the unfolded 

state176, making proteins native state susceptible to disruption by external factor or 

even by intrinsic fluctuations under physiological conditions177. 

If a native protein is damaged, it generally turns to a misfolded conformation. In 

vivo such a misfolded protein may be subjected to (i) chaperone-mediated 

refolding back into the native conformation, (ii) ubiquitination and subsequent 

degradation by the proteasome, (iii) cleavage or (iv) protein aggregation 

(PA)178,179. In vivo PA is a trait of loss of protein homeostasis180 and it has been 

linked to aging and human health problems as prion diseases, Alzheimer and 

Parkinson diseases 180,181. In vitro loss of protein stability can only lead to protein 

cleavage or aggregation which are common limiting steps for recombinant protein 

research and for the development of therapeutic proteins182,183. 

PA occurs due to the loss of the well-folded or native state, which induces the 

development of intermolecular interactions between non-native proteins and leads 

to the formation of stable aggregates where the biological function of proteins is 

impeded184. These intermolecular interactions are largely driven by hydrophobic 

forces that induce the formation of amorphous aggregates or can lead to the 

formation of highly ordered fibrillar aggregates called amyloid185. These aggregated 

states turned out to be more stable than the native conformation, thus proteins can 

barely be recovered from the aggregated state to their native and functional 

conformation (Figure 4-11). Recently, it has been proposed that PA is a common 
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cellular process and a generic feature of all the polypeptide chains181, highlighting 

its central role in all protein related processes.  

Current studies over protein aggregation are focused on the factors that trigger the 

aggregation, factors that can avoid or stop the aggregating process, and in the 

aggregation kinetics and underlying mechanism of aggregation. Lot of studies on 

PA are related to amyloid aggregation due to its clear role in health problems and 

its characteristic highly ordered structure of stack -sheet. However, the main 

questions about protein aggregation are the same no matter if amorphous or 

amyloid aggregation takes place. 

 

 

Figure 4-11. Protein energy landscape. Protein native state is only 
marginally stable and this state can be disrupted by external factors of 
fluctuations, sending the protein to a partially unfolded state from where 
other states as amyloid fibrils or amorphous aggregates are accessible. 
Image reproduced from reference 185 

PA kinetics is usually tracked by turbidity assays, ThioflavinT fluorescent probe 

(which bind to amyloid fibrils) or by Congo Red dye (which exhibits an absorbance 

shift when binds to amyloid aggregates)186, but last two methods are ineffective 

when PA different from amyloid is being studied. For amyloid aggregation its 
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kinetics reflects a nucleated self-assembly reaction that displays a sigmoidal 

growth, with a lag phase, an elongation phase and a plateau phase, and several 

microscopic models have been proposed to fit the macroscopic aggregation 

kinetics measured parameters187.  

It is important to note that in vitro PA is usually triggered by disrupting the protein 

native conformation through the addition of denaturant molecules, addition of 

oxidizing agents, temperature or pH increments, which are external factors and do 

not reflect the physiological conditions tested by the protein. Since aggregation can 

also occur even under less harsh conditions lately aggregation of proteins under 

physiological conditions has become a more convenient model system to 

understand PA188.  

4.7  Protein oxidation 

In vitro as in vivo osmotic stress, oxidative stress, and heat shock are factors that 

disrupt protein native state enhancing its unfolding and possible aggregation. 

Oxidative stress is defined as a disturbance in the balance between the production 

of ROS and antioxidant defenses189, this loss of ROS homeostasis has toxic or 

even deadly effects for cells190. ROS can induce protein oxidation with the side 

effects of covalent modifications over the proteins, cleavage of the polypeptide 

chains or modifications of the amino acids lateral chains191–193. In any case, the 

stability of the protein is disrupted and protein degradation or PA can be expected.  

In vivo, oxidative modifications of proteins are not repaired. Instead, mildly oxidized 

proteins are selectively recognized and degraded by the 20S proteasome complex. 

However, during oxidative stress the 20S proteasome is inhibited194, and the 

protein degradation pathways get overloaded, leading to protein aggregation (PA). 

It is known that the level of oxidized proteins, as the level of aggregated proteins, 

increases with aging and in a number of human diseases. However, the 

accumulation of oxidized proteins is a complex function of the rates of ROS 

formation, antioxidant levels, and the ability to degrade oxidized forms of 

proteins138,195,196. Therefore, even when protein aggregation and protein oxidation 

seems to be part of the same biological process, it is unclear which part of the 
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process is the most toxic for the cell, the proteins aggregation or the proteins 

oxidation. 

In vitro, intentional ROS oxidation of proteins is usually performed by metal ion-

catalyzed reactions (Fenton’s reaction), and it has been proved that oxidation leads 

to cleavage of the polypeptide chain of proteins, formation of cross-linked proteins, 

and can lead to an increase in hydrophobic surface exposure, enhancing 

intermolecular interactions and PA196,195,197,191–193. Metal ion-catalyzed reactions 

are not the only possible source of ROS, off-pathway reaction in flavoproteins can 

also lead to ROS production.  

One of the most documented off-pathway reactions of flavoproteins occur in the 

mitochondrial respiratory chain, where the leaking of electrons is an important 

source of intracellular ROS198. However, it has been proved that the production of 

ROS is not substantially diminished in mutants lacking respiratory enzymes, which 

led to the conclusion that ROS can be produced by other non-respiratory 

flavoproteins 199,200, and flavin-binding photoreceptors are feasible producers of 

ROS, since they bind a photosensitizer molecule as a cofactor and its biological 

function implies exposition and absorption of BL. 

4.8  Side effects of blue light and molecular oxygen 

Although BL is used for photosynthesis and as a cue for the diverse biological 

responses, it has deleterious side effects and has been related to increasing 

intracellular ROS201,202. Unlike UV radiation, BL by its own is barely capable to 

producing cellular damage or ROS, but photosensitizer molecules as flavins are 

capable to absorb BL and react with molecular oxygen producing ROS (see 

Section 4.2). 

Recently it has been proved that a CRY photoreceptor in plants is a source of 

ROS203, and for LOV domains it has been proved that an engineered version of the 

AsLOV2 named miniSOG (mini Singlet Oxygen Generator) can react with 

molecular oxygen, producing 1O2
204. Other genetically encoded photosensitizer 

proteins that produce 1O2 have been reported, as KillerRed, SuperNova and 

Pp2FbFP L30M proteins. Together they cover the spectral range from 430 to 590 
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nm that can be used for 1O2 production205,206.Genetically encoded photosensitizers, 

as miniSOG or KillerRed, have been used to induce local oxidative stress within a 

cell and to kill cell populations in photodynamic therapy207, so it turns feasible that 

a self-oxidation of the photosensitizer proteins could take place. However, in any 

case, the deleterious effects of the ROS over the photosensitizer protein itself have 

been reported. 

4.9  Results 

This section presents the unpublished data of the photochemical characterization 

of the LOV domain TaENV1 and the preliminary results for recombinant expression 

of the LOV domain of BLR-1. Also, the submitted manuscript Hernández Candia 

CN, Casas-Flores S, Gutiérrez-Medina B (2017) “An alternative light response of a 

LOV photoreceptor triggers self-induced aggregation” The Journal of Biological 

Chemistry, is summarized. 

4.9.1 Abstract 

Blue light perception in the filamentous fungi N.crassa and T. atroviride is 

performed mainly by flavin-binding LOV domain photoreceptors. Herein the 

homologous single LOV domain proteins VVD and ENV1 (from N.crassa and T. 

atroviride, respectively) are studied. For VVD, its in vitro aggregation under 

physiological conditions was linked to the photosensitized functioning of its flavin 

cofactor. The underlying mechanism of in vitro VVD aggregation was established in 

a comprehensive way. Briefly, VVD has a probability to perform its standard flavin-

cysteine adduct or to act as a photosensitizer, producing singlet oxygen that 

oxidizes diverse amino acids in the inside of the protein. Protein oxidation disrupts 

VVD conformation and triggers its partial unfolding, thus VVD hydrophobic regions 

get exposed and intermolecular interaction of partially unfolded VVD proteins leads 

to an amorphous aggregated state. VVD protein turns out to be sensitive to light, 

oxygen, and temperature (LOT) cues, integrating environmental information 

through modifications in the aggregation extent of the protein. We propose that this 

self-oxidation and aggregation mechanism is a possibility for other flavin-binding 

photoreceptors and it is feasible that VVD self-oxidation also occurs in vivo, directly 
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modifying the BL responses of N. crassa. Regarding to the TaENV1 protein, its 

recombinant expression and purification were achieved and its photocycle was 

measured for first time, showing that TaENV1 is a slow cycling LOV domain, which 

as other fungal LOV domains, is barely soluble. All these results contribute to 

understand the diverse molecular processes that take place in LOV domains.  

4.9.2 Motivation 

For the VVD studies presented herein, motivation emerged from a persistent 

observation of in vitro VVD aggregation. After proper control experiments we 

concluded that aggregation was part of the protein traits, thus we found an 

opportunity to explore PA under physiological conditions in a well characterized BL 

photoreceptor. 

The study of TaENV1 protein and the LOV domain in BLR-1 presents an 

opportunity to increase the amount of functional characterized fungal LOV 

domains, increasing the known pool of functional amino acid variations that LOV 

domains tolerate.  

4.9.3 VIVID aggregation 

The VVD protein, a version N-terminally truncated by 36 residues and tagged at 

the N-terminal with a 6xHis tag (6xHis-VVD) (plasmid kindly provided by Dr. Brian 

R. Crane, Cornell University), was expressed under the same conditions reported 

on literature and the adduct formation was confirmed with the absorbance 

spectrum of the lit and dark states. Unexpectedly, a shift in the absorption 

spectrum was repeatedly observed. This shift was aggravated at high 

concentrations, so concentrations lower than 1 mg/ml were used, however the 

absorbance shift was still present (Figure 4-12A). Increased turbidity in the purified 

VVD sample was due to PA and Transmission Electron Microscopy (TEM) showed 

that under native conditions VVD presented amorphous aggregation (Figure 

4-12B).  
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Figure 4-15
A) Detection of oxidized proteins by western blot against biotin
hydrazide in labeled samples. On each well 5.6 
loaded. Lane1: VVD intentionally oxidized using 33 mM H
mM NiCl2. Lane 2: unaggregated VVD. Lane 3: aggregated VVD
The 3D structure of VVD in the dark state (Protein Data Bank 2PD7) 
shows various oxidized amino acids (red) as detected by mass 
spectrometry. C) Removal ofO
(20.5 µM glucose oxidase, 70 nM catalase, 69mM glucose) full
avoided aggregation. The corresponding adduct mean lifetime was
175 ± 2 min (
avoided aggregation, and shortened the adduct mean lifetime to 
17.8 ± 0.6 min (
scavengers DTT (E) and GSH (F) also avoided aggregation. In C
and last absorption spectra are shown in black, and data were acquired 
every 30 min.
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avoiding VVD aggregation and supporting the hypothesis of VVD as a 

photosensitizer protein (Figure 4-15C). Diverse ROS scavengers were tested, but 

only singlet oxygen scavengers DTT and GSH proved to be effective avoiding 

aggregation (Figure 4-15E&F). Interestingly, catalase modifies VVD adduct mean 

lifetime and avoids VVD aggregation (Figure 4-15D). 

To discard that the aggregation process in VVD was due to metal ion-catalyzed 

production of ROS a VVD protein truncated by the first 36 amino acids and tagged 

at the N-terminus with a 6xHis tag and at the C-terminus with a 15 amino acid 

sequence, named Biotin-tag208, was expressed. The Biotin-tag binds a biotin 

molecule, allowing the purification of the protein 6HIS-VVD-Biotin through an 

Avidin resin, fully avoiding the exposition of the protein to nickel ions during the 

purification step. The absorption spectrum of the purified 6HIS-VVD36-Biotin 

protein was obtained, showing the flavin-cysteine adduct formation and the thermal 

recovery of the protein to the dark state. Also, the same absorbance shift observed 

for the VVD protein purified through Ni affinity chromatography was observed. 

Furthermore, VVD protein was passed through a chelex resin which binds metal 

ions and also desferal, which binds to free iron, was tested. None of these cautions 

avoid VVD aggregation supporting the idea of ROS produced by VVD and not by 

external factors.  

Based on our data we proposed a model for VVD aggregation pathway (Figure 

4-16). Exposure of functional VVD in the dark state to BL induces formation of a 

flavin triplet state, from where two possibilities follow: a flavin-cysteine adduct is 

formed (standard photocycle) or 1O2  is produced in the presence of O2 (ROS path). 

In the ROS path 1O2 oxidizes VVD and triggers the aggregation route. Oxidation of 

VVD leads to an intermediate state characterized by partial unfolding that releases 

the flavin cofactor and exposes buried hydrophobic regions. In this partially 

unfolded state, hydrophobic and covalent inter-molecular interactions help produce 

oligomers which act as nucleation centers that initiate production of a macroscopic 

aggregated state. Addition of glycerol or BSA avoids loss of protein structure, 

preventing exposition of hydrophobic regions and stopping the path to aggregation. 

The presence of O2 scavenger or 1O2 scavenger avoids aggregation by preventing 
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production of 1O2 or by removing already produced 1O2, respectively. Every time 

VVD is exposed to BL (a trial), it has probability to follow the off-pathway ROS 

cycle or to produced the flavin-cysteine adduct. Therefore, light affects the 

probability of aggregation by influencing the number of trials or the time between 

trials. Even when 1O2 was already produced, in a second trial adduct can occur 

stabilizing the protein conformation until thermal adduct decay happens. Thus low 

temperatures diminish adduct decay rate and retain VVD conformation longer, 

even if the VVD protein was already oxidized. 

Regarding catalase effect, unexpected modification of the VVD adduct decay rate 

suggests that catalase did not act as a conventional hydrogen peroxide scavenger 

to prevent the aggregation of VVD. However, the VVD-catalase interaction 

mechanism remains as an open question. 

 

Figure 4-16. In response to blue-light VIVID follows an alternative 
pathway that triggers its self-induced aggregation. Photosensitizer 
activity of VVD leads to an unconventional pathway where singlet 
oxygen (1O2) is produced, oxidizing the protein and inducing its partial 
unfolding which leads to protein aggregation. 
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4.9.4 Conclusions 

We propose that PA, instead of just being an end-point for misfolded and damaged 

proteins, could work as a molecular mechanism for simultaneous integration of 

diverse environmental cues regulating protein availability, thus regulating its 

biological function. In this regard, multi-factorial nature of PA could be useful in 

complex processes as circadian rhythms, where integration of several 

environmental cues is required to maintain stable rhythmicity.  

In N. crassa, as in other fungi, circadian rhythm is entrained by light, temperature, 

and cellular redox states209,210. However it is not clear how all these factors are 

simultaneously integrated. On the other hand, VVD has been shown to take part in 

regulating various circadian clock properties, most likely through its effects on the 

WCC. In N. crassa VVD aggregation could work as an integrative node for multiple 

cues, diminishing VVD effective concentration and limiting VVD repression of the 

transcription factor WCC. 

Surprisingly, catalase avoids the aggregation of VVD with concomitant shortening 

of adduct mean lifetime. One possibility is that as1O2 is produced catalase acts as 

a 1O2 scavenger by getting oxidized211, thus sparing VVD. However, this 

mechanism does not explain changes in the adduct lifetime. Another possibility is 

that catalase interacts directly with the photoadduct, avoiding the production of 

damaging 1O2. Here, a redox reaction between the lit-reduced flavin cofactor and 

catalase could return the flavin to its dark-oxidized state with the accompanying 

reduction of the heme group in catalase. Supporting this idea, when H2O2 

concentrations are low, catalase two-step catalytic cycle can stall with the heme in 

its oxidizing form, and can abstract electrons from the surrounding200. 

Our results show that self-oxidation and consequent PA occurred in VVD, and both 

are feasible processes for other LOV domains or photosensitizer proteins. Self-

oxidation of photosensitizer proteins can account for its disposal either by 

degradation or by PA and it is a process that has to be considered for recombinant 

protein purification, optogenetic application, and should be considered in the 

functioning scheme of the photosensitizer proteins. 
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4.9.5 Unpublished Data 

VVD size-exclusion chromatography 

To test if in our hands the purified VVD protein presents the reported light triggered 

conformational change147 Size Exclusion Chromatography (SEC) assays were 

performed. Purified protein was injected to a 75 superdex column (resolution range 

3,000 Da to 70,000 KDa) in a buffer of high ionic strength (20 % glycerol, 300mM 

NaCl, 50mM HEPES, pH8) and a flow condition of 0.5 ml/min. VVD was injected in 

two different conditions: 1) dark condition, where care was taken to avoid as much 

as possible sample illumination and 2) lit conditions where the sample was 

illuminated for 15 min with blue light prior to injection (Figure 4-17B). The elution 

profile showed two peaks and the presence of the protein around the 14 ml elution 

fraction was confirmed by SDS-PAGE electrophoresis. For the dark state VVD is 

expected to elute as a protein of ~19 kDa, and in its open conformation the 

expected apparent molecular weight is ~33 kDa147.Also SEC was performed for the 

6HIS-VVD-BIOT protein (Figure 4-17 C). 

Both elution profiles presented a clear change in response to BL, but the 

differences we observed among the lit and dark elution profiles do not correspond 

to the expected change. For the lit condition the main peak eluted in fraction ~14 

ml corresponding to the expected molecular weight of ~19 kDa.  

Under dark conditions SEC shows a main peak that corresponds to a molecular 

weight of 1.35 kDa or lower (around elution volume 18 ml), but protein was not 

observed in SDS-PAGE. We concluded that flavin cofactor released from the LOV 

domain elutes in this fraction since flavin presents a high absorption around 280 

nm, its molecular size is 785 Da and no protein signal was observed in this elution 

fraction by SDS-PAGE. SEC results are in agreement with our proposed model for 

VVD aggregation where the flavin cofactor is only released after the flavin-cysteine 

adduct decay, thus in the lit conformation the native conformation is retained and 

the flavin cannot be lost. 
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Since the size of the GST protein is comparable to the size of the TaENV1 LOV 

domain (Figure 4-19 C), we were worried about some possible effects of the GST 

tag over the light response of the LOV domain. The GST tag from the purified 

GST-ENVOY-6HIS protein was cleavaged with thrombin (Figure 4-19 D) and the 

spectrum from this GST-free protein was obtained. It is noticeable that 10 minutes 

of illumination with BL was not enough to bring all of the sample to the lit state, 

since the peaks between 400 -500 nm were not completely gone (Figure 4-19 E).  

To prove that TaENV1 photocycling was a reproducible result, several purifications 

of the GST-ENVOY-6HIS protein were performed and their absorbance spectrum 

were recorded, showing always the expected bleaching at 400-500 nm after a BL 

pulse and the exponential adduct decay. The adduct mean lifetime of TaENV1 was 

estimated from the absorbance at 450 nm (Figure 4-19 F) for different protein 

purified batches. In all the cases, adduct mean lifetime was in a range between 

1362 s and 1690 s, making TaENV1 protein a member of the slow cycling LOV 

domain subclass. 

Size-exclusion chromatography (SEC) was performed with the purified GST-

ENVOY-6HIS protein to know if the protein was a homogeneous monomeric 

sample and to get evidence of the ENVOY’s conformational change as it has been 

reported for VVD LOV domain147. The protein was injected to a 200 superdex 

column (resolution range: 10,000 Da to 600,000 Da) in dark condition and lit 

conditions where the sample was illuminated for 15 min with BL prior to injection. 

The dark condition sample showed mainly a single peak, compatible with the idea 

of a homogeneous population. In contrast, when the sample was illuminated more 

than one peak appeared, indicating a lit-response oligomerization and maybe an 

implicit conformational change (Figure 4-20). 

Attempting to get a smaller soluble tagged version of TaENV1, instead of using a 

GST tag, a Biotin-tag was fused at the C-terminus of the truncated version of 

TaENV1 (first 49 amino acids deleted) and at the N-terminus a 6xHis tag was 

fused. The double tagged protein was named 6HIS-ENVOY-Biot. Also a complete 

version of the TaENV1 protein was tagged at the N-terminus with a 6xHis tag and 
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point mutations in these two amino acids, trying to understand how oxidation 

disturbance propagates from inside out of the protein. Notably TaENV1 and LOV 

domain in BLR-1 also present solubility problems as it has been reported for 

TrENV1 and in a lower extent for VVD, suggesting that slow cycling fungal LOV 

domains have a higher tendency of aggregation. Further studies must be 

performed to understand if this aggregation propensity correlates with self-

oxidation processes similar to what we report for VVD. 

Also in a near future single-molecule experiments are proposed. Using our built 

optical tweezers and the double tagged LOV domains, the dynamic of the light 

triggered conformational change will be explored. Besides, optical tweezers offers 

the possibility to explore our proposed VVD self-oxidation unfolding process. 

We plan to perform experiments based on the geometry represented in Figure 

4-21. The double tagged LOV domain protein will be attached to a micron-sized 

probe bead, which will be trapped with the laser beam, while the other end is going 

to be tethered to a dsDNA molecule which in turn will be attached to the surface of 

the coverslip. While in the dark, controlled mechanical tension will straighten the 

complex. Then, exposure of the complex to a short pulse of blue light will induce 

the lit state of the LOV domain. Any conformational changes of the LOV protein will 

be measured, as they will have the effect of inducing a change in the total length of 

the ensemble, which can be recorded with high temporal (~1 s) and spatial (~1 

nm) resolution. This proposed experiment is supposed to be the first direct 

measurement at single-molecule level of a conformational change regulated by 

light. 

To know if the spatial resolution of our instrument will be enough to detect the 

conformational change some gross estimations were computed letting us to 

conclude that 1 nm of spatial resolution will be enough. Based on SEC and 

crystallographic reported data it is possible to estimate an upper and lower limit for 

the magnitude of the conformational change expected for the VIVID LOV domain. 

For the lower limit, it has been reported that in a SEC the lit and dark states elute 

at different fractions, where the lit-state shift corresponds to a 14.2 KDa increment 
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Chapter 5. Final comments 

Altogether, our studies showed that few modifications to a standard BF 

microscope configuration plus digital image processing allow performing 

experiments in a wide range of biological scales, from visualization of transparent 

thin objects as microtubules and standard deconvolution of unstained cells through 

single-molecule force and displacements measurements with optical tweezers. 

Regarding the role of light as an environmental cue, particularly blue light can 

induce biological responses and oxidative stress, and our results show that blue 

light photoreceptors can be involved in both effects. Our studies highlight the dual 

possibility of photoreceptor proteins as blue light sensors and photosensitizers, 

which can react with O2 producing ROS. In particular for the LOV domain VVD, our 

data showed that besides its molecular role as photoreceptors, VVD must be 

considered for its function as 1O2 producer and also the side effects of 1O2 over 

VVD itself must be taken into account in the future.  

In general protein native conformation is barely stable and this instability could be 

an advantage for the protein, making them more sensitive to small changes around 

critical values and afforded proteins with optional states to adapt to changing 

environmental conditions. Our studies over VVD aggregation pathway showed that 

VVD stability is sensitive to oxygen presence, temperature, and light stimulus, 

highlighting how proteins elapse in the edge between two or more states and how 

multiple external factors can tune protein dynamic along its folding energy 

landscape.  

Current interest in studying the functioning of LOV domains, besides understanding 

how organisms respond to light stimulus at a molecular level, relapse in the role of 

LOV domains as part of the tool kit of optogenetic techniques. In 2010 

optogenetics was named by Nature magazine the method of the year due to its 
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potential applications to accurately regulate cellular processes, thus future 

engineered proteins will require a full understanding of this domain. Also cancer 

treatments with photodynamic therapy appear as a possible application for LOV 

domains due to its photosensitizer capabilities, however until now it is not clear 

how flavin-binding domains regulate its reactivity with O2. Our results are a step in 

that direction, showing that LOV domains can perform different photocycles that 

include light standard perception or off-pathway reactions that produce singlet 

oxygen. 
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Appendix A 

Materials and Methods 

All reagents were purchased from SIGMA unless otherwise specified. Data were 

analyzed using the statistical analysis software IGOR. And automation of the 

optical tweezers and the BF image acquisition and image processing were 

performed with Labview software. 

Coverslip cleaning and poly-L-lysine cover 

Microscope slides and coverslips were cleaned prior to use for 5 min in a plasma 

cleaner (Harrick Plasma) at 1 Torr (ambient air). A rack of plasma-cleaned 

coverslips was submerged in a solution of 600 µL of poly-L-lysine diluted with 300 

mL of ethanol, incubated for 15 min, dried in an oven at 40°C, and stored in a 

closed container. 

In vitro microtubules polymerization and visualization 

Lyophilized tubulin (TL238-C, Cytoskeleton) was resuspended to a final 

concentration of 10 mg/ml by adding 100 µl of PEMGTP buffer (1 µl of GTP 100 

mM 99 ml PEM). PEM buffer was 80 mM Pipes, pH 6.9, 1 mM EGTA, 4 mM MgCl2.  

To polymerized the tubulin, in a clean eppendorf tube 60.8 µl PEMGTP, 2.2 µl 

DMSO, and 4.8 µl tubulin 10mg/ml were mixed and incubated at 37°C for 30 min.  

In the meantime, STAB buffer (83.6 µl PEM, 1 µl of GTP 100 mM, 9.4 µl 65 g/l 

NaN3, and 6.0 µl Taxol (TXD01, Cytoskeleton) 2mM)was prepared. After the 

incubation time, 8 µl of STAB buffer were added to the polymerized tubulin.  

To view under the microscope, stabilized MTs were diluted 1:100 in PEMTAX 

buffer (0.02 mM Taxol, 80 mM PIPES, 1 mM EDTA, 4 mM MgCl2, pH 6.9), 

introduced into the flow channel and incubated for 10 min. Unbound MTs were 

removed by washing the channel with 40 µL of PEMTAX. To immobilize MTs on 

coverslips, flow channels were prepared using coverslips coated with poly-L-lysine. 
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DNA stretching  

Double tagged dsDNA 

A 3039-bp dsDNA coding for a fragment of theblr-1gene ofTrichoderma 

atroviridewas amplified by standard polymerase chain reaction (PCR). To allow 

attachment of the dsDNA to a polystyrene bead and to the coverslip, two 

functionalized PCR primers (Integrated DNA Technologies) were used: a forward 

primer (biotin-5′-GGGCTTCTACCAGACAAACCA-3′), and a reverse primer 

(digoxigenin-5′-CGCTCTTCTCGTATTGAAGCC-3′). The reaction tube contained: 

5.0 µL of the 5XPCR buffer (Promega), 2.5 µL of 25-mM MgCl2(Promega), 0.5 µL 

of 100-mM dNTPs, 0.5 µL of 10-µM reverse primer, 0.5 µL of 10-µM forward 

primer, 1.0 µL of cDNA from theblr-1gene (generous gift of Sergio Casas Flores, 

IPICYT, Mexico), 0.5 µL of Taq Polimerase (GoTaq, Promega), diluted in 15 µL of 

Milli-Q water. The PCR ran for 25 cycles with an alignment temperature of 58°C 

and 1 min for extension. The amplified fragment was purified using a QIAQuick 

PCR purification kit (Qiagen). The expected length of the dsDNA molecule is 

∼1053 nm, computed by taking into account a 3039-bp chain with 0.34 nm rise per 

bp, together with ∼20 nm for the biotin-streptavidin and digoxigenin-anti-

digoxigenin linkages. 

Stretching of a single dsDNA assay 

A solution of 0.05 mg/mL of antidigoxigenin (3210–0488, Spherotech) in phosphate 

buffer saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) was 

introduced in a flow channel, and incubated for 10 min. After washing with 200 µL 

of washing buffer (5 mg/mL BSA, 77.4 mM Na2HPO4, 0.1% Tween), the channel 

was filled with a sample of 0.25 nM dsDNA diluted in phosphate buffer (77.4 mM 

Na2HPO4), and incubated for 10 min. Unbound DNA was removed by flowing 200 

µL of washing buffer through the channel. Finally, 30 µL of 730-nm diameter, 

avidin-coated beads (generous gift of Steven Block, Stanford University), diluted in 

phosphate buffer to a final concentration of ∼1 pM, were introduced into the 

channel, and the flow cell was sealed using nail polish. 
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Single molecule kinesin stepping assay 

Kinesin expression  

We expressed the homodimeric, recombinant kinesin construct DmK401, a His-

tagged derivative of Drosophila melanogaster kinesin heavy chain, that includes 

the first 401 N-terminal residues. Briefly, BL21(DE3) cells transformed with plasmid 

pCA1 (generous gift of Steven Block, Stanford University) were grown to 

logarithmic phase in Luria Broth medium (10 g/L tryotone, 5 g/L yeast extract, 10 

g/L NaCl) supplemented with 0.1 mg/mL ampicillin (GIBCO). Kinesin expression 

was chemically induced with 1 mM IPTG (Invitrogen) at 27°C during 12 h. Cells 

were lysed by sonication in extraction buffer (200 mM Na2HPO4, 50 mM NaCl, 2 

mM imidazole, 20 uM ATP, 2 mM MgCl2, 1 mM DTT, 1 mM phenylmethylsulfonyl 

fluoride (PMSF), and protease inhibitor cocktail (P8465, Sigma); 1% Tween was 

added after sonication). Cellular lysate was clarified by centrifugation (30 min, 

15,000 rpm, 4°C). Clarified lysate was stored at −20°C in 10% glycerol, and used 

in motility assays. 

Polystyrene bead coating with purified kinesin protein 

Briefly, 10 µL of the stock solution of 540-nm diameter, streptavidin-coated beads 

(Spherotech, SVP-05–10) were diluted in 70 µL of PEMBSA buffer (4 mg/mL BSA, 

80 mM PIPES, 1 mM EDTA, 4 mM MgCl2, pH 6.9), and sonicated for 10 min., after 

which 20 µL of penta-His biotin conjugate antibody (34440, Qiagen) were added. 

After incubating for 1 hour at room temperature, beads were washed 5 times by 

centrifugation, and stored at 4°C. To prepare the kinesin-bead complex, antibody-

coated beads were diluted in assay buffer (3 mg/mL BSA, 0.05 M potassium 

acetate, 100 µM ATP, 1 µM DTT, 80 mM PIPES, 1 mM EDTA, 4 mM MgCl2, 0.02 

mM Taxol (TXD01, Cytoskeleton), pH 6.9), sonicated, and incubated for 12 h at 

4°C with clarified lysate diluted in assay buffer at various concentrations. 

Kinesin motility assay 

Flow channels were prepared using coverslips coated with poly-L-lysine. Stabilized 

MTs were diluted 1:100 in PEMTAX buffer (0.02 mM Taxol, 80 mM PIPES, 1 mM 



 

EDTA, 4 mM MgCl

incubated for 10 min. Unbound MTs were removed by washing the channel with 40 

µL of PEMTAX.

diluted in PEMTAX (to minimize the sticking of beads to the coverslip surface), and 

then with 100 µL of assay buffer

µM ATP, 1 µM DTT, 80 mM PIPES, 1 mM EDTA, 4 mM MgCl

6.9). Finally, 40 µL of kinesin

and the flow cell was sealed. To minimize the presence of reactive oxygen species, 

final samples were protected with an oxygen scavenger system (0.25 mg/mL 

glucose oxidase, 0.03 
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We perform background subtraction and frame averaging on all our images. To 

eliminate unwanted, uneven background arising from specks of dust or reflections 

inlenses, a total of 250 frames are captured and averaged to produce a single 

background frame that is subsequently subtracted from all incoming frames. 

Background subtraction is further optimized by displacing the microscope stage in 

3D (along non-closed paths covering distances of a few micrometers) while 

background frames are taken. This last action is performed with the piezoelectric 

stage on which the sample is mounted, and has the effect of averaging out 

intensity contributions in the final background image due to small debris found on 

the coverslip surface. We reduce electronics noise by arithmetical averaging of 50 

background-free frames, producing a single low-noise, high-contrast image of a 

given subject at a specified z-position. A typical z-stack of 70 frames is acquired in 

∼2.5 min, and stored as a set of text files for further processing/analysis. During 

processing, the original 8-bit images are converted to 16-bit and carried out in that 

form throughout. Image acquisition and digital processing was performed using 

LabView 8.5 (add-on package Vision, National Instruments). 

LOV-domains expression and purification 

For all LOV-domains expressed the procedure was the same; an inoculum was left 

overnight at 37°C with constant shaking, then a 1:100 dilution in fresh Luria Broth 

(LB) was done and the culture was grew until 0.4-0.6 O.D with constant shaking at 

37°C. Then after 15 min shaking at 18°C the culture was induced with 100 �M of 

IPTG. For proteins expressing a biotin binding tag 5 M biotin was added to the LB 

medium. The induction was left for 22 hours shaking at 18°C under constant 

illumination. The cells were harvest and flash freeze.  

For protein purification, the pellet was resuspended on Extraction Buffer (10% 

glycerol, 150 mM NaCl, 50mM HEPES, pH 8, inhibition cocktail EDTA free and 1% 

Triton X-100) and lysed by sonication (6 pulses of 20 s with pauses of 40 s). The 

lysate fraction was spin at 15000 rpm at 4°C for 30min.  
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The clarified supernatant was passed through the corresponding resin (Ni-NTA, 

Glutathione resin, SoftLink Avidin Resin) and onwards the proteins were kept at 

4°C. 

After three wash steps with corresponding Wash Buffer (for Ni agarose resin: 10% 

glycerol, 150 mM NaCl, 50mM HEPES, 10mM Imidazole, pH 8; for Glutathione 

resin and SoftLink Avidin Resin: 10% glycerol, 150 mM NaCl, 50mM HEPES, pH 8) 

the protein was released with Elution Buffer (for Ni agarose resin: 10% glycerol, 

150 mM NaCl, 50mM HEPES, 200mM imidazole pH 8; for Glutathione resin: 10% 

glycerol, 150 mM NaCl, 50mM HEPES, 10mM reduced glutathione, pH 8, for 

SoftLink resin: 10% glycerol, 150 mM NaCl, 50 mM HEPES, 5 mM biotin, pH8) 

 

Aggregation assays 

Aggregation kinetics. Stored protein samples were resuspended to the proper 

glycerol and initial protein concentrations. For all samples the final buffer (DB) 

composition was:20 mM imidazole, 150 mM NaCl, 50 mM HEPES, pH8, and 

glycerol content was 10% unless otherwise specified. Samples containing 150 µL 

each were loaded on the flat bottom of a 96–well plate, and 70 µL of mineral oil 

was added at the top of each well to avoid evaporation. To establish the initial 

condition, a BL LED (Sink PADII, Royal-Blue, λ = 440-460 nm, Luxeon) was used 

to illuminate the plate for 5 min, wh ich  was  then taken to a microplate 

spectrophotometer (Synergy, Biotek), and absorption spectra (300-600nm) were 

acquired every 30 min at constant, controlled temperature (25°C, unless otherwise 

specified). All the tested proteins or molecules used to probe effects on the aggregation 

of VVD (GSH, DTT, trolox, dimethylurea, propyl gallate, BSA, linoleic acid-oleic acid-

albumin, superoxide dismutase, catalase, glucose, glucose oxidase, and glycerol) 

were first resuspended in DB and then added fresh to the VVD samples. 

Effect of consecutive BL pulses on aggregation. VVD samples were loaded on the 

96-well plate and illuminated for 5 min with BL. Absorption spectra were then 

acquired every 12 min in otherwise dark conditions, and after 48 min the plate was 

re–illuminated during 5 min with BL and the acquisition of spectra was resumed. This 
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re–illumination sequence was repeated up to 4 times. As a control experiment, an 

initial BL pulse was given, followed by the same re–illumination procedure but now 

using a red LED (Sink PADII, Deep Red, λ = 650-670 nm, Luxeon). 

Effect of temperature over VVD aggregation. VVD samples were loaded in a 96–

well plate where a BL pulse was applied, and left to incubate during 4 h in dark 

conditions at different temperatures. L evels of protein aggregation were measured 

by recording the absorbance at λ=550 nm for all samples. Measured absorbance 

in a 50% glycerol (unaggregated) VVD sample was used as a control and to 

establish the base line absorption value. Different temperature data were 

normalized with respect to the measured absorption at 37°C. Adduct mean 

lifetimes at different temperatures were obtained from exponential fits to absorption 

recovery data at λ=450 nm, measured every 30 min. To avoid aggregation of VVD 

at high temperatures, the oxygen scavenger system was added. 

Western Blot 

To detect oligomers in aggregated VVD, Penta-His biotin conjugate (QIAGEN, cat. 

34440) and ultra–sensitive Streptavidin–Peroxidase Polymer were used in standard 

SDS–PAGE and Western blot assays. To detect carbonyl groups, three sample 

conditions at the same protein concentration were evaluated. A fresh resuspended 

sample (unaggregated), a sample incubated for over 12 h at 25°C (aggregated) 

and an intentionally oxidized VVD sample (incubated during 15 min with 1.5 mM 

NiCl2 and 33 mM H2O2) were supplemented with 5 mM biotin-hydrazide and left to 

incubate for 3 h at room temperature. Ultra-sensitive streptavidin peroxidase 

polymer was used to detect the biotin-hydrazide label. 

Mass Spectrometry 

The pellet fraction of an aggregated sample was loaded on a SDS-PAGE gel. The 

protein band was excised from the gel and reduced with 10 mM DTT, 25 mM 

ammonium bicarbonate, followed by protein alkylation with 55 mM iodacetamide. 

Protein was digested with Trypsin Gold (PROMEGA, V5280). Nanoscale LC 

separation of tryptic peptides was performed with a nanoACQUITY UPLC System 

(Waters, Milford, MA, USA) and tandem mass spectrometry analysis was carried 
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out in a SYNAPT HDMS (Waters). MS/MS data sets were used to generate PKL 

files using the Protein Lynx Global Server v2.4 (PLGS, Waters). Proteins were 

then identified using PKL files and the MASCOT software. Searches were 

conducted against the NCBI protein database. 

Oligos for DNA tethering 

Digoxigenin tag: 5'-DigN-GGG CTT CTA CCA GAC AAA CCA-3´ 

Biotin tag5'-Biotin-CGC TCT TCT CGT ATT GAA GCC-3' 

To prepare a DNA-protein conjugate using histidine-tag (His-tag) chemistry 

“Biotechnol Lett. 2008 Nov;30(11):2001-6. doi: 10.1007/s10529-008-9784-4.” 

5'-NTA (GenLink Cat. no. 26-6444-02)-GGGCTTCTACCAGACAAACCA-3' 

Oligos for tagged protein  

Some constructions were first tried with pET28(Dr SCF) but the sequence in this 

vector was mutated and the 6xHis tag was missing. So the constructions were 

made in pET28(Dr. Samuel) where the 6xHis tag was not mutated but the thrombin 

site was interchanged for a PreScission cleavage site. 

F-Biot-VVD XhoI GG 

5´GAGATCTCGAGTCATTCATGCCATTCAATTTTTTGTGCTTCAAAAATATCATTCAGAC

CACCACCTTCCGTTTCGCACTGGAAACCCAT-3’ 

F-49envoy-BioTag GG 

5´GAGATCTCGAGTCATTCATGCCATTCAATTTTTTGTGCTTCAAAAATATCATTCAGAC

CACCACCTACTTCGGCTTGTAACCCGACGGCATA-3´ 

R-BioTag 49envoy 15aa 

5´CATGCCATGGGTCTGAATGATATTTTTGAAGCACAAAAAATTGAATGGCATGAATCC

GTGATATATCCTGGCATTTACTCGGCT-3´ 

R-6His VVD 

5´CTTCTACATATGATGTATACGATCTACGCTCCCGGCGGT-3´ 

F-6His envoy 
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5´GAGATCTCGAGTCATACTTCGGCTTGTAACCCGACGGC-3´ 

R 6His 49envoy 

5´CTTCTACATATGTCCGTGATATATCCTGGCATTTACTCGGCT-3´ 

R-6His-Envoy 

5´CTTCTACATATGGTTCCTTCAGGGTCTTCAAAACTACCG-3´ 

F-49envoy-6His 

5´GAGATCTCGAGTACTTCGGCTTGTAACCCGACGGCATA-3´ 
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GST-ENVOY(49)-6HIS. pGEX, Ampicillin, BL21(DE3)  
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GST-LOVBLR1-6HIS. pGEX, Ampicillin, BL21(DE3) 
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6HIS-ENVOY(49). pET28 (Dr.Samuel),TOP10, kanamycin NOTE: This 

construction was not corroborated by sequencing.   
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6HIS-ENVOY(49)-BiotinTag. pET28(Dr.Samuel), BL21(DE3), kanamycin
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6HIS-ENVOY. pET28(Dr.Samuel), BL21(DE3), kanamycin 
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StrepTagII-VVD-6HIS (buy to DNA 2.0). pD441-SR:T5-sRBS-ORF. kanamycin 
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Vector pET28 (Dr. Samuel) 
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Appendix B 
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