Título
An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators
11627/353511627/3535
Autor
Rosu Barbus, Haret-Codratian
Resumen
"We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization which is different of the one introduced by M. A. Reyes, H. C. Rosu, and M. R. Gutie´rrez, Phys. Lett. A 375 (2011) 2145 is briefly discussed in the final part of this work."
Fecha de publicación
2012Tipo de publicación
articleDOI
https://doi.org/10.1016/j.physleta.2012.09.024Área de conocimiento
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRAEditor
ElsevierPalabras clave
FactorizationQuantum harmonic oscillator
Riccati equation
Bernoulli equation