Título
Multistability in piecewise linear systems versus eigenspectra variation and round function
11627/471611627/4716
Autor
Gilardi Velázquez, Héctor Eduardo
Ontañón García Pimentel, Luis Javier
Hurtado RodrÍguez, Diana Graciela
Campos Cantón, Eric
Resumen
"A multistable system generated by Piecewise Linear (PWL) subsystems based on the jerk equation is presented. The system’s behavior is characterized by means of the Nearest Integer or the round(x) function to control the switching events and to locate the corresponding equilibria on each of the commutation surfaces. These surfaces are generated through the switching function dividing the space into regions equally distributed along one axis. The trajectory of the system is governed by the eigenspectrum of the coefficient matrix, which can be adjusted by a bifurcation parameter. The behavior of the system can change from multiscroll oscillations in a mono-stable state into the coexistence of several single-scroll attractors in multistable states. The dynamics and bifurcation analysis are illustrated by numerical simulations to depict the multistable states."
Fecha de publicación
2017Tipo de publicación
articleDOI
https://doi.org/10.1142/S0218127417300312Área de conocimiento
MATEMÁTICASEditor
World ScientificPalabras clave
MultistabilityPiecewise linear system
Eigenspectrum
Chaos
Multiscroll attractor
Round function
Bifurcation