Título
Riccati equations of opposite torsions from the Lie-Darboux method for spatial curves and possible applications
11627/657611627/6576
Autor
Lemus Basilio, Paola
Rosu Barbus, Haret-Codratian
Resumen
A novel formulation of the Lie-Darboux method of obtaining the Riccati equations for the spatial curves in Euclidean three-dimensional space is presented. It leads to two Riccati equations that differ by the sign of torsion. The case of cylindrical helices is used as an illustrative example. Possible applications in Physics are suggested.
Fecha de publicación
2024Tipo de publicación
articleDOI
https://doi.org/10.1088/1402-4896/acf896Área de conocimiento
FISÍCAEditor
IOPPalabras clave
Riccati equationFrenet-Serret system
Lie-Darboux method
Cylindrical helix