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Abstract 

 
As the Biology of information processing in the living cell shifts from study of single 
signal transduction pathways to increasingly complex regulatory networks, physical 
and mathematical models become indispensable tools. Detailed predictive models 
of large genetic networks could revolutionize the ways the researchers study 
complex diseases as well as the design of modern medication. In this thesis, an 
attempt is made to present two different levels of description in models of genetic 
networks. First we show the advantages of Monte Carlo simulations and second, 
we apply simple dynamical analysis to the field of elementary genetic circuits.  In 
these sense, we work on two main problems at two different scales: i) the gene 
clustering process of large genetic network using Potts model and ii) the much 
better controlled dynamical behavior of small genetic circuits. With respect to the 
first issue, we analyze the clustering that can occur in such networks as revealed 
by the microarray gene expression data defining the edge lengths of the network. 
As a novel idea, we use entropy to impose a basic condition that all clustering 
algorithm must satisfy. Regarding our usage of the Potts spin model to the gene 
expression data points, we introduce a distance-depending interaction between 
neighboring points following ideas of Domany and his collaborators. Concerning 
the small genetic circuits, the potential employment of two Observers for 
monitoring these fundamental processes is developed in detail. It is worth 
mentioning that the published version of the latter development was included in the 
selected list of contemporary topical areas in biological physics studies of the 
Virtual Journal of Biological Physics research in August 2005 (Vol. 10, No. 3). 
 
Keywords: Clustering, Gene regulation, Gene networks, Dynamical analysis  
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Resumen 
 
Los modelos físicos y matemáticos son herramientas indispensables en el 
procesamiento de información biológica de la célula viva; desde una vía de 
señalización simple hasta una red compleja regulatoria. La predicción de modelos 
detallados de grandes redes podrá revolucionar la forma en que los investigadores 
estudian las enfermedades complejas; así como el diseño de nuevos 
medicamentos. En esta tesis se hace un esfuerzo para presentar dos diferentes 
escalas de redes de genes. Primero, mostramos las ventajas de la simulación 
Monte Carlo, y segundo, aplicamos un análisis simple dinámico en el campo de los 
circuitos genéticos elementales. En este sentido, trabajamos dos problemas 
principales en dos escalas diferentes de redes de genes: i) el proceso de 
clustering en redes genéticas usando el modelo de Potts y ii) el comportamiento 
dinámico controlado de pequeños circuitos de genes. Con respecto al primer 
inciso, analizamos el clustering de tales redes considerando los datos de 
expresión de microarreglos que definen  las dimensiones en la red. Como una idea 
novedosa, introducimos la definición de entropía como una condición fundamental 
que todo algoritmo de clustering debe satisfacer. Considerando nuestro uso del 
modelo espinorial de Potts a la expresión de genes, introducimos una interacción 
dependiente de la distancia entre puntos vecinos siguiendo las ideas de Domany y 
colaboradores. Concerniente a las pequeñas redes de genes, se emplearon dos 
Observadores para monitorear el desarrollo de esos procesos fundamentales en 
detalle. Es importante mencionar que una de las publicaciones logradas por  este 
trabajo fue incluida en la lista seleccionada de tópicos contemporáneos en áreas 
de física biológica de la revista de investigación Virtual Journal of Biological 
Physics en Agosto 2005 (Vol.10, Issue 3). 
 
Palabras Clave: Clustering, Regulación de genes, Redes de Genes, Análisis Dinámico. 
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Chapter 1 
Preface and General Introduction 

 
 
 

   The analysis of genetic regulatory networks will much benefit from the recent 
upscaling to the genomic level of the many experimental methods in molecular 
biology. In addition to high-throughput experimental methods, mathematical and 
bioinformatics approaches are indispensable for the analysis of genetic 
regulatory networks. Given the size and complexity of most networks of 
biological interest, an intuitive comprehension of their behavior is often difficult, 
if not impossible to obtain. In this thesis, the two principal approaches that have 
been mostly used will be reviewed and employed in some detailed examples: 
the gene regulation process of large genetic networks by means of the Potts 
model and the dynamical behavior of small genetic circuits that are not so 
complicated and allow the application of control theory methods. 
 

 
   It is now commonly accepted that most interesting properties of an organism 
emerge from interactions between its genes, proteins, metabolites, and other 
secondary constituents. This implies that, in order to understand the functioning 
of an organism, we need to elucidate the networks of interactions involved in 
gene regulation, metabolism, signal transduction, and other cellular and 
intercellular processes. 

 
   Genetic regulatory networks control the spatiotemporal patterns of expression 
of genes in an organism, and thus underlie complex processes like cell 
differentiation and development of the tissues in prokaryotic and eukaryotic 
organisms. Genetic regulatory networks consist of genes, proteins, metabolites, 
and other small molecules, in the real of their mutual interactions. Their study 
has taken a qualitative leap through the usage of modern genomic techniques 
that allow simultaneous measurement of the expression levels of all genes of a 
given organism. In addition to experimental tools, mathematical methods 
supported by computer means are indispensable for the analysis of genetic 
regulatory networks since modeling and simulation procedures allow the 
behavior of large and complex systems to be predicted in a systematic way. 
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   The order of the resulting papers in this thesis is the following: Chapter 4 – 
paper sent to reviewing; Chapter 5 – L.A. Torres, V. Ibarra-Junquera, 
P.Escalante-Minakata and H.C. Rosu., Physica A 380, 235-240 (2007); Chapter 
6 – V. Ibarra Junquera, L.A. Torres, H.C. Rosu, G. Argüello and J. Collado 
Vides. Physical Review E 72, 011919 [10 pages] (2005). 
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Chapter 2 
The Biology of Gene Expression 

 
 
 
 

The future success of System Biology requires the establishment of general 
principles that can be used to link the behavior of individual molecules to 
system characteristics and functions. In order to achieve this goal and to 
study the different levels of description of genetic networks is necessary to 
show the basic principles of biology gene expression. The sophistication of 
biological control systems is extraordinarily rich and regulation takes place 
on many different levels simultaneously. Novel surprising details are 
constantly revealed and new technologies are invented (microarray). This 
chapter will focus on regulatory processes at the level of gene transcription. 
We will briefly summarize some basic concepts from molecular level biology 
and then discuss some of the general principles involved in the regulation of 
gene transcription. This discussion will be augmented by a walk-through of 
some of the best studied natural gene regulatory systems. The purpose of 
this section is to provide a brief introduction to the fundamental biology of 
gene expression.  
 
 

2.1 The Genetic Code 
 
   Most regulatory processes that take place within cells involve proteins whose 
structure and function is determined by information stored in the cell’s DNA. 
Genetic engineered and the engineering of gene networks involve the 
manipulation of this information and of the conditions under which it is used to 
synthesize proteins. The DNA molecule encodes information in the four 
nucleotides containing the bases adenine (A), guanine (G), cytosine (C) and 
thymine (T). The molecular structure of the nucleotides is illustrated in Fig. 1.2A 
The carbon atoms are indicated as solid circles, lines indicate covalent bonds 
between atoms and sticks indicate a covalent bond that ends in hydrogen. RNA 
and DNA differ in the identity of the atom bound to the carbon at position 2’ in 
the sugar ring (marked by an X). RNA has a hydroxyl group bound at this 
position while DNA has a hydrogen atom. Polynucleotide chains are formed by 
individual ribonucleotides being linked o each other through a phosphodiester 
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bond [1]. This bond is between the phosphate group bound to the carbon at 
position 5’ and the oxygen bound to the carbon at position 3’ and establishes 
the 5’ and establishes the 5’ → 3’ directionality of the polymer chain. Under 
normal conditions, the DNA is in a double stranded form that consists of the 5’ -
3’ strand and its complement where the direction of the DNA backbone is 
reversed (Fig 1.2B) Bases on opposite strands are paired with each other 
through hydrogen bonds such that A couples with T and C couples with G. The 
double stranded DNA forms a helical structure (Fig 1.2C). 
 
 

 
Figure 1.2 (A) The molecular structure of ribonucleic acid (RNA) and deoxyribonucleic acid 
(DNA). RNA and DNA has a hydroxyl group and a hydrogen atom at position X, respectively. In 
DNA, the base bound to the carbon at position 1’ is adenine, guanine, cytosine or thymine. In 
RNA, the thymine is replaced by Uralic. (B) Double stranded DNA. Hydrogen bonds (broken 
line) are formed between the bases A and T or G and C and links to gather two complementary 
single stranded DNA molecules. (C) The helical structure of double stranded DNA. 
 
Transcription 
 
   The synthesis of a protein based on the DNA-encoded amino acid sequence 
requires at least two steps. First, the genomic information must be transcribed 
from the DNA sequence into a messenger RNA molecule (mRNA). This is done 
by an RNA polymerase, which, in analogy to DNA polymerase, catalyzes the 
formation of phosphodiester bonds between individual nucleotides. The 
structure of RNA molecules is similar to that of DNA molecules with the 
exception that the backbone consists of ribose rather than deoxyribose and the 
base thymine is replaced by the base uracil (U), Furthermore, the mRNA is 
usually single stranded [1-2]. 
 
Translation 
 
   After transcription, the message contained in the mRNA must be translated 
into a protein. This is done by the ribose, which is a molecular machine made of 
both RNA and protein. The process of translation involves two additional types 
of RNA molecules, ribosomal RNA (rRNA) and transfer RNA (tRNA). The rRNA 
molecules are components of the ribosome. The tRNA provides the specificity 
that enables the insertion of the correct amino acid into the protein that is being 
synthesized. 
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Proteins 
 
   Proteins consist of a chain in which individual amino acids residues are linked 
to each other through peptide bonds. The general structure of the amino acids 
is illustrated in Fig. 2.2A. In analogy with DNA and RNA, they consist of a 
common element that enables the formation of a polymer chain. The identity 
and the property of the individual amino acids are determined by the side chain. 
There are 20 naturally occurring amino acids. In the polymer chain that forms 
the backbone of proteins, the individual amino acids are linked to each other 
through peptide bonds formed between the carboxyl-group of the amino acid 
and the amino-group of another (Fig 2.2B). This creates a chain that at one end 
has a free amino-group, the N-terminal (NH+

3), and the other end has a free 
carboxyl-group, the C-terminal (COO-). 
 
 

 
Figure 2.2 (A) The molecular structure of amino acids. The identity of amino acid is determined 
by its side chain. (B) Peptide bond formed between the amino- and the carboxyl-groups of two 
amino acids. (C) The correspondence between the DNA sequence, mRNA sequence and that 
sequence of the first eight amino acids of the LacR repressor protein.  
 
 
Codons 
 
   The DNA molecule stores the information required to synthesize proteins in 
terms of a string of codons. A codon consists of three nucleotides, each 
selected from of the four available bases (A, T, G or C) which are read from the 
DNA molecule in the 5’ to 3’ direction. In Fig 2.2B the codon encoded on the left  
is AGT while the codon encoded on the right strand is ACT. Of the 64 possible 
codons, 61 encoded for one o the 20 amino acids (Table 1.2) The genetic code 
is thus redundant and different codons may identify the same amino acid. The 
last three codons (TAA, TAG and TGA) are stop codons. They define the end of 
the protein encoding region of the DNA. In addition, the order of the amino acids 
in the polypeptide chain is determined by the sequence in which the codons 
appear in the DNA sequence. In most cases, there is a linear relationship 
between the DNA sequence and the amino acid sequence within the protein 
that the sequence encodes. Fig 2.2C shows the first 24 base pairs of the gene 
that encodes the LacR repressor protein, the corresponding mRNA sequence 
and the sequence of the first 8 amino acids in the LacR repressor polypeptide 
chain. The N- and C- terminal regions are encoded by the codons in the 5’ and 
the 3’ end of the DNA-encoding sequence, respectively.  
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Table 1.2 The correlation between the sequence of bases in the codons and the amino acids. 
The codon TAA, TGA and TAA signals termination of translation.  
 
   Once translation is completed and the full length DNA-encoded polypeptide 
has been formed, the function of many proteins requires the completion of 
additional steps. This may involve, for example, covalent modification, such as 
phosphorylation, acetylation or glycosylation, i.e. the addition of a phosphate, 
an acetyl or a glycosyl-group, the incorporation of the protein to its appropriate 
cellular location, for instance, in the cell membrane [1]. 
 
 
2.2 Genes and Gene Expression 
 
   The term gene is usually used to refer to the DNA sequence that is 
transcribed into mRNA and subsequently translated into a protein. However, 
there are important exceptions to this rule. For example, DNA sequences that 
encode for molecules like rRNA and tRNA are genes even though the RNA 
molecule is never translated into a protein. Genes are usually carried on the 
cell’s chromosomes. Each chromosome carries at least one origin of replication. 
These regions determine the location where the DNA polymerase initiates the 
duplication of the genetic material. The location of a specific gene on the 
chromosome is called the gene’s locus. Haploid cells carry a single copy of 
each chromosome and the locus thus uniquely determines the location of the 
gene. Diploid cells have homologous chromosome pairs. Two different forms of 
the same gene are known as alleles [2-3]. 
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   The chromosomes are organized very differently in prokaryotic, which lack a 
cell nucleus, and in eukaryotic cells. In bacteria (a prokaryote), such as 
Escherichia coli, all of the genes are located on a single, circular chromosome 
while the genes in eukaryotic cells are located on several linear chromosomes. 
There are 16 chromosomes in yeast. In addition, the eukaryotic DNA is 
complexed with nuclear proteins and compacted into a structure called 
chromatin. Central to this structure is the wrapping of approximately 200 base 
pairs of DNA around protein complexes known as nucleosomes (Fig. 3.2A). The 
organization of chromatin and of the nucleosomes can be used as an 
instrument to regulate which genes are accessible for transcription by RNA 
polymerase. The primary constituent of the nucleosomes is the four histone 
proteins H2A, H2B, H3 and H4, which combine to form a histone tetramer (Fig 
3.2B). A nucleosome consists of two histone tetramer. Each histone subunit has 
a protruding N-terminal “tail” that serves important regulatory functions. There, 
covalent modifications, such as acetylation, can greatly influence the 
accessibility of the DNA. The nucleosomes are, together with other nuclear 
proteins, arranged into chromatin fibers. Examples of potential spatial 
arrangements of the nucleosomes are shown fig 3.2C. In addition to the 
chromosomes, genes can be carried on plasmids. Plasmids are in many ways 
similar to the bacterial chromosome. They are circular pieces of DNA that 
typically replicate independently of duplication of the chromosomal DNA prior to 
cell division. As a result, plasmids are often present in multiple copies within 
each cell and the plasmid copy number usually changes as cells progress 
through the cell division cycle. The average copy number of plasmid per cell 
depends on the type of the origin of replication that it carries. Some plasmids 
are stringently controlled and are present only in a single copy while others are 
loosely regulated and present in 60 copies per cell or higher [1-3]. 
 
 

 
Figure 3.2 (A) Schematic illustration of DNA wrapped around a nucleosome. (B) The primary 
component of the nucleosomes consists of four histone proteins H2A, H2B, H3 and H4. The 
nucleosomes can be remodeled and rearranged spatially by covalent modification of the 
protruding histone tails. (C) Illustration of potential organizations of nucleosomes in spatial 
structures. 
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   In addition to the sequences that encode for genes, the DNA contains regions 
that are involved in the regulation of gene transcription. The RNA polymerase 
reads the genetic code in the 5´ to 3´ direction and the location where it initially 
binds to the DNA is located upstream of the gene, i.e., farther in the 5´ direction 
(Fig. 4.2). The region where the RNA polymerase initially contacts the DNA is 
called the promoter of the gene whose expression it facilitates. The expression 
of a gene may occur from more that one promoter, i.e., the region upstream of 
the gene may contain distinct binding sites for the RNA polymerase. The first 
nucleotide that is transcribed is usually labeled +1 and nucleotides are counted 
relative to this transcription start site in the 5´ to 3´direction of the DNA. The 
nucleotides in the gene-encoding region are thus labeled with positive numbers 
while the promoter regions are labeled with negative numbers. In bacteria, the 
promoter region is about 60 base pairs in length and spans roughly 40 base pair 
upstream and roughly 20 base pairs downstream of the +1 site. In years, the 
promoter region spans roughly 200 base pairs. 
 
   Generally speaking, no two promoters are identical. Statistical analysis has 
however shown that there are regions that are highly conserved within different 
promoters. In bacteria, one of these regions is located at position -10 and has 
the consensus sequence TATAAT. This region is called the TATA-box and is in 
many cases essential for the proper alignment of the RNA polymerase 
holoenzyme with respect to the gene encoding sequence. Mutations of the 
TATA-box sequence, i.e., the substitution of one nucleotide with another, can 
greatly affect the rate at which the DNA is transcribed into an mRNA. A 
sequence that is similar to the TATA-box is also important for the transcription 
of many eukaryotic genes [3]. 

 
   In addition to the TATA-box, the promoter region often contains sites where 
transcription factor proteins can bind and directly or indirectly affect the rate of 
transcription. In bacteria, transcription factor binding sites are often referred to 
as operators.  

 
   However, such regulatory elements may also be located far from the promoter 
region or even within the gene-encoding region of the DNA. In eukaryotes, it is 
quite common to find enhancer sequences that affect the transcription from a 
promoter located very far from it in the DNA sequence. This action-at-a-distance 
can arise from the rearrangement of chromatin structure and/or close spatial 
proximity of transcription factors bounds to the enhancer sequence due to 
bending and looping of the DNA. Transcription factor binding sites are referred 
to as cis-regulatory elements while the transcription factor proteins that bind to 
them are referred to as trans-regulatory elements. 
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Figure 4.2 Typical organization of a gene containing the information required for the synthesis 
of a protein. The promoter is the region where the RNA polymerase initially binds. The 
terminator is the region where the RNA polymerase is released from the DNA. The DNA also 
contains regions that, when transcribed into mRNA, controls translation initiation (5’ UTR) and 
termination (3’ UTR).  
 
   In addition to the promoter and cis-regulatory elements, there are sequences 
within the DNA that determine the termination of transcription (a terminator 
sequence) and, for protein-encoding genes, sequences that determine the 
region of the mRNA that is  to be translated into protein (Fig. 4.2). The codon 
that indicates the location where translation is to start, the translation start 
codon, is often ATG. The DNA sequence located between the start site of 
transcription and start of translation is referred as an untranslated region (UTR).  
UTRs can greatly influence the efficiency of gene expression, for example by 
determining how well the ribosomes can bind to the mRNA and initiate 
translation. The translation stop codon that indicates the location where 
translations is terminated is either TAA, TAG or TGA. The sequence of the DNA 
between the stop codon and the site where transcription is terminated can also 
have an effect on the efficiency of gene expression. This region is referred to as 
the 3´UTR [3]. 

 
 

2.3 Transcription and Translation 
 

   Similarly to the definition of a gene, the meaning of gene expression is not 
always clearly defined. Some use the term gene expression to refer to the 
biological manifestation in terms of alteration in phenotype, that is, an 
observable change in the characteristics of the cell. The gene that is 
responsible for a specific cellular that can be said to be expressed when the 
phenotype is observed and not expressed otherwise. In other words, gene 
expression can be viewed as being a binary on/off process. Others use gene 
expression to refer to the process that starts when the transcription of the DNA 
that encodes the gene is initiated and ends when a biologically functional 
molecule is formed, regardless of whether this is accompanied with a detectable 
change in the cell’s phenotype. In this view, gene expression can be graded 
and quantified based on measurements of the activity of the end product of the 
gene expression process. 
 
   Since many proteins require some post-translational modification to be fully 
functional, e.g., the attachment of a phosphate group or the incorporation of the 
protein into a larger complex, it can be argued that such events are part of the 
process in which the genomic information is expressed. Generally speaking, 
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however, there will be a positive correlation between the rate at which a gene is 
transcribed and the abundance (and hence the activity) of the end product of 
the gene expression process. Typically, if a gene’s mRNA is abundant within a 
cell, there will be a high level of the corresponding protein product. Transcription 
is usually a prerequisite for gene expression and the control of transcription is 
one of the most important regulatory instruments available to the cells. In 
prokaryotes as well as eukaryotes, the transcription of a gene into a 
corresponding mRNA occurs in three general steps: transcription initiation, 
elongation of the mRNA and termination of transcription. Gene expression can 
be regulated on all of these levels. Regulation of gene expression at the levels 
of transcription initiation is, however, the most common. 
 
 
2.4 Regulation of Gene Expression 
 
   The means employed to regulate gene expression are remarkable and many. 
The most obvious method of control, and the one that can be most readily 
manipulated, is the modulation of the frequency of transcription initiation. The 
next sections will discuss how this method of gene expression control is utilized 
in three well-studied systems; the lactose operon in E. coli, the λ CI repressor in 
bacteriophage λ and the galactose utilization network in Saccharomyces 
cerevisiae [4]. 
 
 

 
 
Figure 5.2 (A) The genes lacZYA of the lactose operon share the same promoter, Plac, which is 
repressed by the repressor encoded by the adjacently located lacl gene. (B) Regulatory 
elements of the Plac promoter. The LacR repressor can bind to the three lacO operators O1, O2 
and O3. The CAP protein can bind to the CAP operator. (C) Activation of transcription by CAP. 
(D) Repression involves DNA looping facilitated by LacR repressor tetramers bound to different 
operator sites. 
 
 
2.4.1 The Lactose Operon of E. coli 
 
   The lactose operon in E. coli consists of three genes, lacZ, lacY and lacA, 
whose transcription is initiated from a single promoter region, Plac (Fig. 5.2A). 
The rate of transcription of the lacZYA genes is regulated by the LacR repressor 
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protein and by a protein called CRP (Cyclic AMP receptor protein) or CAP 
(cAMP activating protein). CAP can act as a transcriptional activator.  It binds as 
a dimmer to an operator site centered at position -61 relative to the transcription 
start site (Fig. 5.2B). It affects the process of transcription initiation by 
interacting directly with the α-subunit of the RNA polymerase holoenzyme. It 
has been observed that the presence of CAP increases the amount of the open 
complex some 13-fold, but that its presence does not change the rate of the 
transition between the closed and the open complex. This indicates that CAP 
may act at the first step in transcription initiation by increasing the rate at which 
the holoenzyme binds to the promoter and/or by decreasing the rate at which 
the holoenzyme dissociates from the promoter [4-5]. 
 

 
Figure 6.2 Feedback regulation of the lactose operon. Allolactose inhibits the activity of the 
repressor and relieves its effect on the transcription of the lactose operon genes. This causes 
upregulation of lacZ and lacY, which, in turn, causes an increased rate of allolactose production 
and lactose uptake, respectively. 
 
 
   The LacR repressor protein is, as the name implies, an inhibitor of 
transcription of the genes in the lactose operon. It is expressed constitutively, 
i.e., at a constant rate, from the Pi promoter and is located adjacent to the 
lactose operon (Fig. 5.2A). The LacR protein binds as a tetramer to three lacO 
operators, O1, O2 and O3, centered at positions +11, -82 and +410, 
respectively (Fig. 5.2B). The operators have nearly palindromic sequences and 
are composed of two half-sites that each makes contact with one LacR 
monomer in the tetrametric repressor complex. It is believed that the binding of 
the LacR repressor to O1 prevents the binding of the RNA polymerase 
holoenzyme to the promoter through steric hindrance; the repressor tetramer 
may simply act as a space-excluding barrier for the incoming holoenzyme. 
Elimination of the auxiliary lacO operators O2 and O3 does not abolish the 
inhibitory function of LacR, but reduces its effect. While elimination of either O2 
or O3 causes a 3-fold reduction in repression, eliminating both causes a 70-fold 
reduction. Thus, the auxiliary operators appear to serve redundant roles in the 
inhibition of transcription by the LacR protein. The efficient repression observed 
in the presence of two or three of the operators are believed to be due to 
looping of the DNA. The binding of the repressor tetramer to a single operator 
involves only two of its four subunits, which leaves two subunits capable of 
binding a second operator site provided that the DNA is twisted into a loop 
structure (Fig. 5.2D). These loop structures may act as barriers that limit the 
accessibility to the promoter region and/or as a roadblock of its movement along 
the DNA. 
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   The above discussion of the regulation of the lactose operon addresses the 
interaction between cis- and trans-regulatory elements in the promoter region. 
In addition to this, the activity of the trans-factors, i.e., CAP and the LacR 
repressor, are extensively regulated. First of all, the activity of CAP depends on 
the presence of cAMP. The concentration of cAMP in turn depends on the 
presence of glucose. The transcription of the genes in the lactose operon is 
negatively correlated with the concentration of glucose in the growth medium. 
CAP affects the transcription of a large number of genes and is a central player 
in the global gene regulatory system known as catabolite repression. This 
system ensures that the cell does not wastefully express the genes required for 
metabolizing other sugars when the energy-rich glucose in available [3-6]. 
 
   The activity of the lactose operon is modulated via a feedback loop involving 
the proteins LacR, LacZ and LacY (Fig. 6.2). The genes lacZ and lacY encodes 
for the enzyme β-galactosidase and the membrane-bound lactose permease, 
respectively. While the lactose permease enables the transport of extracellular 
lactose into the cell, the β-galactosidase converts intracellular lactose into 
glucose and galactose. It also converts some of the lactose into allolactose. 
Allolactose in turn binds to the LacR tetramer and causes a conformational 
change, or allosteric transition, to a state that has a significantly reduced affinity 
for the operator sites. As a result, the presence of small amounts of the 
allolactose, the inducer of LacR, causes an up-regulation of the expression of 
the lacZYA genes in the lactose operon. This causes an increased rate of 
lactose uptake (by LacY) and conversion of lactose into allolactose (by LacZ), 
which, in turn, lowers the activity of LacR even further. The lactose operon is 
thus regulated through a positive feedback loop and catabolite repression. This 
enables an energy-efficient switch. The lacZYA genes are expressed at low 
(basal) levels when glucose is present and are only activated when needed, i.e., 
when glucose is absent and lactose is present. Many other operons are 
regulated in a manner that resembles that of the lactose operon and it is a 
textbook example of a simple gene regulatory circuit.  
 
 
2.5 DNA Microarrays  
 
   The DNA microarray technology has received a great deal of attention in the 
last few years. Advanced computational methods are constantly improving, 
aiming to analyze and interpret the enormous amount of gene expression data. 
The DNA-chip method is a powerful, flexible and relatively simple procedure. 
Unlike traditional methods in molecular biology, which generally work on one or 
few genes per experiment, the DNA-chip method enables the monitoring of the 
expression level of hundreds to thousands of genes in a parallel way [7]. 
Variation in DNA sequence underlies most of the differences we observe within 
and between species. Locating, identifying, and cataloguing these genotypic 
differences represent the first steps in investigating the genomic variation 
among and within living organisms. 
Changes in multigene patterns of expression can provide clues about cellular 
functions and biochemical pathways, as well as discovery of new, interesting 
genes, which may be potential markers for diagnosis or playing a role in drug 
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therapy. The improvement in DNA-chip technology, together with increasing 
genome-sequence information for different organisms, including humans, will 
enable even higher levels of  quality and complexity of microarray experiments. 
 
The principle of a microarray experiment, is that mRNA from a given cell line or 
tissue is used to generate a target which is hybridized in parallel to a large 
number of DNA sequences, immobilized on a solid surface in an ordered array 
[8]. 
 
The most commonly used procedures of this type can be divided into two 
groups, according to the arrayed material: complementary DNA (cDNA) and 
oligonucleotide microarrays. The first group allows comparison of fluorescently 
labeled cDNA populations from control and experimental tissues, marked by 
two colors. This technique is flexible in the choice of arrayed elements, 
particularly in preparation of small, customized arrays for specific investigation. 
 
Microarray experiments are used to quantify and compare gene expression on 
large scale. cDNA microarrays consist of thousands of individual DNA 
sequences printed in a high-density array on a glass microscope slide by a 
robotic arrayer. The relative abundance of the spotted DNA sequences in two 
samples can be assessed by monitoring the differential hybridization of the two 
samples, to the sequences on the array. For mRNA samples , the two samples 
or targets are reverse transcribed into cDNA, labeled using different 
fluorescents dyes (usually a red-fluorescent dye, Cyanine 5 (Cy5), and a green-
fluorescent dye, Cyanine 3 (Cy3)), then mixed in equal proportions and 
hybridize with the arrayed DNA sequences or probes. After this competitive 
hybridization, the slides are imaged using a scanner, and fluorescence 
measurements are made separately for each dye at each spot of the array. The 
ratio of the red and green fluorescence intensities for each spot is indicative of 
the relative abundance of the corresponding DNA probe in the two nucleic acid 
target samples [9]. 
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Chapter 3 
Modeling and Simulation of Genetic 

Regulatory Networks 
 
 

 
 

In order to understand the functioning of organisms on the molecular level, we 
need to know which genes are expressed, when and where in the organism, 
and to which extent. The regulation of gene expression is achieved through 
genetic regulatory systems structured by networks of interactions between 
DNA, RNA, proteins, and small molecules. As most genetic regulatory networks 
of interest involve many components connected through interlocking positive 
and negative feedback loops, loops, an intuitive understanding of their 
dynamics is hard to obtain. As a consequence, formal methods and computer 
tools for the modelling and simulation of genetic regulatory networks will be 
indispensable. This chapter reviews some formalism that have been employed 
in mathematical biology and bioinformatics to describe genetic regulatory 
systems, in particular, clustering and Potts model. In addition, this chapter 
shows how these formalisms have been used in the simulation of the behaviour 
of actual regulatory systems. 

 
 

3.1The role of computation and mathematics in complex networks 
 
   The genome of an organism plays a central role in the control of cellular 
processes, such as the response of a cell to environmental signals, the 
differentiation of cells and groups of cells in the unfolding of developmental 
programs, and the replication of the DNA preceding cell division. Proteins 
synthesized from genes may function as transcription factors binding to 
regulatory sites of other genes, as enzymes catalyzing metabolic reactions, or 
as components of signal transduction pathways. With few exceptions, all cells in 
an organism contain the same genetic material. This implies that, in order to 
understand how genes are implicated in the control of intracellular and 
intercellular processes, the scope should be broadened from sequences of 
nucleotides coding for proteins to regulatory systems determining which genes 
are expressed, when and where in the organism, and to which extent.  
   Gene expression is a complex process regulated at several stages in the 
synthesis of proteins. Apart from the regulation of DNA transcription, the best 
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Figure 1.3 Example of a genetic regulatory system, consisting of a network of three genes a, b, 
and c, repressor proteins A, B, C, and D, and their mutual interactions. The figure distinguishes 
several types of interactions.  
 
studied form of regulation, the expression of a gene may be controlled during 
RNA processing and transport (in eukaryotes), RNA translation, and the 
posttranslational modification of proteins. The degradation of proteins and 
intermediate RNA products can also be regulated in the cell. The proteins 
fulfilling the above regulatory functions are produced by other genes. This gives 
rise to genetic regulatory systems structured by networks of regulatory 
interactions between DNA, RNA, proteins, and small molecules. An example of 
a simple regulatory network, involving three genes that code for proteins 
inhibiting the expression of other genes, is shown in Fig. 1.3. Proteins B and C 
independently repress gene a by binding to different regulatory sites of the 
gene, while A and D interact to form a heterodimer that binds to a regulatory 
site of gene b [1]. Binding of the repressor proteins prevents RNA polymerase 
from transcribing the genes downstream. Analyses of the huge amounts of data 
made available by sequencing projects have contributed to the discovery of a 
large number of genes and their regulatory sites. The KEGG database, for 
instance, contains information on the structure and function of about 110,000 
genes for 29 species [1-2]. In some cases, the proteins involved in the control of 
the expression of these genes, as well as the molecular mechanisms through 
which regulation is achieved, have been identified. Much less is known, 
however, about the functioning of the regulatory systems of which the individual 
genes and interactions form a part [3-13]. Gaining an understanding of the 
emergence of complex patterns of behavior from the interactions between 
genes in a regulatory network poses a huge scientific challenge with potentially 
high industrial pay-offs. The study of genetic regulatory systems has received a 
major impetus from the recent development of experimental techniques like 
cDNA microarrays and oligonucleotide chips, which permit the spatiotemporal 
expression levels of genes to be rapidly measured in a massively parallel way 
[14-17]. Other techniques, such as the mass spectrometric identification of gel-
separated proteins, allow the state of a cell to be characterized on the 
proteomic level as well [18-21]. Although still in their infancy, these techniques 
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have become prominent experimental tools, by opening up a window on the 
dynamics of gene expression. In addition to experimental tools, formal methods 
for the modeling and simulation of gene regulation processes are indispensable. 
As most genetic regulatory systems of interest involve many genes connected  
 
 

 
Figure 2.3 Analysis of genetic regulatory systems. The boxes represent activities, the ovals 
information sources. 
 
through interlocking positive and negative feedback loops, an intuitive 
understanding of their dynamics is hard to obtain. Using formal methods, the 
structure of regulatory systems can be described unambiguously, while 
predictions of their behavior can be made in a systematic way. Especially when 
supported by userfriendly computer tools, modeling and simulation methods 
permit large and complex genetic regulatory systems to be analyzed. Figure 2.3 
shows the combined application of experimental and computational tools. 
Starting from an initial model, suggested by knowledge of regulatory 
mechanisms and available expression data, the behavior of the system can be 
simulated for a variety of experimental conditions. Comparing the predictions 
with the observed gene expression profiles gives an indication of the adequacy 
of the model. If the predicted and observed behavior does not match, and the 
experimental data is considered reliable, the model must be revised. The 
activities of constructing and revising models of the regulatory network, 
simulating the behavior of the system, and testing the resulting predictions are 
repeated until an adequate model is obtained. 
 
   The formal basis for computer tools supporting the modeling and simulation 
tasks in Fig. 2.3 lies in methods developed in mathematical biology and 
bioinformatics. Since the 1960s, with some notable precursors in the two 
preceding decades, a variety of mathematical formalisms for describing 
regulatory networks have been proposed. These formalisms are complemented 
by simulation techniques to make behavioural predictions from a model of the 
system, as well as modeling techniques to construct the model from 
experimental data and knowledge on regulatory mechanisms. Traditionally, the 
emphasis has been on simulation techniques, where the models are assumed 
to have been hand-crafted from the experimental literature. With more 
experimental data becoming available and easily accessible through databases 
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and knowledge bases, modeling techniques are currently gaining popularity.      
This chapter gives an overview of two formalisms to describe genetic regulatory 
networks and discusses their use in the modeling and simulation of regulatory 
systems. Recently, a collection of introductory chapters covering some of the 
methods that include directed graphs, Bayesian networks, Boolean networks 
and their generalizations, ordinary and partial differential equations, qualitative 
differential equations, stochastic master equations, and rule-based formalisms 
[22-30] . Moreover, in the last few years the number of papers seems to be 
growing in an exponential fashion. 
 
 
3.2 The different levels of description in models of genetic networks  
 
   As the biology of information processing in the living cell shifts from the study 
of single signal transduction pathways to increasingly complex regulatory 
networks, mathematical models become indispensable tools. Detailed predictive 
models of large genetic networks could revolutionize how researchers study 
complex diseases, yet such models are not yet within reach. One reason is that 
experimental data for large genetic systems are incomplete; another is that 
large genetic systems are difficult to model [31]. Extrapolating the standard 
differential equations model of a single gene (with its several kinetic 
parameters) to large systems would render the model prohibitively complicated. 
One possible way to simplify such models would be to find a “coarse grained” 
level of description for genetic networks; that is, to focus on the system behavior 
of the network while neglecting molecular details wherever possible (Fig. 3.3). 
Such an approach exists for other fields of science, for example, the concept of 
molecular orbitals in organic chemistry, which mercifully spares us from the 
details of the underlying quantum physics. Brandman et al. points to the 
possibility of simplifying large genetic networks models [32]. Using a standard 
differential equations approach, the authors find that the intricate internal 
dynamics of a frequent cellular subcircuit exhibits a simple bistable “ON/OFF” 
behavior, and thus could be modeled by something much simpler than 
differential equations, something as simple as a switch. 
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Figure 3.3 The different levels of description in models of genetic networks. Whereas single 
genes can be modeled in molecular detail with stochastic simulations (Left column), a 
differential equation representation of gene dynamics is more practical when turning to circuits 
of genes (center left column). Approximating gene dynamics by switchlike ON/OFF behavior 
allows modeling of mide-sized genetic circuits (center right column) and still faithfully represents 
the overall dynamics of the biological system. Large genetic networks are currently out of reach 
for predictive simulations. However, more simplified dynamics, such as percolating flows across 
a network structure, can teach us about the functional structure of a large network (right 
column). 
Figure from Bornholdt S., Less is More in Modeling Large Genetic Networks. Science 310, 449-
450 (2005). 
 
   A first level of coarse-graining in genetic regulation already exists in the 
standard approach of modeling protein and RNA concentrations with specific 
equations called “ordinary” differential equations. These equations nicely 
summarize the molecular interactions that make up the cellular machinery that 
regulates the activity of a gene. When at least a few tens of molecules are 
involved in regulating a gene, details of the interactions can usually be 
neglected, and interaction rates can be used instead of tracking the single 
molecular binding events [24]. With large networks involving thousands of 
regulatory genes (genes that encode proteins that regulate other genes), the 
number of differential equations needed to describe the system can become 
huge. The sheer number of parameters (such as decay rates, production rates, 
and interaction strengths) in this mathematical model poses a challenge, both 
for experiment and theory. A central question is what the right level of 
description is when constructing quantitative models of large or even system 
wide genetic networks (see Fig. 3.3). Is coarse-graining of genetic network 
models possible? A number of general building blocks identified in genetic 



 20

networks at least indicate that robust simplified models are possible. Modules 
such as autoregulatory excitatory (positive) feedback loops (which can convert 
a transient signal into a sustained signal and thus serve as “storage” devices), 
inhibitory feedback loops (which suppress instability due to noise), or feed-
forward loops (which may enhance responsiveness of a gene) represent 
different kinds of robust switching elements. Brandman et al. [32] describe 
another such building block, the dual positive-feedback loop, which is frequently 
found in subnetworks of larger cellular and genetic networks. But why would 
cells have evolved two positive feedback loops when one is enough to create a 
switch? Brandman et al. [32] find that the combination of the two loops can 
make genetic switching faster and, at the same time, reduce signal noise. A 
slow loop creates robustness in the signal, whereas a fast loop allows for 
switching speed. Given the quite complex cellular machinery that is needed to 
run this dual positive feedback circuit with biochemical means, its dynamic 
behavior is intriguingly simple. It functions as a particularly robust, yet fast 
switch that is reminiscent of the robustly designed electronic building blocks 
used to build modern computers. This observation provides support for discrete 
models of genetic networks in which genes are modeled as switchlike dynamic 
elements that are either ON or OFF. The first such models, generated about 
four decades ago, were random networks of discrete dynamical elements, as 
few data about regulatory genetic networks were available at that time [33]. 
These models were long considered to be merely a speculative analogy. 
However, recent advances in modeling combined with the first opportunities to 
validate genetic network models with data from living cells show that simplified 
network models, such as those representing a regulatory gene as a binary 
switch ON/OFF type, can indeed predict the overall dynamical trajectory of a 
biological genetic circuit. For example, the trajectory of the segment polarity 
network in the fly Drosophila melanogaster has been predicted solely on the 
basis of discrete binary model genes [34]. Similarly, a dynamic binary model of 
the genetic network that controls the yeast cell cycle was constructed in 2004 
by Li et. al [35]. In both systems, the dynamics converge to so-called attractors 
(states or sequences of states of the genes) and for these, the models match 
the biological dynamics. These dynamical attractors seem to depend not so 
much on the details of the kinetic constants, but more on the circuit wiring. 
Insensitivity to biochemical kinetic parameters indicates that for understanding 
the dynamics of these circuits, it is their wiring that is most important [36]. This 
seems to be the reason why large genetic networks can be represented as 
networks of discrete dynamic elements, without the tuning of parameters. 
 
   Simplified models on even larger scales should be envisioned for real 
progress in this field. However, modeling of large cellular networks is often 
hampered by incomplete knowledge of the full circuitry, despite a wealth of 
data. An example of how simplification of the dynamics of single elements 
enables us to gain valuable information about a system’s function is presented 
in the recent article by Ma’ayan et al. [37]. They propose a discrete 
“pseudodynamics” of binary states that percolates through the known part of a 
1500-node mammalian cellular network and gives a rough but informative 
estimate of the regulatory information flow through the system. The thousands 
of parameters required to generate a standard differential equations model of all 
the relevant biochemical interactions has been neglected by the others in favor 
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of a statistical perspective that provides valuable information about the global 
architecture of a cellular network. It is not a direct representation of the 
biochemical dynamics and does not allow a detailed dynamic simulation of the 
network. However, it is an analog of the potential propagation of a signal and 
therefore useful to determine the global signalling structure of an overall 
network. This approach is error tolerant and gives a robust picture of the overall 
global modular structure of a network. The simple dynamics of the building 
blocks points to an interesting perspective for our further understanding of 
genetic networks. Distinguishing between the robust effective dynamics of a 
genetic or regulatory switch and the biochemical that are use to practically run it 
shows that, to understand the system, we do not have to pass trough all the 
details of the biochemistry. Characterizing the topology of the circuit seems to 
be the most important consideration, and when going “dynamic,” a clever way to 
throw away details may be the most important part of model building. 
 
 
3.3 Gene expression clustering  

 
   Clustering is often one of the first steps in gene expression analysis. Our 
ability to gather genome-wide expression data has far outstripped the ability of 
our feeble human brains to process the raw data. We can distill the data down 
to a more comprehensible level by subdividing the genes into a smaller number 
of categories and then analyzing those. This is where clustering comes in. 
 
   The goal of clustering is to subdivide a set of items (in our case, genes) in 
such a way that similar items fall into the same cluster, whereas dissimilar items 
fall in different clusters. This brings up two questions: first, how do we decide 
what is similar; and second, how do we use this to cluster the items? The fact 
that these two questions can often be answered independently contributes to 
the bewildering variety of clustering algorithms [38]. Gene expression clustering 
allows an open exploration of the data, without getting lost among the 
thousands of individual genes. Beyond simple visualization, there are also some 
important computational applications for gene clusters. For example, Tavazoie 
et al. [39] used clustering to identify cis-regulatory sequences in the promoters 
of tightly coexpressed genes. Gene expression clusters also tend to be 
significantly enriched for specific functional categories, which may be used to 
infer a functional role for unknown genes in the same cluster. 
 
   In this section, we focus specially on clustering genes that show similar 
expression patterns across a number of samples, rather than clustering the 
samples themselves (or both). The goal is to leave the reader with some 
understanding of clustering in general and three of the more popular algorithms 
in particular. Where possible, an attempt is made to provide some practical 
guidelines for applying cluster analysis to any other gene expression data sets. 
 
   It is easy to invent yet another clustering algorithm. There are hundreds of 
published clustering algorithms, dozens of which have been applied to gene 
expression data. It is much harder to do a fair evaluation of how well a new 
algorithm will perform on typical expression data sets, how it compares with 
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those dozens of other published algorithms and under which circumstances one 
algorithm should be preferred over another. 
 
   There is no one-size-fits-all solution to clustering, or even a consensus of 
what a “good” clustering should look like. In the words of Jain and Dubes [40]: 
“There is no single best criterion for obtaining a partition because no precise 
and workable definition of cluster exists. Clusters can be of any arbitrary shapes 
and sizes in a multidimensional pattern space. Each clustering criterion imposes 
a certain structure on the data, and if the data happen to conform to the 
requirements of a particular criterion, the true clusters are recovered”. In other 
words, each algorithm imposes its own set of biases on the clusters it 
constructs, and whereas most sensible clustering algorithms may yield similar 
results on trivial test problems, in practice they can give widely differing results 
on messy real world expression data. So, how do we decide how similar the 
expression patterns of two genes are? Note that this really boils down to which 
types of expression patterns we would like to see fall into the same clusters, 
something that may go well beyond which patterns look visually similar and is 
directly related to the question “what do we want to achieve by clustering?”.  
 
   Two of the easiest and most commonly used similarity measures for gene 
expression data are Euclidean distance and Pearson correlation coefficient 
(See Table 1.3 for these and other similarity measures and variants). Note in 
the case of the Euclidean distance notice that it is sensitive to scaling and 
difference in average expression level, whereas correlation is not.  
 
   The two most important classes of clustering methods are hierarchical 
clustering and partitioning (Fig. 4.3). In hierarchical clustering, each cluster is 
subdivided into smaller clusters, forming a tree-shaped data structure or 
dendrogram. Agglomerative hierarchical clustering (also used in phylogenetics) 
starts with the single–gene clusters and successively joins the closest clusters 
until all genes have been joined into the supercluster. In fact, there is a whole 
family of clustering methods, differing only in the way intercluster distance is 
defined. Some of the more common ones are single linkage, complete linkage, 
average linkage and centroid linkage.  
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Figure 4.3 A simple clustering example with 40 genes measured under two different conditions. 
(a) The data set contains four clusters of different sizes, shapes and number of genes. Left: 
each dot represents a gene, plotted against its expression value under the two experimental 
conditions. Euclidean distance, which corresponds to the straight-line distance between points 
in this graph, was used for clustering. Right: the standard red-green representation of the data 
and corresponding cluster identities. (b) Hierarchical clustering finds an entire hierarchy of 
clusters. The tree was cut at the level indicated to yield four clusters. Some of the superclusters 
and subclusters are illustrated on the left. (c) k-means (with k=4) partitions the space into four 
cluster centroids (stars) is closest. (d) So-called organized map technique (SOM) finds clusters, 
which are organized into a grid structure (in this case a simple 2 X 2 grid). 
Figure from D`haeseleer P., How does gene expression clustering work? Nature Biotechnology 
23, 1499-1501 (2005). 
 
    
   Partitioning methods, on the other hand subdivided the data into a typically 
predetermined number of subsets, without any implied hierarchical relationship 
between these clusters. How many clusters are actually present in the data is a 
thorny issue. A common approach is to rerun the clustering with different 
number of clusters, in the hope of being able to distinguish the optimal number 
of clusters. A hierarchical clustering can also be reduced to a partitioning, by 
cutting the dendrogram at a given level (Fig. 4.3b).  
 
   The quality of a clustering result can be evaluated by means of internal criteria 
(that is, based on various statistical properties of the clusters) or external criteria 
(that is, based on additional information that was not used in the clustering 
process itself). Internal validation seems straightforward: we would like clusters 
to be compact and well separated. Unfortunately, this reverts back to the same 
tricky question “what would we like clusters to look like? At least a dozen 
different measures have been developed to test the quality of a cluster, and for 
many of these there exists a clustering method that will optimize that measure. 
For example, k-means optimizes the variance of the clusters, whereas complete 
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linkage minimizes the radius of the clusters. Other measures test the within-
group versus between-group variance, the separation between clusters and the 
stability of clusters with respect to noise, random initializations (such as for k-
means or SOM) and leaving out other conditions, see for example [41-44]. 
 
 

 
 
Table 1.3 Gene expression similarity measures.  
 
 
   Ultimately, the real test of any clustering procedure is he coincidence with the 
biological facts. The most reliable quality measure of a clustering method is how 
well it actually performs the task at hand. For example, if our goal is to cluster 
together genes with similar function, then we can use existing functional 
annotations to verify how well the goal has been achieved [42, 43]. If our goal is 
to extract cis-regulatory elements from the clusters, then we can check how well 
genes with known regulatory sequences are clustered together.     
 
    
3.4 The Potts model 
 
   Ferromagnetic Potts models have been studied extensively for many years in 
statistical physics [45]. The basic spin variable s can take one of q integer 
values: s = 1, 2… q. In a magnetic model the Potts spins are located at points vi  
that usually reside on the sites of a finite lattice made of N sites. Pairs of spins 
associated with points i and j are coupled by an interaction of strength Jij > 0. 
Denote by S a configuration of the system, S= }{ N

iis 1= . The energy of such a 
configuration is given by the Hamiltonian 
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where the notation ji,  stands for neighboring sites vi and vj. The contribution 

of a pair ji,  to H  is 0 when si = sj, that is, when the two spins are aligned, 
and is Jij > 0 otherwise. If one chooses interactions that are a decreasing 
function of the distance dij ≡ d(vi , vj), then the closer two points are to each 
other, the more they “like” to be in the same state. The Potts Hamiltonian is very 
similar to other energy functions used in neural systems, where each spin 
represents a q-state neuron with an excitatory coupling to its neighbors. In fact, 
magnetic models have inspired many neural models [46]. In order to calculate 
the thermodynamics average of a physical quantity A at a fixed temperature T, 
one has to calculate the sum 
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The latter plays the role of the probability density, which gives the statistical 
weight of each spin configuration S= }{ N

iis 1=  in thermal equilibrium and Z is a 
normalization constant, Z = ΣS exp (-H(s)/T). 
 
   Some of the most important physical quantities (A) for this magnetic system 
are the order parameter or magnetization and the set of sjsi,δ  functions, because 
their thermal averages reflect the ordering properties of the model. 
    
   The order parameter of the system is m , where the magnetization, m(s), 
associated with a spin configuration S is defined as [47] 
 

 
Nq

NSqN
Sm

)1(
)(

)( max

−
−

=                                                                                       (3.4)                          

 
with Nmax(S) = max { N1(S), N2 (S),….Nq(S)}, where Nµ(s) is the number of spins 
with the value µ;  Nµ(s) = Σi µδ ,is . 
 
The thermal average of 

ji ss ,δ is called the spin-spin correlation function, 
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 which is the probability of the two spins si and sj to be aligned. 
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The case Jij = J 
 
Paramagnetic phase 
 
   When the spins are on the lattice and all nearest-neighbor couplings are 
equal, Jij = J, the Potts system is homogeneous. Such a model exhibits two 
phases. At high temperatures, the system is paramagnetic or disordered, <m> = 
0, indicating that Nmax(s) ≈ N/q for all statistically significant configurations. In 
this phase the correlation function Gij decays to 1/q when the distance between 
points vi and vj is large; then 1/q is the probability of finding two completely 
independent Potts spins in the same state. At very high temperatures, even 
neighboring sites have Gij ≈1/q. 
 
Ferromagnetic phase 
 
   As the temperature is lowered, the system undergoes a sharp transition to an 
ordered, ferromagnetic phase; the magnetization jumps to <m> ≠ 0. This means 
that in the physically relevant configurations (at low temperatures), one Potts 
state “dominates” and Nmax(s) exceeds N/q by a macroscopic number of sites. 
At very low temperatures, Nmax(s) ≈ N and therefore <m> ≈ 1 and Gij ≈ 1 for all 
pairs {vi , vj}. 
 
The variance of the magnetization is related to a relevant thermal quantity, the 
susceptibility, 
 

( )22 mm
T
N

−=χ ,                                                                                        (3.6) 

 
which also reflects the thermodynamic phases of the system. At low 
temperatures, fluctuations of the magnetization are negligible, so the 
susceptibility χ  is small in the ferromagnetic phase. 
 
The case of unequal Jij: the additional superparamagnetic phase 
 
This is the case of (strongly) inhomogeneous Potts models.The connection 
between Potts spins and clusters of aligned spins in this situation was 
established by Fortuin and Kasteleyn in 1972 [48]. The inhomogeneous models 
describe the more complicated cases when the spins form magnetic “grains”, 
with very strong couplings between neighbors that belong to the same grain and 
very weak interactions between all other pairs. At low temperatures, such a 
system is also ferromagnetic, but as the temperature is raised, the system may 
exhibit an intermediate, superparamagnetic phase. In this phase strongly 
coupled grains are aligned (that is, are in their respective ferromagnetic 
phases), while there is no relative ordering of different grains (that is, a globally 
paramagnetic phase). 
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The range of the superparamagnetic phase 
 
   At the transition temperature from the ferromagnetic to superparamagnetic 
phase a pronounced peak in the plot of χ  vs. T is observed [49]. In the 
superparamagnetic phase, fluctuations of the state taken by grains acting as a 
whole (that is, as giant superspins) produce large fluctuations in the 
magnetization. As the temperature is raised further, the superparamagnetic to 
paramagnetic transition is reached; each grain disorders, and χ  abruptly 
diminishes by a factor that is roughly proportional to the the size of the largest 
cluster. Thus, the temperatures where a peak of the susceptibility occurs and 
the temperatures at which χ  decreases abruptly provide the range of 
temperatures in which the system is in its superparamagnetic phase. 
 
In principle, one can have a sequence of several transitions in the 
superparamagnetic phase. As the temperature is raised, the system may break 
first into two clusters, each of which breaks into more (still macroscopic) 
subclusters, and so on. Such an evolutionary structure of the magnetic clusters 
reflects a hierarchical organization of the data into categories and 
subcategories. To gain some analytic insight into the behavior of 
inhomogeneous Potts ferromagnets, we calculated the properties of such a 
“granular” system with a macroscopic number of bonds for each spin. For such 
(“infinite-range”) models, the mean field approach is exact [50]. In the 
paramagnetic phase, the spin state at each site is independent of any other 
spin, that is, Gij =1/q. 
   At the paramagnetic-superparamagnetic transition the correlation between 
spins belonging to the same group jumps abruptly to 
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while the correlation between spins belonging to different groups is unchanged. 
On the other hand, the ferromagnetic phase is characterized by strong 
correlations between all spins of the system: 
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   There is an important lesson to remember from this: in mean field we see that 
in the superparamagnetic phase, two spins that belong to the same grain are 
strongly correlated, whereas for pairs that do not belong to the same grain, Gi,j 
is small. As it turns out, this double-peaked distribution of the correlations is not 
an artifact of mean field and will be used in our solution of the problem of data 
clustering. 
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Chapter 4 
Maximum Entropy in the Gene 

Expression 
 
 

     
 

DNA microarrays allow us to explore a major subset or all genes of an 
organism. In the case of the metabolic architecture for less complex organisms, 
such as Escherichia coli, the biochemical network has been described in much 
detail.  Here, we analyze the clustering of such networks by applying gene 
expression data that define edge lengths in the network. As a novel idea, we 
use the concept of entropy in a fundamental condition that all clustering 
algorithm must satisfy. This entropy condition is basically related to the 
microarray data analysis as a sort of thermodinamical equilibrium condition. In 
addition, we investigate the clustering of such networks by applying the Potts 
spin model to the gene expression data by introducing an interaction between 
neighboring spins, whose strength is a decreasing function of the distance 
between neighbors. We tested our method on gene expression data from E. coli 
and we notice different results with respect to the published paper although it 
fits well to the commonly knowns regulatory netwoks of the cell biological 
processes. 
 
 
4.1 Introduction 
 
   DNA microarray is one of the latest breakthroughs in experimental molecular 
biology. This technology permits the analysis of gene expression, DNA 
sequence variation, protein levels, tissues, cells and other chemicals structures 
in massive format [1, 2]. However, the analysis and handling of such fast 
growing data is becoming a major challenge in the utilization of the technology. 
Powerful mathematical and statistical methods are therefore called for this 
purpose to search for orderly features and logical relationships in this type of 
data. 
    Over the last 3 decades, biochemical investigations led to the discovery of a 
self consistent picture of the metabolism of the cell metabolism [3]. In fact, for 
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less complex organisms, like Echerichia coli, the metabolic network has been 
almost completely described [4]. For yeast, knowledge derived from such 
biochemical networks was used to support the clustering paradigm of gene 
expression data [5]. 
   Extraction of meaningful information from gene expression data is a complex 
task because of the large volume of data and the expected complexity of its 
structure and organization. To address this problem in an unbiased way several 
specialized methods, broadly known as “clustering techniques,” have been 
developed recently [6-8]. All these techniques, though differing in details, in 
essence try to identify genes (or samples) that behave similarly across the 
samples (or genes) and classify them as belonging to one group or a definite 
cluster. Among the clustering techniques that employ the concepts of physics, 
the one that succeeds in correctly clustering most of the types of data [9] is the 
“superparmagnetic” clustering method that has been promoted by Domany and 
coworkers about a decade ago [7]. This method exploits the propieties of phase 
transitions in disordered Potts ferromagnets. 
     
   The goal of clustering in gene expression processes is to subdivide a set of 
genes in such a way that similar genes fall into the same cluster, whereas 
dissimilar genes fall in different clusters. However, how do we decide what is 
similar and how do we use this to cluster the genes. Although many of the 
proposed algorithms have been reported to be successful, no single algorithm 
has emerged as a method of definitive choice. Further, the issues of 
determining the “correct” number of clusters and the choice of “the best” 
algorithm are not yet clear [10]. 
    
   In this chapter, we propose the maximum entropy condition of determining the 
correct way to cluster the genes. In Physics, the entropy is a measure of the 
level of constraint or order that exists so that a process can be carried out. In 
particular, it has been shown that the progressive tendency of system to go 
away from equilibrium is governed by a law of maximum entropy production 
[11]. In concrete terms, we apply the Potts spin clustering technique to cluster 
gene expression data by using the information about nearest neighbour 
relations of biochemical networks. Only clusters of neighbouring genes with 
similar expression profiles could occur in real situation. Here the maximum 
entropy condition is applied to the gene expression data of E. coli provided by 
Khodursky et al. [12]. 
 
4.2 Super-paramagnetic clustering 
 
Super-paramagnetic clustering is a hierarchical method, based on the Potts 
model of magnetic spins. The algorithm assigns to each spin a data point. The 
spins are correlated to each other and this correlation is reflected in the energy 
of the system, which is minimal when all the spins are aligned and maximal 
when each spin points to a different direction with respect to all the other spins 
of the system. The parameter that we denote by T corresponds to the 
temperature parameter in the statistical mechanism of the physical Potts model. 
However, in the clustering procedure, it controls the clustering resolution, 
namely the cluster divisibility of the system. At low values of this resolution 
parameter, all the spins are aligned and form a single cluster. That means that it 
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does not matter if we see a single spin or the hold cluster because the 
orientation is the same. This is equivalent to the ferromagnetic phase of the 
physical system. As the control parameter increases, the gene expression 
system undergoes a sequence of phase transitions. By measuring spin-spin 
correlations at each value of T we determine the probability that two data points 
share the same spin orientation and if this probability is high, the pair of 
corresponding data points are placed in the same cluster. At very high 
temperature values, the orientation of the spins are uncorrelated and each data 
point becomes independent with respect to the other data points, as if it makes 
a single cluster. This corresponds to the paramagnetic phase of the physical 
system, where correlations are short ranged.  On the other hand, the super-
paramagnetic phase is intermediate between the previous two phases, 
corresponding to a phase in which large sub-clusters of the cluster of all data 
points may occur. In this phase, the data points form highly correlated domains 
in which a data point in one domain is uncorrelated with data points belonging 
to the other domains. 
 
4.3 Monte Carlo simulation of Potts models: the Swendsen-Wang method 
 
The aim of equilibrium statistical mechanics is to evaluate sums such as 
equation 3.2 for models with N >> 1 spins. This can be done analytically only for 
very limited cases. One resorts therefore to various approximations or to 
computer simulations that aim at evaluating thermal averages numerically. 
 
   Direct evaluation of sums like equation 3.2 is impractical, since the number of 
configurations S increases exponentially with the system size N. Monte Carlo 
simulation methods overcome this problem by generating a characteristic 
subset of configurations, which are used as a statistical sample [13]. They are 
based on the notion of importance sampling, in which a set of spin 
configurations {S1,S2,…,SM} is generated according to the Boltzmann probability 
distribution (see equation 3.3). Then, expression 3.2 is reduced to a simple 
arithmetic average, 
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where the number of configurations in the sample, M, is much smaller than qN, 
the total number of configurations. The set of M states necessary for the 
implementation of equation 4.1 is constructed by means of a Markov process in 
the configuration space of the system. There are many ways to generate such a 
Markov chain. A very efficient one is the Swendsen-Wang Monte Carlo 
procedure [14,15]. The main reason for choosing the latter procedure is that it is 
perfectly suitable for working in the superparamagnetic phase: it overturns an 
aligned cluster in only one Monte Carlo step, whereas algorithms that use 
standard local moves will take forever to do this. The steps of the SW 
algorithms are the following:  
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First step 
 
   The first configuration can be chosen at random (or by setting all si = 1). Thus, 
we already generated n configurations of the system, { }n

iiS 1= , and we start to 
generate configuration n +1.  
 
Second step 
 
   Visit all pairs of spins ji,  that interact, that is, having Ji,j  > 0; the two spins 
are frozen together with probability 
 

    .exp1 ,
,

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

ji ss
jif

ji T
J

P δ                                                                              (4.2)                           

 
That is, if in our current configuration Sn the two spins are in the same state, si = 
sj, then sites i and j are maintained unchanged (frozen) with probability 

)./exp(1 TJp ij
f −−=  

 
Third Step 
 
   Having gone over all the interacting pairs, the next step of the algorithm is the 
task to identify the SW clusters of spins. By definition an SW cluster contains all 
spins that have a path of frozen bonds connecting them. Note that according to 
equation 4.2, only spins of the same value can be frozen in the same SW 
cluster. After this identification, our N sites are assigned to some number of 
distinct SW clusters. If we think of the N sites as vertices of a graph whose 
edges are the interactions between neighbors Ji,j > 0, each SW cluster is a 
subgraph of vertices connected by frozen bonds. 
 
Fourth step 
 
   The final step of the procedure is to generate the new spin configuration Sn+1. 
This is done by drawing, independently for each SW cluster, randomly, a value 
s= 1,…,q, which is assigned to all its spins, that is, to each SW cluster a certain 
orientation is assigned. This ends up one Monte Carlo step Sn → S n+1 in the 
SW procedure.  
 
By iterating this steps M times while calculating at each Monte Carlo step the 
physical quantity A(si), one can obtain the thermodynamic average A  of 
equation 4.1. The physical quantities that we are interested in are the 
magnetization (equation 4.3) and its square value which enter the calculation of 
the susceptibility χ given in equation 3.6, and the spin-spin correlation function 
Gi,j (equation 3.5). Actually, in most simulations a number of the early 
configurations are discarded, to allow the system to “forget” its initial state. This 
is not necessary if the number of configurations M is not too small (increasing M 
improves the statistical accuracy of the Monte Carlo experiment). Measuring 
autocorrelation times provides a way of both deciding on the number of 
discarded configurations and checking that the number of configurations M 



 37

generated is sufficiently large [16]. A less rigorous way is simply plotting the 
energy as a function of the number of SW steps and verifying that the energy 
reached a stable regime. At temperatures where large regions of correlated 
spins occur, local methods (such as Metropolis), which flip one spin at a time, 
become very slow. Since the SW procedure by flips large clusters of aligned 
spins simultaneously, it exhibits much smaller autocorrelation times than local 
methods. The efficiency of the SW method, has been all ready tested in various 
Potts and Ising models [17,18]. 
 
 
4.4 Maximum entropy algorithm 
 
So far we have defined the Potts model, the various “thermodynamic” functions 
that one measures for this model, and the (numerical) method used to evaluate 
these quantities. We can now turn directly to the problem for which these 
concepts will be use: clustering of gene expression data. For the sake of 
concreteness, assume that our data consist of N patterns of measurements vi, 
specified by N corresponding vectors xi, embedded in a D-dimensional metric 
space. The starting point is the specification of the Hamiltonian (equation 3.1), 
which is the assumed to govern the interaction (correlation) of the system. Next, 
by measuring the susceptibility and magnetization as a functions of the 
temperature (resolution parameter), the different correlated phases of the 
interaction model are identified. Finally, the correlation of neighboring pairs of 
spins, Gi,j, is determined. This correlation function is then used to partition the 
spins and the corresponding data points into clusters. The outline of the three 
stages and the subtasks contained in each can be summarized as follows: 
 
1. Construct the physical analog Potts spin problem. This means: 
 
(a) Associate a Potts spin variable si = 1, 2,…,q  to each point vi. 
(b) Identify the neighbors of each point  vi  according to a selection criterion. 
(c) Calculate the interaction Ji,j  between neighboring points vi and vj.. 
 
2. Locate the superparamagnetic phase. This requires: 
 
(a) Estimate the (thermal) average magnetization, m , for different  
     temperatures. 
(b) Use the susceptibility graph to identify the superparamagnetic phase  
      according to the prescription given on page 27, i.e., between the position of    
      the peak of the susceptibility graph and the point where χ decrease    
      abruptly. 
 
3. Finally, in the superparamagnetic regime, proceed with: 
 
(a) Determining the spin-spin correlation, Gi,j, for all neighboring points vi, vj. 
(b) Building the data clusters. 
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4.5 Results 
 

 
 
Fig 1.4 Random distribution of up and down Ising states. 
 
 

 
 
Fig 2.4 The Ising algorithm can simulate the fluctuations around the minimal 
energy for the α states.     
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Fig 3.4 For high temperatures, the behavior of spins is random therefore  
the magnetization is zero. For low temperatures, the magnetization is big. 
 

Fig 4.4 The specific heat MC measurement. 
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Fig. 5.4 The Monte Carlo susceptibility for the Ising case 
 
 
 
   For the case of Q>2, our results are displayed in figures 1.4 and 2.4 reference 
network (all edge lengths = 1) was compared with the network for treated cells 
(edge lengths = Euclidean distances off differential expressions between 
treated and reference cells).  We collected the optimal temperatures for each 
network by determining the super-paramagnetic phases where the first 
granulations of the networks took place (Fig. 6.4 and 7.4) 
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Fig 6.4. Energy for different temperatures. 
 
 

 
 
Fig. 7.4  Mean magnetization for different Qs.  
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Chapter 5 
High-gain nonlinear observer for 

simple genetic regulation 
 
 
 

     
 

High-gain nonlinear observers occur in the nonlinear automatic control theory 
and are in standard usage in chemical engineering processes. We apply such a 
type of analysis in the context of a very one-gene regulation circuit. In general, 
an observer combines an analytical differential-equation-based model with 
partial measurement of the system in order to estimate the non-measured state 
variables. We use on the simplest observers, that of Gauthier et. al., which is a 
copy of the original system plus a correction term which is easy to calculate. For 
the illustration of this procedure, we employ a biological model, recently 
adapted from Goodwin’s old book by De Jong, in which one plays with the 
dynamics of the concentrations of the messenger RNA coding for a given 
protein, the protein itself, and a single metabolite. Using the observer instead of 
the metabolite, it is possible to rebuild the non-measured concentrations of the 
mRNA and the protein. 

 
 

5.1 Introduction  
 
   According to textbooks, gene expression is a very complicated dynamical 
process which is regulated at a number of its stages during the synthesis of 
proteins [1]. Similar to many big cities, with heavy traffic, biological cells host 
complicated traffic of biochemical signals at all levels. At the nanometer scale, 
clusters of molecules in the form of proteins drive the dynamics of the cellular 
network that schematically can be divided into four regulated parts: the DNA or 
genes, the transcribed RNAs, the set of interacting proteins, and the 
metabolites. Genes can only affect other genes through specific proteins, as 
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well as through some metabolic pathways that are regulated by proteins 
themselves. They act to catalyze the information stored in DNA, all the way 
from the fundamental processes of transcription and translation to the final 
quantities of produced proteins. 
 
   For the purpose of modeling, it is essential to generate simple models that 
help to understand elementary dynamical components of these complex 
regulatory networks as molecular tools that participate in an important way in 
the machinery of cellular decisions, that is to say, in the behavior and genetic 
program of cells. The central importance of control theory in biology can be 
assessed through the recent problem of identifying control motifs (or modules), 
which are patterns that occur in a gene network far more often than in 
randomized networks of biological regulators [2]. This hot issue has been first 
pinpointed in a breakthrough paper of Doyle et al. [3] in which the regulation of 
bacterial chemotaxis was interpreted in terms of the simple integral control 
“adaptive module” introduced by Barkai and Leibler [4]. Since gene regulation 
appears to occur only at some definite states of the whole process, which in 
general are not well known, we are from the point of view of control engineering 
in the case of the reconstruction of those specific states under the condition of 
limited information. 
 
   It is quite clear that the availability of all state variables to direct measurement 
is an extremely rare occasion for gene expression phenomena or when it is 
possible it could be too expensive. For this particular task, but in completely 
different technological areas, the engineers have developed software sensors 
(state observers) that accurately reconstruct the state variables of various 
technological processes [5]. The basic concept of state of a system or process 
could have many different empirical meanings in biology. For the particular case 
of gene expression, the meaning of a state is essentially that of a concentration. 
The typical problem in control engineering that appears to be tremendously 
useful in biology is reconstruction of some specific regulated states under 
conditions of limited information. 
 
   In general, an observer is expected to provide a good estimate )(ˆ tX of the 
natural state X(t) of the original system. For this, one usually can think that 
some distance ))(),(ˆ( tXtXd  (in the sense of a norm || . || in a vectorial space) 
goes to zero as t→ ∞.  Such observers can be constructed using the 
mathematical model of the process to obtain an estimate X̂ of the true state X. 
This estimate can then be used as a substitute for the unknown state X. The 
usage of state observers has proven useful in process monitoring and for many 
other tasks. The concept of observer is used herein in the sense of control 
theory, defining an algorithm capable of giving a reasonable estimation of the 
unmeasured variables of a process. In the case of gene expression processes 
the description in made very concrete in the following by looking at quite simple 
mathematical models that refer to single gene cases and which in principle can 
be extended to some operons that are single gene clusters. 
 
   In this chapter, we will examine in detail a particularly simple observer due to 
Gauthier et al. [6] possessing arbitrary exponential decay and linear error 
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dynamics for the case of a three-state genetic regulation process. We were led 
to consider this observer because of its simplicity and its high-gain property. 
The gain is defined as the amount of increase in error in the dynamics of the 
observer. This amount is directly related to the velocity with which the observer 
recovers the unknown signal. For the observer of Gauthier et al. the amount of 
increase in error is constant and usually of high values leading to a fast recover 
of the unmeasurable states. 
  
 
5.2 Mathematical model for a simple gene regulation process 
 
   A kinetic model of a simple genetic regulation process was first developed by 
Goodwin as long as 1963 [7]. It has been further generalized by Tyson and 
Othmer [8] and clearly explained by De Jong in his recent review [9]. We 
consider here the simplest version of this kinetic model. For three 
concentrations X1, X2, X3, corresponding to the messenger RNA (mRNA) that 
codes for the unstable enzyme, the enzyme, and the metabolite, respectively, 
we write Tyson’s model in the form 
 

⎪
⎩

⎪
⎨

⎧

−−=

−=

−=

Γ

.33233

22122

1111

log ,

,),(

XXKX

XXKX

XxHKX

ybio

γ

γ

γϑ

&

&

&

                                                                         (1.5) 

 
   The parameter K1, K2, K3 are all strictly positive and represent production 
constants, whereas 321 ,, γγγ are also strictly positive degradation constants. 
These rate equations express a balance between the number of molecules 
appearing and disappearing per unit time. Notice that the model assumes that 
the concentration X2 increases linearly with X1 and the concentration X3 linearly 
X2, which are natural assumptions. In the  case of X1, the first term is the 
production term involving a nonlinear non-dissipative regulation function H  that 
we take of the m-steepen Hill form (m>0 is the steepness parameter) in 
common use: 
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for the activation and inhibition cases, respectively. The parameter θ gives the 
threshold for the regulatory influence of the concentration of the metabolite on 
the target gene, whereas the steepness parameter m is a measure of the 
collective effect of groups of metabolite molecules and also defines the shape of 
the Hill curve. This nonlinear parametrization describes the “biological 
regulation process” that includes the production of the mRNA by transcription of 
its structural gene, its possible intranuclear processing by cleavage, its 
enzymatic degradation within the nucleus, and its migration to the cytoplasm by 
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some form of diffusion or biological transport. Once in the cytoplasm, the mRNA 
is both translated into the unstable enzyme and enzymatically degraded. 
 
 
   System ybio logΓ  and its trivial chain generalization in the linear part is 
considered to be a good model for the simplest type of allosteric regulation in 
biochemistry, i.e., the inhibition or activation of an enzyme or protein by a small 
regulatory molecule that interacts with the enzyme at a site (allosteric site) other 
than the active site at which catalytic activity occurs. The interaction changes 
the shape of the enzyme, thus affecting the active site of the standard catalysis. 
This change of shape of the enzyme is sufficient to change its ability to catalyze 
a reaction in either negative or positive way and enables a cell to regulate 
needed metabolites. The allosteric regulation has the typical features of a 
feedback loop in control theory if the regulatory protein acts on the enzyme in 
the pathway of its own synthesis. 
 
 
5.3 The nonlinear observer 
 
   Many attempts have been made to develop nonlinear observer design 
methods. One could mention the industrially popular extended Kalman filter, 
whose design is based on a local linearization of the system around a reference 
trajectory, restricting the validity of the approach within a small region in the 
state space [5-10]. The first systematic approach for the development of a 
theory of nonlinear observers was proposed same time ago by Krener and 
isidori [11]. In further works, nonlinear transformations of the coordinates have 
also been employed to put the considered nonlinear system in a suitable 
“observer canonical form”, in which the observer design problem may be easily 
solved [6, 12, 13]. The main idea in this case is to find a state transformation to 
represent the system as a linear differential equation plus a nonlinear term, is a 
function of the measured state. 
 
   In this section, we present the design of a nonlinear software sensor in which 
the metabolite concentration is the naturally measured state (the most easy to 
measure) and corresponds to the mathematical state X3 in the model introduced 
in the previous section. Therefore, it seems logical to take X3 as the output of 
the system  
 
Y=h(X) =X3.                                                                                                    (3.5)                           

 
 We now apply the technique of high-gain observes that works for many 
nonlinear systems and guarantees that the output feedback controller recovers 
the performance of the state feedback controller when the observer’s gain is 
sufficiently high. The model given by the aforementioned system ybio logΓ  has the 
form  
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In which X ∈ R3, and moreover there is a “physical subset”  Ω ⊂  R3 where the 
system lies. To make this mathematically precise we must introduce some 
further mathematical terminology. Let us construct the jth time derivative of the 
output. This can be expressed using Lie differentiation of the function h by the 
vector field f, )).()(( tXhLj

f  ))()(( tXhLj
f is the jth Lie derivative of h by f and a 

function of X defined inductively as follows: 
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When Γy is observable, the map )(: XX Φ→Φ  is a diffeomorphism where  
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   For )(XΦ to be a local diffeomorphism in a region Ω, it is necessary and 
sufficient that the Jacobian d )(XΦ  should be non-singular on  Ω and moreover 
that )(XΦ  is one-to-one from Ω to )(XΦ , see [14]. Notice that no matter if we 
choose ),( ϑXH + , the coordinate transformation is the same. This means that 
the structure of the observer will be the same for both cases: gene activation or 
inhibition. 
 
   When the system is observable on Ω, it can be rewritten in the global 
coordinate system defined by )(XΦ  in the following matrix form: 
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where, moreover, ϕ  can be extended from Ω  to the entire R3 by a C∞ function 
globally Lipschitz on R3. The latter form allows us to make use of the following 
result proven by Gauthier et al. [6]: 
 
 
Consider the system 
 

),ˆ()ˆ(ˆ: 1 yCCSF T
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where S(θ)  is the solution of the matrix equation 
 

0 =+−− CCSASAS TTθ                                                                                  (9.5) 
 
 for θ  large enough, with A a matrix of Brunovsky form (A= ijij δδ ;1+ is the 
Kronecker symbol), which plays the role of a shift operator on R3. Then Eq. 
(8.5) defines an observer for yΓ′  with 
 

00̂3
0 exp ˆ ξξξξ −⎟

⎠
⎞

⎜
⎝
⎛−≤− tM .                                                                       (10.5) 

 
   In our case, an observer is a dynamical system as given by Eq. (8.5) that Hill 
tracks the trajectory of the original system (here yΓ′ ). Notice that both systems 
are identical unless for an additional term that compensates the error in the 
observer, where the error is given by the difference ξξ −ˆ , which is seen to be 
exponentially decreasing in time. The Gauthier observer is particularly simple 
since it appears to be only a copy of yΓ′ , together with a correction term that 
depends only on the dimension of the state space and not on the system yΓ′  
itself. In others words, the structure of the observer does not depend on the Hill 
steepness parameter m (Eq. (1.5)). 
 

 
 
Figure 1.5 The numerical simulation-solid lines represent the true states and dotted lines 
represent the Gauthier estimates given by Eq. (15) for an activation case. Plots (a) represents 
the evolution of mRNA concentration in time and plot (b) the variation of protein (enzyme) 
concentration in time. 
 
For the sake of concreteness we will construct the observer only for the 
activation case. However, one should notice that only the function )ˆ(Xf will 
change for the inhibition case. 
 
The Gauthier observer in Eq. (8.5) in the original coordinates is given by 
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+= )ˆ(ˆ XfX& ϒ )),ˆ()(()ˆ( 1 XhXhCSX T −−                                                            (11.5) 
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For the particular three-dimensional state space of ybio logΓ we get 
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   The matrix S(θ) in the three-dimensional case can be computed by means of 
Eq. (9.5) given in the Gauthier theorem and its inverse S-1(θ) appears to be 
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    Plugging matrices (13) and (14) in Eq. (11), we get the following equation for 
the observer introduced by Gauthier et al. applied to our biological case: 
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   We use this form of the Gauthier observer to estimate the states X1 and X2 of 
the dynamical system ybio logΓ . We work with θ=1  and the values of the 
parameters given in Table 1 that are not necessarily the experimental values 
but are consistent with the requirements of the model. Fig. 1.5 shows the results 
of a numerical simulation, where the solid lines represent the true states and the 
dotted lines stand for the estimates, respectively. In addition, for the real system 
we have taken m=2 whereas for the observer m=1 in order to show the 
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robustness of this type of nonlinear observer with respect to the steepness 
parameter. 

 
 
 
 
 
 
 
 
Symbol Meaning Value (arb. units)
K1 Production constant of mRNA 0.001 
K2 Production constant of protein A 1.0 
K3 Production constant of metabolite K 1.0 
γ1 Degradation constant of mRNA 0.1 
γ2 Degradation constant of protein A 1.0 
γ3 Degradation constant of metabolite K 1.0 
ϑ  Hill´s threshold parameter 1.0 
m Steepness parameter  2.0 
 
 
Table 1.5 Parameters of the Goodwin biological model used in this chapter. 
 
 
5.4 Conclusion  
 
   We represented here the mathematical exercise of designing a high-gain 
observer for a simple one-gene regulation dynamic process involving end-
product activation (inhibition leads to similar results), which is able to rebuild in 
an effective way the non-measured concentrations of mRNA and the involved 
protein. Thus, the limitation of those experiments in which one has only the 
metabolite available can be overcome by employing this simple observer. In 
addition, this type of nonlinear observer could be used on line and is robust with 
respect to m, i.e., it does not need the exact value of the Hill steepness 
parameter. However, for more complex input of more complicated observable 
dynamical systems, this constant gain observer could have less performance 
and be overcome by some adaptive observers that can change in order to work 
better or provide more fit for a particular purpose. In the case of more limited 
information, e.g., for unknown functional form of the regulation function and high 
noise levels that can spoil the performance of the observer, the completely 
different mathematical procedure of creating dynamical extension of the 
observer system is required [15]. 
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Chapter 6 

Nonlinear Software Sensor for 
Monitoring Genetic Regulation 

 
 
 

     

Nonlinear control techniques by means of a software sensor that are commonly 
used in chemical engineering could be also applied to genetic regulation 
processes. We provide here a realistic formulation of this procedure by 
introducing an additive white Gaussian noise, which is usually found in 
experimental data. Besides, we include model errors, meaning that we assume 
we do not know the nonlinear regulation function of the process.  

In order to illustrate this procedure, we employ the Goodwin dynamics of the 
concentrations [B. C. Goodwin, Temporal Oscillations in Cells (Academic, 
New York, 1963)] in the simple form recently applied to single gene systems 
and some operon cases [H. De Jong, J. Comput. Biol. 9, 67 (2002)] which 
involves the dynamics of the mRNA, given protein, and metabolite 
concentrations. Further, we present results for a three gene case in coregulated 
sets of transcription units as they occur in prokaryotes. However, instead of 
considering their full dynamics, we use only the data of the metabolites and a 
designed software sensor. We also show, more generally, that it is possible to 
rebuild the complete set of nonmeasured concentrations despite the 
uncertainties in the regulation function or, even more, in the case of not knowing 
the mRNA dynamics.  

In addition, the rebuilding of concentrations is not affected by the perturbation 
due to the additive white Gaussian noise and also we managed to filter the 
noisy output of the biological system. 
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6.1 Introduction 
 
   Gene expression is a complex dynamic process with intricate regulation 
networks all along its stages leading to the synthesis of proteins [1]. At the 
present time, its best studied regulation feature is the DNA transcription. 
Nevertheless, the expression of a gene should be also regulated during the 
RNA processing and transport, RNA translation, and also in the 
posttranslational modification of proteins. Control engineering is a key discipline 
with tremendous potential to simulate and manipulate the processes of gene 
expression. In general, the control terminology and its mathematical methods 
are poorly known to the majority of biologists. Many times the control ideas are 
simply reduced to the homeostasis concept. However, the recent launching of 
the IEE journal Systems Biology [2] points to many promising developments 
from the standpoint of systems analysis and control theory in biological 
sciences. Papers like that of Yi et. al [3], in which the Barkai and Leibler 
robustness model [4] of perfect adaptation in bacterial chemotaxis is shown to 
have the property of a simple linear integral feedback control, could be 
considered as pioneering work in the field. 
 
   We mention here two important issues. The first one is that the basic concept 
of state of a system or process could have many different empirical meanings in 
biology. For the particular case of gene expression, the meaning of a state is 
essentially that of a concentration. The typical problem in control engineering 
that appears to be tremendously useful in biology is the reconstruction of some 
specific regulated states under conditions of limited information. Moreover, 
equally interesting is the issue of noise filtering. It is quite well known that gene 
expression is a phenomenon with two sources of noise: one due to the inherent 
stochastic nature of the process itself and the other originating in the 
perturbation of the natural signal due to the measuring device. In the 
mathematical approach, the latter class of noise is considered as an additive 
contamination of the real signal and this is also our choice here. Both issues will 
form the subject of this investigation. 
 
   Taking into account the fact that rarely one can have a sensor on every state 
variable, and some form of reconstruction from the available measured output 
data is needed, software can be constructed using the mathematical model of 
the process to obtain an estimate X̂ of the true state X . This estimate can then 
be used as a substitute for the unknown state X . Ever since the original work by 
Luenberger [5], the use of state observers has proven useful in process 
monitoring and for many other tasks. We will call herein as observer, in the 
sense of control theory, an algorithm capable of giving a reasonable estimation 
of the unmeasured variables of a process. For this reason, it is widely used in 
control, estimation, and other engineering applications. Since almost all 
observer designs are heavily based on mathematical models, the main 
drawback is precisely the dependence of the accuracy of such models to 
describe the naturally occurring processes. Details such as model uncertainties 
and noise could affect the performance of the observers. Taking into account 
these details is always an important matter and should be treated carefully. 
Thus, we will pay special attention in this research to estimating unknown states 
of the gene expression process under the worst possible case, which 



 57

corresponds to noisy data, modeling errors, and unknown initial conditions. 
These issues are of considerable interest and our approach is a novel 
contribution to this important biological research area. Various aspects of noisy 
gene regulation processes have been dealt with recently from both 
computational and experimental points of view in a number of interesting papers 
[6]. We point out that since we add the noise δ  to the output of the dynamic 
system in the form y = CX + δ  (see Eqs. Γ in Section 6.4) it seems that its 
origin is mainly extrinsic to the regulation process, even though it could be 
considered as a type of intrinsic noise with respect to the way the experiment is 
performed. On the other hand, when writing the equation in the form  y  = 
C ( X + I ∆), where ∆ is a vector of noisy signals, one can see that the observer 
could estimate states that are intrinsically noisy even though the processes are 
still deterministic. 
 
 
6.2 Brief on the biological context 
 
   Similar to many big cities, with heavy traffic, biological cells host complicated 
traffic of biochemical signals at all levels. Like cars on a busy highway, millions 
of molecules get involved in the bulk of the cell in many life processes controlled 
by genes. At the nanometer level, clusters of molecules in the form of proteins 
drive the dynamics of the cellular network that schematically can be divided into 
three self regulated parts: the genes, the set of interacting proteins and the 
metabolites. Genes can only affect other genes through special proteins, as well 
as through some metabolic pathways that are regulated by proteins themselves. 
They act to catalyze the information stored in DNA, all the way from the 
fundamental processes of transcription and translation to the final quantities of 
produced proteins. 
 
   Considering the enormous complexity of multicellular organisms generated by 
their large genomes, one can nevertheless still associate at least one regulatory 
element to any component gene. Each regulatory element integrates the activity 
of at least two other genes. This is how the functioning of complex regulatory 
transcriptional and translational networks is understood at the present time [7, 
8]. However, one can hope that this extraordinary complexity can be 
summarized, at least at some levels, by simplified models which can help get 
insight in the inner processes of the biological networks. 
 
   Many entities in cellular networks can be identified as the basic units of 
regulation, mainly distinguished by their unique roles with respect to interaction 
with other units. These basic units are the genes, the proteins that the genes 
can produce, the forms of each protein, protein complexes, and all related 
metabolites. These units have associated values that either represents 
concentrations or levels of activation. These values depend on both the values 
of the units that affect them due to the aforementioned mechanisms and on 
some parameters that govern each special form of interaction. 
 
  This gives rise to genetic regulatory systems structured by networks of 
regulatory interactions between DNA, RNA, proteins, and small molecules. The 
simplest regulatory network is made of only one gene going into its 
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transcriptional process and then passing to the translation of its mRNA into 
proteins, and further to the catalytic stage. This is when appropriate enzymes 
turn specific metabolites into those ones that are capable to activate repressor 
proteins towards their final action onto the gene itself. This simple regulatory 
system is actually what is called a feedback loop in control engineering. A 
mathematical model of such a biological inhibitory loop has been discussed 
since a long time ago by Goodwin and recurrently occurred in the literature, 
most recently being reformulated by De Jong [9]. Although this case could look 
unrealistic, there are simple organisms, such as bacteria, where one regulatory 
loop may prove essential as recently discussed in detail by Ozbudak et al [10]. 
However, already at the level of two genes the situation gets really complicated, 
mostly because of the possible formation of heterodimers between the 
repressors and other proteins around. These heterodimers are able to bind at 
the regulatory sites of the gene and therefore can affect it and lead to 
modifications of the regulatory process. Recent developments of experimental 
techniques, like cDNA microarrays and oligonucleotide chips, have allowed 
rapid measurements of the spatiotemporal expression levels of genes [11-13]. 
In addition, formal methods for the modeling and simulation of gene regulation 
processes are currently being developed in parallel to these experimental tools. 
As most genetic regulatory systems of interest involve many genes connected 
through interlocking positive and negative feedback loops, an intuitive 
understanding of their dynamics is hard to obtain. The advantage of the formal 
methods is that the structure of regulatory systems can be described 
unambiguously, while predictions of their behavior can be made in a systematic 
way. 
 
   To make the description very concrete, it is interesting to look at well-defined, 
i.e., quite simple mathematical models that we present in the next section that 
refers to single gene cases and single gene clusters (operons). The nonlinear 
software sensor for such cases is discussed in Section IV. A three-gene case is 
treated as an extension to regulatory gene networks and shows that the method 
of forward engineering still works for reasonably simple gene networks. The 
conclusion section comes at the end of the paper. 
 
 
6.3 Mathematical model for gene regulation 

 
   In this section, we use the very first kinetic model of a genetic regulation 
process developed by Goodwin in 1963 [15], generalized by Tyson in 1978 [16] 
and most recently explained by De Jong [9]. The model in its most general form 
is given by the following set of equations: 
 

,)( 1111 XXrKX nn γ−=&                                                                                      (1.6) 
,11, iiiiii XXKX γ−= −−

&    1 < i  ≤   n .                                                                 (2.6) 
 
The parameters 1,211 ,...,, −nnn KKK  are all strictly positive and represent 
production constants, whereas nγγ ,...,1  are strictly positive degradation 
constants. These rate equations express a balance between the number of 
molecules appearing and disappearing per unit time. In the case of X1, the first 
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term is the production term involving a nonlinear nondissipative regulation 
function. We take this as an unknown function. On the other hand, the 
concentration iX , 1 < i  ≤ n  increases linearly with 1−iX . As well known, in order 
to express the fact that the metabolic product is a co-repressor of the gene, the 
regulation function should be a decreasing function for which most of the 
authors use the Hill sigmoid, the Heaviside and the logoid curves. The decrease 
of the concentrations through degradation, diffusion and growth dilution is taken 
proportional to the concentrations themselves. For further details of this 
regulation model we recommend the reader the review of De Jong [9]. It is to be 
mentioned here that bacteria have a simple mechanism for coordinating the 
regulation of genes that encode products involved in a set of related processes: 
these genes are clustered on the chromosome and are transcribed together. 
Most prokaryotic mRNAs are polycistronic (multiple genes on a single 
transcript) and the single promoter that initiates transcription of clusters is the 
site of regulation for expression of all genes in the cluster. The gene cluster and 
promoter, plus additional sequences that function together in regulation, are 
called operon. Operons that include two to six genes transcribed as a unit are 
common in nature [17].  
 
   The fact that two or more genes are transcribed together on one polycistronic 
mRNA implies that we have a unique mRNA production constant and 
consequently we also have one mRNA degradation constant. In addition, the 
polycistronic mRNA can translate an enzyme, resulting in the existence of just 
one enzyme production and degradation constant, respectively. The same 
applies for the metabolite produced through the enzyme catalysis. Thus, if the 
resulting metabolite has repressor activity over the polycistronic mRNA (as in 
the case of tryptophan [18]), then the model given by Eqs. (1) and (2) could also 
be applied to operons and therefore it has a plausible application to the study of 
prokaryotic gene regulation. 
 
 

 
Figure 1.6 Schematic representation of the software sensor, where the output of the system is 
the input of the software sensor and the outputs of the latter are the rebuilt concentrations. 
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6.4 The nonlinear Aguilar observer 
 
   Numerous attempts have been made to develop nonlinear observer design 
methods. One could mention the industrially popular extended Kalman filter, 
whose design is based on a local linearization of the system around a reference 
trajectory, restricting the validity of the approach to a small region in the state 
space [14, 19]. The first systematic approach for the development of a theory of 
nonlinear observers was proposed some time ago by Krener and Isidori [20]. In 
further research, nonlinear transformations of the coordinates have also been 
employed to put the considered nonlinear system in a suitable observer 
canonical form", in which the observer design problem may be easily solved 
[21-23]. Nevertheless, it is well known that classical proportional observers tend 
to amplify the noise of on-line measurements, which can lead to the degradation 
of the observer performance.  
In order to avoid this drawback, this observer algorithm is based on the works of 
Aguilar et al. [24-25], because the proposed integral observer provides 
robustness against noisy measurement and uncertainties. We show that this 
new structure retains all the characteristics of the popular (the traditional high 
gain) state observers of the classical literature and furthermore provides 
additional robustness and noise filtering and thus can result in a significant 
improvement of the monitoring performances of the genetic regulation process.  
 
In this section, we present the design of a nonlinear software sensor in which 
one jX , for j  є (1… n), is the naturally measured state (the easiest to 
measure). Therefore, it seems logical to take jX  as the output of the system 
 

jXXhy == )(                                                                                                              (3.6) 
 

Now, considering the constant nK1  and the function )( nXr  as unknown, we 
group them together in a function )(Xτ . In addition, we consider that the output 
function )(Xh is contaminated with a Gaussian noise. In such a case, the model 
given by the aforementioned, Eqs. (1) and (2) acquires the form 
 

⎪⎩

⎪
⎨
⎧

+=
+=Γ
,

),()(:
_

δ
τ
CXy

XlXX&  

where 
_
τ  is a n X 1 vector whose first entry is )(Xτ  and all the rest are zero, 

)(Xl  is also a n X 1 vector of the form [ ] ,,, 11,11 δγγ T
iiiii XXKX −− −−  is an additive 

bounded measurement noise, and nRX ∈ .The system is assumed to lie in a 
“physical subset" nR⊂Σ . 
  
Then, the task of designing an observer for the system Γ  is to estimate the 

vector of states X , despite of the unknown part of the nonlinear vector )(
_

Xτ  
(which should be also estimated) and considering that y is measured on-line 
and that the system is observable. 
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A particular representation of the software sensor that we describe here is 
provided in Fig. 1.6 
 
   In order to provide the observer with robust properties against disturbances, 
Aguilar and collaborators [24] considered only an integral type contribution of 
the measured error. Moreover, an uncertainty estimator is introduced in the 
methodology of observation with the purpose of estimating the unknown 

components of the nonlinear vector )(
_

Xτ . As a result, the following 
representation of the system is proposed: 
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that is, in the case of the model given by Eqs. (1.6) and (2.6), 
 

δ+= jXX 0
&  

1111 XXX n γ−= +
&  

,1, iiiiii XXKX γ−= −
&  1 < i  ≤ n  

)(1 XX n Ω=+
&  

0Xy = ,                                                                                                            (4.6)                         
 
where 0X&  is the dynamical extension that allows us to integrate the noisy signal 
in order to recover a filtered signal, while 1+nX&  allows us to put the unknown 
regulation function as a new state. Thus, the task becomes the estimation of 
this new state (a standard task for an observer), and therefore the function Ω  is 
related to the unknown dynamics of the new state. At this point, 2+∈ nRX  and 
furthermore the following equation is generated 

 
δEBAXX ++=&  

 
where AX  is the linear part of the previous system such that A  is a matrix 
equivalent in form to a Brunovsky matrix, [ ]TXB )(,0,...,0 Ω= and [ ]TE 0,...,0,1=  
 
We will need now the following result proven in Ref [24]. 
 
An asymptotic-type observer of the system Ξ  is given as follows: 
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where the gain vector θ  of the observer is given by 
 

,1 TCS −= θθ  
 

⎟⎟
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⎞
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⎛
= ++ 1
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,; ji

ji
ji
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Each entry of the matrix θS  is given by the above equation, where θS  is an  
n X n matrix (i and j run from 1 to n), and jiS ,  are entries of a symmetric positive 
definite matrix that do not depend on θ . Thus, jiS , are such that θS  is a positive 
solution of the algebraic Riccati equation, 
 

CCSIAIAS T=⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ + θθ

θθ
22

                                                                            (5.6) 

 
In all formulas, [ ]0,...,0,1=C . In the multivariable case we must create one matrix 

θS  for each block corresponding to each output. It is worth mentioning that we 
can think about this observer as a `slave' system that follows the `master' 
system, which is precisely the real experimental system. In addition, θS , as 
functional components of the gain vector, guarantees the accurate estimation of 
the observer through the convergence to zero of the error dynamics, i.e., the 
dynamics of the difference between the measured state and its corresponding 
estimated state. One can see that θ  generates an extra degree of freedom that 
can be tuned by the user such that the performance of the software sensor 
becomes satisfactory for him. 
 
In [28] it has been shown that such an observer has an exponential-type decay 
for any initial conditions. Notice that a dynamic extension is generated by 
considering the measured output of the original system as new additional 
dynamics with the aim to filter the noise. This procedure eliminates most of the 
noise in the new output of the system. The reason of the filtering effect is that 
the dynamic extension acts at the level of the observer as an integration of the 
output of the original system, (see the first equation of the system Ξ  and the 

error part in the equations of system 
∧

Ξ ). The integration has averaging effects 
upon the noisy measured states. More exactly, the difference between the 

integral of the output of the slave part of system 
∧

Ξ  and the integral of the output 
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of the original system gives the error and the observer is planned in such a way 
that the error dynamics goes asymptotically to zero, which results in the 
recovering of both the filtered state and the unmeasured states. 
 
 

 
 
Figure 2.6 The genetic regulatory system given by Eqs. (6.6) - (6.8) involving end-product 
inhibition according to De Jong [9]. A is an enzyme and C a repressor protein, while K and F are 
metabolites. The mathematical model, as used by De Jong and by us, takes into account 
experiments where only metabolite K is measured. 
 

A. Particular Case 
 
   For gene regulation processes, which are of interest to us here, we merely 
apply the aforewritten system of equations corresponding to the asymptotic 

observer 
∧

Ξ , 
 

,)( 1133,11 XXrKX γ−=&                                                                                      (6.6) 

,2211,22 XXKX γ−=&                                                                                         (7.6) 

.3322,33 XXKX γ−=&                                                                                         (8.6) 
 
The pictorial representation of this system of equation is given in Fig. 2.6 
     
   The values of the parameters given in Table 1.6, without necessarily being the 
experimental values, are however consistent with the requirements of the 

model. Using the structure given by the equations of 
∧

Ξ , the explicit form of the 
software sensor is: 
 

),(ˆ 30130

∧∧

−+= XyXX θ&  

),( 002114

.

1

∧∧

−+−= yyXXX θγ  
 

),(ˆ
0032211,22

∧

−+−= yyXXKX θγ&  
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),(ˆ
0043322,33

∧

−+−= yyXXKX θγ&  
 

),(ˆ 3054

∧

−= XyX θ&  
 

00

∧∧

= Xy  
 
Notice that this dynamic structure does not involve the regulation function.  
We can solve Eq. (5.6 ) and for numerical purposes we choose ϑ = 2.5 and the 
standard deviation of the Gaussian noise of 0.001. Figure 3.6 shows the 
numerical simulation that illustrates the filtering effect of the software sensor 
over the noisy measured state. 
 
 
Symbol Meaning Value (arb. units)
K1,3 Production constant of mRNA 0.001 
K2,1 Production constant of protein A 1.0 
K3,2 Production constant of metabolite K 1.0 
γ1 Degradation constant of mRNA 0.1 
γ2 Degradation constant of protein A 1.0 
γ3 Degradation constant of metabolite 

K 
1.0 

ϑ  Hill´s threshold parameter 1.0 
 
Table 1.6 Parameters of the Goodwin biological `signals’ used in this chapter. 
 
 
    On the other hand, Fig. 4.6 shows the results of a numerical simulation, 
where the solid lines stand for the true states and the dotted lines indicate the 
estimates, respectively. 
 
 
 

 
 
Figure 3.6 Numerical simulation: solid lines represent the filltered states and the dotted lines 
represent the noisy measured state for the evolution in time of metabolite K concentration. 

3X̂
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Notice that the initial bad estimation is due to the initial conditions that have been chosen far 
away from the real ones. This behavior could be improved with a better knowledge of the initial 
conditions. 
 
 

  
Figure 4.6 Numerical simulation: solid lines represent the true states generated by the original 
process endowed with the Hill regulatory function and dotted lines represent the estimated 
concentrations provided by the software sensor without any knowledge about the regulatory 
function. Plot (a) represents the evolution of mRNA concentration in time and plots (b) the 
variation of the concentration of protein A in time. 
 
6.5 Three-gene circuit case 
 
   In this section we extend the previous results to a more complicated case that 
can occur in eukaryotic cells. The case corresponds to the coupled regulation of 
three genes in which the metabolite resulting from the translation of gene 1 
becomes the substrate for the synthesis of the metabolite catalyzed by the 
enzyme translated from gene 2, and similarly for gene 3, but the metabolite 3 
becomes the repressor of all the three genes involved, as shown in Fig. 5.6. In 
this case the model is given by an extension of the model given by Eqs. (1.6) an 
(2.6). That results in the following system of differential equations: 
 
 

[ ] [ ]( ) [ ]11311 mRNAMetRKmRNA
dt
d γ−=  

 

[ ] [ ] [ ]12121 ENzmRNAKEnz
dt
d γ−=  

 

[ ] [ ] [ ] [ ]2113131 EnzMetEnzKMet
dt
d αγ −−=  

 

[ ] ( ) [ ]24342 mRNAMetRKmRNA
dt
d γ−=  

 

[ ] [ ] [ ]25252 EnzmRNAKEnz
dt
d γ−=  

 

1X̂ 2X̂
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[ ] [ ] [ ] [ ]3226262 EnzMetEnzKMet
dt
d αγ −−=  

 

[ ] [ ]( ) [ ]37373 mRNAMetRKmRNA
dt
d γ−=  

 

[ ] [ ] [ ]38383 EnzmRNAKEnz
dt
d γ−=  

 

[ ] [ ] [ ]39393 MetEnzKMet
dt
d γ−=  

 
 
where [mRNA3], [Enzi] and [Meti] represent the concentration of mRNA, 
enzymes and metabolites for each gene respectively. We select as the 
measured variables the metabolites because we want to show that through the 
measurement of stable molecules such as the metabolites, it is possible to infer 
the concentration of unstable molecules such as the mRNAs. Note that the 
equations are coupled through the dynamics of the metabolites. Moreover, we 
will assume that the dynamics of mRNA is bounded but unknown. As we 
showed in the previous sections our new system can be written as: 
 

,121 dXX +=&                                                                                                               (9.6) 
 

,8123332 XXXKX αγ −−=&                                                                                       (10.6) 
 

32423 XXKX γ−=& ,                                                                                                   (11.6) 
 

54 XX =& ,                                                                                                                    (12.6) 
 

)(15 XX φ=& ,                                                                                                               (13.6) 
 

276 dXX +=& ,                                                                                                            (14.6)   
 

13276867 XXXKX αγ −−=& ,                                                                                     (15.6) 
 

85958 XXKX γ−=& ,                                                                                                   (16.6) 
 

109 XX =& ,                                                                                                                   (17.6) 
 

)(210 XX φ=& ,                                                                                                             (18.6) 
 

31211 dXX +=& ,                                                                                                          (19.6) 
 

12913912 XXKX γ−=& ,                                                                                                (20.6) 
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13814813 XXKX γ−=& ,                                                                                                (21.6) 

 
1514 XX =& ,                                                                                                                  (22.6) 

 
)(315 XX φ=& ,                                                                                                             (23.6) 

 
 

where mRNA1 = X& 4, mRNA2 = 9X& , mRNA3 = 14X& , Enz1 = 3X& , Enz2 = 
.

8X , Enz3 

=
.

13X , Met1 =
.

2X , Met2 =
.

7X , Met3 =
.

12X , di represent the noise, Φi(X) stand for 
the unknown dynamics. In addition, the previous systems can be written in the 
matricial form as 
: 

 
∈++=         ,)( XEdXBXAX&  Rn 

 
Tm

m XCXCXCy )...( 1
1== ,                                                                                      (24.6) 

 
 
 

 
Figure 5.6 The three-gene regulatory circuit under consideration. 

 
 
 
   According to the scheme presented in the previous section we construct an 
observer through the following system of deferential equations: 
 

)ˆ(ˆˆ
111121 XXXX −+= θ& ,                                                                                           (25.6) 

 

)ˆ(ˆˆˆˆ
11128123332 XXXXXKX −+−−= θαγ& ,                                                             (26.6) 

 
)ˆ(ˆˆˆ

111332423 XXXXKX −+−= θγ& ,                                                                          (27.6) 
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)ˆ(ˆ
111454 XXXX −+= θ& ,                                                                                           (28.6) 

 
)ˆ(ˆ

11155 XXX −= θ& ,                                                                                                    (29.6) 
 

)ˆ(ˆˆ
662176 XXXX −+= θ& ,                                                                                          (30.6) 

 

)ˆ(ˆˆˆˆ
662213276867 XXXXXKX θαγ +−−=& ,                                                               (31.6) 

 
)ˆ(ˆˆˆ

662385958 XXXXKX −+−= θγ& ,                                                                         (32.6) 
 

)ˆ(ˆˆ
6624109 XXXX −+= θ& ,                                                                                         (33.6) 

 

)ˆ(ˆ
662510 XXX −+= θ& ,                                                                                               (34.6) 

 
)ˆ(ˆˆˆ

111321291211 XXXXX −++= θθγ& ,                                                                        (35.6) 
 

),ˆ(ˆˆˆ
11113313814813 XXXXKX −+−= θγ&                                                                      (36.6) 

 

)ˆ(ˆˆ
11341514 XXXX −+= θ& ,                                                                                         (37.6) 

 
)ˆ(ˆ

11113515 XXX −=θ& ,                                                                                                (38.6) 
 

 
 

where iθ  stand for the observer gain values. Note, that this extension is not a 
direct application of that developed by Aguilar et al. [24], in the sense that this is 
a extension to the multivariable case. In addition, the matrix Ai is equivalent to a 
matrix of Brunovsky form, which guarantees the existence, uniqueness and 
invertibility of the matrix solution iSθ  [26]. (The existence and the uniqueness of 

iSθ  follows from the facts that ii AI −− )2/(θ  is of Hurwitz-type and that the pair 
),)2/(( iii CAI −− θ  is observable [27]). 

 
 
6.6 Conclusion 
 
   In this research, a simple software sensor was designed for a schematic gene 
regulation dynamic process involving end-product inhibition in single gene, 
operon and three gene circuit cases. This sensor effectively rebuilds the 
unmeasured concentrations of mRNA and the corresponding enzyme. Thus, the 
limitation of those experiments in which only the concentration of the 
catalytically synthesized metabolite is available, can be overcome by employing 
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the simple software sensor applied here. This is a quite natural case if one 
takes into account that metabolites are quite stable at the molecular level. At the 
same time, we can reproduce the concentrations of the unstable molecules of 
mRNA. This is a difficult task in experiments, despite the fact that the mRNA 
dynamics has been partially or even totally unspecified. 

 
   The same scheme philosophy to build the observer is applied to a three-gene 
circuit with the purpose to show that the software sensor concept could be in 
usage in a forward engineering approach. In this research however, we 
mentioned that we were able to show that the observer scheme designed in [24] 
for the single output case works well also in a multiple variable case as 
embodied by a particular genetic circuit given in Fig. 5.6. The most stringent 
mathematical requirement for this extended applicability to the multiple output 
case is described below. The linear part of the dynamic system should be a 
matrix by blocks in which each of the blocks should be of Brunovsky equivalent 
form. In addition, each subsystem corresponding to a superior block depends 
only on the subsystem corresponding to the next nearest block. This is a feature 
similar to the property of Markoff processes. 
 
   The Brunovsky equivalent form of the matrix blocks Ai together with the 
structure of the corresponding output vector Ci generate an observable pair (Ai, 
Ci), giving us the capability to infer the internal states of the gene network 
through the knowledge of its external outputs. However, the special Brunovsky 
equivalent form of the blocks leads to the possible biological interpretation that 
each block of the linear part of the differential system represents only that 
contribution of the gene regulation mechanism that comes from reactions 
occurring in a cascade fashion. 
 
   Another important issue that we tackled in this work is related to the way of 
adding the noise to the output of the dynamic system. Even though this is a 
typical situation from the standpoint of control process theory, to the best of our 
knowledge it has not yet been applied in the biological context of gene 
regulation processes. We stress that this way of including noise effects could 
have both intrinsic and extrinsic interpretations and therefore assure a more 
general approach of the noise problems. For example, in phenomenological 
terms, perturbations on the cells due to the measuring devices and the 
experimental conditions, together with the noise produced by the nature of the 
electronic instrumentation, could be equally described in this way.  
 
   In addition, this type of nonlinear observer could be used as an online filter 
being robust with respect to model uncertainties, i.e., neither a known regulation 
function nor the parameter K1,3 is required. 
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Figure 6.6 Numerical simulation: solid lines represent the filtered states obtained from the noisy 
measured states for the evolution in time of metabolite concentrations, where a, b and c 
correspond to metabolite 1, 2, and 3, respectively. The units of the two axes are arbitrary 
(nondimensional model) 
 

  
 
Figure 7.6 Numerical simulation: solid lines represent the true states generated by the original 
process endowed with the Hill regulatory function and dotted lines represent the estimated 
concentrations provided by the software sensor without any knowledge about the regulatory 
function; a, b and c correspond to molecule 1, 2 and 3, respectively. Plot (a) represents the 
evolution of mRNAi concentrations in time and plots (b) the variation of the concentration of the 
corresponding enzymes in time. The axes of the graph have arbitrary units. 
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APPENDIX A: Distance Measures  
 

Euclidian Distance Measure 

The Euclidian distance can be considered to be the shortest distance between two points, 
and is basically the same as Pythagorus' equation when considered in 2 dimensions 
(Figure 1) . 

 

Figure 1. Straight line between A and B. 

 
City Block (Manhattan) Distance 

Computationally speaking, this is a cheaper distance measure. Intuitively it is suitable for 
measurements of discrete data, but it is not restricted to such cases only (see end of 
Figure 2 legend). 

 

Figure 2. Manhattan distance means to take a 'city walk' to get from one point to another. 
It does not necessarily have to be the way as portrayed above - it is equally valid to take 
one unit to the right and one unit up and so on until the destination is reached.  As 
mentioned above, it is intuitively useful for discrete datasets - the intersection between 2 
black lines in the picture above could represent one whole unit (e.g. 1 person) and so the 
'distance' between the two points protrayed above could be 7 units (e.g. 7 people). It 
makes sense to use this when one wants the distance to be discrete rather than 
continuous (e.g. 6.5 people might not be suitable for analysis!)      
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Chebyshev Distance 

If one were to take each element that makes up the two vectors in question, then the two 
corresponding elements that create the largest difference (i.e. made into positive value) 
are considered to be the Chebyshev distance. This measure is particularly useful when 
computation time is absolutely imperative. 

 
Minkowski Distance (MD) of Order m 

Looking at the equation closely will reveal that when m = 2 the distance metric is exactly 
the same as as the Euclidian distance. When m = 1, the distance is exactly the same as 
the City Block distance. As m increases, the metric tends towards a Chebyshev result. 
Therefore by inceasing m, one can place more numerical value on the largest distance (in 
terms of elements in the two vectors in question). 

The JExpress Manual (available from MolMine) states that the MD measure is the most 
commonly used distance measure when using ratio scales (when there's an absolute 
zero). A disadvantage of the Minkowski method is that if one element in the vectors has a 
wider range than the other elements then that large range may 'dilute' the distances of the 
small-range elements. The JExpress Manual explains further and suggests other variants 
of this distance measure to counteract the overpowering effect of wide-range elements. 

 
Quadratic Distance 

This is a computationally expensive approach to a weighted distance metric. The weight is 
defined by Q, a symmetric matrix of correlations. 

 
Canberra Metric 

This is usually only meant for 
non-negative variables only. The 
Canberra metric makes a 
summation of a series of ratios 
between corresponding planar 
values. This therefore accounts 
for the distance between two 
points but also their relation to   
the'origin'.  

 

Figure 3. The Canberra distance between (x1,y1) and (x2,y2) is 0.6, whereas for (x3,y3) to 
(x4,y4) it is 0.666, even though they are identical in geometric distance. This difference 
becomes even more apparent in multi-dimensional space. It can therefore be seen that 
this measure has a bias for distances being measured around the origin. Classification 
methods very much rely on suitable methods in their decision-making processes to 
determine whether or not a certain data point belongs to a particular predefined class (that 
predefinition comes from training).  
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Pearson Correlation Coefficient 

Given fixed positions in z-dimensional space, two vectors can be compared by their 
components with Pearsons Correlation coefficient. The result is always between -1 and 1 
inclusive:1 means there is perfect similarity, i.e. the vectors are identical; 0 means there is 
no similarity; -1 means there is perfect dissimilarity, i.e. the vectors are perfectly opposite. 

Unlike the Canberra method, if one were to translate both vectors about (by multiplication, 
addition or subtraction) in z space, the same result would be procured because the relation 
between the two vectors has not changed - in this way, this is similar to the Euclidean 
method. This metric is therefore independent of the vectors' position in relation to the 
origin. 

 
Uncentered Pearson Correlation Coefficient 

Performing the Pearson Correlation Coefficient metric without taking into account the 
mean of the components yields an uncentered correlation coefficient. The 'normal' 
Pearsons Correlation Coefficient gives two vectors the value of 1 (perfect similarity) if their 
shape is identical, even if they are offset from each other. The uncentered flavour of this 
metric takes into account the relative positions of the vectors with the origin (i.e. their 
magnitude) and so does not yield 1 in the same situation. 

 
Squared Pearson Correlation Coefficient 

This is the same as Pearsons Correlation Coefficient, except that negative values are 
squared and so are no longer achievable, i.e. one cannot obtain a perfect dissimilarity (-1) 
anymore. This is extremely useful in gene expression studies - let a vector in this case 
(gene expression values) represent gene behaviour. Opposite gene expression behaviour 
would ordinarily be denoted by negative values from Pearsons Correlation Coefficient, but 
in the Squared Pearsons Correlation Coefficient opposite bahaviours can be made to be 
synonymous. 

Why would this be useful? 

If one had an expression profile of gene X with a certain behaviour, and it was found that 
gene Y was repressed in terms of expression by gene X, then in a Pearsons Correlation 
Coefficient analysis the value between these two would be -1 (assume there is a 1:1 
inverse proportionality). The Squared Pearsons Correlation Coefficient would give +1. 

When performing a cluster analysis, using Pearsons Correlation Coefficient as a distance 
measure would yield clusters such that X and Y would be very far apart from each other - 
this is because there is no apparent similarity. In fact, biologically speaking, there is a very 
close relationship between X and Y, even though their vectors are opposite. Using the 
Squared Pearsons Correlation Coefficient would actually reflect this relationship and 
cluster X and Y very closely. 
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Calculating Distances of Vectors 

Usually one would choose the method which gives the 'best' results in terms of some error 
function or ability to classify/cluster certain data points. The most commonly used one is 
the Euclidian distance measure. 

The purpose of such measures is to give a numerical value to the amount of dissimilarity 
between two vectors. 

Below are some common measures. The equations below have components x and y, 
which are the elements of the two vectors in question. 

 

The equations for distance measures. In red, most common name and in blue, other 
commonly used names. 
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APPENDIX B: Mahalanobis Distance (MD) 
Retrieved from "http://en.wikipedia.org/wiki/Mahalanobis_distance"  
 

In statistics, Mahalanobis distance is a distance measure introduced by P. C. 
Mahalanobis in 1936. It is based on correlations between variables by which 
different patterns can be identified and analysed. It is a useful way of 
determining similarity of an unknown sample set to a known one. It differs from 
Euclidean distance in that it takes into account the correlations of the data set 
and is scale-invariant, i.e. not dependent on the scale of measurements. 

Formally, the Mahalanobis distance from a group of values with mean 

and covariance matrix Σ for a multivariate vector 

is defined as: 

 

MD can also be defined as dissimilarity measure between two random vectors 
and of the same distribution with the covariance matrix Σ : 

 

If the covariance matrix is the identity matrix, the MD reduces to the Euclidean 
distance. If the covariance matrix is diagonal, then the resulting distance 
measure is called the normalized Euclidean distance: 

 

where σi is the standard deviation of the xi over the sample set. 

 

Intuitive explanation 

Consider the problem of estimating the probability that a test point in N-
dimensional Euclidean space belongs to a set, where we are given sample 
points that definitely belong to that set. The first step is to find the average or 
center of mass of the sample points. Intuitively, the closer the point in question 
is to this center of mass, the more likely it is to belong to the set. However, we 
also need to know how large the set is.  
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The simplistic approach is to estimate the standard deviation of the distances of 
the sample points from the center of mass. If the distance between the test 
point and the center of mass is less than one standard deviation, then we 
conclude that it is highly  probable that the test point belongs to the set. The 
further away it is, the more likely that the test point should not be classified as 
belonging to the set. 

This intuitive approach can be made quantitative by defining the normalized 

distance between the test point and the set to be . By plugging this into 
the normal distribution we get the probability of the test point belonging to the 
set. 

The drawback of the above approach was that we assumed that the sample 
points are distributed about the center of mass in a spherical manner. Were the 
distribution to be decidedly non-spherical, for instance ellipsoidal, then we 
would expect the probability of the test point belonging to the set to depend not 
only on the distance from the center of mass, but also on the direction. In those 
directions where the ellipsoid has a short axis the test point must be closer, 
while in those where the axis is long the test point can be further away from the 
center. 

Putting this on a mathematical basis, the ellipsoid that best represents the set's 
probability distribution can be estimated by building the covariance matrix of the 
samples. The MD is simply the distance of the test point from the center of 
mass divided by the width of the ellipsoid in the direction of the test point. 

Relationship to leverage 

MD is closely related to the leverage statistic h. The MD of a data point from the 
centroid of a multivariate data set is (N − 1) times the leverage of that data 
point, where N is the number of data points in the set. 

Applications 

MD is widely used in cluster analysis and other classification techniques. It is 
closely related to Hotelling's T-square distribution used for multivariate statistical 
testing. 

In order to use the MD to classify a test point as belonging to one of N classes, 
one first estimates the covariance matrix of each class, usually based on 
samples known to belong to each class. Then, given a test sample, one 
computes the MD to each class, and classifies the test point as belonging to 
that class for which the MD is minimal. Using the probabilistic interpretation 
given above, this is equivalent to selecting the class with the highest probability. 
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Also, MD and leverage are often used to detect outliers especially in the 
development of linear regression models. A point that has a greater MD from 
the rest of the sample population of points is said to have higher leverage since 
it has a greater influence on the slope or coefficients of the regression equation. 
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APPENDIX C: Diffeomorphism (from Wikipedia) 
 

In mathematics, a diffeomorphism is a kind of isomorphism of smooth manifolds. It is an 
invertible function that maps one differentiable manifold to another, such that both the 
function and its inverse are smooth. 

Definition 

Given two manifolds M and N, a bijective map f from M to N is called a diffeomorphism if 
both 

 
and its inverse 

 
are differentiable (if these functions are r times continuously differentiable, f is called a Cr-
diffeomorphism). 

Two manifolds M and N are diffeomorphic (symbol being usually ) if there is a 
diffeomorphism f from M to N. 

Examples 

 
That is, the quotient group of the real numbers modulo the integers is again a smooth 
manifold, which is diffeomorphic to the 1-sphere, usually known as the circle. The 
diffeomorphism is given by 

 
This map provides not only a diffeomorphism, but also an isomorphism of Lie groups 
between the two spaces. 

Local description 

Model example: if U and V are two open subsets of , a differentiable map f from U to V 
is a diffeomorphism if 

1. it is a bijection,  

2. its derivative Df is invertible (as the matrix of all , ), which 
means the same as having non-zero Jacobian determinant.  

Remarks: 

• Condition 2 excludes diffeomorphisms going from dimension n to a different 
dimension k (the matrix Df would not be square hence certainly not invertible).  

• A differentiable bijection is not necessarily a diffeomorphism, e.g. f(x) = x3 is not a 
diffeomorphism from to itself because its derivative vanishes at 0.  

• f also happens to be a homeomorphism.                                                                         
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Now, f from M to N is called a diffeomorphism if in coordinates charts it satisfies the 
definition above. More precisely, pick any cover of M by compatible coordinate charts, and 
do the same for N. Let φ and ψ be charts on M and N respectively, with U being the image 
of φ and V the image of ψ. Then the conditions says that the map ψfφ − 1 from U to V is a 
diffeomorphism as in the definition above (whenever it makes sense). One has to check 
that for every couple of charts φ, ψ of two given atlases, but once checked, it will be true 
for any other compatible chart. Again we see that dimensions have to agree. 

Diffeomorphism group 

The diffeomorphism group of a manifold is the group of all its automorphisms 
(diffeomorphisms to itself). For dimension greater than or equal to one this is a large 
group. For a connected manifold M the diffeomorphisms act transitively on M: this is true 
locally because it is true in Euclidean space and then a topological argument shows that 
given any p and q there is a diffeomorphism taking p to q. That is, all points of M in effect 
look the same, intrinsically. The same is true for finite configurations of points, so that the 
diffeomorphism group is k- fold multiply transitive for any integer k ≥ 1, provided the 
dimension is at least two (it is not true for the case of the circle or real line). This group can 
be given the structure of an infinite dimensional Lie group, modeled on the space of vector 
fields on the manifold. In general, this will not be a Banach Lie group, and the exponential 
map will not be a local diffeomorphism. 

Homeomorphism and diffeomorphism 

It is easy to find a homeomorphism which is not a diffeomorphism, but it is more difficult to 
find a pair of homeomorphic manifolds that are not diffeomorphic. In dimensions 1, 2, 3, 
any pair of homeomorphic smooth manifolds are diffeomorphic. In dimension 4 or greater, 
examples of homeomorphic but not diffeomorphic pairs have been found. The first such 
example was constructed by John Milnor in dimension 7, he constructed a smooth 7-
dimensional manifold (called now Milnor's sphere) which is homeomorphic to the standard 
7-sphere but not diffeomorphic to it. There are in fact 28 oriented diffeomorphism classes 
of manifolds homeomorphic to the 7-sphere (each of them is a fiber bundle over the 4-
sphere with fiber the 3-sphere). 

Much more extreme phenomena occur: in the early 1980s, a combination of results due to 
Fields Medal winners Simon Donaldson and Michael Freedman led to the discoveries that 
there are uncountably many pairwise non-diffeomorphic open subsets of each of which 
is homeomorphic to , and also that there are uncountably many pairwise non-
diffeomorphic differentiable manifolds homeomorphic to which do not embed smoothly 
in .  
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APPENDIX D: Lipschitz continuity (from Wikipedia) 
 
 
This is a smoothness condition for functions that is stronger than regular 
continuity. 
 
A Lipschitz continuous function is limited in how fast it can change. In geometric 
terms, a line joining any two points on the graph of the function will never have 
a slope steeper than a certain number called the Lipschitz constant of the 
function. 
 
The concept of Lipschitz continuity can be defined on metric spaces and thus 
also on normed vector spaces. A generalization of Lipschitz continuity is called 
Hölder continuity. 
 
Definition 
 
A real valued function f defined on a subset D of the real numbers is called 
Lipschitz continuous or is said to satisfy a  Lipschitz condition if there exists a 
constant K ≥ 0 such that for all x1, x2 in D 
 

|f(x1)-f(x2)| ≤ K |x1-x2|. 
 
The smallest such K is called the Lipschitz constant of the function f. 
Alternatively, one can write 
 

|f(x1)-f(x2)| ⁄ |x1-x2| ≤ K 
 
for x1 ≠ x2, i.e., iff the slopes of secants are bounded. 
 
 
Locally Lipschitz continuous 
 
The function is called locally Lipschitz continuous if for every x in D there exists 
a neighborhood U(x) so that f restricted to U is Lipschitz continuous. 
 
Lipschitz continuity in metric spaces 
 
Given two metric spaces (M,d) and (N,d'), where d and d' denotes the metric on 
the sets M and N respectively, U is a subset of M, a function 
 

f: U → N 
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is called Lipschitz continuous if there exists a constant K ≥ 0 such that for all x1 
and x2 in U 
 

d'(f(x1), (f(x2)) ≤ K d(x1, x2). 
 
The smallest such K is called the Lipschitz constant of the function f. If K=1 the 
function is called short map, if K< 1 the function is called contraction. 
 
If, for K>1, d' is also bounded below by the metric d, i.e.,  
 

K-1 d(x1, x2) ≤ d'(f(x1), (f(x2)) ≤ K d(x1, x2). 
 
then f is called  bi-Lipschitz. 
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APPENDIX E: Kalman Filters (KFs) 

 
KFs have been introduced by R. Kalman in 1960 [1]. At the present time, extensive 
treatments of the KFs can be found in many standard text books [2-4]. 

On the other hand, the extension of the KFs to nonlinear systems is required for solving 
many state estimation problems. 

Suppose a mathematical model is given for a natural system in the form 

xn+1 = F(xn, un, wn)                  (1) 

and its measurement (output) function as 

yn = H(xn, un, vn)                     (2) 

where the variables are the state, input, and state noise variables, respectively, in the first 
equation, and  yn  and vn  are the model output and observation noise in the second 
equation. For continuous systems, xn+1 is obtained by numerical integration procedures 
with xn, un, and wn as input. 

  

The optimal estimate of the  state variables xn in the sense of least mean squares, given 
the observation of yn , is the conditional expectation E(xn | yn ). The KF realizes a recursive 
procedure to obtain this conditional expectation for a linear Gaussian system.  

However, this optimality cannot be retained for a nonlinear system. Instead, several 
extension of the linear KF can be used to obtain a suboptimal solution for nonlinear 
systems.  

 

Let x̂ n | n-1  = x prior-est  denote the prior estimation of xn  with its associated covariance 

matrix as 1|ˆ −nnxP
 

 
At time n,  a new measurement yn   is collected to derive a better estimation of  xn. 
 
One way, which is the optimal one in the case of linear Gaussian systems, is to have a 

correction term added to x̂ n | n-1  that is based on the difference between the measured  
yn  and  such that 
 
measurement update:   x pres-est = x prior-est  + Kn (yn – y prior-est)     (3) 
 
where Kn is termed Kalman gain, which, for both linear and nonlinear systems, can be 
optimally calculated as 
 

Kn  = P xn-xprior-est , yn-yprior-est, P-1 yn-yprior-est          (4) 
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where the first P is the covariance between  xn-xprior-est and yn-yprior-est. 
 
The optimality of  Kn  is a classical result from linear optimal estimation theory.  
 
It is also not difficult to get that the posterior covariance in x is less than the prior 
covariance in x by a term 
of the form 
 

(Ppost –Pprior)x =  - Kn   Pyn-yprior-est (Kn )T            (5) 
 

 

The diagonal terms of the posterior covariance give the variances of the posterior estimate 
of state variables. 
 
Equation (3) is usually called measurement update since the upgrade of the prior estimate 
to a better posterior estimate is achieved with the arrival of a new measurement. 
 
With xpres-est   a prediction of x n+1| n  can be made as 
 

time update :   x̂ n+1|n = E[F(x pres-est …)]              (6) 
 

where E[·] is the expectation operator. It implies the calculation of the conditional 
probability of  xn  on the measurements up to n. This step is usually called time update.  
 
The prediction of the measurement can be calculated in the similar fashion as  
  

ŷ n+1|n = E[H(x pres-est , un, vn )]              (7) 
 
 
The time update step in the general KF paradigm is essentially the propagation of the 
expectation and the covariances of random variables through functions.  
 

Nonlinear KFs 
 
 
Different nonlinear KFs address this propagation problem in different ways [5-8] while the 
measurement update is conducted in the same fashion. The calculation of  Kn is always 
done at the measurement step of the filtering process according to equation (4). There are 
many nonlinear filters that follow the basic Kalman filtering structure. 
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APPENDIX F: Luenberger Observers (LOs) 

 
LOs have been introduced by D. Luenberger in 1963 [1].  

In general they occur in problems of stabilizing a dynamical system by state feedback, i.e., 
u=Fz. 

This assumes that one can measure the whole state space, which is impossible in realistic 
cases. 

The natural question is how to stabilize the system using only partial information about the 
state. One answer is to use the measurements (partial information) to estimate the full 
state (the construction of an observer) and to apply the state feedback on the estimated 
state. 

 

 

 

Consider the state linear system Σ(A,B,C)  in the above figure with state space Z , input 
space U, and output space Y.  

A Luenberger observer for this system is given by 
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where ),,( ZYL Λ∈ the space of bounded linear operators from Y to Z . It can be shown 
that the above LO provides a good estimate of the state z provided that system Σ(A,B,C) is 
exponentially detactable (observable). 
 
LOs for nonlinear systems 
 
M. Zeitz [2] developed an extended LO for nonlinear systems, which is based upon a local 
linearization technique around the reconstructed state. Other works on the extension of 
Luenberger observer to nonlinear systems belong to Ciccarela y colaboradores [3] y 
Kazantzis y Kravaris [4]. 
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  Final Conclusions 
 

The published results on the application of the nonlinear observers of Gauthier et 
al. and Aguilar et al. to the Goodwin biological model of the dynamics of 
concentrations of biochemical entities within alived cells  have been the first 
interdisciplinary studies in IPICyT. 

 
At the same time, they have been the first publications in the worldwide literature 
on the application of such observers to gene regulation processes. 

 
On the other hand, in the case of gene expression networks of high complexity the 
only  appropriate treatment of the  experimental microarray data are the clustering 
methods. 

 
In this thesis, we provided a tentative investigation of the promising  
superparamagnetic type of clustering. 
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