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Resumen

En esta tesis se desarrolla y analiza una metodologiaagiaia atacar la estabilizacion prac-
tica de configuraciones para sistemas de segundo ordertoegrr grupos de Lie. En particular,
esta clase de sistemas surgen de la formulacién de Euleah@® que describe la dinamica de
sistemas mecanicos. La estabilizacion de esta clase dmasstesulta ser no trivial dado que esta
clase incluye sistemas mecéanicos posiblemente restaggidubactuados. Ademas, esta clase de
sistemas incluye sistemas que no admiten reducciones &fivas, sistemas cuya linealizacién en
puntos de equilibrio es no controlable y sistemas para lesgexiste retroalimentacién continua
en el estado que estabilice por ejemplo, puntos de eqoiliejfemplos de esta clase de sistemas
son los manipuladores mecanicos subactuados, cuerpdssign el espacio, vehiculos a ruedas
y vehiculos acuaticos subactuados. Es interesante naasfios sistemas de control son sistemas
afines en el control para los cuales el campo vectorial deagrega un papel importante para
determinar la accesibilidad local del sistema de control.

La metodologia analizada en esta tesis, originalmenteupstp en (Sosa [2005]), tiene como
objetivo extender la metodologia de estabilizacion prefaupor Morin y Samson [2003] para
atacar la estabilizacion practica de configuraciones pstensas de segundo orden. Las contribu-
ciones principales de esta tesis se centran, primero, éizama cero-dindmica de lazo cerrado
para determinar el comportamiento a largo plazo de lasdtagias del sistema en lazo cerrado y
segundo, en modificar el algoritmo de control propuesto tohjetivo demoldearlas trayectorias
de la cero-dindmica para obtener resultados de estabrkd@eridos en aplicaciones practicas. El
desarrollo y el andlisis de la metodologia tedrica presstan esta tesis sugieren problemas com-
plejos que deben ser resueltos para obtener una metodalufiéada, sistematica y general para
el control de sistemas mecanicos subactuados via funciengsalmente transversas.



Abstract

In this dissertation we analyze a theoretical frameworkddress practical stabilization of
fixed configurations for second-order systems on tangengidaeps based in vertical transversal-
ity (initially proposed in Sosa [2005]). In particular weeanterested in control systems arising
from the Euler-Lagrange formulation for mechanical systeBtabilization of this class of systems
results nontrivial given that this class encompasses,pgssnstrained, underactuated mechan-
ical systems. Within this class one may encounter systeatsatle not kinematic reductions of
mechanical systems, systems whose linearization at bgails non-controllable, and control sys-
tems that cannot be stabilized by means of continuous statibfick. Examples of such systems
include underactuated mechanical manipulators, rigidylsystems in space, wheeled vehicles
and underactuated underwater vehicles. It is interestirgrark that these control systems are
affine control systems for which the drift vector field playkey role in determining important
properties such as local accessibility.

The framework analyzed in this thesis, which was initialtpgosed in (Sosa [2005]), is in-
tended to provide an extension to the stabilization proeeguoposed by Morin and Samson
[2003] to deal with the practical stabilization of configtioas for second-order systems. The main
contributions of the thesis center on two important iss&@st, in analyzing the closed-loop zero-
dynamics to assess the long-term behavior of the trajesofithe closed-loop system and, second,
in modifying the proposed control algorithm with the objeetof shapingthe zero-dynamics tra-
jectories to obtain stability results urged by practicgblagations. However, the analysis done is
not conclusive towards the developing of a unified and syatieally applicable theoretical frame-
work to address configuration stabilization for general namical system via vertically transverse
functions.
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Chapter 1

Introduction

This thesis comprises the analysis and characterizatianieforetical framework, which relies
on tools from differential geometry, to practically stabdl fixed configurations for underactuated
mechanical systems evolving on Lie groups, based on vettarasversality. It also comprises a
modification to this control framework with the aim of haviggitable stability results required in
typical control applications.

The presented control framework is an extension, to the ehsecond-order systems, of the
transverse function approach (TFA) to control proposed loyiMand Samson [2003], which ad-
dresses practical point stabilization and trajectorykirag for controllable driftless systems.

The class of systems targeted by this extension are seagded-control systems on tangent
Lie groups of the form

m
D=, + Y u'Xx" (1.1)
i=1
where S is a second-order vector field on a tangent Lie grdi@, X", ..., X! are vertical

lifts of left-invariant vector fields orG satisfying the LARC (Lie Algebra Rank Condition) at
some pointg € G, andm < n = dim(G). All manifolds, mappings, vector fields and related
constructs defined in this thesis are assumed to be smoahsuotherwise stated. (The Reader
may refer to the Appendix for notation and basic conceptsl usehis thesis). In the Euler-
Lagrange formulation for mechanical systeniscorresponds to the vector field given By =

S% — (dVH'™  that is, the sum of the geodesic spray associated with adRieian metricg on

G, and minus the vertical lift of the vector field corresporglia the gradient of a potential energy
functionV : G — R. The control vector fieldX™, i = 1,...,m, correspond to vertical lifts
of the vector fieldg F?)* determined byn 1-forms F' related, in a physical sense, to forces or
torques applied to the system.

The class of systems given by (1.1) encompasses possisyraored, underactuated mechan-
ical systems. In particular, it contains systems that atekimematic reductions of mechanical
systems in the sense of Bullo and Lewis [2005, chap. 4], systehose linearization at equilibria
are non-controllable, and critical control systems.

By acritical control systenwe refer to a system that do not satisfies generalizationsaufkd@tt
[1983] necessary condition for the stabilization of edprilim points by means of continuous pure

1



CHAPTER 1. Introduction

state feedback. An extension to Brockett’s condition st#te following. Letx = f(x,u) be a
control system on a-dimensional manifold?, such thatf : Q x R” — TQ is continuous and
satisfiesf (g, 0) = 0 for someg € Q. Then, a necessary condition for the asymptotic stabitinat
of ¢ by means of a continuous feedbagck Q9 — R™ is that f be open atg,0). That s, f,
viewed as a mapping between topological spaces, maps opgrbnehoods ofg,0) € O x R™

into open neighborhoods gf((¢,0)) € TQ. Furthermore, Coron and Rosier [1994] have shown
that Brockett’s condition still holds even if one allows tlie of discontinuous feedback, provided
that the solutions are interpreted in the sense of Filippov.

However, it is possible to overcome obstructions to regfdadback stabilization by means
of time-varying feedbackg, ) — «a(q,t), as was first shown by Samson [1991] for a particular
critical system, the model of a nonholonomic wheeled-cdrater, Coron [1992] showed that
continuous and periodic time-varying feedback can be ussthbilize global accessible driftless
systems, but no explicit construction method was provided.

The fact that “underactuated” controllable driftless eyss, i.e., those for which the number
of inputs is smaller than the dimension of the state spaee;réical (a straightforward result that
follows from Brockett’s condition) motivated further regeh on time-varying stabilizers and on
providing explicit construction methods to design suchlfesck laws. For instance, Pomet [1992]
reported an explicit method to design differentiable tivaeying feedback to asymptotically sta-
bilize equilibria for driftless control systems based oa ithtroduction of dissipation.

As an example of this type of feedback, consider the kineamatbdel of a unicycle-type
wheeled mobile robot, schematically depicted in Figure 1.1

g1 = v CQS(Q3)
g2 = vy sin(gs) (1.2)
gz = Vv,
wherev; is the forward velocity of the midpoint between the rear whesndv, is the velocity of
the “steering” angleys. This model is obtained under the assumption that the witkeett slip,

that is, the unicycle is allowed to move instantaneously diraction parallel to the plane of the
wheels. By means of the feedback transformatios; ¢(q), v = ¥ (v, g), given by

x=¢(q) = (q3.91 c09q3) + g2 SiN(g3),q1 SiN(g3) — g2 CO9g3)),
u=1vY@,q) = (v2,v1—(q1 SiN(g3) — q2 C0Kq3)) v2),

System (1.2) can be transformed into fhdimensional2-input chained form3-CF),

)'Cl = U1
)2,'2 = Uy (13)
)2,'3 = U1X3.

The 3-CF is a controllable system which is critical. In fact, thapping f : R®> x R? — R3
defined by f : (x,u) — (u1,us,u;1x,) is not open af0,0) € R* x R? since no point of the
form (0,0,¢) € R3 for anye > 0 belongs to the image of. Therefore there exists nuure-
statefeedback that rendes € R? asymptotically stable for (1.3), but a time-varying feecka

2
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Figure 1.1: Schematic diagram of the unicycle-type wheedot of system (1.2).

may stabilized € R3. Consider for instance the time-varying differentiabledeack reported by
M’'Closkey and Murray [1997],

ul(x,t) = —X1+ X3 COil) (1 4)
us(x,t) = —xp + x3 sin(t), '
which makes the origin globally asymptotically stable fbi3). Figure 1.2 (left) shows a numerical
simulation of system (1.3) under this feedback law for a giwvétial condition.

However, it was observed that differentiable time-varyiegdback leads to slow convergence
rates, as reported by Samson and Ait-Abderrahim [1991].thEumore, Murray et al. [1992]
showed that no poing € Q can be exponentially stabilized for controllable drifdes/stems
by means of differentiable time-varying feedback.

Then, Gurvits and Li [1992] showed that no time-varying fegck which is locally Lips-
chitz with respect to the state can exponentially stab#igeilibria for controllable driftless sys-
tems. In order to improve the convergence rate for the tt@ajis in closed-loop, the time-
varying feedback laws must be at most Hoélder-continuous@tpbint to stabilize. A way to
achieve faster convergence rates for the closed-loopctajes is to set the closed-loop system
g = F(q,t) := f(q,a(q,t)) homogeneous of degree zero with respect to some generalized
tion of homogeneity, as was shown by M’Closkey and Murray@8]%and M’Closkey and Murray
[1997].

Let A > 0. Define aweight vectorto ber = (r1,...,r,) € R" such thaty,...,r, > 0. A
dilation onR” with weightr is a mapA’ : R” — R” defined byA’ (x) = (A" xy, ..., A" x,).
Then, E,, the Euler vector field corresponding to the dilatidf, is defined in coordinates by
E, =Y _ rix;9/dx;. Afunction f : R” — R is said to be homogeneous of degre@wvith
weight vector) if Lg, f = tf and a vector field € I'(TR") is called homogeneous of degree
7 (with weight vectorr) if [X, E,] = tX. In coordinates,f is homogeneous of degreeiff it
satisfiesf (A’ (x)) = AT f(x), andX is homogeneous of degresff each of its components;,
viewed as a mapping” — R, is homogeneous of degreet r;.

Itis readily verified that th8-CF systemx = X, with X, = (u, u», u1x,) is homogeneous of
degreel with weight vector = (1, 1, 2). In reference to tha-CF (1.3), consider the time-varying

3



CHAPTER 1. Introduction

feedback

up(x,t) = —x; +sign(xs)+/|x3| cogr) (1.5)
Ua(x,1) = —xz + /x3] SiN), '

which makes the closed-loop system homogeneous of deg@anzé makes of the origin globally
exponentially stable. Note that the feedback defined in) ($.®cally Lipschitz, in fact smooth,
for everyx € R3 except atx = 0. However, it can be proved, (see M'Closkey and Murray [1997]
that the closed-loop system has unique solution deternbgete initial conditiongxy, 7). Fig-
ure 1.2 (right) shows a numerical simulation of system (WBh feedback law (1.5) and same
initial condition as in the simulation of Figure 1.2 (left).

3-CF statg(xq, x2, x3) 3-CF state(xy, x2, x3)

X3

0.51

X1

X2

I I I I I I I I I I
50 100 150 o 5 10 15 20 25 30 35 40 45 50

Time history Time history

Figure 1.2: Numerical simulation of system (1.3) under besks (1.4) (left) and (1.5) (right),
with initial conditionx, = (0.7, —0.4, 1.0).

Zero-degree homogeneity is a convenient property given) Hsawas established by Rosier
[1992], if the closed-loop systetn= F(q,t) is homogeneous of degree zero and admits a locally
asymptotically stable point € Q, theng is also globally exponentially stable. Following this line
of ideas, Pomet [1992] proposed a methodology to extendrdiftiable time-varying stabilizers,
such as those proposed by M'Closkey and Murray [1997] toiobtamogeneous time-varying
stabilizers for homogeneous driftless control systemdgadiy the convergence rate thus obtained
is said to be-exponential for some homogeneous ngrnThat s, ifx(¢) is the trajectory at time,
of the closed-loop system, with initial conditiofn, x,), then it satisfieg(x (1)) < Bp(xy)e ¢
for some positive reals, g (cf. M'Closkey and Murray [1997]).

A major result in the construction of time-varying feedbdok driftless systems for point-
stabilization was proposed by Morin et al. [1999]. The auhbased on the results obtained by
Sussmann and Liu [1991] and M’Closkey and Murray [1997],egahzed open-loop stabilizers
proposed by Sussmann and Liu [1991] and derived a generalarsdructive method to stabilize
equilibria for controllable (possibly not homogeneousl+@nalytic driftless systems by means
of homogeneous time-varying feedback. The desired equilibpoint turns out to be globally

4



exponentially stable if the closed-loop system is homogasgor locally exponentially stable
otherwise. In spite of the generality of the method, the troc§on and structure of such stabilizers
can be rather involved even for “simple” control systemdsther research followed to construct
stabilizers for canonical systems such as the ones givendoysat canonical forms or chained
systems (cf. Morin and Samson [2000]; Lizarraga et al. [2001

Regardless of the improvement of convergence rates, sgstentrolled by homogeneous,
Holder-continuous feedback exhibit non-robustness agamall perturbations of system parame-
ters and model uncertainties, as shown by Lizarraga et299]L Hence, given that differentiable
time-varying feedback yields slow convergence, and homeges time-varying feedback presents
non-robustness issues, in addition to results enouncedZdyraga [2003], which points out that
constructing “universal” stabilizers to asymptoticallalsilize arbitrary system trajectories is a
hopeless goal for general driftless systems, one is ledrtolade that the asymptotic stabilization
of general trajectories for critical systems seems to batobitious a control objective.

In this respect, the transverse function approach (TFAp@sed by Morin and Samson [2003],
relaxes asymptotic point stabilization to practical paitatbilization, a result that seems reasonable
when dealing with control of critical systems. Roughly dpeg, the termpractical stabilization
refers to the fact that a specified neighborhood of an equihio for the closed-loop system is
rendered stable and that the trajectories ultimately ehieneighborhood.

The TFA offers some advantages over typical time-varyireglback. For instance, it may
achieve faster convergence rates for the closed-loopmytstgectories compared with the poly-
nomial convergence rate of differentiable time-varyingdieack. Additionally, the feedback laws
derived from that approach are smooth, so they do not ex¢loite of the non-robustness issues
alluded to by Lizarraga et al. [1999]. Moreover, the TFA ideato deal with the stabilization
of admissible and non-admissible trajectories of drifflesntrollable systems in a set-up similar
to that for point-stabilization and more recently, it hascabeen enhanced to deal, under certain
conditions, with the asymptotic stabilization of fixed pisiffor driftless controllable systems (see
Morin and Samson [2004]).

The TFA, in its original formulation, is applicable to cooltsystems of the form

q = Xo(t,q) + ZuiXi,q, (1.6)

i=1

where X1,...,X,, € I'(TQ) are vector fields on an-dimensional manifoldQ such that the
distribution spanned by L&) = Lie{Xy,..., X,,} C T'(TQ) is completely nonintegrable at
some poiny € Q. The (possibly null) drift termX,(z,-) € I'(TQ) (t € R) may represent model
uncertainties or terms that typically arise in trajectagcking problems. The non-integrability
of Lie(X) implies the local accessibility of (1.6) gt Morin and Samson showed that the non-
integrability of Lie(X) at somey € Q implies, for every neighborhodtl C Q of ¢, the existence
of a mappingf : T — Q, x > n —m, whose image is contained ¥ and such that

Tre)Q = To f(ToT*) + spamk { X1, 7). -- -+ Xm.76)} - (1.7)

for everyd e T*. Any such a mapping is called a (Morin—Samson) transverse function for
X nearq (transverse in a sense that differs from the usual notionaokversality in differential
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CHAPTER 1. Introduction

topology). Morin and Samson [2003] describe an explicitmodtto construct transverse functions
for driftless systems on Lie groups.

Let us briefly describe the TFA. Suppose tliais a simply connectea-dimensional Lie group
with group compositiortg, p) — ji(g, p) and that the vector fields iX are left-invariant. Also
suppose, by simplicity, thaY, is zero in (1.6). Also assume thé& = G is a Lie group and that
the sum in (1.7) is direct (i.e, = n — m). To design a feedback via the TFA one proceeds by
selecting a global fram@ = {€,,...,Q,} C I'(TT*) for TT*, and by defining an auxiliary
control system = >%_, w/Q;(#), and an error signat(r) = fi(q(t). f(/)~"). Given the
fact that f is transverse, for any vector field € I'(TQ) admittinge € Q as an asymptotically
stable equilibrium point, there exists a smooth feedbaegedding on the state of the composite
system(q(z),0(t)), « : Q x T* — R” such that, along the trajectories of the composﬂe system
g=>YI a(z0)X, andf = Zj_loﬂ*’”(z 0)'Q2; .4, the error satisfies(r) = D,(). Hence,
in closed loopg(¢) converges tgf (6(z)) (exponentially if the vector field is adequately selected)
and therefore, there existse R, such thatc(¢) € U for everyt > T.

As an example, consider tBeCF in (1.3). The state manifol* can be endowed with a Lie
group composition defined, for, y € R3, by x - y = (x; + y1, X2 + V2, X3 + y3 + x2y1) With
identity elemen® € R3. The set of control vector field¥ = {X,,X,} c T'(TR?), defining
system (1.3), is left-invariant with respect to this grogpnposition. An example of a transverse
function f/ : T — R3 for X near0 € R? is given by () = (¢ sin(), e cog0), ;&> sin(20))
with ¢ strictly positive. Note that for any given neighborhaotldof 0., the setf(T*) can be made
to be contained il by appropriately selecting Consider the auxiliary system dh given by
6 = w. Then the derivative of the errar = x - f(0)~!, along the trajectories of ti& CF and
the auxiliary system, can be made to have R? as an exponentially stable equilibrium by means
of smooth feedbacku(x, 0), u>(x, 0), w(x, 0)). Figure 1.3 shows a numerical simulation for
the 3-CF under the feedback obtained with= 0.05. However, the TFA is not applicable, in
its original formulation, to critical systems for which tlleift vector field is necessary to assure
accessibility, as is the case for mechanical systems tmatotde kinematically reduced in the
sense discussed by Bullo and Lewis [2005, chap. 4]. Insgaotéhis control systems include
planar underactuated manipulators, blimp-like systenasswarderwater vehicles. The extension
of the TFA to this class of second-order systems is not imatedior trivial. Two approaches
have been independently developed. The first one, by theatiguthors of the TFA (cf. Morin
and Samson [2005, 2006]). The second approach, initiatlyem$ed in the author's M.Sc. thesis
(Sosa [2005]), is further described and analyzed in thisisrend allows one to formulate practical
point stabilization problems for second-order systempairicular those defined on (tangent) Lie
groups.

Vertically transverse functions for control

The extension of the TFA, the main subject of this thesisalged thevertically transverse
function approachVTFA) and allows one to formulate practical configuratidakslization for
second-order systems on tangent Lie groups. This framexsetids on the fact that tangent map-

pings of transverse functions satisfgrtical transversalitya property that is similar to Morin and
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3-CF state(xy, x2, x3)

X1

(0] 2‘ 4‘ (; é 1‘0 1‘2 1‘4 1‘6 1‘8 20
Time history

Figure 1.3: Numerical simulation of system (1.2) under thedback designed via the TFA with
¢ = 0.05 and initial conditionxy = (0.7, —0.4, 1.0).

Samson transversality but with relevance to second-okdgems. To be precise, the tangent map-
ping Tf : TT* — TQ of a transverse functiof’ : T — Q for X = {X,,..., Xy} near
e € Q, satisfies, for every € TT*,

Try@TQ™ = T, Tf(TT*)'™) + spar { X1y X7/} -

The VTFA is as follows. Suppose th& = G is a Lie group (dinG) = n) and that the vector
fields in X are left-invariant. Then consider a second-order systesivielg on the tangent Lie
groupT G, thetarget systendefined by

m
D=8, + Y u' X", (1.8)
i=1

whereS € T'(TTG) is second-order and™, ... X ¢ T(TTG"") are vertical lifts of the
vector fields contained iX . Given that the control vector fields of (1.8) are vertictislithe drift
vector fieldS determines, to a large extent, the accessibility of (1.8).

Under these conditions, set= n — m and define a second-order auxiliary control system on
TT*,

K
b =0A0p+ Yy wQlt (1.9)
i=1
whereA € T'(TTT¥) is second-order and the ®t= {Q24,...,Q,,} C ['(TG) is a global frame

for TT*. Mimicking the TFA, define arrror function based on the tangent Lie group operation,
z = v - Tf(w)™!, whose purpose is to quantify the difference between thestf the target

7



CHAPTER 1. Introduction

and auxiliary systems (1.8)-(1.9). Then it can be showntti@tdynamics of this error function,

z(t), can be assigned arbitrarily by means of smooth feedbackrinst of the compound state,
i.e., the target system state in addition to the auxiliarsteay state. If the error is set to have
a positive-complete dynamics admittiog, the zero vector irf,G, as an asymptotically stable

equilibrium point, the configuration coordinates ultimgtenter a predefined neighborhood of the
desired configuration provided that the solution of the@tbbop system exists.

Nevertheless, the overall behavior of the closed-loop anmg system is not readily assessed.
For instance, the long-term behavior of the fiber (or “velggicoordinates is ultimately charac-
terized by a nontriviatero dynamicsThe latter must be analyzed in order to establish stalafity
the closed-loop system. In general, this closed-loop zgnawhics may not be positive complete
and thus may yield undesirable behavior of the system tajes.

The compound zero-dynamics may be viewed as the result str@dming the trajectories of
the target system to be contained in the immersed manfigld T*) by means of the feedback
in zero dynamics. That is, if the initial condition of thedat system lies i f(T'T*), then it will
remain in7f(TT*) for everyt > t, whenever the solution of the compound system is defined.
However, the zero-error feedback may not satisfy the LaggatiAlembert principle, i.e., it may
affect the total energy of the compound zero dynamics. Tedldack in zero dynamics has a
particular structure in the sense that if the target driftteefield equals the sum of a spray and
a vertical vector field (usually equal to the lift of minus tip@dient of the potential energy when
dealing with mechanical systems), then the auxiliary zgradics is itself defined by the sum of a
spray and a vertical vector field. In other words, if the thgystem is an affine-connection control
system, then so is the zero-dynamics auxiliary system. hege, the torsionless connection
associated to the zero dynamics may not be the Levi-Civitaection of any metric. The problem
of determining whether an affine connection admits a (psguiemannian metric is, in general,
untractable, given the overdetermined nature of the @iffeal equations to solve, as shown by
Eisenhart and Veblen [1922]. For the case when the targetrayis underactuated by one control,
we establish a necessary and sufficient condition to determhether the resulting zero dynamics
admits a (pseudo-) Riemannian metric. For the more genasalsdt remains an open problem.

Assuming that the closed-loop zero dynamics admits a mewecshow that the closed-loop
compound system controlled by the VTFA has the{8g} x Z(T'T*) as locally uniformly stable.
Roughly speaking, this implies that if the initial value bé&terror signal is sufficiently close to the
target configuration at zero velocity,, and the auxiliary system’s initial velocities are suffidig
small, then the solution of the controlled system is defirmdall 1 > t,, the target velocities
remain small and the error decays exponentially.

In addition to determining whether the zero dynamics admi{pseudo-) Riemannian met-
ric, another significant issue is to “introduce dissipatimomo the zero dynamics in order to make
the fiber coordinates asymptotically vanish, as requiretypical applications. This issue is ad-
dressed by the potential applicationgdneralizedvertically transverse functions to modify the
closed-loop zero dynamics. Generalized transverse umet{GTF) were introduced by Morin
and Samson [2004] to achieve practical asgmptoticstabilization of points and general trajecto-
ries for driftless control systems. In essence, a GTEXfoe {X1,..., X,,} C T'(TG) neare € G
is a functionf : T*t x T*> — G such thatf(-,8) : « — f(a,B) € G is transverse foX
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neare for every € T*'. We present a straightforward generalization of the VTFAhi& case
generalizedrertically transverse functions are used. The interestisxdass of functions is that its
application to control leads toon-autonomouzgero dynamics with additional control inputs that
may be used to influence the behavior of the trajectoriesrm dgnamics. The central objective
is to design these additional control inputs in order to mileezero-section of the zero dynam-
ics asymptotically stable or, at least, locally attractilrethis work, we explore the possibility of
designing the additional control inputs using time-vagyfeedback by means of high-order aver-
aging (Vela [2003]; Sarychev [2001]; Adgrhev and Gramkrelidze [1979]) since it has proved to
provide useful insights on the construction of time-vagyfeedback to stabilize driftless systems
and second-order systems. High-order averaging (Sanj@0él]; Vela [2003]) is based on the
formalism of chronological calculus developed by A@rav and Gramkrelidze [1979]. In essence,
the latter aims at reducing the qualitative analysis of thw tf a periodic non-autonomous (i.e.,
time-varying) vector field to the analysis of an autonomates,(time-invariant) vector field by
means of asymptotic expansions.

Outline of the thesis

The outline of this thesis is as follows. In Chapter 2 we neMiee TFA for practical stabiliza-
tion of equilibrium points for driftless controllable sgshs exposed in (Morin and Samson [2003]).
A section of this chapter encompasses the definition of aifM&amson) transverse function, the
description of the constructive method to obtain a trarsvéunction for driftless systems on Lie
groups and examples of transverse functions for some givetrat systems. In this chapter it is
also presented the definition of vertically transverse fions and a result which establishes that
the tangent mapping of a transverse function is verticaipgverse. Finally, it is outlined the
proposed set-up to practically stabilize configuratiorrssiecond-order systems on (tangent) Lie
groups by means of vertically transverse functions (VTF).

Chapter 3 includes an analysis for the zero dynamics thattsesom the application of the
VTFA. In particular, it is proven that target and auxiliagra dynamics are related and that both
zero dynamics preserve the structure of the target systaat.ig, the zero dynamics has the struc-
ture of an affine connection control system. Furthermoreg@ssary and sufficient condition is
given for the existence of a metric for the zero dynamics steays controlled by the VTFA un-
deractuated by one control. Also stated and proved is arestiag result concerning the stability
of systems controlled by the VTFA for which the zero dynanadmits a metric. An example is
developed in this chapter in order to clarify these notiams r@sults.

Chapter 4 concerns the use of generalized transversedasdb introduce dissipation into the
zero dynamics. A generalization of the VTFA is presentedHiercase thageneralizedsertically
transverse functions are used. We propose an explicit waypmgtruct generalized transverse
functions from a given transverse function. In this chajités also shown that, whenever the
application of the VTFA yields a zero dynamics admitting anicethere is a GTF such that the
resulting non-autonomous zero dynamics also admits a eneMiso reviewed in this chapter is
the theory of high-order averaging to render the zero-sedutcally attractive. An example and
a numerical simulation are developed to illustrate theiappbn and performance of generalized
vertically transverse functions.



CHAPTER 1. Introduction

In Chapter 5 we give some concluding remarks concerningeslts presented in this thesis
and the foreseen scope and significance. We also discusblpdature directions of research.

An Appendix at the end of this document serves to set the inataind to define some ba-
sic concepts from differential geometry, the Lagrangiaamfalation of mechanical systems, and
control theory. The Reader unfamiliar with these concepy aiso consult the references cited
therein. The results gathered in this thesis have beemafhanteported by Lizarraga and Sosa
[2005, 2008], Sosa [2005] and Sosa and Lizarraga [2006,]2008
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Chapter 2

Vertically Transverse Functions and their
application to control

In this chapter we outline the proposed framework based oticaly transverse functions,
which aims at practically stabilizing configurations focead-order systems on tangent Lie groups.
This control approach was initially proposed in the M.Sesik (Sosa [2005]) and is further de-
veloped in Chapters 3 and 4 of this thesis. The control systlat this framework addresses are
second-order systems evolving on a tangent Lie gfBGpof the form

m
=S+ Y u' X" (2.1)
i=1

whereS € I'(TTG) is second-order, and the skt = {X,...,X,,} C I'(TG) contains left-
invariant vector fields oG, m < n = dim(G). Recall that every manifold, mapping, vector
field or any related construct defined in this thesis are asduim be smooth unless otherwise
stated. Assume that the distribution spanned byXieis completely nonintegrable ate G and,
typically, one requires tha be such that the s, X'} = {§, xIt .. xlf}is accessible at
0. € TG. System (2.1) is in the sequel referred to asttrget system

Section 2.1 of this chapter contains some results conagthmtransverse function approach,
including the definition and construction of (Morin—Samptansverse functions for controllable
driftless systems and some examples. Section 2.2 contardgefinition of vertical transversality
and the result that tangent mappings of transverse furectwoa vertically transverse. Finally,
Section 2.3 describes the proposed framework to controrgkorder systems.

2.1. Morin—Samson transverse functions for driftless sysms

2.1.1. Definition and construction of Morin—Samson transvese functions

Consider a set of vector fields = {X;,..., X} C T'(TQ), m < n = dim(Q) and a point
qeTQ.Amapf : T — Q, withk > n —m, is said to beransverse forX (near gq) if there

11



CHAPTER 2. Vertically Transverse Functions and their appétion to control

exists a neighborhootl of ¢ such thatf(T*) C U, and for everyd € T*,

Tre)Q = Tf(ToT*) + spamk {X1,70). - - -+ Xm.r} - (2.2)

Theorem 2.1(Morin and Samson [2003])The driftless system defined by the set of control vector
fieldsX = {Xy,...,Xn} C I'(TQ) is locally accessible at a poinf € Q iff there exists a
transverse functiorf : T — Q for X nearg for somex > n — m.

Let f : T — Q be a transverse function f&f nearg € Q and let(U, #) and(V, g) be local
coordinates foll'* and Q such thaty and f(U) are contained ir¥. Then it can be readily shown
that (Morin-Samson) transversality (2.2) translates into

n af af
R" = sparg 1 X vor s Xm ,——(0),...,—=—(0) - 2.3
Pafk \ X1, 1(6) VORI OOy C) (2.3)
In other words, the matrix having by columns the eleméhts s),. . - Xm. r(8), (f /301)(0), ...,
(0f /060%)(0) is invertible for everyy € U. WhenQ = G is ann-dimensional Lie group, and the
elements inX are left-invariantk, in the previous theorem, can be chosen equaltom. Thus,
f . T" ™ — G satisfies, for every € T" ",

Ty)G = Tf(TeT"™™) @ sparg {X1,7@): - - Xm, 70} - (2.4)

In the latter casef may be explicitly obtained by the construction method gitsgrMorin and
Samson [2003], which is next outlined. Lgdenote the Lie algebra @& and leté, ... &, € g
to be related to the left-invariant vector fieldy, ..., X, (ie., & = X, fori = 1,...,m).
Define inductively a family{ G}, . Of Subspaces aof, by settingG, = spa{é:.....&,} and
Gr = Gr—1+[Go, Gx—1] fork > 1. Then consider mappindgs p : {m+1,...,n} — {1,...,n}
and an ordered basfg, ..., ¢,} of g such that

l. G = spamg{li, ..., ldm@GyH ) fork =1,...,minfk : Gy = g}.
Il. Whenevelk > 2 and dim(G—;) < i < dim(Gy), one has; = [{3,, ¢y, |, With $36) € G,
lp, € Gpanda + b = k.

The set{?, ..., {,}, together with the mappings and p, constitute a graded basis fgr Next,
associate with such a basis a weight vecetoe (ry,...,r,) € R” such that; = k iff {; €
G, \Gr—1. Given such a graded basis and weight vector, the congiructia transverse function
proceeds by selecting strictly positive reals; 1, . .., &, and by defining mappingg : T — G
fori =m+1,...,n, as follows

£:(0) = exp(e;*? sin@)aqy + &,"7 co960)pi)) -

Then a transverse functiof : T"~™ — G is obtained by setting
f(em—i-l, cee Gn) = fn(en)fn—l(en—l) T fm+1(0m+l)- (25)

12



2.1. Morin—Samson transverse functions for driftless syists

2.1.2. Examples of Morin—Samson transverse functions

Transverse function for chained forms

Chained forms (CF) are canonical systems which are well kitowlescribe kinematics models
of certain mechanical systems. Examples of such systemthanelling penny, the kinematic
model of a unicycle-type wheeled robot and the kinematic@hofla car towing: trailers with
“on axle-hitching” (see for instance Murray [1994]). Chedforms are driftless systems for which
the Lie algebra of the set of control vector fields is nilpatand spans a distribution which is
completely nonintegrable at every point. Tir@gimensional2-input chained form system{CF)
is given by

)'Cl = U1
)2,'2 = U
X3 = uUixp

A transverse function for the 3-CF

Consider the3-CF evolving onR?, x = u'X,, + u?X, ., where the control vector fields in
X = {X1, Xp} C T(TR?) are given byX; , = d/dx' + x, d/dx?, andX, , = 9/dx>. Note that
R3 is a Lie group with group composition defined, for every € R?, by

A(x,y) =x-y =(x1 4+ y1, X2+ Y2, X3+ Y3+ X2)1). (2.6)

Following the procedure in the previous subsection we Haye= spa{X;, X,} andG, =
spak{ X1, X2, X3} with X5 = [X;, X,]. Hence, a graded basis for the Lie algebra&ois given
by the sef X, X,, X5} along with the mappings, p : {3} — {1, 2, 3} defined byA(3) = 1 and
p(3) = 2. The associated weight vector is givenby= (1, 1,2). Consider a coordinate system
(U,0)onT ~ S' c R?, forinstancel/ = S!\ {(0,1)} andf(p) = 2arctar(;2;-). Then, the
construction procedure yields the following transversefion.

f0) = (5 sin(@), e cog6), %82 sin(28)), e>0. (2.7)

The latter can be defined for every elementlbby continuity. In coordinates, condition (2.4)
reduces to guaranteeing that the determinant of the matrix

1 0 &cogh) )

a .
M [Xl’f(”’XZ’f(”’%(m}:( 1) 0 1 cotob
€ CO 0 5e” cog2

is different from zero. A computation readily shows that(d¢j = %sz, which is non-zero pro-
vided thats > 0.
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CHAPTER 2. Vertically Transverse Functions and their appétion to control

A transverse function for the 4-CF

Consider thet-CF system evolving oiR*,

)'Cl = U1
X2 = Uy
X3 = Uixp
)'C4 = U1X3.

This system can be written as= 21-2:1 u' X; x, With X , = 9/9x! + x, 9/3x> + x3 9/dx*, and
X, = 0/3x2. The distribution o’ R* spanned byX = {X|, X,} is completely nonintegrable
at everyx € R*, which implies that th@-ECF is (globally) accessible and hence, for ang R*
and any neighborhootl of x, there exists a transverse function as defined in (2.2). €he s
{Xl,Xz, X3,X4} with X3 = [Xl,Xz] = —8/3X3 andX4 = [Xl,X3] = 8/8x4, along with the
weight vectorr = (1, 1,2, 3), is a graded basis constructed in the sense described dhbwan

be endowed with a differentiable group composition givengieryx, y € R4, by

x-y:(x1+y1, X2 + Y2, X3+ y3 + x2)1, x4+y4—|—x3y1+%xzy12)

In what follows of this subsubsection, as we shall often dthensequel, we use the convention
sin = s and cos= c. Lete,e, € R.y. The construction procedure yields the functign:
T? — R* given by

1
fO) = ( £18(61) + £28(6), €1¢(61), 18123(2 01) — e2°c(6s),
1 1
881382(91)(:(61) — 18235(2 62) — 818220(92)3(91) ) s
which can be shown to be transverse, for instance, by chgesia k ¢; with k£ > 1.5.

Transverse function for a blimp-like system

Consider a blimp-like system, depicted in Figure 2.1, whahy represent, for instance, a
hovercraft or a space satellite. This system consists drgplrigid body moving ir$ E (2) with a
thruster to adjust its pose. The force impelled by this ttetus modeled by an ordered péit;, ;)
which actuates at a fixed point assumed to be located alorgyttem body’s axis, at a distante
from the center of mass. The configuration of the blimp ismheteed by(q:, g2, q3) € SE(2) ~
R2 x S, where(q, ¢>) € R? is the position of the center of mass of the body agnd S! is its
orientation with respect to a fixed basis. The Euler-Lagea@guations describing the motion of
the blimp system yield

md, —ml sin(qs) Gz — ml C(_)S(qg,) g3 = 1
qu + ml CO$Q3)Q3 —ml Sln(q3) q% T (28)
J Gz —mlsin(qs) g; + mlcodqs) G, = O,

14



2.1. Morin—Samson transverse functions for driftless syists

Figure 2.1: Schematic representation of a blimp-like syste

wherem is the mass of the rigid body anbtlis the moment of inertia with respect to the center of
mass. Consider the following transformation of the conimputs (which amounts to choosing a
different basis of the control distribution):

1 = mcodgs)uy — % (J —ml?) sin(gs) us,
= msin(gs)u; + % (J —ml?) codqs) u,.

After the transformation and rearrangement of the equstieystem (2.8) can be rewritten as

g1 = 1codg3)q3 + codgs)u; — Sin(gs)u,

G2 = 1sin(gs)g; + sin(gs)u; + cos(qs)u, (2.9)
Gz = auy,
wherea = —ml/J is a non-zero (negative) constant defined in terms of theesygiarameters.
By relabeling variablesy; = ¢; andx; 3 = ¢; fori = 1,...,3, we may rewrite (2.9) in the form

(2.1), that is:

%= S +ul X 42X
whereS, = 37_, xi1, 8/9x! +1c(x3)x2 d/dx* +1s(x3)x2 3/dx7 is the geodesic spray associated
with the Riemannian metric given by the inertia tensor ofriiechanical system, and the vector
fields X; and X, are given by

0 ad
Xix = C(%)@ + S(%)@,
0 0 0
Xy = — — _ .
2, S(x3) oxl + C(x3)8x2 +a 923

Given that the configuration space of the systeiRisx S! ~ SE(2), it can be equipped with the
Lie group structure of thepecial Euclidean grouSE(2). LetG = SE(2) ~ R? x S§!. The Lie
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CHAPTER 2. Vertically Transverse Functions and their appétion to control

group compositioni : G — G is defined, for every, y € G, by

i(x,y) = (c(x3)y; —S(x3)y2 + x1, S(x3)y1 + C(x3)y2 + X2, X3+ y3). (2.10)

It can be shown that the unlifted control vector fields, X, are left-invariant with respect to this
group composition and that the distribution spanned byXje X5} is completely nonintegrable at
any point. Let us construct a transverse functfonT — G for the set of unlifted control vector
fields { X, X, } by following the procedure described above. A graded basishe Lie algebra
generated by the séfX,, X,} is the set{ X, X5, X5} with X3 = [X, X3] = as(x3)d/dx; —
ac(x3) d/dx,, along with the weight vector = (1,1,2). The construction of the transverse
function yields,

Claec(f) — 0) —c(0) S(asc(f) —0) + s(6)
ac() ’ ac()
which can be defined, by continuity, for evetye [—m, 7]. The transversality condition is deter-

mined by the invertibility of the matridD(0) = [ X1, r@). X2, 7). 90.f(8)]. The determinant of
the latter may be shown to be

£(6) = ( ,aecw)),

_ ,Clasc()) — 1
det(D(@)) = —2W,

which can be defined, again by continuity, fore [—x, 7], and is positive for every > 0 and
everyf € [—mn, 7].

2.2. \Vertically Transverse Functions

If a mapping f : T — Q is transverse in the sense of Morin and SamsonXfonear a
giveng € Q, thenTf : TT* — TQ is vertically transverse foX'™ in a sense that is made
clear in Definition 2.1 and Theorem 2.2. However, prior to tiweg on this notion, let us state the
following lemma concerning tangent mappings, which is ulsefthe proof of Theorem 2.2.

Lemma 2.1. Let Q and P be manifolds andf : 0 — P a C? mapping. Then

I. TTf maps vertical vectors to vertical vectors.
. If v, w e TQ satisfyrg (v) = wo(w), thenT Tf(lift (v, w)) = lift (Tf(v), Tf(w)).
. The mappindift (v,-) : TrywyQ — T,TQ""is a vector space isomorphism for every
veTQ.

Proof. I. Leta € TTQ"®", so thatT'7¢ (o) = 0. Given that the following diagram commutes,

To—2 . rp
ng£ ) J)np
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2.2. Vertically Transverse Functions

and in view of the chain rule, we havérp o TTf = Tf o Tng. ThenTnp o TTf(x) =
Tf o Trg(x) = 0, henceT Tf(x) € TTP'", thatis,TTf maps vertical vectors to vertical
vectors.

. Letv,w € TQ satisfymg(v) = mo(w) and define the curve, , (1) = v + tw, S0
lift (v, w) = Toyv.w (%}0) Then, in view of the linearity of '/ on restriction to fibers(Tf o
Vo)1) = Tf(v + wt) = Tf(v) + tTf(W) = yrs(w.7s). Therefore

TTf(ift(v,w)) = T,Tf o Toyuw (£],) = To(Tf © yo) (£],)
lift (7.f (v), Tf (w)),

which establishes the claim.

. Letv € T, Q for someg € Q. By (1.) in this Lemma, the image of lifv, -) is contained
in T, TQ"®". To show that liftv, -) is linear and bijective, we use a coordinate chart®and the
naturally induced coordinates drQ. If, in such coordinates; = (¢, v) andw = (¢, w) for any
w € T,Q, then, the curve defined in. of this Lemma is given by, ,,(¢) = (¢,v + tw). Thus
lift (v, w) = ((¢,v), (0, w)), so lift(v, -) is linear and injective. Also, i& € T, TQ has coordinate
expressionr = ((q.v), (e, an)), thenT o (a) = (¢, 1), henceu € ker(Tnp) if, and only if,
ay, = 0. Thus, lift(v, -) is also surjective and, consequently, an isomorphism. |

Definition 2.1 (Vertically Transverse Functionlet X = {X;,...,X,,} C I'(TQ) be a set of
vector fields orQ. A bundle mappind” : TT* — TQ is said to be vertically transverse for the
vertical distribution spanned by " if, for everyw € TT*,

TF(w)TQvert — TF((TwTTK)Vert) + spaﬁk {XlllftF(w), ey X’I,’I,lft,F(w)} . (211)

Theorem 2.2.Let X = {X;,..., X,»} C ['(TQ) be a set of vector fields anfl : T* — Q a
transverse function foX nearqg € Q. Then, for everyw € TT*,

TrrwTQY" = TTf (T,TT*)"®") + spary {X{iftTf(w), o X);ffo(w)} , (2.12)

that is, Tf is vertically transverse foX . Moreover, if« = n — m, i.e., if the sum in (2.2) is
direct, then so is the sum in (2.12).

Proof. Let € T andw € TpT* and assume that € Trr,)TQ"". Given thatv is vertical,
by Lemma 2.14(1 ), there exist®d € Ty Q such thatv = lift (Tf(w), v). In addition, from
equation (2.2) we deduce the existence of a vewdtar 7, T* and real numbersg,, ..., a,, such
thatt = T (@) + Y 7~ a' Xi re@)- By applying the linear mapping Iff f (), -) to both members
of this equation and using Lemma 2.1)( we get

v = lift (Tf(w), Tf(@)) + lift (Tf(w)»ZGiXi,f(e))

i=1

= TTf(ift(.3)+ Y a' XM .
i=1
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CHAPTER 2. Vertically Transverse Functions and their appétion to control

Since lift(w, @) € (T, TT*)"®", this proves that (2.12) holds. Now suppose that n — m, i.e.,
equation (2.4) is satisfied, and assume that

v e TTf (TLTT)"™) Nspa { X" rw) - X 17@)} -

We shall prove thab = 0. By assumption, there exists € (T, TT*)"®" and real numbers
a',...,a" such thav = TTf(a) = > /L, a' X", . Sincea is a vertical vector, Lemma 2.1-
() implies thatx is given by the vertical lift byv of a vectorw € TT*, namelya = lift (v, ®).

The mapping lift7 f (w), -) is linear, hence

i=1 i=1

= > d X!
i=1
= lift(Tf(w), Tf(®)).

Since lift(Tf (w), -) is injective by virtue of Lemma 2.14(), this implies that) /-, a' X; r@) =
Tf(&). Butthe sumin (2.2) is direct, by assumption, hepc8 | a' X; s = Tf (@) = 0. Using
the linearity of lift(7 f (), -), we conclude that = 0, which completes the proof. |

lift (Tf(a)), ZaiXi,f(é))) = Zai lift (T'/ (), Xi, r))

Let (U,0) and (V,q) be local coordinate charts ofi* and onG such thatf(U) € V.
Consider naturally induced coordinate charts Taf* and7TT* and forTG andT TG, cor-
respondingly. Vertical transversality in (2.12) impliést for anye € (Trr)TQ)"", there exist
o € (T,TT*)*"and realsd!,...,a™ € R such thatw = TTf(0) + > i, a' XiTf(rro()-
Assume that, in coordinates = 0.,0,0,0q). Given that in coordinated’7f (o) =
(f(6).0(3f/30)(0),0.0m (0f/30)(0)), Xiy = (q.Xi(g) fori = 1.....m anda =
(f(0).6 (df/30)(H).0,ar), one has

a = Y Ri() + 0 6)om.

i=1

That is, the “vertical transversality” condition (2.12tees to

of af
@(9),..., am(@) : (2.13)

R" = spang {X1.7@). - - Xm.f0)} + SPAR {

The coordinate expression of vertical transversality & shme as the expression for (Morin—
Samson) transversality (see equation (2.3)). Howevetica¢transversality, compared to Morin—
Samson transversality, is a property that occurs in a higerdangent level (i.e., it TQ), there-
fore, a natural question which arises is whether the trassvi@nction approach can be extended
to include second-order systems. The next section cordagnssible set-up to practically stabilize
configurations for second-order systems based on ventaradversality.
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2.3. Framework for practical point-stabilization using vertically
transverse functions

Consider the target system in (2.1) and assume that th& smintains left-invariant vector
fields on G, ann-dimensional Lie group. Also assume that the distributiparsied byX is
completely nonintegrable at some point, saye G without loss of generality. Under these
conditions, the accessibility of the target system depetala large extent, on the drift vector
field S € I'(TTG). When dealing with simple mechanical systems (SMS) (Build Bewis
[2005]), the drift vector fieldS is defined in advance and corresponds to the vector field dgiyen
S =S¢ — (dV*' thatis, the sum of the geodesic spray associated with adRieian metrig,
and the vertical lift of vector field corresponding to thedjeant of the potential energy function.

Under the assumptions made, by Theorems 2.1 and 2.2, thiste axransverse functiofi :
T"™ — G neare € TG, andTf : TT"™ — TG is vertically transverse fok . Thus, for
everyw € TT"™™, Tf satisfies

TriwTG"" = TTf (T,TT*)" ") @ spak {X{" @) Xon 77(@)} - (2.14)

The control approach herein presented is much in the sgitheapproach reported by Morin
and Samson [2003]. First, one proceeds by seiting n — m and by selecting a global frame
Q = {Q,...,2 C I(TTT*) for TTT*. The existence of such a global frame is assured
sinceT T* is a trivial bundle. If{fA,, ..., A} C T(TT*) is global frame forT T*, thenf2 can be
setagAllt ..., Alfy C T(T TT*) in view of the resultin Lemma 2.14(). Select a second-order
vector fieldA € I'(T T'T*), typically the geodesic spray associated with a flat metri@ 6. Then
define an auxiliary control system @il'“ by

=00+ Y W, (2.15)

i=1

wherew!, ..., w* are viewed as control inputs. Next, define an error sigfvalalong the trajecto-
ries of thecompound systei (¢), w(t)), that is, the trajectories of the target system (2.1) and the
auxiliary system (2.15), by using the tangent Lie group cosition on7G, z = u(x, Tf(w)™Y),
which we also write ag = x - Tf(w)~!. This error signal is used to quantify the difference
between the state of the target system and the imagefbygf the state of the auxiliary system.
By forcing theerror dynamics: (¢) to satisfy a second-order differential equation havip@s an
asymptotically stable equilibrium by means of smooth feetbhtheerror z () approaches zero as
t increases. This, in turn, forces the target system trajgat(r) to approacH ' f(TT*). Hence,
the projectionrg (x(¢)) of the target state to the base manifold (the target systerfiguwation)
approaches the s¢i(T*) and, given that the image of is contained in a prespecified neighbor-
hood U of the target configuratioa € G, the configurationzg (x (7)) ultimately entersu, which
entails practical point-stabilization.

Prior to obtaining the expression for the error dynaniigg in terms of the state of the com-
pound system, let us state the following auxiliary propositwhich provides us with an explicit
expression for the derivative of the compositionb !, giving the structure of the error signal.
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CHAPTER 2. Vertically Transverse Functions and their appétion to control

Proposition 2.1. Let TG be atangent Lie groupd € I'(T T G) be second-order, anft a second-
order vector field defined along a given curke: (t,t;) — TG by b(t) = Bpy). Then, if
a : (to.t;) — TG is an integral curve of4, the curvec = u(a,b™') = a - b! satisfies, for
1 € (ty, 1),

¢(t) = TRy-1y (Aa) — TLeq) (Bowy)) - (2.16)
which defines a second-order differential equatioriam.

Proof. Define B as the vector field along the curbe!, that isEb_l(,) = %b‘l(t). By differen-
tiatinge = w(b~1(z), b(¢)) one easily concludes th§[;,_1(,) = —TRp-1(;) © TLp—1()(Bp()), and
by differentiatinge (1) = w(a(t), b~1(¢)) one finds that (1) = TLa(,)(Eb—l(,)) + TRp—1(y(Aa@r))-
Hence, given the fact thdt, ;) o Ry—1() 0 Lp-1(t) = Ley © Rp-1¢) = Rp-1(1) © Le(r), We get

¢(t) = TLaw) (=TRp-1(¢y © TLp—1()(Bbr))) + TRp-11y(Aary)
= TRp-1¢) (Aay — TLewr) (Bo)) -
which coincides with (2.16). Next we prove that) defines a second-order equation. For each
B in the image ob, defineCg : y + TRg—1 (A,p — TL, (Bg)). Itis straightforward to verify

that forr € R andy € TG one hasCp)(y) € T, TG, that is,Cp) is a section off TG and
thus a (time-varying) vector field oiG. It remains to show thaf'zg o Cg = idrg for every

B € b((ty, 1)) C TG. Choose any suchfand note thal' (wg o Rg-1) = T(I?,,G(ﬂ_l) omg) and
T (g o Ly) = T (L, © ), Which, fory € TG, entails that

(TJTG o Cﬂ)()/) = T]TG (TRﬂ—l (Ay/; - TL),(B/;)))
= TRup-1)0 Trg (Ayg — TLy(Bp))
= TRy (T6(Ayp) = TLage) © TG (Bp)) -

However,4 andB are second-order , thdst (4,p) = yB andT ng(Bg) = B. Using these equa-

tions, along WithyB—T L) (B) = T R () (v), We obtain(T 7 0 C) () = T Ry 31y (vB —
T L. (B)) =y, asrequired. |

In order to apply Proposition 2.1 to obtain the error dynanset the curves(r) andb(r) as
the states of the target and auxiliary systems respectivelyu(t) = x(¢t) andb(t) = Tf o w(t),
so, the vector fields alongandb are, respectively,

m K
Ay =Sy + > uw'X™ and  Brsw =TTf (Aw +> w"Qi,w).
i=1 i=1
Therefore

m K
£ = TRyj()-1 (Sx +> W XM —TL,oTTf (A,,, +> w"Q,-,,,,)).
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2.3. Framework for practical point-stabilization using vically transverse functions

By grouping the drift and controlled vector fields and using= z - Tf(w) as well as the left-
invariance ofx|", ... X! we obtain the following error dynamics which, by Propasiti2.1,
defines a second-order differential equation

2= TRypy-t (Szrr@) — TLz 0 TTf(Aw))

m K
+ TRpyy-1 0 TL: (Z ' X\ ) — Z wiTTf(Qi,a))). (2.17)
i=1

i=1

We now address how vertical transversality may be used fotralbpurposes. The main idea is
that, for second-order systems, the control inputs can sirdype the second-order time derivatives
of the base trajectories, accelerations when referringM&,Svhich amounts to assigning them
values in the vertical subbundle. The relevance of requififi to be vertically transverse is that,
as stated in equation (2.14), the vertical subbundle isrgzhby the control distribution and the
image of TTf. This fact provides one with full control over the error grstand thereforé(r)

in (2.17) can be made to satisfy an arbitrarily given smoettoad-order dynamics by means of
smooth feedback in terms of the compound system traje@srstated in the following theorem.

Theorem 2.3(Existence of a feedback to set the error dynami@yen any smooth, second-order
vector fieldY € I'(T T G), there exists a smooth feedback law= («!,...,a"): TG xTT* —
R” such that the error = x - Tf(w) ! satisfies = Y(z) along the trajectories of the compound
system,

(X, ) = (Sx +) o (x Tf(@) o) XN Ay + Y o (x - Tf(0) ' 0) sz,-,m). (2.18)

i=1 i=1

Proof. Finding the required feedback amounts to setting the itigimd side of (2.17) equal 1.,
solving the resulting equation far', ..., u™, w', ..., w" ™™ in terms of(z, w), and then checking
that the solutions define a smooth mapping7 G x TT* — R”. The first step leads to

Yo X ) =Y W TuTf(Rw) = (TRrswy-10TL:) ' (Vz = (Dy)2)
i=1 i=1
= TL;-1 o TR7(w)(Yz = (Do)2)
where, for eaclw € TT*, we have defined the vector field,, € I'(T T G) by setting
Dy i 2+ TRrf(0)-1 (Sorr@) — TLz 0 TTf(Ay)).

Notice that, since (2.17) is second-order, s®js for everyw € TT* and, by linearity ofl g
on restriction to the fibersl'ng o (Y, — (Dy);) = Trng(Y;) — Tng((Dy),) = z—2z = 0,
which shows that — D,, is vertical. On the other hand, it is straightforward to dhtxat one has
TrgoTLe = TLnge o Tng andTrg o TRe = T Ry o T for everyg € TTG, and both
of these equations imply th&@tL ,—1 o TRrrw)(Y: — (Dy).) is vertical.
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CHAPTER 2. Vertically Transverse Functions and their appétion to control

Given thatT'f is vertically transverse, it satisfies

(Trr)TG)"™" = spamk {X{" sy - » X 17 (@)} ® TwTf (T TT )%

forall w € TT¥*. Taking into account the assumption tH&t,, ..., 2,,} is a global frame for
(T TT*)ve", we conclude that there exists a uniqgue mapping’G x TT* — R” such that, for
every(z,w) e TG x TT¥,

m K
> o o)X ) — 3@ )T T (R0) = TLt 0 TRV — (Dy)2). (219)
i=1 i=1

Let (U, z) and (V,0) be coordinate charts o and onT* respectively, andz;'(U). (z, 2))
and (e (V), (0, 0)) the naturally induced coordinate charts @iG and 7T, respectively.
Then, by means of (2.13), the left-hand side of equation9j2tianslates into the matrix prod-
uctM@)ux(0,0,z,z), where

af af ]
M@®):=|X o X ry, —(0),..., —=— ,
(6) [ LS®) > Xm,f(8) 891(0) 89K(0)
anda is the vectorr = (a!,...,a") € R”. Given that the composition of smooth functions is

smooth, the right-hand side of equation (2.19) is smootkideal thatY and D are smooth vector
fields, as previously was assumed. Therefore, the smoalohedollows from the invertibility of
M(0) for everyf € V, afact that is easily established given tlfais transverse. |
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Chapter 3

Analysis of the Zero Dynamics resulting
from the VTFA

In this chapter we present analysis results regarding theaaf the closed-loop zero dynamics
resulting from the application of the VTF approach propose@hapter 2. In particular, in this
chapter we show that the zero dynamics is an affine-conmesyistem (in the sense of Bullo and
Lewis [2005]). We also present a necessary and sufficienditon to determine whether this
affine connection is the Levi-Civita connection of some (jotke-) Riemannian metric in the case
when the target system is underactuated by one contred (). Then we establish some results
which serve to prove the next important result of this chapheat is, the stability of the closed-
loop system provided that the zero dynamics admits a mefiitally we present an example of
application of the proposed control methodology which aatiBustrating the results in the present
and the previous chapter.

3.1. Structure of the zero dynamics

In the previous chapter we have seen how to formulate thet4gtabilization problem for
second-order systems based on vertically transverseidmsctlts application yields an error dy-
namics which can be arbitrarily set by means of smooth fegddbia particular, we shall assume
throughout this chapter that a feedback taw: («!,...,a") : TG x TT* — R” is determined,
according to Theorem 2.3, by a given of a vector figlde I'(T T G) for which0, € TG is an
asymptotically stable equilibrium point, so that the edgnamics (2.17):

2= TRyt (Sz1r@) — TLz o TTf(Aw))
+ TRy -1 © TL: (Z WX — > W' TTf(sz,-,w)), (3.1)
i=1 i=1

with feedbackx(z, w), writes asz = Y, . In this case, if the auxiliary state(z) ultimately remains
in a compact subset &fT*, then one may conclude that the target system stateconverges
to Tf(w(t)) ast — oo. This means, in particular, that there exigts= R., such that the base
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

coordinatestg(x(¢)) € U fort > T, whereU is a neighborhood of the desired configuration
e € G determined by the transverse functign Hence the target system configuration ultimately
approaches the desired configuratdn within a prescribed tolerance determinedibyHowever,

further investigation is required to assess the behavitre€ompound closed-loop system (2.18):

(X,0) = (Sx +Y o (x - Tf(@) o) XM Ay + Y o (x - Tf(w) " 0) sz,-,w).

i=1 i=1

The latter may even fail to be positively complete, i.e.,itteximum intervals of existence of some
of its solutions may be bounded R. The main concern in this chapter is the study of the zero
dynamics, i.e., the restriction of the compound closegridgnamics (2.18) to pointse, w) such
thatz = x - Tf(w)~' = 0,. This enables us to characterize the long-term behavidrefarget
system.

Under the assumptions made, the closed-loop zero dynammistained by setting = 0.,
u' = a' (0., w) andw’ = o/ 0,,w),i = 1,...,m, j = 1,...,n—m, in (3.1). This yields,
forw € TTX,

O¢ = TRy sy (STf@) — TLo, 0 TTf(Ay))

+ TRpy)—1 © TLo, (ZO‘ (O @) X! pw) — Z“i+’"(0e,w)TTf(Qi,w)),

i=1 i=1

or, equivalently, the condition

Son+Zvi(Xl.'i“ oTf) = TTf(A+va+’"Q,-), (3.2)
i=1 Jj=1

where the mapping : TT* — R” is defined by (w) = «(0., ®). At first sight, equation (3.2)

may suggest that the target and auxiliary systemd dreelated; strictly speaking, however, the

target and auxiliary systems are tot-related since the mappir§y := SoTf +Y 7 v XMoTf

is not a vector field o"G. The mappingZ can be regarded as a section of the pullback bundle

defined by the underlying sétf*(TTG) = {(w,a) e TT* xTTG : Tf(w) = ng(x)} together

with the differentiable structure naturally inherited,

idTTK XTTf

TTT 2L r+(TTG) —EL TTG

”TTKL Pl LHG
id K

7T — 97 TT* A TG.

On the other hand, the compound zero dynamics can be viewtt assult of constraining
the trajectories of the target system to be contained imtimearsed manifold’f (7T'T*) by means
of the zero-error feedbackw). The latter adds terms that may be interpreted as forcessimgo
a holonomic constraint on the target system, namely, if tiiteal condition of the target system
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3.1. Structure of the zero dynamics

x(tp) liesinTf(T'T*), then the state (¢) will remain in Tf(TT*) for everyt > t, for which the
solution of the compound system is defined.

The zero-error feedbackw) has a particular structure. It is such that it guaranteddfttiee
target drift vector field equalS§ = Z + P whereZ is a spray and is a vertical vector field
(usually equal to the lift of minus the gradient of the potainénergy when dealing with SMS),
then the auxiliary zero dynamics is itself defined®w IT, whereX is a spray andl is a vertical
vector field. Namely, if the target system is an affine-cotinaccontrol system, then so is the
zero-dynamics auxiliary system, as stated in Theorem 3.1.

Prior to formally establishing this result, note that gitkat the sum in (2.14) is exact:

Trrw TG = TTf (TLTT*)"™) ® spak {X|"rr@) - Xon 15@) )} -

there exists a project@g? which maps vectors i 7G"®" lying over points inN := Tf(TT¥),
to vectors inTTf((TTT*)"*". Thus, ifw € TTG"™,, there existo € TT* u €
TTf(T,TT*)*" andv € spa{X | () Xt 1 r() ) all uniquely determined, such that
w = u +v. The projectoe? : TTG""|, —> TTf((T T'Jl‘”)ve“) is defined such thaP (w) = u.
Correspondingly, i € I'(T T G"®") is a vertical vector field, then there is a unique verticatoec
field IT F((TTT")"Q”) which satisfiesP o P o Tf = TTf o Il.

Let {A1,..., A} C T'(TT*) be a global frame fof T*. Given that for every manifold
Q and anyv € TQ the mapping liftv,-) : Tr,w)G —> T,TG"*"is an isomorphism, (by
Lemma 2.1 (1)), then the sefA™, ... Ay ¢ T(TTT*) is a global frame fox7 TT*)"*", As
a consequence of vertical transversality there exists pimgp = (a!....,a") : TT* — R”"
such that

PoTf = Za (X™ o Tf) —i—ZTTf (a/Fm Al

j=1
Then o P oTf = Y25_, TTf o (a/*"All).

Theorem 3.1.Letv : TT* — R™ be such that (3.2) holds. Assume tlfat= Z + P, where

Z e T(TTG)isaspray andP € I'(TTG""). LetIl € I'((T TT*)"*") be the vector field that
satisfies? o P o Tf = TTf o Il. Then there exist a spray € I'(T TT*) and a vertical vector
fieldIT € T'((T TT*)"") such that

A+ v/tmQ =N 410
j=1

Proof. Let us first recall a standard procedure, in preparationffersequel of the proof (cf. e.g.
[Warner, 1983, Prop. 1.35]), which locally extends mappidgfined along immersed manifolds.
Consider manifoldd., M, N and mappings : L — M andh : L — N, and assume that
T, F is injective for somep € L. Letd; anddys denote the dimensions éf andM , respectively.
Then there exists an open neighborhddd- L of p such thatF |y is injective, and there exists
a cubic-centered coordinate systéh ¢) for M about F(p) for which F(U) is a slice, that is,
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

(V, ) satisfiesF(p) € V, o(F(p)) = 0 € R ando(F(U)) = (—¢,¢)% x {0} C R x
R4 —4L for somee > 0. Now, if 7 : R% — R4 denotes the projector((x!,..., x)) =
(x',...,x9%.0,...,0), then the mapping = ho (Fly) 'ogplomog:V — N is smooth
and satisfies

h(FU)) = ho(Fly) " og  omogp(FU))
= ho(F|y) ™" o F(U)
= h(U),

sincep ! o 0 (F(U)) = F(U). In other words, the mappin@ is explicitly constructed to
“extend” i so that the following diagram commute

UcCL Flu VcM

hlu %

N

Giventhatf : T — G is transverse foX = {X;,..., Xy} neare € G, Tf : TT* —
TG is vertically transverse tQX'I‘“, ..., X"y and satisfies (2.14) for evey € TT*. Let
{A1,..., A} C T(TTX) be aglobal frame fof T*. Inview of Lemma2.1, the s¢n !t ... Alft}
is a global frame for the vertical subbundIET T*)"*". Since(2; is vertical and smooth, there
exist smooth functiond! : TT* — R, i,j = 1,....k, such that; = Y"7_, AJAl", for
j=1,...,k.

Letw € TT* and set? = nr«(w). Applying the aforementioned extension procedure, with
F=f,h=TfoA;,L =T M = G andN = TG, and using the assumption tH&t / is
injective, one deduces the existence of open8ets T* andV C G, as well as vector fieldﬁj
defined onV/, such that) € U and

Ajoflu=TfolAly, j=1,....« (3.3)
That is, the following diagram commutes.

U C T* Slu VG

Tfm K

TG

In the terminology of [Warner, 1983, Def. 1.5ﬂy~ is a localC* extension ofA ;. Moreover, by
continuity of /', U can be taken sufficiently small that, by virtue of the tramsabty property (2.4),
T,G = spaki{Xig, - - Xmg. Mg, ... Ac g} fOr everyg € V. It follows from Lemma 2.11(1)
that, together with([™, ..., X" the lifted vector fields\", ..., A", defined otV = =;'(V) C
TG, constitute a frame for the vertical bundle oVer

',Xlift Klift

1,

TUTGvert = spaf, {Xlift

1,02 m,v’

LAY YueW. (3.4)
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3.1. Structure of the zero dynamics

Leto : TT* — R” be the mapping with components given by = v’ fori = 1,...,m
ando/*m = Y, _ vkt i = 1,...,«. In the extension procedure described above we take
h=o0,L=TT“ M = TG andN = R”, and replaceF by Tf, the tangent mapping of
which is injective as remarked above, to deduce the existehopen neighborhood% of w and

V of Tf(w), as well as a mapping : V —> R” such that

' oTflg=0'lg, i=1....n.
That is, the following diagram commutes.

iy

UcCTT*

Again, by continuity of7f, U can be taken so small thadt c W, so thatAlt, . Allt
and the function$’ are defined o/ C TG. Using the ingredients above, in particular the
verticality and smoothness &f, along with (3.4), we ascertain the existence of a smoothpmap
a=(@a',...,a" : V — R" such that

P=>Ya'x"4+Y atmAl. (3.5)

i=1 j=1
Let C € T(TTG"" denote the Liouville vector field associated with From the definition

above and the fact thé€, X/"] = —X™ fori = 1,...,m, it follows that
[C.P] = ) (=@ +C@)X[" + ) (-a’*" + C@*m)Af
i=1 j=1

= —P+) c@)x"+Y c@tmAn. (3.6)

i=1 Jj=1

Now, we claim that the vector fields

T=A+) (@ —a/tAM and T =) a/tmAl (3.7)
j=1

Jj=1

witha = aoTf |y, satisfy the properties in the statement. By definitiotPefP o Tf = T Tf oI,
the proof reduces to showing thatis a spray. Sinc& is a second-order vector field, as follows
immediately from its definition, it suffices to prove ti{é‘t, =%, whereC = CT“ denotes the
Liouville vector field associated witlir . Using the definition o2 and the fact that\ is a spray
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

we obtain
[C.5] = [C.A1+ ) [é (oM — aj+m)A|}ft]
j=1
= A+ Z(_(Gjer _ aj+m)A|J@ft +C(o/*m — aj+m)A|Ji.ft). (3.9)
j=1

As suggested by this equation, in order to prove the claimha# 8nd an expression faf (o7 Fm—

a/+m), the Lie derivative ofo’/*™ — a/*™) in the direction ofC, j = 1,...,x. Note that we
have
m .
[C.S+ YL, 6 X" oTflg = [C.Z+ PloTf|g+ > [C.8'X"]oTf|s
i=1
= ZoTflg+I[C.PloTf|p
+Y (8" +CENX") o TS|y, (3.9)
i=1
and
TTf o |:@ A + Zaj+mA|]qftj| = TTfo ([C,A] + Z (Uj+m[@’Alji_ft] + C\(O.j—i—m)AIji_ft))
Jj=1 j=1
= TTfoA
+ 3 TTf o (07t + Co/Tm)All). (3.10)

J=1

Now, from (3.2) and the definition & it follows that[C, A + > i_yo/Tm Al and[C, S +
Y™ 6'X™] areTf-related, hence the respective members of (3.9) and (3ré®cual. Equat-
ing the right-hand sides of (3.9) and (3.10), and then repip® and[C, P] by their equivalent
expressions as given by (3.5) and (3.6), respectively, wamob

(z + > (C@ +6;)— @ +6)) X" + > (c@tm —a’tm) f\;!ﬂ) oTf|y =

i=1 j=1

TTfoA+ Z TTf o ((_of'+’" + 6(0”’”))1\'}“) . (3.11)

J=1

Now, by the equality of (3.2), the substraction(@ o Tf + P o Tf + > /-, &' (X" o Tf)) to
the left-hand member of (3.11) and the substractio & (A + Y_;_, 0/*"Q;) to its right-
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3.1. Structure of the zero dynamics

hand member, must yield an equivalent equation. After sfigipf we obtain
d(c@ +36")-2@ +8NX")oTfl
i=1

+ Y (c@*my —2a MR o Tf | =

J=1

J=1

TTf o (Z(é(of+m) — 2of'+m)A'}“) . (3.12)

Using the fact thaC andC areT f-related, along with the definitions of tangent mapping ahd o
a=aoTf|p,onehasfor =1,...,«,
C@*™yoTfly = (TTfoC)@ ™™
= C@™oTflp)
= C(a/*™).

Moreover, by definition of lift of a vector field and using (3@&hd Lemma 2.1 one obtains

Ao Tf|g(w) = lift(Tf(@). A re)
= ift(Tf (@), Tf(Aj))
= TTf(ift(w,A))
= TTF(A™),

J,@
thusf\ﬁ.ft oTflpg = TTfoAlji-ﬁ ,J = 1,...,k. These expressions, along with the fiberwise linearity
of TTf, enable us to write (3.12) as
((C@ +a")y—2@ +5NX™) o Tf 5
=1

1

+ XK: (6(aj+m — oty —2(a/ M — 0j+m)) (TTf oA =0.

J=1

In view of the vertical transversality condition (2.14)etboefficient ofl’ Tf o A'ji.ft must be zero,
which implies that

6(aj+m . O_j—i-m) — 2(aj+m . O_j—i—m),

for j = 1,...,«k. Finally, we substitute these equations in (3.8) to cormtlhrdit[@, Y] =%, as
was to be shown. [ |
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

As the previous theorem establishes, the long-term beha¥ihhe compound system can be
determined by studying the solutions of the auxiliary zeyaainics given byw = %, + Il,.
The latter inherits the structure of the target system insthigse that it is defined by the spray
associated to an affine connection plus a vertical vectat iglenever the target system has this
same structure. An interesting fact is also the effect ofviical vector fieldP on the zero
dynamics. The definition (3.7) & andIT reveals thabnly the projection? (P o T f) has an effect
on the zero dynamigsvhile the effects of the complementary componenPddire “absorbed” by
the control scheme.

3.2. Existence of a metric for the case of mechanical systems
underactuated by one control

A natural issue to address next is to determine if the zer@uhyes is positive-complete, i.e.,
whether each of its solutions can be extended to be defined amexval[zy, c0) C R, and if
so, whether its solutions remain in a compact neighborhdddeozero-section of T*. For the
general case there are not conclusive results, howevémre ioase of target systems underactuated
by one control we give a sufficient and necessary condition.

Assume, for simplicity, that = Z + P satisfies the assumptions of Theorem 3.1 and, in addi-
tion, P (PoTf) = 0, so thatthe zero dynamics writesas= X,,. By virtue of Theorem 3.13 . is a
spray, so it determines a unique torsionless affine corovetf on 7T*. If V¥ is the Levi-Civita
connection of some (pseudo-) Riemannian megtficon T*, then one can deduce the complete-
ness of the zero dynamics since every compact (pseudo—)aRigen manifold is geodesically
complete (cf. Kobayashi and Nomizu [1996]). Moreover, siirtthat case the energy would be
constant along the solutions, these would evolve in a velgtcompact neighborhood of the zero-
section of'T*, that is, the corresponding velocity coordinates wouldaenbounded. However,
determining the existence of a (pseudo-) Riemannian meiria given torsionless connection
is an untractable problem given the overdetermined natltlkeolLevi-Civita metric differential
equations as stated by Eisenhart and Veblen [1922]. Thégumofas been addressed formerly, for
instance by Schmidt [1973], who shows that, although irstledjty conditions can be drawn from
the equations relating the metric with the correspondings@iffel symbols, geometric conditions
can also be stated in terms of the holonomy group of the cdimmecThus, foré € T*, Schmidt
considersd(0), theholonomy group with reference poifit whose elements are endomorphisms
of T T* obtained via parallel transport along all piecewise-sidadps on the base havirthas
endpoints. More precisely, for every logp: [0, 1] — T* satisfyingy(0) = y(1) = 6, there is
a linear mappind., : TpT“ — ToT* in ®(68) which mapsw € TpT* to its parallel translation
alongy. Equivalently,L, (w) = u(1), whereu : [0, 1] — TT* is the unique curve that satisfies
< ou = y, as well as the initial value problem

VEu) =0, 101,  u(0)=o.

The group structure o®(0) is defined by considering parallel translation along cosmaited
curves on the base, as well as along curves traversed irrSeVdloreover, sinc& © is connected,
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3.2. Existence of a metric for the case of mechanical systamderactuated by one control

®(0) andd(0’) are isomorphic for alb, 6’ € T*, a fact that is easily established. Schmidt proves
a general version of the following result.

Proposition 3.1 (Schmidt [1973]. A connectionV* on T* is the Levi-Civita connection of a
metric onT* with signature(p, q) iff there exists a hon-degenerate quadratic fognon 7, T*,
with signature( p, ¢), which is invariant unde(9).

Let us remark that, in the statement of the previous resdtirtvariance condition og means
that, for everyL € ®(0) and allw, w’ € T T*,

g(w. ") = g(L(w), L(0)).

For practical purposes, determining whether a given cdiore¥ > satisfies the assumptions of
Proposition 3.1 is a rather involved task, especially duga¢ofacts that the connectioi™ needs

not be flat and thal'* is not simply connected. In the particular case of a systederattuated

by one control, that isy = n —m = 1, a simple condition can be stated, as we now show. Let
Conn(T'T) denote the set of affine connections on the tangent buiiill@and, for every nowhere
vanishing vector field € I'(TT), define a mapping, : ConnTT) — Q!(T) by setting
ks(V) = A, whereA is the unique differential one-form determined #y® s = Vs.

Proposition 3.2. 1. There exists a unique mappirgf Con(7T'T) into H!(T), the first de Rham
cohomology group of', such that for every global frame € T'(TT) the following diagram
commutes

Conn(TT) =— Q!(T)

x l”
H'(T)
Il. An affine, torsionless connectid®hon T is the Levi-Civita connection of a pseudo-Riemannian
metric iffx (V) = 0.

Proof. 1. Given thatT is one-dimensionalQ2!(T) is contained in the kernel af, so we have
only to prove that ifs,s’ € I'(T'T) are two nowhere vanishing vector fields angdv) = 4 and
kg (V) = A',thenAd — A" = df for somef € C*°(T). Sinces ands’ are nowhere vanishing
vector fields, there exists a nowhere vanishing functioa C*°(T) such thats = hs’. Then,
using the distributivity properties of tensor productseétsons as well as the Leibniz property for
connections we get

A®s = V(hs')
= dh®s +hVs'
= dh®s +hA ®5s'
= (dh/h+ A)®s,

whenced — A" = dh/h. Buth is nowhere null, henc@:| and Ino|k| are smooth and satisfy
dh/h = d(Ino|h|), which establishes the claim.

31



CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

Il. Let V € ConnTT) be torsionless, let € I'(TT) be a nowhere vanishing vector field, and
pick an orientation foill' and a point) € T. SinceA is a one-form on an oriented one-dimensional
manifold, it makes sense to define the intedral= /1. A. Moreover, given a loop : [a,b] —

T such thaty(a) = y(b) and a vectow = ks(6) in T, T, its parallel transport aroung is
given by L, (w) = exp(l4) ks(6). SinceT is one-dimensional, a simple computation shows that
the curvature tensaR is zero, soV is a flat connection. Therefore, the holonomy around a loop
y : |a,b] — T depends only on its homotopy clgsg in 7 (T, 6), the fundamental group &f
based abt (cf. [Kobayashi and Nomizu, 1996, Chap. 11-9]). Bu{T, #) ~ Z, consequently for
every such loogy there exists: € Z such thatL, (w) = exp(nly) ks(6). Given a quadratic non-
degenerate forng on Ty T, there existss # 0 such thatg(s(6),s(0)) = G. Thusg is preserved

by ®(0) if and only if, for everyk, k' € R and every: € Z, one has

Gkk' = g(ks(0),k's(9))
= g (kexp(nly)s(9),k" exp(nly)s(0))
= G (exp(nly))*kk’,

thatis, if and only iff exp(nl4) | = 1 for alln € Z. But this is equivalenttd, = [ A = 0 and,
in turn, sincedA = 0, to the existence of a functiofi € C>°(T) such thatd := «;(V) = df,
that isk (V) = 0. On applying Proposition 3.1 one obtains the required tesul |

3.3. Long-term behavior of the compound system

In this section we study the analysis of the closed-loopesgsinder the assumption that the
zero dynamics is determined by a spray that admits a (ps¢WRiemannian metric. We shall
show that if the error dynamics hés as a locally exponentially stable point (in a sense defined
below), and the zero dynamics admits a kinetic energy fanctihen the sef0.} x Z(TT*)
is uniformly stable for the compound system, whet€' T*) denotes the zero-section &fT'“.
Roughly speaking, this implies that if the initial value béterror signal is sufficiently close €y,
and the auxiliary system’s initial velocities are suffidigrsmall, then the solution of the controlled
system is defined for atl > 1,, its velocities remain small and the error decays expoakyti

Before dwelling on this result, precisely stated in Theoi&d we establish some results in
preparation for its proof. Theorem 3.3 establishes pasitompleteness and uniform stability
for a certain class of systemss = f(x,7), where f(x,t) can be decomposed in two factors,
one of which is exponentially decreasing with respect teetimemma 3.1 establishes that, given
a covering manifoldd for M, TM is a covering manifold foi'M, and finally, Lemma 3.2
establishes that there exists a covering |somorpl‘ﬂ‘§m—> R whereT* is a covering forT*
andR* is a covering folR* /Z*.

The following is a basic theorem (cf. Coddington and Levi§b®84]), concerning the ex-
istence of solutions for differential equations defined bytuous (not necessarily Lipschitz)
functions, which is to be used in the proof for Theorem 3.3.
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3.3. Long-term behavior of the compound system

Theorem 3.2(Cauchy-Peano Existence Theorer@pnsider the initial value problem
X = f(x’t)v (x05t0) € Rn X Rv (313)

wheref : R” xR — R”. If fiscontinuous orR = {(x,7) e R" xR : 0<t—¢ty <a,||x —
Xo|| < b} fora,b € R, then (3.13) admits a differentiable solutigg., ,) : ¢ = P(xo.0) ()
defined into, o + ], wherea = min (a, &) and M = max{|| f(x.1)|| : (x.7) € R}. Moreover
| P(xo.10) (1) — Xol| = M(t — 10) for (x,7) € R.

Theorem 3.3.Let F : R” — R” be a continuous mapping, and I&t be strictly positive. Then
(0, 0) is uniformly stable under the dynamics definedRdri! by

x = zF(x) (3.14)
z = —Kz (3.15)

Proof. Itis straightforward to verify thaf(xy, 0) € R” x R} is a set of equilibria for (3.14)-(3.15)
and, in particular(0,0) € R" x R belongs to this set. In order to establish uniform stabditthis
equilibrium point we shall show that, for any neighborhdod- R” x R of (0, 0), there exists a
neighborhood/ C R” xR of (0, 0) such that for any, € R, if (x (), z(¢t0)) = (x¢, z0) € U then
any solutiony(x,.z) : t = Vixe.z)(t) Of (3.14)—(3.15) is defined and satisfigg,, -, (t) € V for
everytr > fto.

In the sequel given, b € R witha < b, and an integey > 0, we let[a, b]? and(a, b)? denote
the g-fold Cartesian products of the intervial, b] and(a, b) respectively. Let, € R be given,
and letVV C R” x R be a neighborhood af0, 0). By definition of IV, there existg > 0 such
that[—e, e]®+D C V. Itis straightforward to verify thaR” x {0} is a continuum of equilibria
for (3.14)-(3.15), and each of the corresponding constalatisns is uniquely determined by the
initial condition. Hence, ifxy € (—¢, ¢)", the trajectory of (3.14)-(3.15) issued frofmy, 0) at
time ¢y belongs toV for all t > #,. Let us now assume thag # 0, so that the solution of (3.15),
z(t) = zoe K1) js defined for every > f,. In such a case, (3.14) can be written as

% = zoe KO0 F(x). (3.16)

Let Fnax = maX||F(x)|| : x € [—&, €]"}. Clearly, Fihax €Xists sinceF is continuous an@l—e, ¢]”

is compact. IfFh = 0, then the restriction of” to [—e¢, €]*, which determines the derivative of
the component () of the solution, is identically zero. In this casexif € (—¢, )", the unique
trajectory issued fronfixy, zo) Writes as — (xo, zoe " K¢%)), so it suffices to take, € (-, ¢) to
ensure that such solution remainslirfor everyt > ¢,. On the other hand, assume th&f,x # 0
and set

2K
(Szgmin{l,

. 3.17
2K K Fmax} ( )

Clearly, § is strictly positive sincek > 0; moreovers < ¢ for K > 0. Choose anyxy, zo) €
(=8,8) D, Then|z(t)| < §e~ K~ < § for everyt > t, and hencez(t) € (—¢, ¢) for every
to € R and every > ¢,. Consider the sequen¢g,,)°°_,, where

m=0"’

QK -1)e
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

as well as the serieB,, = > |-, b;. One readily checks that,_; by = liMy_oo Bm = ¢.
For eachn > 1, define the closed s&,, = {(x,t) : x € [—¢,¢|",t > to + m — 1}. Since the
function (x, 1) +— zge X% F(x) is continuous onk,, and strictly decreasing with respect to
its second argumeniy,, = max{||zoe K¢~ F(x)|| : (x,t) € R,,} exists and satisfiedl,, =
|ZO|Fmaxe_K(m_1)-

Given p € [—B,—1, B,—1]", from the Cauchy-Peano existence Theorem 3.2, one corxlude
that there exists a solutiof,+m—1.p) : t = Yo+m—1.p)(t) for (3.16), defined on the interval
[to + m — 1,10 + m], provided thatgz- > 1, that is

bm QK -1)e -1
M, - 2K (m+1) |ZO|Fmaxe—K(m—1) -

But this inequality is satisfied for every € (-4, §) and every: > 1, for if

2K 1
|Zo|<5§(K—)8,
4 Fmax

andn > 1, then

bm QK -1De 4K - 4K
M, T 2K (m+1) |Zo|FmaXe—K(m—1) = 2K(m+1) p—K(m—1) — 22K

=1.

Therefore, for everyn and everyp € [B,,—1, B,,]", there exists a solutiary, : t — Yo+m—1,p)(t)
for (3.16) defined inzy + m — 1,7, + m]. In addition this solution satisfiel$x,, (1) — p|| <
M, (t — (ty + m — 1)) forallt € [ty + m — 1,t9 + m]. Hence, taking = ¢y + m one gets
||Xm (2o + m) — p|| < M,,. Given thath,, > M,,, it follows that||x,,(to + m) — p|| < b,,. But
llpll < Bm-1, hence||x,,(to + m) — p|| < B,. We have thus shown that, for every < 1, if
Yo,x) 1S defined orfzy, 1o +m — 1] and satisfie§ v, ) (to + m — 1)|| < B,—1, theny, ») can be
extended to be defined ¢m, 7o + m] and satisfieg vV, x)(to +m)|| < B,. Since||xo|| < § = By,
by induction ornm we deduce that the solutioh,, +,) iS defined orfzy, oo) and satisfiegx (¢)|| <
sugB,, : m > 1} = eforall t > ty,. Therefore, for every, € R and every neighborhood of
(0,0), if (xo.20) is in (=8, 8)**D (with § given in (3.17)), the trajectories of (3.14)—(3.15) exist
and satisfy(x(t), z(t)) € V for everyt > t,, as was to be shown. |

Theorem 3.3 essentially states that if the initial condisiog, z, for system (3.14)—(3.15) are
sufficiently small, so that () does not grow “too quickly,” then the exponentially decayfactor
in the derivative ofx forces the solution(¢) to remain bounded (and possibly even converge).
However, if the initial conditions are not small enougf{(y) may growunboundeddespite the
exponentially vanishing nature ¢f|, and even do s finite time It is worth pointing out that
the mappingF is not assumed to be locally Lipschitz—the solution to (Brbay not be uniquely
defined—or to have zero as an asymptotically stable equitibr The following corollary is a
straightforward result from the previous theorem that reatly applicable in the proof of Theo-
rem 3.4.

Corollary 3.1. If F : R — R is continuous and > 0, then(0,0) € R? is uniformly stable
under the dynamics defined by = |z|F(x); z = —Kz}.
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3.3. Long-term behavior of the compound system

In order to illustrate the result in the previous corollaynsider, for example, the autonomous
system

X o= |z|x?
z = —z

Indeed, the solution with initial conditiofx,, z¢) atz = 0, given by

Xo
1 —(1—e)xozo

. z(t) = e 2y,

x(t) =

is not defined for any such that the denominatdr— (1 — e™")xozo vanishes, namely fa; =
In (M> If xozo < 1 then eltherzl < 0orln (M> is undefined, thus the solution(r)

x0zo—1

exists for[0, oo) and limy o0 x(1) = = — 7o SO the solution converges and is therefore bounded.
If xozo = 1, thenx(z) = xpe’, so lim_ |x(¢)| — oo, that is, the solution is defined ¢, co)

but it grows unbounded. £,z > 1, thens; > 0, so the solution is defined df, #;) and leaves

any compact interval as— t;.

Lemma 3.1. Let M be a manifold and le/ be a smooth covering space df with smooth
covering mag : M — M. ThenT' M is a smooth covering space 6/ with smooth covering
mapTp : TM — TM.

Proof. Letx : TM —> M and% : TM —> M denote the tangent bundle projections. We shall
show thatl' M is isomorphic to the pullback covering spac’e(M), which is uniquely defined up
to isomorphism of covering spaces (cf. Godbillon [1971] paier [1989] for basic definitions
and properties of covering spaces). As asé(,]\?) = {(v,q) € TM x M:ve TygM}, and
the covering map i9: : (v,q) — v. Now, sincequ 1, M —s T,)M is an isomorphism
for everyq € M, one has a map : n*(M) —TM given by ®(v,q) = (T, p)'(v) which
is smooth sincep is a local dlffeomorphlsm In additiond is injective, for if (T, p)~'(v) =
(Tq p)~L(v') for some(v, q), (v',q’) € n*(M) theng = ¢’ S|nce(qu) 1(v) belongs to both
1, M and7, M. Hencev = v'. Also, ® is surjective, for ifw € T M, then there existg e M
such thatw € TqM, and henced(T, p(w),q) = w. Thus® admits an invers@~! : w
(T3w) p(w), 7 (w)) which is clearly smooth, s® is a diffeomorphism. Moreovef,po ®(v, q) =
T,p((T;p) ' (v)) = v = idra o p1(v, q), so the following diagram commutes:

~ P —
n*(M)——TM

Pll lTp
IdTM

™ ———TM
Letv € TM. By definition of covering space and the fact thfl‘t(]\?) is one forT M, there
exists an open neighborhodd ¢ TM of v, a discrete manifold (i.e., din’(F) 0) and a
diffeomorphism¥ : p; (V) — V x F. We claim that®(p;'(V)) = (Tp)~' (V). Indeed, if
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

w € ®(p;y(V)) then, sinced is a diffeomorphism, there existse p;! (V) such thatw = ®(a),
soTp(w) = Tp(®(a)) = pi(a) € V, hencew € (Tp)~'(V). To prove the opposite inclusion,
assume that € (Tp)~' (V). Thenp;(®~'(w)) = Tp(w) € V, sow € ®(p;*(V)). Therefore
the claim is true. NowW o ®~1((Tp)~(V)) = W(p;7'(V)) = V x F, which shows thaf” M
is a covering space fdFM . (The fact thatp; = T)p o @, with ® a diffeomorphism, implies that
D n*(M) —>TMis anisomorphism of covering spaceser the identity igh,.) |

Lemma 3.2. Consider universal coverings : T —> T* andrx : R —> R¥/Z*, and leta be
a covering isomorphism over as in the commutative diagram

Tx ——R¥ (3.18)

pl |

T+ —%R*/Z*

Given the coveringP = Tp : TT* — TT*, endowTT* with the global chart(TTN",v/)
naturally induced by. Then:

I. For every neighborhootd C TT* of the zero-sectio& (7'T*), there exists a compact neigh-
borhoodV c R¥ of 0 such thatP o ¥ ~!(R* x V) is a neighborhood of (T'T*) contained
inU.

Il. The push-forward?,d/9vy is well defined foi = 1,..., 2«.

. Given f € C*(TT*), a compact set’ C R¥, and an iterated differential operator of the
form D = /3y ---9/0yi*, iy, ....ix = 1,...,2k, k > 0, the functionD(P* f) o !
attains its maximum at some pointlRf x V.

Proof. Givenk € Z*, the mappinggx : x > x + k andp; = a~! o py o a define smooth, right
actions ofZ* onR* and onT*, respectively. Obviously, o oy = p and hencé'p o T'px = Tp.
Note that ifq, g € TT* satisfyTp(q) = Tp(q), then there exist € T* andk € Z* such that
q € T,T* andqg € Tpk(s)'IF" HenceTp(T pr(q) —q) = Tp o Tpr(q) — Tp(g) = 0 and, sincep
is a local diffeomorphismg = T pr(q).

I. If U is a neighborhood o (T'T*), theny o P~}(U) C R¥ x R¥ is a neighborhood of
R* x {0}. Thus for everyx € [0, 1] C R* there isé, > 0 such thatV, = Bs_ (x) x Bs (0) C
R¥ x R¥ is contained iny o P~1(U) (whereBs_(y) is the open ball of radiué, centered ory).
The collection(Vy)xe[o,1]« IS an open cover of the compact get= [0, 1] x {0}, so there exists
a finite setF C [0, 1]* such that(V, ) eF still coversC. But then, setting = min{é, : x € F},
R* x B;(0) is a neighborhood of contained iny o P~1(U). Sincey ~1(]0, 1]* x {0}) is projected
onto Z(T'T*) by P, the set’ = B;(0) satisfies the required condition.

nN.I1f X e (TTT*)isT pg-related to itself, i.e.T T pro X = X oT py, then the push-forward
P.X € I'(TTT") is well defined by the relatio0P. X)p) = T, P(X,). To see this, note that
TP(Xg) = TTp(Xrp) = TTP(TTP(Xy)) = T(Tp o TH)(Xy) = TTp(X,) = TP(X,)
which, along with the fact thaP is surjective, implies thaP, X is indeed defined. To show that
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3.3. Long-term behavior of the compound system

this is also the case foga/awi, it suffices to show thad/dvy' is T py-related to itself. To this
purpose, letf € C*(TT*) and define representativés = f o v landG = ¢ o TPy o !
of f/ and Tpx, respectively. Then, foy € TT* andi = 1,...,2k, 3/3y"|;(f o Tpr) =
/0r' [y (f o TPk oY) = 9/3r' [y (F o G)=3_; F /r/ (Y o T pi(q)) - G’ /9r' (Y (¢)) =
AF/3r' (Y o Tpr(q)) = 3/0V |15, (f), thatis, T Tpg 0 3/dy" = 9/dy" o Tpr. Therefore
P.0/3y!" is defined.

I . To establish this claim it is sufficient to prove the follogitwo facts:(a) If f € C°(TT¥*)
andi = 1,...,2«, thend/dy (P* f) = P,3/0v'(f) o P; and(b) If V C R¥ is compact, then
P oy I (R* x V) is compact inl T*. Indeed, provided these two facts hold, any smooth function
of the formd/dy’(P* f) o ¥~ ! factors through a smooth function dfiT*, which attains its
maximum on the compact séto Y~ 1(R*x V), and an obvious induction argument then completes
the proof. (@) If ¢ € TT¥, thend/oy'|,(P*f) = /0y’ |,(f o P) = TP(/y'|,)(f) =
(P.0/0Y") p)(f), thatis,d/dy’ (P* f) = P.d/dy'(f) o P, as claimed(b) Let (Uj)zea be an
open cover of? o Y~ 1(R* x V). Then(y o P~1(Uy)) e is an open cover dR* x V and, since
[0, 1]¥ x V is a compact subset of the latter, there is a finite/set A such tha(y o P~1(U;)) ey
covers it. But the images b o ! of [0, 1] x V andR* x V coincide, hencéU;) ;< is a finite
subcover ofP o ¥~ 1(R* x V), so the latter is compact. |

Theorem 3.4.LetY € I'(TTG) be a vector field that admity, € TG as a locally exponentially
stable equilibrium and assume that a feedback law is apptiede controlled system (2.1) so that
the combined error and auxiliary dynamics writes as

(Z,0) = (Yz, Ay + i o't (z, ) Qi,w). (3.19)

i=1

Assume, furthermore, that the auxiliary zero dynamics emibyew = %, = A, +
YT et (0,, )2 .w, With X € T(TTT"™) a spray, and that there exists a positive-definite
metric tensorg on T”~™ such that the functiok : TG x TT"™ — R defined byK(z, w) =
%ﬁ(a), w) is constant along the trajectories 6f = X,. Then the se{0.} x Z(TT"~™), where
Z(TT"™) denotes the zero-section B "™, is uniformly stable under the dynamics defined by
(3.19).

Under the assumptions of Theorem 3.4, if the error decréagpsnentially fast” and the zero
dynamics is conservative, thus the conclusion appears tatbigvely clear. However, the proof
of the result is slightly involved due to two facts. Firstetstability notion involved pertains to a
set which cannot be covered by a single coordinate chartesaralysis is carried out, instead,
by “lifting” the system to an appropriate covering manifol&econd, the limiting system that
determines the asymptotic properties of the trajectoritte—=zero dynamics—does not admit an
exponentially stable equilibrium, thus ruling out the apgiion of many of the well-known theo-
rems regarding stability in the presence of disturbancespalliate this difficulty, we reduce the
problem to proving stability of a point for a system that siis the assumption of Theorem 3.3.

Proof. Letk =n—m, M = TG x TT*, and defined € I'(TM) to be the vector field whose
value at(z, w) € M is given by the right-hand side of (3.19), with the usual itferation 7 (7T G x
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TT*)y ~ TTG x TTT*. (In the sequel of the proof we shall appeal to similar idegtions
without explicit mention.) The s€0.} x Z(T'T*) is invariant undetd; indeed, if6 € T*, then
any constant function of the form— (0., 0g) is an equilibrium solution of (3.19), fdr,, = 0, by
the assumption th&x, is an equilibrium ofY’, andX,, = 0, sinceX is assumed to be a spray. We
shall show that, for every neighborho&dof {0.} x Z(TT*), there exists a neighborhoddof the
same set such that (3.19)l&positive-complete and, for every € U, one hasp(z,0,x9) € V
for all ¢ € [0, 400). Once that claim is established, the result will follow frahe fact that the
dynamics (3.19) is autonomous (i.e., it does not dependaithpbn time, soU can be taken to be
independent ofy).

LetY,S e I'(TM) be the vector fields given by

?(z,a)) = (Y’ Oa)) s i(z,a)) = (Oz’ Ea)) s

where0, € T,TG and0, € T,TT* denote the zero vectors in their respective tangent spaces.
Similarly, define a vector field € I'(TM) by setting

S(z,w) = ( 0, Z(O‘H—m(zv w) - ai-i—m(()e’ w))Qi,w )

i=1
With such objects definedi = Y +3+ &, so the closed-loop error dynamics (3.19) writes as
(2, a)) = A(z,m) = ?(z,a)) + i(z,w) + S(z,w). (3.20)

The ensuing analysis shall be carried out by pulling the dyioa (3.20) back to a covering mani-
fold of M. For definitions and properties of covering spaces and gliojes, the Reader may wish
to consult e.g. [Godbillon, 1971, Chap. X.3]). Triviallgzic : TG —> TG is a covering off G
whereas theiniversalcoveringT* of T*, endowed with the unique differentiable structure that
makes the covering projectign: T“ — T* differentiable and of maximal rank, is diffeomor-
phic toR*. Using Lemma 3.1 we see th&ip : TT* — TT* is (diffeomorphic to) the universal
covering space of ' T*. Since the product of covering spaces is a covering spadeinlivious
way, if we setM = TG x TT*, thenP : M —> M is a covering manifold oM, with covering
projectionP : (z,q) — (z,Tp(q)). By definition, P is a local diffeomorphism, s&(; , P is an
isomorphism for everyz,g) € M; as a consequence, ff e C*°(M) andX € I'(TM), then the
pullbacksP* f € C>®(M) andP*X e I'(T M) are well defined by setting

P*f=foP and (P*X)iqg = TepP) ' (Xerpay)-

Moreover, these definitions entail that' X (P* /) = P*(X(f)). System (3.20), together with
the projectionP, induce a system oM given by

(2.4) = P*A¢.gy = P Vg + P*Seg) + P Eo (3.21)

and, sinced is P-related toP* A, every trajectory of (3.21) projects k¥ to a trajectory of (3.20)
(one also says that trajectories of (3.21) kftengs by P of trajectories of (3.20)). Sinc& does
not depend explicitly on, soY (K) = 0, and is invariant undet, soX(K) = 0, one has

P*A(P*K) = P*((Y + £ 4+ £)(K)) = P*(£(K)) = P*E(P*K). (3.22)
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3.3. Long-term behavior of the compound system

Let (O, ¢) be a coordinate chart dAG about0, such thaip(0,) = 0. As is easily checked, the
canonical projectionr : R* — R*/Z* defines a covering space isomorphicpo: T* —
T*, so there exist diffeomorphisms : T — R* ande’ : T* — R*/Z* such thatr o

o« = o' o p. Clearly, (T" «) is a global coordinate chart, WhICh then induces naturatijoaal
chart(T'IF" ,@) on TT*. The coordinateg anda induce a char{O x TT*, ¥) on M, with
v O x TT* — R2"+2¢ given by (z,q) = (¢(z),&(g)). We shall label these coordinates
as? = ... = (... 9P, 0 = (0.0 = (YL Pty andf =
(01, ....0%) = (p2"Hetl . y?m 2 (The choice of these coordinates and labels corresponds,
of course, to their |ntumve interpretation, th9és representing angle-like functions and the
“angular velocities.”) Clearly, the points ifd with coordinate€ = 0 and§ = 0 project onto
{0} x Z(TT*), i.e., P oy 1({0} x R* x {0}) = {0,} x Z(T'T¥). Given points(zy, wg) € M
and(zg, qo) € P‘l({(z,w)}), we letr — (z(t), w(t)) andt — (z(t),q(t)) denote the solutions
of (3.20) and (3.21) initialized, far = 0, at(zo, wo) and(zo, qo), respectively. The representative
of t — (z(¢),q(t)) in the coordinateg shall be denoted by+ (Z(z), 0(z), 6(t)).

At this point, the proof reduces to showing that the g8tx R* x {0} is uniformly stable
under the representative of system (3.21) in the coordinatei.e., under the pullback vector
field 4 := (P o y~1)*A € TI'(TR?>**2¢). Indeed, suppose this claim holds, and letc M
be a neighborhood d0.} x Z(TT*). By virtue of Lemma 3.24(), there exist convex, compact
neighborhood$; c R2" andV, C R* of the respective origins, such thaby 1 (V; xR x V) is
a neighborhood of0. } x Z(7'T*) contained in/’. Since{0} x R x {0} is assumed to be uniformly
stable undeH, there exists an open neighborhdddc R2"+2¢ of {0} xR“x{0} such thatd is U; -
positive-complete and such that, for any initial conditieg, ¢o) € M such thaty (zo, qo) € Uy,
the integral curvey (z(z), g (t)) of fT, initialized aty (z¢, qo), satisfies)(z(t), q(t)) € Vi xR*xV,
forallt > 0. Thenthe setV/ = P o v~ 1(U;) C M has the required property that(ify, wy) € U
then(z (1), w(t)) € V forall t > 0, for in that caséz (1), w(t)) = P(z(t),q(t)) € P oy 1 (V] x
R* x V,) = V forallt > 0.

By smoothness of the right-hand side of (3.2%)¢). ¢(¢)) is defined forr in some neighbor-
hood of0; for any sucly, the derivative oW : t — P*K(z(t),q(t)) can then be computed as
follows

W(t) = P*Aqw)qu)(PK)
= P*cwq0)(PK).
And, sincet; is vertical, one has,

K 8 * 8 % .
W) = Z (% -0+ 7(}3)9'1'@ (P*§)2”+"+’)

YL E@),0(0).0(0)

= poy Tl (Z(), 0(1), 6()),
with & € C®(M) given by = Y%, 8(P*K) /36" - (P*£)>" %+ Given the choice of coordi-
nates, there exist functiogs ; : R — R such thatP*K o ¥~ ! (i.e., the representative ¢f* K
in they coordinates) writes as

P*K oy (2,6,6) = lg,,(@)@@f
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

(Here and in the sequel of the proof the summation conveigionplace.) Also, sincéq, ) = 0

forallw € TT*, thenP*§¢p 4 = Oforallg e TT*, whencew o ¥ ~1(0, -, -) = 0. Therefore,
using a Taylor expansion with remainder, along with the faat the representative* K o Y lis

guadratic in the components @f one obtains, after straightforward computations:

/ — 1 Pu -1 1 Pu 1/, » 2J
Wit) = ((zaékafiow (0,9(1),0)+6m01// (c1z2(1),0(1),0) - 27 (1)

1 3Pu B ' )
t s agtamias OV 0006 ®)-6°0)

1 1 1. 2 : o ).k )Ai

siEas oV @20.00.000) 80 -2 1) )60 )2 0.

for some realg,c, € (0,1). Without loss of generality, one may assume that the coatdm
¢ were selected in such a way that, in view of the assumptionazl lexponential stability dd,
for Y, there exist real€’;, C, > 0 such thaiz' ()| < ||1Z(t)|| < _C1||20||e_c2’ fori =1,...,n.
Moreover, sinceP*K o v~ ! is positive-definite, quadratic in ths, and independent &t there
existsC; > 0 such thatfk (r)| < C3(P*K oy~ 1(2(r), 0(1),0(1)))2 = CW(t)2 fork = 1,... .«

andr >0.Fori =1,...,nandk =1,...,k let
1 0% 1 3w ,
Nix = max)|-— o 10,0,0) + —————— oy 1Z,60,0) -2/
. {'280k82i Vo000 Sz oY 00
1 Pu . .
+-—— oy 0,6,0) -6
6 90L00k 9z v )
i__@L_wwﬂﬁemﬂﬁﬂ-eememxwxn
24 9696k 9z 9z o I
That these maxima exist is easily deduced by an obvious sxteof Lemma 3.24(1 ) and the
compactness of; andV,. LetCy = max{N;x :i =1,...,n, k =1,...,«}. Therefore
W'(1) AAGIEG]

<<
< CCa(W (1)) |E (1)
< C1C3C4(W(1))?||Z0lle .

Given a neighborhootf C R?" x R* x R* of {0} x R* x {0}, consider neighborhoodg C RZ”
andV, C R* of the respective origins. Let> 0 be such thafz € R*" : ||Z|| < ¢} C V; and{f €
R* : ||0] < &} C V,. By assumption, ifizo|| < §; := ¢/Cy, thenz(¢) < e fort > 0. Moreover, by
applying Theorem 3.3, along with tl@mparison LemmgKhalil, 1996, Lemma 2.5], we deduce
that there exist8, > 0 such that, ifi’(0) < §,, then(W(_t))% < £/(C34/k), that is,||9(t)|[ < gfor
allz > 0. It follows that if the initial condition(zo, 6y, 6y) is such that|Zo| < §; and||0] < 42,
then(z(z),0(t),0(tr)) € Vi x R¥ x V, for all t > 0, thus completing the proof. |
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3.4. Example: The3-ECF

3.4. Example: The3-ECF

In this section we apply the methodology proposed in Se@i@rto a particular example of
second-order system in order to illustrate some of the quie@nd results presented in this chapter.
Consider the3-dimensional Extended Chained Form (ECF), which is a sysiafiR?> ~ R®
described by the following equations.

)'C'l = Uq
)'C'z = Uy
).(.,'3 = U1X3.

The latter can be viewed as a SMS of the form (2.1),

X =Sy +urX{" 4 u X5t (3.23)
where S, = Zf=1 x;i+3 0/0x' is the geodesic spray given by the Euclidean metri®dnand
X" =08/0x* + x,0/0x%, X3, = 9/0x° are vertical vector fields ofiR® ~ R®.

It is well known (cf. Imura et al. [1996]) that the ECF is stateedback equivalent to the model
of a planar, underactuated, horizontal PPR (Prismatieaiaiic-Rotational) manipulator, the rota-
tional joint of which is passive. In this model, friction agdavity effects are not considered. The
schematics of this mechanical manipulator is depicted gutfeé 3.1. The configuration manifold

Figure 3.1: Schematic representation of the underactiRB&Imanipulator of system (3.24).

for this system isSE(2) ~ R? x S! and, using coordinates, y, 6, x, . §) for T(SE(2)), the
Euler-Lagrange equations yield the dynamic model

My — mals(0)6 — mslc(0)0> = 1
My§ + mslc(0)8 —mals(0)6> = v (3.24)
—ms3lS(0)X +mslc(B)y +J6 = 0,

wherem; is the mass of the-th link, M; = 2,3-:,- m;, and for the third link,J and!/ are the
moment of inertia and the position of the center of mass, hatth respect to the joint axise; is
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

the force applied to theth link, i = 1, 2. (In the above model, as we shall often do in the sequel,
we use the convention sia s and cos= c.) The VTF approach can be directly applied to system
(3.24) given that it can be rewritten of the form (2.1) witlfitdevariant control vector fields on
the tangent Lie group of £(2) (with group composition (2.10)). However, in order to deahw
simpler computations that convey the main ideas more teaesfly, we apply the VTFA to the
ECF (3.23).

Consider the Lie groufR* with composition law given, for every, y € R?, by

(x,y) = (x1 4+ y1, Xo 4+ Y2, X34+ Y3+ X251 ).

Consider natural (global) coordinates on the tangent Leeig# R> tangent grou@ G. Using
these coordinates, the (tangent) Lie group operatiof R is given by

wx,y)=x-y = (x1+y1,x2+ y2,x3+ y3 + x2)1,
X4+ Va, X5 + Vs5,X6 + Yo + X2V4 + X5)1) (3.25)

It is straightforward to check that bofty andX/™ (i = 1,2) are left-invariant under the respective
left translations inG and7'G. Also note thafX,, X,] = —d/dg3, so that Lig X, X,}(¢) = T,G
for everyg € G. Consequently one can apply the procedure of Morin and Saf2603], recalled
in Section 2.1, to construct a transverse functfonT — R? for the3-CF systemx = u!X;  +
u’?X, , near zero. Take for instance the function in equation (& Bubsection 2.1.2,

f(0) = (e sin(6), e cog6), %82 sin(20)), (3.26)

with ¢ > 0 arbitrary, and extended to every elemeriTiby continuity. The transversality condition
(2.4) is equivalent to the non-vanishing of the determirarthe matrix with columnsX; 7).,
Xz’f(g) andf/(e), i.e.,

1 0 &cogh) )

M= [Xl’f“")’Xz’f“‘”’ggw)}_( w6 0 1ot cotod
g CO 7€ CcO

A simple computation shows that d&1(6)) = —%sz, hencef is transverse.

Using natural coordinate®, é) for TT, the tangent mappin@f is defined, for everyy =
(0,0) e TyT, by

Ty f (@) = (e5(0), ec(6), Le2s(20), ec(0)d, —es(0)0, Le2c(20)0).

The vertical transversality condition (2.14) is easy tabbsh. Consider natural coordinates
0,0, ar,ay) for TTT. First evaluatehe tangendf 71 at a vertical vectow € (7, TT)"" (i.e.,
a € ker(T,mt)), which, by the result in Lemma 2.1 yields a vertical vect®mce 7,7t maps
(0.0, a1, ax) 10 (0, ar), « isin the kernel off, 7y if and only if it has the formy = (6, 6. 0, ag),
so for simplicity we take&r = (6, 6,0, 1). Carrying out the operations one obtains

T.Tf(@) = (0. 0, 0, ec(9), —es(f), 1e°c(20)).
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3.4. Example: The3-ECF

Now let us check thakX ™, X andT,, Tf(&) span the vertical subspacErs )7 G)"". In this
case, any vector in the latter is of the fo@f=1 a; 0/9q;, that is, its first three components are
zero. Hence the verification reduces to computing the détewmh of the submatrix consisting
of the lower three rows of the matrix with columr?d“}f(w), ng‘Tf(w) and T, Tf(a&), but this is
exactly the matrixM (0) defined above, the determinant of which equabz, soTf indeed
satisfies (2.14).

Define an auxiliary system evolving aiT by
6 =w, (3.27)

wherew € R is a control input. This system can be viewed as a (flat) affor@ection control
system onT; in fact, the affine connection which defines it is the LewAGi connection of a
Euclidean orfT. Note that (3.27) can be written in the form of (2.15) if we &gt = 6 9/90,
x = 1andQ;, = d/00. Define also the corresponding error function taebe u(x, Tf(w)™),

z = (x1 —&s(0), x, —ec(0), x3 + %825(29) — x283(0),
X4 —eC(0)0, x5 + es(0)0, x3 — x568(0) — x26¢(0)0 + 1e%c(26)0) ).

By differentiating this expression we get the error dynamic

3
z=F(z,w)+ ZuiGi(z,a)), (3.28)

i=1

whereus; = w, Gi(z,w) = 3/9x* + (zo + £¢(0))3/3x%, Ga(z,w) = /x> — £5(6)3d/0x®,
Gi(z, w) = —&c(0)d/dx* + £5(0)d/dx° + (—36% — ec()z2)d/9x°, and

F(z,w) = (24, zs, z6, €5(0)02, ec(0)0%, 1e25(20)62 + £(0)z,0? —2ec(9)zsé).

Each of the object§;; fori = 1,2,3, as well asF’, may be seen as families of vector fields on
TG indexed byw = (0, 0) € TyT. Moreover, it is clear thaf (-, w) is second-order where#s,,
G, andGj3 are vertical, thus the error dynamics (3.28) is secondrdmteeveryw € T'T.

In order to construct a control law as outlined in Theoremma4elect for the desired dynamics
a second-order vector fielsl € I'(T T G) which hasO as exponentially stable equilibrium point,
for instance

S: = (24, 25, 26, —k121 —kaza, —k122 —koz5, —k123 — kaZ6),

where the control gairis,, k, are strictly positive. From this point on, the control desiganslates
into the search for a functiom: 7G x TT — R? such that

3
F(Z,Ct)) +ZM,‘(Z,0)) Gi(Z,C!)) = SZ

i=1
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CHAPTER 3. Analysis of the Zero Dynamics resulting from theT¥A

forall (z, w) € TG x T'T. Inspecting the structure of the error dynamics (3.28) @sdydeduces
that this problem is equivalent to solving (2.19), whichhistcase boils down to solving farin
the following matrix equation

1 0 _80(9) —9285(9) — k121 — k224
0 1 es(0) u= . —9280(9). — k122 — kazs
Zy +ecB) —es(B) —1e2 —ec(O)z —1625(20)60?% — £5(0)226? + 26¢(0)z50 — k123 — ka6

This equation is solvable since the invertibility of the ffiméent of u is equivalent to the invertibil-

ity of the matrix which ensures the vertical transversatdityi /'; its determinant, in particular, is
equal tO%sz. In order to illustrate the time evolution for the error aadget systems, we include a
simple numerical simulation withg = (1.5,—1.0,2.2,0,0,0), wy = (6o, 90) = (0,0),e = 0.45

and control gaing; = 0.08, k, = 0.4. Figure 3.2 shows that the error tends to zero whereas the

Target system configuratioiis;, x5, x3) Target system velocitieS, X2, X3)

I I I I I I I I I i L i i i i | ] ] =]
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Time history Time history
Error Log of the norm of the error
; ; LoF .
2.0r\Z3
ok
1.5 -1.0
1.0f Z1 —2.0r
=3.01
057 . il
V) —4.0r
ok Z1 —s.0
/ L
—osl Z'3 —6.0
—=7.01
—1.0f o 7 _sof
0 5‘ ]‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 0 5‘ 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50

Time history Time history

Figure 3.2: Numerical simulation of the ECF under the VTFAhmnitial conditionsx, =
(1.5,-1.0,2.2,0,0,0),0y = 0,6y = 0,e = 0.45 andk, = 0.08, k, = 0.4.

logarithm of its norm decays sublinearly, so thét) — 0 exponentially. On the other hand, the
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configuration of the ECIexy, x5, x3) and the velocitiegx,, xs, x¢) Seem to converge to a periodic
motion whereas the base cuy&) = (;rg o v)(¢) ultimately converges to a bounded set, the ex-
tent of which can be made arbitrarily small by decreasingaking smaller values af, however,
typically leads to increments in the peak excursions of trerol signals and in the frequency of
the steady-state oscillations. Concerning the velocitieys they also converge to a bounded set,
but the extent of that set depends on the initial conditi@gsw,), hence one cannot specify it in
advance.

Let us now turn to the zero dynamics of the compound systenghyim accordance with
Theorem 3.1, is determined by a spiay

. 0
B = Ty = ( _sin26)2 ) (3.29)

This vector fieldX determines a torsionless connection: I'(TT) — I'(T*T ® TT) with
Christoffel symboll’ () = sin(20), so thatv%% = F(Q)%. Using the notation of the para-

graph preceding Proposition 3.2, sif = % is a local section on the domain o/, ), then
ks (V) = sin(20)d6, the cohomology class of which is zero. By Proposition 3/4s the Levi-

Civita connection of a family of metrics oAT, namely
g9 = Ae D40 @ ds, A > 0.

By defining the Lagrangian functioh : TT — R as
1 s 1 —cod260) 2
L(w) = §g9(9,0) = EAe 0°,

one readily checks that the associated EuIer-Lagrangetieq%éé = 0 precisely coincides with
the zero dynamics (3.29), irrespective of the valud oAs pointed out above, the zero dynamics is
itself a simple mechanical system, in this case with zeremqtl. Since in this casd. o w)’ = 0,

the (kinetic) energy is a conserved quantity and, given ithiatbounded with respect té and
depends quadratically dh it follows that@(t) remains bounded for alle [zy, 0c0). Consequently,
both 7f(w(z)) andv(z) converge to a bounded neighborhood of the zero-sectidiGn In this
case it is also clear that such neighborhood depends onitla conditions. Intuitively, one can
think of the errorz(¢) as converging t0 exponentially at the expense of a gradual increase in the
kinetic energy “stored” in the auxiliary system.
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Chapter 4

Generalized Transverse Functions

The application of vertically transverse functions to cohtas proposed in Chapter 2, poses
two issues that deserve additional analysis. One of thegessconsists in finding conditions to de-
termine whether the resulting zero dynamics admits a (gs¢Blemannian metric in the general
situation, for in such case stability is ensured for the etbkop system as established in Theo-
rem 3.4. The other issue concerns the introduction of dagisip into the zero dynamics to ensure
that the system velocities (i.e., the fiber coordinates)sklaasymptotically, as would be required
in typical applications. The main purpose of this chapteéoisxplore the potential application of
generalized transverse functions to “inject” dissipatito the resulting zero dynamics. General-
ized transverse functions (GTF) were introduced by Morith @amson [2004] to achieve practical
andasymptoticstabilization of points and general trajectories for tk#s control systems. Basi-
cally, a GTF for a distribution spanned by a 9ét= {X;,...,X,,} C I'(TG) neare € G is a
function f : T*1 x T*2 — G suchthatf (-, B) : @ — f(a, B) € G, is transverse foX neare (in
the sense defined by equation (2.2)) for eyery T*'. In Section 4.1 we make precise this defini-
tion and show that the tangent mapping of a GTHeaseralized vertically transvers&ection 4.2
presents a straightforward generalization of the velficednsverse function approach for the case
of vertically transverse functions derived from generdizransverse functions. The interest in
this class of functions is that its application to contr@ds to anon-autonomougero dynamics
with additional control inputs which may be used to influettoe behavior of the trajectories in
zero dynamics. The central objective is to design thesdiaddl control inputs in order to make
the zero-section of the zero dynamics asymptotically stal| at least, locally attractive. Two
approaches may be followed: the introduction of dissipedida Jurdjevic-Quinn given that the
resulting non-controlled zero dynamics admits a metrid, e design of time-varying feedback
via high-order averaging (Sarychev [2001]; Agnav and Gramkrelidze [1979]) as proposed by
Vela [2003]. Particulary, the latter is developed for theH=for which the numerical simulations
presented below show promising results.
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4.1. Generalized transverse functions

Generalized transverse functions (GTF) were introducellbgin and Samson [2004]. Their
application to control provides the closed-loop systenhwittra control inputs that can be used,
under appropriate conditions, to address complementanyradoobjectives such as asymptotic
rather than practical stabilization of points and trajee®for driftless systems. In this thesis,
tangent mappings of generalized transverse functionssa® @ endow the closed-loop zero dy-
namics with additional inputs which may be designed, muctih@spirit of Morin and Samson
[2004], to render the zero-section locally attractive aterefore, to ensure that the velocities
vanish asymptotically. The following definition is a slightveakened version of the definition
introduced by Morin and Samson [2004] which is suitable fem@pplication to second-order sys-
tems.

Definition 4.1 (Generalized transverse functionget QO be ann-dimensional manifold. Given
a neighborhoodU of ¢ € Q, and a set of vector fieldsXy, ..., X,,} C I'(TQ), a generalized
transverse function (GTF) neay € Q is a mappingf : T*' x T*2 — Q, withk; > n—m and
Kk > 1, such that

a) f(T“ xT*) c U,
b) Tr,)O = spary {Xl’f(o'), R Xm,f(g)} + Ty fp (T, T*Y), foreveryo = (o, B) € T“! x T*2,

where(fﬂ)ﬂew2 is the family of maps, indexed By defined byfz («) = f(«, ).

In particular, in contrast with the original definition, we dot require thay (0, 8) = e € G for
everyp € T*2 as is required in (Morin and Samson [2004]). When computdadal coordinates,
for a given coordinate chast = («, B) = (a', B7) of T*! x T*2, conditionb) translates into

" d d
R" = spary {Xl’f(o'),---,Xm’f(o‘)} + spank Lﬂl(o{),..., /s
do dork

(@)( -

namely, f is transverse, in the sense of equation (2.2), for efeeyT*>.

A generalized transverse function can be constructed frongaven transverse function. For
instance, the following proposition provides us with an letpway to construct a generalized
transverse function given a transverse function for a séeftinvariant vector fields on a Lie

group.

Proposition 4.1(Construction of a GTFE)Let G be ann-dimensional Lie group and : T*! —
G withk; = n — m, transverse (nea¢ € G) for aset{ X, ..., X,,} of left-invariant vector fields
onG. Then, for everya, B) € T*“' x T*2, the following choices foy : T*t x T*2 — G, yield
generalized transverse functions.

a) f(a,p) = gla+ x(B)),
b) fle. ) =g(x(B)™" - gl + x(B)),

where “+” is the Lie group composition iff“! and y : T*2 — T*! is any mapping.
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Proof. Leto = («, ) € T*' x T*2. For any choicea) orb), of f : T*' x T*> — G, we must
prove that for anyw = TG there existrealg!, ..., a™ andw € T, T* such that

w = ZaiXi’f(O-) + Ty fp(@).

i=1

a) Sinceg : T*' — G is transverse, there exist redls, ..., »™ and® € Ty, T** such
that

m
W= b X g@ir) T Tutx3)8(@).

i=1

Let Ry : T¥' —> T** denote the right translation Mfi“! by an elemen® e T*!. SinceT Ry :

TT< — TT* is a diffeomorphism for every € T*! there existsv € T,T* such that
w = Ta/léx(ﬂ)(a_)). Then, by using the chain rule and the fact tifafe) = g o ’Iix(ﬂ)(a) for any
(o, B) € T¥1 x T*2, one obtains

m
w = Zb’Xi,f(a,ﬂ) + Tarx8)8 © Ta Ry(p)(@),

i=1

= ZbiXi,f(a,,B) + TO( (g © ﬁx(ﬂ)) (a_))’

i=1
m
= D V' Xif@p + Tufp(@),
i=1
as was required.

b) Let L, : TG — TG be the left translation in the Lie grou@ by an elemenk € G.
Given thatT'L, is a diffeomorphism for every € G, there exist®) € Tg+,(8))G such that
W = Tg+x8) Leypy-1- BY the transversality of : T*! — G, there exist realg’, ..., b™
and® € Ty4,)T*" such that

m
v= Zlei,g(aer(ﬂ)) + Tatx(8)8(®).

i=1
Then
m
W = Ty +x8) Lgxpn (Z b' Xi g@+x(8) + Ta+x</3)g(5)).
i=1
By using the chain rule and the left-invarianceXgf i = 1, ..., m, one obtains
m
w=>"b'X; rwp) + Tutx®) (Lexpy © &) (@).
i=1
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By using the argument in the proof fajyabove, there exists € 7, T*! such thatv = Taﬁx(,g)(a),
and so, by using the chain rule, one obtains

w o= > b Xis@p) + Tatx® (Leupy-1 © &) (TaRyp)(@)).

i=1

m
= D V' Xisap + T (Lg(x(ﬂ))—l °go RX(B)) (@)),

i=1

= Y b X f@p) + Tufp(@)),

i=1

as was to be shown. [ |

If K, = k, then a GTF can be built simply by settinfgo, 8) = (g(B)) ! - g(a + B). Straight-
forward examples of GTF, for the case = 1 and«, > 1, areg(0) = g(61 + -+ + 6, +1) and
g(0) =g(Or+ -+ 011) ' - g(01 + -+ + O, q1) foreveryd = (61.....0,41) € T X T,

It is clear, as a result from Theorem 2.2, that the tangentpmgpof any transverse function
fp for some fixedp € T* is vertically transverse. However we define the tangent niagp o
generalized transverse function to be generalized véiytitansverse in the sense made clear in
the following proposition.

Proposition 4.2 (Generalized Vertical Transversality)et f : T*' x T2 — G be general-
ized transverse for the set of vector fields,,..., X,,} € I'(TG) neare € G. ThenTf :
TT*“*2 — TG is generalized vertically transversier {X{", ..., X!} in the sense that, for
everyv € TT** it satisfies

TrrimTG"" = spam {X{"r sy - Xy} + TTf o H ((TwTT’“)"e” X {0},;@)) . (4.1)

whereH : TTT* x TTT* —s TTT* 42 andh : TT“1+t<2 — TT* are natural diffeomor-
phisms.

Proof. Let v € Trr)TG¥". Sincev is vertical, there existy € Ty)G such thatv =
lift (T'f(v), x). Given thatf is generalized transverse (cf. Definition 4.1), there exist R,
fori =1,...,m,and® € T, T* such thatt = Y7, a' X; () + To f3(®). Thus,

v o= Iift<Tf(v),ZaiXi,f(a)+Tafﬂ(5))

i=1

= lift (Tf(v), Y d'x; f(a)) +1ift (T (v). T f())

i=1
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4.2. Control framework using generalized VTF

Note thatT, f3(@) = Tf o h(&,0g) whereh : TT*' x TT* — T (T*'**2) denotes the natural
identification defined, in coordinates, bY((0;, 1), (0>, w;)) = (01, 65, w1, w,). Hence

v o= Y a X%, +ift (Tf(v).Tf o h(@.0p))
i=1

m

= Y d' X", + TTS (lift (v.h(@.0p))).

i=1

Note that lift(v, 2(@., 0g)) is in H ((TwT'IF’Cl)Ve”x {O}E(‘))), whereh : TT % — TT# js
defined in coordinates U}/(Ql, 05, w1, w2) = (65, w,), which completes the proof. [ |

4.2. Control framework using generalized VTF

This section formalizes the way generalized vertically$rgerse functions are used for con-
trol purposes. The main objective is to obtain an expres&oihe closed-loop zero dynamics
which, under the proposed methodology, shall be endowddaaitlitional control inputs that may
influence the target zero dynamics. Consider the targe2isy&.1) (rewritten as (4.2) below)

=S+ Y u'x" (4.2)
i=1

and assume thdtXq, ..., X,,} C I'(TG) are left-invariant vector fields o0&, ann-dimensional
Lie group, which span a distribution that is completely mbegrable at some point, saye G
without loss of generality. Under these conditions therstexa generalized transverse function
f T xT* — G for {Xy,..., X;y} neare € G with k; = n — m (in the sequel we set
ki1 = n—m)andk, > 1. SoTf : T(Tx+*) — G satisfies (4.1). The procedure herein
developed is analogous to the methodology described indBe2t3 and Chapter 3. Consider an
auxiliary control system evolving oiT“! x T'T*2 of the form

K1

b = Oy+ ) v, (4.3)
j=1
K2

no= T+ ) w Wy, (4.4)
k=1

where® € I'(TTT* ') andIl € I'(TTT*?) are second-order vector fields, typically sprays
that define flat, torsionless, affine connectiongdh* and7 T*2 respectively. The sets of vector
fields{Yy...., Y., } and{¥,, ..., ¥,,} constitute global frames f¢f 7T )"*" and(T TT*>)"",
respectively. The auxiliary system (4.3)-(4.4) can be i&m as a system evolving gRT*! T2
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CHAPTER 4. Generalized Transverse Functions

by means of the natural diffeomorphigm TT*' x TT* — TT* **2 For instance, consider
the following commutative diagram:

TTT x TTT<? —— T (T*1 x TTr2) —* T Tk +e2 (4.5)

pl
idp ey pe2

TT xTT —————— =TT xTT*

l”TTKIXTT’Q l”ﬂr”l'ﬂfz

TTK1+K2

Let A := (®,II) and defineA = h,A. Itis straightforward to show thah so defined is a
second-order vector field GRT*!*#2; in fact it is a spray which defines a flat, torsionless, affine
connection wheneve® and IT are sprays defining flat, torsionless, affine connectionsanin
analogous way, sé€f;(w, @) = (Y, 0x) for j = 1,... k1, and Wy (0, @) = (04, Yk, ) for
k=1,...,k,, forevery(w,w) € TT* x TT*2, and define vertical vectors fields @I« t+2,

Q; = Y, @ := h Wi, for j = 1,...,k; andk = 1,...,«,. Note that the sefQ2;, @, j =

1,....k1,k = 1,... ko) € T((TTT*+<2)*" defines a global frame fdfT TT* )", Let
v = h(w, ), then system (4.3)-(4.4) can be written as
Kl . K2 .
=AY VIQiy Y wl . (4.6)
i=1 j=1

Define an error signa := x - Tf(v)~! along the trajectories of the auxiliary and target systems
(4.2)-(4.6). By differentiating along the trajectoriestbé compound system (4.2)-(4.6) (by virtue
of Proposition 2.1), one checks that

2(6) = TRy ()e(z) _TL.o TTf(f)(t))) ,
for everyr € R for which the trajectories of the compound system are defikietice
m K1 K2
£ = TRy ((Sx + Zufx,."f;) ~TL,oTTf (Av +Y Qi+ ) wf@bj,v)).
i=1 i=1 j=1

Define a non-autonomous second-order vector field,,), € I'(TTG), for each(v,w) €
TT* e x R, by

K2
D(v,w) VA TRTf(v)_l (Sz-Tf(v) — TLZ o TTf (Av + Z w’ q)j,u)) .

J=1

Then, by making use of the left-invariance of the vector figif', i = 1,...,m, and the fiberwise
linearity of the tangent maps we obtain

m K1
2= Dwu)(2) + TRypy-1 0 TL: (Z WXy = Y V' TTS (Qi’v))- (4.7)
i=1

i=1
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4.2. Control framework using generalized VTF

Proposition 4.3. Given any second-order vector fielde T'(TTG) andw = (w!,..., w*?) €
R*2, there is a unique smooth feedback law= (a!,...,a") : TG x TT* %2 x R¥2 — R”
such that the error dynamics (4.7), satisfigs) = Y ().

Proof. The proof boils down to setting the right-hand side of (4.qya to Y, and solving for
(u,v) = (ut,...,u™ v, ... v*). Thisyields

m K
Dww)(2) + TRyyqy-1 0 TL: (Z ' X}y = YV TTS (Qi,v)) =7..
i=1

i=1

Rearranging one has

m K1
TL,- o TRTf(v) (Yz - D(V’w) (Z)) = (Z uin!l’f;wf(U) —TTf (Z v' Qi,v)).
i=1 i=1

Note that, in reference to the commutative diagram (&5),= h.Y; = H(Y;,04), for j =
1,....k;. Hence, giventhaf f satisfies (4.1) anfiYy, ..., Yy, } is a global frame fo(T TT*)"",
there exists a mapping : 7G x TT*“ T« x R¥ — R”" such that, for everyz,v) € TG x
TTK1+K2,

m K1
(ZWI(Z, v, w)X,!I,f;"f(u) — Zaler(z, v,w)TTf o Q,-,v) —
i=1

i=1

TLZ—I o TRTf(,,) (Yz - D(v,w) (Z)) .
One can easily show thatso defined is smooth. |

In accordance with the previous proposition, by approplyaselecting a feedback =
(al, ..., a") for (4.2)-(4.6) in terms of the error statgr), the state of the auxiliary systentr)
and of the additional control inputs = (w!, ..., w*2), the error dynamics can be arbitrarily set.
In particular, assume, as in Chapter 3, that such a feedbamitained by requiring that the error
dynamics (4.7) satisfy a second-order differential equmatiefined byy € I'(T 7'G) and that the
latter admit9), € TG as an asymptotically stable equilibrium point.

In such a case, the behavior of the closed-loop system igafixaly analogous to the behavior
of the closed-loop system under the VTFA, in the sense tleatttite of the target system (4.2) con-
verges to the image b/ of the trajectory of the auxiliary system (4.6), providedittthe solutions
of the closed-loop system are defined. Given that, by defmitf (T*! t¥2) is contained in a prede-
fined neighborhoodl of ¢, the configuration coordinates of the target system apprtteecdesired
equilibrium configuration, independently of how the extomtrol inputsw = (w!, ..., w*?) are
chosen. The ensuing objective is to design these additiopats, in terms of the auxiliary sys-
tem statev € TT*“ 2 such that the zero-section of the auxiliary zero-dynarmi¢g T*! t#2) is
locally attractive for, in that case, the target system eigélles vanish asymptotically.
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The closed-loop zero dynamics is obtained by settirg 0, in (4.7),

m K1 K2
(va) + > a0, v, w)X,![“Tf(U)) =TTf (Av + a0 v )y + Y w cp,-,v).
i=1 i=1 Jj=1
(4.8)

Observe that the target zero dynamics is completely detealdy the auxiliary zero dynamics.
The latter is given by the right-hand member of equation)(4.8

K1 K2
V=A, + Zai+’"(Oe, v, W)L, + Z ijIDJ-,v. (4.9)

i=1 Jj=1

The auxiliary zero dynamics can be realized as a controksysin7 T ! 2 with control inputs
w’/, j = 1,...,k,. Note that these control inputs also determine the zemr-éeedback terms
o't i =1,...,k;. If one manages to design', ..., w* in terms of the auxiliary system state
v such that the zero-section 6{T*! t*2) is (locally) attractive, the effect should be that the veloc
ities of the auxiliary and target systems vanish asymmtyicAlthough stabilizing only a subset,
e.g. the zero-section, of the state manifold may seem mtaeae an aim than stabilizing a point,
the zero dynamics (4.9) may bear some undesirable properfer instance, it may be critical
and may also fail to be accessible but at generic points. Mamgtructure of the zero dynamics
depends, to a large degree, on the structure of the GTF ubedefbre, the goal of having the ve-
locities asymptotically vanish apparently calls for the n$time-varying feedback. In Section 4.3
we explore the application of high-order averaging methadexposed in (Vela [2003]; Agthev
and Gramkrelidze [1979]; Sarychev [2001]), with a view tosvthe design of time-varying feed-
back to render the zero-section (locally) attractive fa dluxiliary zero dynamics. An example is
also developed which illustrates, via a numerical simafgtihat the asymptotic convergence of
the velocities to zero may be achievable by means of timghvafeedback laws.

As an additional approach, one may also try to introduceghsien into the auxiliary zero dy-
namics by means of Jurdjevic-Quinn (damping control) meffeh Bacciotti and Rosier [2001]).
The application of this method requires the knowledge of aakV Lyapunov function for the un-
controlled system (system (4.9) wiid', . .., w*2 = 0). That is, the knowledge of a differentiable,
positive-definite functior/ : T*' %> — R such thatV’(v) = 0if v = 0, and£zV(v) < 0 for
everyy € T*1**2 where

K1

Ay =2+ ) (00, 1.0)Q. (4.10)

i=1

In the case that the spra& admits a Riemannian metri€, such a function can be naturally
defined by setting/(v) := %g(v, v). It is readily verified thatl” is positive definite and that
the derivative ofl” alongﬁ is zero. However, as stated in Chapter 3, determining anchfjral
(pseudo-) Riemannian metric for a given spﬁa}'s, in general, an untractable problem, given the
overdetermined nature of the Levi-Civita metric diffeiahequations.
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4.2. Control framework using generalized VTF

In the case that the VTFA (described in Section 2.3) yieldsra zlynamics which admits a
(pseudo—-) Riemannian metric, there exists a GTF such teagproach described in this section
yields a (non-autonomous) zero dynamics whose drift vefodtat, defined by (4.10), admits a
(pseudo—) Riemannian metric. In other words, the resuhimigrautonomous zero dynamics is a
Levi-Civita connection system for some metric® T*2, Let us make this result precise.

Theorem 4.1(Existence of a metric for a particular caségtg : T*! — G, withn = dim(G),

be transverse fofX,,..., X} C I'(TG) neare € G with k; = n — m. Assume that the
application of the VTFA to (4.2), with auxiliary control $gm (4.3), results in an auxiliary zero
dynamicsw = X, which admits a metric. Then, the use of a GfE T*' x T*> — G of the
form f = go y, wherey : T*' x T*2 — T*! is smooth, yields a hon-autonomous zero dynamics
whose drift vector field admits a metric.

Proof. Itis straightforward to show that = go y : T*! x T*! — G is generalized transverse
for every smoothy : T*! x T*> — T*!, Leto = (¢',...,0") : TG x TT** — R" be the
feedback resulting of applying the VTFA (cf. Theorem 2.3yéguiring the error dynamics satisfy
z = Yz withY e I'(T TG) a second-order vector field havifig e TG as an asymptotically stable
point. In other wordsg : TG x TT*' — R” satisfies

m K1
ZU’ (z,w) Xl."’ftTg(w) — Z o' Mz, 0) TTg(Viw) =
i=1

i=1

TL.1 (TRrg()(Yz) — Sz1g(0)) + TTE(O,). (4.11)

Define a second-order auxiliary control systemgh«! *+2

K1 K2
V= Av + Z UiQi,v + Z qu)j,va (412)
i=1 j=1
such thatA is T y-related to®, andS2; is T y-related toY;, fori = 1,..., x;. Also define mappings
a=(@'...,a"): TGxTT“ 2 — R" anda = (a?,...,a") : TT“ % x R®2 — R” such
that they satisfy

m K1
DT Xy = D @) TTS () =
i=1

i=1
TL,~ (TRryw)(Yz) — Szrroy) + TTF(A,), (4.13)
and
m . K1 K2 )
Y@ wow) X[ =Y @t w) TTf () = TTSf (Z w’ d>,~,v), (4.14)
i=1 i=1 Jj=1

respectively. It is straightforward to check (cf. Propmwsit4.3) thate = (¢ + @) : TG x
TT<* 2 x R — R” is such that the error dynamics (4.7) writeszas= Y,. In particular,
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the auxiliary dynamics is given by

K1 K1 K2
D=A, + Zai+m(2, Q2 + (Z a' v, w)R, + Zw’d>j,v).
i=1 j=1

i=1

The long-term behavior is determined by the auxiliary zgnoainics obtained by setting= 0 in
the equation above. This yields

K1 K2
=A@ W), + Y w Dy, (4.15)

i=1 Jj=1

with

K1
Ay = Ay + Y @00, 0)Q,.

i=1

Note thatA e (T TT***2), which is second-order, is the drift vector field of the aiaxi} zero
dynamics sinc&’ (v, 0) equals zero by virtue of equation (4.14). Thus we have togtioatA
admits a metric. Note that equation (4.13) can be written as

m K1
Y F X peryy = D@ (@) TTg o TTy () =
i=1

i=1

TL,~1 (TR7gory(v)(Yz) — Sz1g0mxv)) + TTg 0 TTx(A,),

By construction of the auxiliary system in (4.12)7 x(2;v) = Yi ryw) @ndT Tx(Ay) = Oy
SO

m K1
D@ )X ey = D@ @V TTE (Yiryw) =
i=1 i=1
TL.-1 (TRrgoryw)(Yz) = Sz1goryv) + T T8 (O1, 1)) -

Thereforea(z, Tx(v)) coincides witho (z, w) in equation (4.11), so the spraS/andﬁ areT y-
related and, therefore,  admits a metric o T*!, A admits al’y-induced metric ol T*1++2,
|

However it is still an open problem to determine when, for wegigeneralized transverse
function, the resulting non-autonomous zero dynamicsfeesi appropriate conditions to enable
the introduction of damping so that the velocity coordisapproach zero as time increases (see
cf. Bacciotti [1992]).
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4.3. Rendering the zero section locally attractive via highder averaging

4.3. Renderingthe zero section locally attractive via higforder
averaging

In this section we explore the use of high-order averagindesign time-varying feedbacks
with the objective of rendering the zero-section locallyaadtive for the resulting auxiliary zero
dynamics (4.9). The choice of a given transverse functiaygbn important role for it defines
the structure of the resulting auxiliary zero dynamics Y4u®d, consequently desirable properties
such as local accessibility. In general, the resulting dgramics is a second-order control system
that may be critical; therefore, dealing with asymptotabdization apparently calls for the use of
time-varying techniques.

High-order averaging (Sarychev [2001]; Vela [2003]) isdmh®n the formalism of chrono-
logical calculus developed by Adgraev and Gramkrelidze [1979]. In essence, the latter aims
at reducing the qualitative analysis of the flow of periodan+fautonomous (i.e., time-varying)
vector fields to the analysis of autonomous (i.e., time ilave) vector fields by means of asymp-
totic expansions. High-order averaging has proved to bliLisedevising time-varying feedback
laws to asymptotically stabilize fixed points for driftlesmntrol systems and second-order systems
(see Vela [2003]). However, in typical situations, it isfaifilt to draw conclusions regarding the
asymptotic stability of the closed-loop system (see Saay¢Ra001]).

In this section we review high-order averaging (Sarych®9[d; Vela [2003]) and its applica-
tion to design time-varying feedbacks for stabilizationoftless control systems and second-order
control systems as reported by Vela [2003]. We also preseaxample of its application to design
time-varying control laws with the objective of making thera-section locally attractive for the
zero dynamics of the controlled ECF for a given generalizadsverse function. We also present
a numerical simulation of the closed-loop system which ssggpromising results.

4.3.1. High-order averaging theory revisited.

In this subsection we summarize basic concepts of chroiabgalculus as presented by
Agrachev and Gramkrelidze [1979] and high-order averagingrthes presented by Sarychev
[2001] and Vela [2003] with a view toward the design of timeyting feedback to render the zero
section (locally) attractive for the zero dynamics resigjtirom the use of GVTF. The Reader may
consult (Vela [2003]) for more details on this subject.

Consider a periodic system @i written in thestandard form for averaginghat is

%= AX(x,1), (4.16)

with X a T-periodic time-varying vector field oR”, i.e., X(-,t) = X(-,t + T) for everyt €
R, andA a “small” strictly positive real. The “classicalfi{st-order) average ofX (cf. Khalil
[1996]) is an autonomous vector field defined, foe R”, by X (x) = % ;‘)J“T X.:(x)dt, where
X, := X(-, 7). Under certain condition¥ may preserve certain properties X¥f For instance,
assuming thak is continuous and bounded and have continuous and bound&sl garivatives

up to second-order with respectipif x* € R” is an equilibrium for (4.16) which is exponentially
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stable forX, then there exists, > 0 such that for everyt < 1o, x* is locally exponentially stable
for (4.16).

High-order averaging (Sarychev [2001]) provides one wittrengeneral expressions for av-
eraging computed from truncates of asymptotic series esipas approximatind(, which may
determine stability for cases for which the first-order agéng is not conclusive. These asymp-
totic expansions are due to Agteev and Gramkrelidze [1979] and are based on the \olteniesse
expansion of the solution of a time-varying differentiabiatjon of the form

X(1) = Xi(x(1)), (4.17)

where X, is a vector field orR” for everyt € R and where it is assumell to be absolutely
continuous orr. (This can be generalized to the case of time-varying vefottas on ann-
dimensional smooth manifoldf.) Agrachev and Gramkrelidze [1979] address this problem by
using a formalism that is “dual” to the standard point of vi€&vosso modpthe idea is to replace
a nonlinear object by a linear, although infinite-dimensipone. For instance, a pointe M
defines a linear functional : C*°(M) — R by x(f) = f(x) for f € C*(M). In turn
a vector fieldX e I'*°(TM) defines a linear functionat : C*®(M) — C°°(M) such that
)?(f)(x) = X,(f) for x € M, and a diffeomorphisn? : M — M defines an automor-
phismP : C®(M) — C>(M) of the algebraC (M) by (P(f))(x) = f(P(x))forx € M
and f € C*(M). So, equation (4.17) corresponds to a differential equaiigen, in the dual
formalism, by

() = 3@t) o X;. (4.18)

(For further details the Reader may consult the book of Blgea and Sachkov [2004] and the
work of Agrachev and Gramkrelidze [1979]). The soluti®(r) to the differential equation above,
for a given initial condition(xy, 7o) at timez, may be obtained by the Volterra series expansion,
which in the terminology of Agréhev and Gramkrelidze [1979], is called tngght) chronological
exponentiabf the vector fieldX,, and is denoted bg_xf)(jt’o X, a’t).

Averaging theory concerns with the existence of a (timexpaaterized,) autonomous vector
field 7(,0,,)(X1) e I'(TM) such that its flow at unit time, with initial timg = 0 coincides with
the flow of X in equation (4.17) at timewith initial time z,, i.e., such that

t
e_xTo(/ X,dr) oid = exp(T}(to,t)(Xr)).
to

A series expansion exists for this vector field and, assumcomgergence, it is called thegarithm
of the chronological exponential

— 2 - ! .
VienXe) =Y VI (Xo) =1In (e_xb( / er‘f) ° |d). (4.19)
m=1 fo
The termT/)EZ?t)(X,) form = 1,...,00, is called then-th variation of the identity flow corre-

sponding to the perturbation field,. The Reader may consult some convergence results given by
Agrachev and Gramkrelidze [1979].
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In reference to & -periodic system in the standard form for averaging (4.&@6& concerns in
obtaining armaveraged system

= Z(2), (4.20)

where the autonomous vector fiefdis defined by

T
exp(ZT) = e_xb(/ X,dr) oid,

or equivalently, by

1. (T
Z:—Inexp/ X.dt).
r 0

Z is such that the trajectories of (4.16) coincide with thgetttories of (4.20) up to ame-periodic
diffeomorphism or flow, i.e.x(¢) = P(¢,z(t)) andP(t + T, -) = P(¢,-), whereP is called the
Floquet mapping, (cf. Vela [2003]). Typically, howevet, is very difficult to compute explic-
itly, and the way to circumvent this difficulty is by using arfinite series expansion of the form

Z = £ 32 AMAD(X,), whereAD(X;) = 7820(&). By analyzing thenth-partial sum (or
“truncate”) Trung,(Z) = + Y i, A'A¥(X;), one may infer some stability properties of (4.16)
for sufficiently small values of.

The first termsA®, ..., A® may be expressed in terms of the Lie bracket (cf. Sarychev

[2001] and Vela [2003]).

AD —

1 T T
TI:A(I),A(Z)]+§|:/ X‘El dfl,|:/ X‘fldTler:|i|
0 0
AW — _i T 7l er dty, Xo, |dt, [Xe, X | dT
o 12Je L , | BUTan T lfne A 1
1 T 4l )
_ﬁ[/ {/ {/ Xf3df3,X12] drz,Xn] dﬁ,Xf]
0 0 0
l T 2! T1
-5 {/ X, d1, [[/ X, d1, X,l] Xr]] dr,
0 0 N

High-order averaging of driftless control systems

In this subsubsection we give the explicit forms for the fosler truncates of averaging, in
terms of Lie brackets and integrals of the control inputsthef series approximating driftless
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control systems. Consider a driftless control systerRbrof the form

q = ZuiX,',q.
i=1

Assume thak > m and that the system is controllable. Consider time-peciéeiedback of the

formu’(q.t) = fi(q) +v'(t/A)fori = 1,...m, where the termg’ are intended to stabilize the
directly controlled variables of the state. Substituticeligs

m
G =Xsq+ ) V/N)Xiy.

i=1

whereXs = Y7, f'(¢)X:(g). By making a time transformatian— At we obtain a system in
the standard form for averaging:

dq

= = A(Xs,q + ; vi(r)Xi,q).

Define the following integral terms of the time-varying pafthe input proposed.

, t Sn—1 52
V) =/ / [ Vi (s1) dsy ... dsy_,.
to J1o to

Also definelf(gi’::’;"k))(t) = V(%(l)”' V(SS(I) fork > 1,i,ix = 1,...,m and, in a similar

manner, define integrals and averages of these terms. Ftand]w(g))(t) = f;) V(S)) (r)dt and
V&’f (r) = % / Z’O V(ff))(r) dt and the difference between the integral and averaged teyrﬁéf)b:

V(Ef)) — V(Ef))(r). Then, the averaged system of order= 1,2, 3 in the time variable is given by

1
z = XTruncm(Z),

where,

TrunG (2); = Xs(2) + Vg (0Yi(2),
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and assuming that the first order time averages of the inpwianish, i.e. V(f)’)) (t) = 0, the second
and third order averaged truncates are given by

TrunG(Z). = Trung(Z), + A V(({))(t) [Y:, Xs], + k vino[v.y],.  @4.21)

TG (Z), = Trune(Z). + 22 (Vé’}(z)— TVJ{}(:)) [Xs. [Xs. V)],

1 i P
322 (V&0 = 3TVER0 ) [Xs. 1 1),

1

+34° (V(ﬁ’ D)+ V((l’ DO =TV g;(z)) [¥i.[Y;. Xs]].
LG

+§A V(llO)(t)[ “[YJ’Yk]] (4.22)

As an example of the application of high-order averagingtaitively design time-varying feed-
back, consider the stabilization of zefb€ R?) for the chained form3-CF).

)'Cl = U
)'Cz = Uy (423)
)'C3 = U1X7.

As above, consider a feedback law: R?> x R — R3 of the formu(x,7) = f(x) + v(z/A),
where f involves stabilizing terms linear in the directly contemllcomponents of the state. For
instance choose to be defined by

ui(x,t) = —kix;+asinit/A)
us(x,t) = —koxy + B cogt/A),

wherea and B are to be defined. Given that sin and cos are zero-averagedigefunctions,
first-order averaging applied to (4.23)-(4.24) yields:

(4.24)

Xl = —kl)Cl
)'62 = —kz)Cz (425)
).C3 = —k1X1X2.

The first-order averaging is an autonomous system for whiekhannot conclude stability of zero.
However, consider the second-order averaging expression:

X1 = —kix
)'62 = —kz)Cz (426)
).C3 = —k1X1X2 + %A.Olﬂ

Note that if we select = —2signksx3)+/|ksx3| andB = /|kzx3| with k3 > 0, then zero is
exponentially stable for (4.26). In fact, it can be shownpbing homogeneity arguments, that the
feedback (4.24) with the choseng, i.e.,

MI(X, l) = —kix1 — ZSigr{k3x3)\/ |k3X3| Sin(l/)\,) (4 27)
U (x, 1) = —kaxo + /|ksxs| codt/1), .

61



CHAPTER 4. Generalized Transverse Functions

applied to the3-CF yields the closed-loop system having zero as asympthtistable equilibrium
point. Figure 4.1 shows a numerical simulation of the avedagystem (4.26) with the chosen
« and g, and of the closed-loop system (4.23)—(4.27) for an antiiyraelected initial condition
xo = (0.4,—1.2,1.8) andA = 0.5.

Averaged system state, x», x3) 3-CF state(x, x2, x3)

X2

I I I I I I I I I I
5 10 15 20 25 30 o 5 10 15 20 25 30

Time history Time history

Figure 4.1: Numerical simulation for the averaged syster@@)(left) and for the closed-loop
system (4.23)—(4.27) (right).

High-order averaging for second-order control systems

These ideas can also be used to design time-varying feedbaskecond-order systems, as
proposed by Vela [2003]. Consider the class of systeniERf of the form

=Xe+ Yy u'yM (4.28)
i=1
where X is a spray and’;, i = 1,...,m, a vector field orR”. The continuous mapping’ :

R" x R — R is assumed to have the formi(x,1) = f"(x) + zv'(t/A) fori = 1,....m,
with A > 0. Following the procedure in (Vela [2003]), we rescale tineetivariable and consider a
truncate of the “nonlinear variation of constants” for @).2vhich yields a system in the standard
form for averaging (4.16):

. ; . | — lift
io= A(Xs,x +VHO [V Xs], = SVENO YY), ) (4.29)

Here,Xs = X + /2, f'Y/™ and the operataf : -), a generalization of the notion of symmetric
product (cf. Bullo and Lewis [2005]), is given by : Y)™ =[x, [ X, Y*]].
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4.3. Rendering the zero section locally attractive via highder averaging

Assuming that the first order time averages of the inpltganish, i.e. V(’)(t) = vi(r) = 0,
the first and second-order averaged truncates in terms diraekets and symmetrlc products of
the drift and control vector fields in (4.29) are

1 l i,
Trung(Z), = Xs. + v(g;(z) [y Xxs], - 2V((1 D) Yy (4.30)
@) )
IA V(’J) ITV(IJ) lift X
s (v O =5tV o) [ v xs |

Vé’ HO[[Y" xs] [¥]", Xs]],

Truna(Z), = Trung(Z), + A (V(’)(t) V(’)(t)) [[¥/™, Xs]. Xs],

L (TG~ i it
+5A(Vézf:’:im—gTVa;a)VéfS)m)< A w)t . @a

Suppose that the objective is to render the zero-secti@llyoattractive (as the final objective for
the non-autonomous zero-dynamics (4.9)). The rationadiesignu’ (x, t) for system (4.28) is to
set f7(x) such that it stabilizes the state components that are ‘tiireantrolled.” The inputs’
are chosen as zero-average functions, &.g. a sin(wt) + b cog2wt), wherea andb are to be
designed in terms af in order to render the zero-section locally attractive.sliiea is exemplified
next with the aim of rendering the zero-section locallyaattive for the3-ECF (3.4). Assume that
the time-varying feedback considered is of the form

1 .
uy(x, 1) = —kizx4 + 1051,1 sin(z/A)

1 (4.32)
UZ(X, l) = —k2’1)€2 — k2,2X5 + 1052’1 Sin(l//\).
The first-order averaged system is given by
)2,'1 = X4
)2,'2 = X35
)'C3 = X¢
. 4.33
X4 = —k12X4 ( )
X5 = —ka1X2 — kaaXs
X6 = —k12X2X4 — %011,1052,1-

Itis thus clear that, in order to have the velocity variabigscs andxes asymptotically approaching
zero for the averaged system, a possible choice{gr a5 ; is

1,1 = k3281gN(x6) /| X6

(4.34)
a2, = v |x6].
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Configuration variableéx;, x», x3) Velocity variableq(x4, x5, x¢)

X1

X6

o ; 1‘0 1‘5 2b 23 30 0 ; lb 1‘5 2‘0 23 30
Time history Time history

Figure 4.2: Numerical simulation for tieECF under the feedback (4.32)-(4.34).

The Figure 4.2 shows a numerical simulation for the averaystem (4.33) withy; ; ando; »
given by (4.34) and,, = 1.0, ko; = 1.0, ky» = 1.0, k3, = 0.6. The initial condition is
xo = (1.6,-3,2,0.5,—1,—-2). The Figure 4.3 shows numerical simulations for 3RECF (3.4)
under the time-varying feedback (4.32), with, anda,; given by (4.34), for two different values
of A. The values of the parametérs, k1, ko, andks, and the initial condition are the same than
in the simulation of Figure 4.2. In the upper two plots of Fig4.3A = 1.0 and in the lower
two plotsA = 0.1. One may observe that the zero-section is attractive. msrtant to remark
that, although high-order averaging is a technique thatbeansed to heuristically design time-
varying feedback as shown in the examples above, it is ngtteagraw conclusions concerning
the stability properties of the closed-loop system.

4.3.2. Application of high-order averaging to the ECF

In this section we illustrate the application of GVTF, alamigh averaging techniques, to ex-
amine the possibility of rendering the zero-sectiorf@“* x 7TT*2 locally attractive under the
zero dynamics. Although stabilizing only a subset, e.g z#fte-section, of the state manifold may
seem more relaxed an aim than stabilizing a point, it shoelkdpt in mind that the zero dynam-
ics in the form (4.10) may be critical in the sense that it may satisfy analogous conditions to
Brockett’s condition for the stabilization of a set via pugtate static feedback.

Consider the-dimensional Extended Chained Form (ECF), a SMS with gtaté) evolving
on TR3 ~ RS (also analyzed under the VTFA in Section 3.4) given by:

X =Sy +u X" 4 u X5t (4.35)
wheresS, = x4 0/dx' + x5 9/9x2 + x¢ 9/0x3 is the geodesic spray given by the Euclidean metric
onR?*and X" = 9/0x* + x,8/0x¢, X} = 8/dx> are the control vector fields dfiR> ~ R®.
Since the setX, X,} satisfies the LARC at = 0 € R3, there exists a transverse function near
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4.3. Rendering the zero section locally attractive via highder averaging

Configuration variableéx1, x5, x3)

Velocity variableg(x4, x5, x)

2.0 2.5
X1 2.01
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Figure 4.3: Numerical simulation for tieECF under the feedback (4.32)-(4.34).
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CHAPTER 4. Generalized Transverse Functions

an instance of which is the map: T — R3 given by

f(0) = (s sin(@), e cog6), %82 sin(29)), g > 0. (4.36)

Note that, by taking sufficiently small, f(T) may be made to lie in an arbitrarily predefined
neighborhoodU of e. A GTF g, : T x T — R can be constructed by defining () =
£(6,)- f(61 + 6,) ' ford = (01,6,) € T x T. Explicitly one has

g1(61,0,) = ( e(s(01 + 62) —s(62)), e(c(01 + 62) — c(62)),

2 2
%(3(292) + (26, + 26,)) — %(3(292 +61) + 3(91))) .

It is readily verified thatg; satisfies the conditions given in Definition 4.1, hence, iai&TF

for (4.35). Consider the auxmary control systeﬁn = us, 82 = u,onTT x TT. Define

an error signat = x - Tg,(0,»)" ', wherew = 6. Given a second-order vector field, say
Sa(z) = (24, 25,26, —21 — 24, —2Z2 — Z5, —2Z3 — Zg), DY Proposition 4.3 there exists a unique feed-
back law(u;(x, 0, w,us), us(x, 0, w,us), us(x, 0, w, uy)) which sets the error dynamics equal to

z = S4(z). Thus, in closed-loop, the trajectoryr) approaches zero exponentially, which in turn
forces the state(¢) to approached’g; (6, w), forcing, in turn, the configuration trajectories to
ultimately enter a neighborhood ef The zero dynamics, however, must be analyzed to determine
the evolution of the fiber-coordinates. Moreover, the trgjges should be made to converge to the
zero-section. The resultirgpntrolledzero dynamics is given by

él w1 0
éz _ ) 0
o | | T ) A 2¢6,) "+ (4.37)
@ 0 1
where
[1(6.0) = —s(26, + 26,) 6% — 2526, + 26,)6,6, — 25(6)6, 65 + 25(6; + 265)6,06,

—5(260,)02 + 25(6; + 26,)02 —25(20;, + 26,)02.
Consider an input of the form
1
uUg(w,t) = —krwy + . (a118(t/t) +arc(t/t) + -+ oy S(nt/t) + ayac(nt/t)),

with k, > 0. Computing the truncated expressions for averaging, at fean < 4, the lineariza-
tion of the truncated first order averaged system is of tha for

Z1 = Z3

Zy = I4

zz = ap,1(2) 051,12 +ay2(2) 051,22 +“‘+an,1(z)an,12 + an»(2) Oln,z2
Zy = —kozy,

66



4.3. Rendering the zero section locally attractive via highder averaging

where the terms; ; are sums of sines and cosines of functions,adndz,. Note, however, that it
is impossible to solve fak; ; anda; , in terms ofz if one wishes to obtain, say; = —k;zs.

By examining next the truncated expression for second @wkaging, setting, as in (4.3.2),
with n = 1, we end up with a system that is no longer second-order. Tepre the second-order
nature, one may choosQ = —k,z4 + o1 2C(¢/7). However, the application of such input yields
Z3 = al,z(z)aiz leading, in turn, to the impossibility of designing , to make the zero-section
locally attractive.

The choice of a GTF may be essential to determine propertiggeaesulting zero dynamics,
such as accessibility. Therefore, alternative GTFs malg yaecontrolled zero dynamics which
allows one to achieve the required goals. Consider, foaims, the GTF defined dh* given by

g(0) = (55(91 /2) + es(63), (6, /2), %323(91) n 82s(92)). (4.38)

The resulting controlled zero dynamics is

0 0
) 0 0
0 0 0
(cb ) = S6o | 4oy [¥4 T —acor/20c0:) M5 (4.39)
1 0
0 1
where Sg.o) = (01,02, 03, T(0,0),0,0) and T'(0,w) = —1/256))w? — 48(6)w? +

4¢(6,/2)s(63)w?. The unlifted control vector fields of (4.39)X, s = 4c(6,)3/00' + 9/062
and X, = —4c(6,/2)c(03) 9/00! + 9/963 satisfy the LARC at every point ifi' > except, pos-
sibly, at points in a subset of measure zero. Hence, depgwdinhe drift vector fieldS, we may
expect (4.39) to be accessible at generic paifit®) in 7T3.

Uy = —kzZz—ksZs + 1/AO[S([//\)

us = —kzzz —keze + 1/A BS(t /1), (4.40)

applied to system (4.39), is given by

Z'l = Z4

Z.2 = Zj5

Z.3 = Zg

zg = a(z,a,p)

Zzs = —kpzp —kszs
ze = —kzz3—kezs,
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where the terna(z, ., B) is given by

a(z,a,p) = —%5(21)242 —45(22)z5> + 4¢(21/2)S(z3) 26> — 4 k222C(22) — 4 C(22)ksz5
+4k3z3¢(21/2)C(z3) + 4¢(z1/2)C(z3)k6z6 — 4 S(21)C*(22)
—4a B c(z2)s(21/2)c(z3) + 8 o B C(22)S(21)C(21/2)C(23)
+4 B?s(z1/2)C (23)c(z1/2) — 4 B> (21/2)C% (23)S(21).

Observe that ifk,, ks, k3 andke are strictly positive, then the components of the states, z;
andze¢ converge to zero exponentially. Hence we may focus on coenisn; andz, of the first
order average truncate, under the assumption that themgrgaiomponents equal zero, namely

Z.1:Z4

24 = —18(z1)zf — 40 S(z1) + 4af S(321/2) — B 5(2zy). (4.41)

It is not intuitively evident how to desigm andf as functions ot such that, converges to zero.
However, we may set them such thigtis quadratic inz4, and such that the term that involves the
productaf in (4.41) introduces “dissipation.” For example, consider

o = —kiS(3z21/2)sigN(z4)z4,

B = kza. (4.42)

with k1, k4 strictly positive. A numerical simulation with appropest fixed parameters,
ki,..., ks, suggests that the zero-section is locally attractive. él@n, at present, we have no
proof of the attractiveness of the zero-section.

ECF configuration coordinates (xl,xz,x3)

ECF fiber coordinates (x4,x5,x6)
4 T T T T T

0 10 20 30 40 50 60 70 80 90 100

Time history
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4.3. Rendering the zero section locally attractive via highder averaging

Furthermore, numerical simulations for theobmpound system with control feedback
(u1,uz,us3)(z,0,w,uqs, us) designed using the generalized vertically transversetimmassoci-
ated with (4.38), an¢u4, u5)(z, t) designed by means of high-order averaging in equation8)4.4
and (4.42), suggest that the zero-section is locally dt@acindeed, the simulation shown in the
figure below is representative of the qualitative behavidnilgited by the compound system with
different initial conditions. As depicted, the configutaticomponents seem to enter a prescribed
bounded neighborhood efwhereas the velocities seem to vanish asymptotically.
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Chapter 5

Concluding Remarks and possible Future
Research

In this dissertation we develop and analyze a theoretiaahdéwork to address stabilization of
configurations for second-order systems on tangent Liepgroln particular, we are interested in
control systems arising from the Euler-Lagrange formalafor mechanical systems. Stabilization
of this class of systems happens to be nontrivial, giventthiatclass encompasses possibly con-
strained, underactuated mechanical systems. Within ldss one may encounter systems that are
not kinematic reductions of mechanical systems, systenas@linearization at equilibria are non-
controllable, and control systems that cannot be stalilizemeans of continuous state feedback.
Examples of such systems include underactuated mechaméapulators, rigid body systems in
space, wheeled vehicles and underactuated underwatedasehit is interesting to remark that
these control systems are control-affine systems for wiieldtift vector field plays a key role in
determining important properties, such as local accdigibi

The framework analyzed in this thesis (initially proposgd3nsa [2005] and described in
Chapter 2 of this thesis) is intended to provide an extensfahe stabilization procedure pro-
posed by Morin and Samson [2003] to deal with the practiaization of configurations for
second-order systems. The main contributions of the tii€siapters 3—4) center on two important
issues. First, in analyzing the closed-loop zero dynanuesssess the long-term behavior of the
trajectories of the closed-loop system and, second, in fyiadithe proposed control algorithm
with the objective ofshapingthe zero-dynamics trajectories to obtain stability resultged by
practical applications. However, the analysis done is potlusive towards the developing of a
unified and systematically applicable theoretical framéwo address configuration stabilization
for general mechanical system via vertically transversetion, given that the remaining problems
may result involved and possibly untractable.

5.1. Conclusions

The existence of a (Morin—Samson) transverse functioill'* — G for a set of vector fields
X ={X1,..., X} C I'(TG) near a poinyg € G is equivalent to the local accessibility &f at
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that point, as shown by Morin and Samson [2003].

Vertical transversality is a direct consequence of MoreraSon transversality in the sense that
the tangent mapping of every Morin—Samson transverseitmétf : 7T — TG is verti-
cally transverse. Based on this property we develop a camithodology intended to practically
stabilize configurations for second-order systems evgleimtangent Lie groups.

The procedure of application is as follows. First, we attanhauxiliary system to thear-
get system This auxiliary system is itself a “completely actuatedteed-order control system
evolving on the tangent bundle of tkedimensional toru§"T*. Then, based on the tangent Lie
group composition, we define an error function whose devieationg the trajectories of the target
and auxiliary system satisfies a second-order differeatjaktion and can be assigned arbitrarily
by means of smooth feedback depending on the state of theasit@system (target-auxiliary
system).

In particular, we make the error dynamics to admit zero asgmatotically stable equilibrium
point. If the initial conditions of the target system do nedng to the image of the vertically
transverse function, (i.e., if the initial error is diffetefrom zero), the feedback effect is to force
the target trajectories to asymptotically approach thegenaf the vertically transverse function.
This entails that the bundle projection of the target tr@pes = (x(z)), i.e., the configuration
variables, which in a mechanical system represent posiaod orientations, ultimately enter into
a prespecified neighborhood of the desired configuration.

On the other hand, if the target system has initial condtionthe image of the vertically
transverse function, i.e., if the initial error is zero, thibe effect of the feedback on the target
system may be interpreted, as “forces” that holonomicatigstrain the target system. These
forces may not satisfy d’Alembert principle and so they mayaduce non-zero energy into the
zero dynamics.

In general, it is difficult to determine whether the closedd composite system is positive
complete i.e., whether its solutions are defined for evestaint time after the initial time. In fact,
the velocity variables may grow unbounded or even escapaite time. In order to single out
conditions to ensure stability of the closed-loop systenh #merefore, boundedness of the trajec-
tories, one is compelled to study the zero dynamics, thahésdynamics obtained by restricting
the error to be identically zero.

We prove that the resulting control inputs in zero dynamihs, zero-error feedback, has a
particular structure. First, the target and auxiliary zéyaamics are related, so it suffices to study
the auxiliary dynamics to draw conclusions on the targed ggmnamics. Moreover, the auxiliary
zero dynamics is an affine connection system that presdmeestriucture of the target system, that
is, the zero dynamics is defined by the sum of a spay I'(7T 7TT*) and a vertical vector field
I1 € (T TT*)"). In particular, this structure may be regarded as that of ehamgical system
with the sum of a spray—having terms quadratic in the valegi-plus a vertical vector field that
may arise from the gradient of a potential energy function.

The sprayX defines a torsionless connection. In the general case, ttiee i not the Levi-
Civita connection of any metric, for most torsionless canioms are not Levi-Civita given the
overdetermined nature of the necessary conditions (clernbirt and Veblen [1922]). However,
the situation when the zero dynamics admits a Riemannianangtof interest for, in that case,
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one may establish positive completeness of the zero dysamideed, every compact (pseudo-)
Riemannian manifold, e.dl'“, is geodesically complete (Kobayashi and Nomizu [1996]).

Although at the present there is not an easily computableactexization of when a given tor-
sionless connection admits a metric, in the case when thettaystem is underactuated by one
control, we establish necessary and sufficient conditionthie existence of a (pseudo—) Rieman-
nian metric.

Considering that the target system is underactuated by oneoce controls, and assuming
that the zero dynamics admits a (pseudo—) Riemannian meteirove stability of the closed-
loop system controlled by feedback laws based on vertitatysverse functions. This is done by
defining a positive-definite functioki : TG x TT* — R which is invariant along the trajectories
of the zero dynamics and proving that its trajectories rarbaunded. This is rather involved given
the topology ofT'*, which is not simply connected, and therefore more than &gt evould be
necessary to cover it and carry out computations in cootelin@\n approach based in coordinates,
however, would rise some issues at the moment of gluing ta tesults to give the global one. An
alternative method is presented in this thesis which exténe dynamics to a covering manifold
and then establishes global uniform stability of the zexctisn.

We also propose the use of tangent mappings of generalizegvirse functions in order to
provide the zero dynamics with additior@ntrol inputsthat may be designed in order to make
the velocities converge to zero. Roughly speaking, a gémedatransverse function first defined
by Morin and Samson [2004], is a transverse function whigbededs on additional parameters.
We present a straightforward generalization of the VTFA@rcase of vertically transverse func-
tions derived from generalized transverse functions. Tfterest in this class of functions is that
its application to control leads toeon-autonomougero dynamics with additional control inputs
which may be used to influence the behavior of the trajecdriezero dynamics. The central
objective is to design these additional control inputs itkeorto make the zero-section of the zero
dynamics asymptotically stable or, at least, locally attve. We prove that if the VTFA yields a
zero dynamics admitting a metric, then there is a genedhliznsverse function that results in a
non autonomous zero dynamics that also admits a metric. Yerexthe use of high-order aver-
aging as presented by Vela [2003] in order to design timgtvgifeedback to force the velocities
to asymptotically approach zero. Particulary, we developxample for thé-ECF for which the
numerical simulations presented show promising results.

5.2. Future Research

The main problem of practical point stabilization with agtatically vanishing velocities re-
mains to be solved in the general case under the control mhelihgy proposed. Additional open
problems include that of finding an associated metric forzére dynamics, and constructing gen-
eralized transverse functions that lead to non-autonoprameessible zero dynamics with sprays
that admit metrics. When addressing the study of these @nmuhlhowever, a number of interesting
subproblems arise in a natural way. The following are pdssilvections for future work directly
related with the proposed control approach.
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= Given that most torsionless affine connections are not Cavita, a possible line of research
is to study conditions on transverse functions which yiglidbzlynamics that admit metrics.

= |t seems that specific choice of a generalized transverstiduris very important in defining
the structure of the resulting non-autonomous zero dyramiberefore, it is of interest to
study the relation between a given generalized transversgion and the accessibility of
the resulting zero dynamics.

= The adaptation of the proposed methodology to tackle maldiiajectory stabilization for
mechanical systems. However this cannot be immediately doren that there are hard
issues to be answered for its application to point-staddilimn.



Chapter 6
Appendix

This Appendix is intended to fix the notation and to introdbesic notions from differential
geometry, the Lagrangian formulation of mechanical systemd control theory. The Reader may
consult the following references for further details onsenéopics.

= Differential Geometry:

Warner [1983], Kobayashi and Nomizu [1996], Boothby [2QG@3jifone [1972], Godbillon
[1971], Hatcher [2001], Hatcher [2003].

= Mechanical Systems
Bullo and Lewis [2005], Abraham and Marsden [1985].

= Control Theory:
Nijmeijer and van der Schaft [1991], Isidori [1995].

Differential-geometric notions

We shall refer to objects of clags* assmoothor differentiable. All manifolds, mappings,
vector fields and related constructs are assumed to be sruplass otherwise stated. We shall
sometimes use Einstein summation convention to shorteatioof that is, repeated, doubled in-
dices in quantities multiplied together are implicitly swned. For example; b’ fori = 1,...,n
denotes the sup_’_, a;b".

Let Q be a Hausdorff, paracompacidimensional manifold. For each poipin Q we denote
by T, O thetangent space 0D atg. The first and second tangent bundlegoére denoted by'Q
andT TQ respectively, and their projections onto the base spacepby’Q — QO andzxro :
TTQ — TQ. Given two manifoldgQ and P, and a mapf : Q — P, we denote théangent
mapoffatge QbyT,f :T,0 — Ty P andbyTf : TQ — TP the bundle map covering
f. Amappingf : Q — P defines a unique, up to isomorphism vector bundle @vey *(TP)
called thepullback bundle byf defined byf*(TP) = {(q,v) € O x TP : f(q) = np(v)} with
bundle projectiomn : (¢, v) — ¢ along with the differentiable structure naturally inhedt
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Amap f : O — P between topological spaces is said todpenatg € Q if for any
neighborhood! of ¢, f(U) is a neighborhood of (¢). The set of vector fields 0@ (respectively
TQ) is denoted by (T'Q) (respectively’ (T'TQ)). Given a vector fieldY, we write eitherX, or
X(gq) to denote its value at a poigt Let X = {X,,..., X,,} C I'(TQ). Lie(X) denotes the Lie
algebra generated by the s€t Let f : 0 — P be a map between manifolds aXd Y vector
fields onQ and P respectively.X is said to bef-related toY if Y o f = Tf o X. A coordinate
chart on Q is denoted by(U, ¢) whereU is an open set i) andg = (¢',...,¢") : U — R”"
is a homeomorphism. Given any such chart there are natutefiged coordinate charts arQ
and on7 TQ (see Warner [1983]), defined ar},' (U) and onrz), o 5,' (U), respectively. These
coordinate charts are denoted(@yq) = (¢',4') and by(q, ¢, ar,en) = (¢'. 4", e} ,&ky) and are
referred to asatural coordinates induced byU, g) on TQ andT TQ respectively. We let =
(r',...,r") denote the canonical coordinatesRf. A parallelizablen-dimensional manifold
is ann-dimensional manifold that admits a global frame, i.e., torewhich there exists a set of
n, linearly independent vector fields = {X;,..., X,,} C I'(TQ) such thatX, = 7,0 at any
q € Q. Itis straightforward to see that @ is parallelizable the'Q is parallelizable.

Thezero-sectiorof a tangent bundI&Q is the subbundle, denoted BT Q), of zero-vectors
in TQ; as an embedded submanifold, it is diffeomorphi¢toT* denotes the-dimension torus.
As an instance of an “angular” coordinate systéth6) on T ~ S! c R? take for example
U = S'\{(0, )} andd(p) = 2arctar(;2.-).

A vector field X € I'(TTQ) is said to besecond-ordelif 77y o X = idrg. In natural
coordinatesX € I'(T'TQ) is second-order ifX(¢,¢) = (¢.4.4. Xz (g, q)). This notion may be
extended to vector fields along a curveli@ as follows. LetX be defined on the image of a curve
y : (to,11) —> TQ, thenX is second-order along if for every s € (to.11), Tg (X,,) = y:.

Givenv € TQ, thevertical space ovepn is the subset of,7Q given by T, TQ"*" = {a €
T,TQ : T,m(x) = 0}. The disjoint union of the spacdsTQ"®", v € TQ, with the differentiable
structure naturally induced By TQ, is called thevertical subbundleof 77TQ and is denoted by
T TQ"®". A vertical vectoris an element € T TQ®". In natural coordinates a vertical vectar,
is written ase = (¢, ¢, 0, ag). A sectionX € I' (T TQ®") of the vertical subbundle is said to be
avertical-valued(or simplyvertical) vector field onTQ. By definition,X € I'(T'TQ) is vertical
iff TT[Q oX = 0.

Givenv, w € TQ with o (v) = 7o (w) the vector inT, TQ defined by lif(v, w) = L| _ (v+
tw) is called thevertical lift of w by v. In natural coordinates, if = (x, x) andv = (x, y) then
lift (v, w) = (x,x,0,y). Thevertical lift of a vector fieldX on Q is a vector field or’Q given
by X'™(v) = lift (v, X»,))- Let X be expressed in natural coordinatesityy) = (¢, X (¢) then

X"(q.4) = (¢.4,0,X(9)).

The Liouville vector field C on Q is defined byC(v) = lift(v,v). Thecanonical almost
tangent structureJ on Q is defined byJ(X), = lift(v,Tng o X,). So defined,/ satisfies
[C,J] = —J. A spray X is a second-order vector field satisfyipg, X] = X. In natural
coordinatesX € I'(T'TQ) is a spray iffX(¢,9) = (¢.4.4, Xu(q,4)) and the component¥,
are quadratic in the coordinatgsi.e. X}, (¢.¢) = %, ()¢’ ¢* for some functiong’ , € C>(Q),
i,j,k = 1,...,n. Alternatively, letX € I'(TTQ). Itis then readily verified thak' is second-
order iff J(X) = C andX is vertical iff J(X) = 0. If Y € ['(TQ), then[C, Y] = -y,
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An (r, s)-tensor (field ¢ over Q is anr-times contravariants-times covariant tensor field on
Q, i.e., t is a section of the tensor bund®& (TQ) := ®;_, 70 ® ®;_, T*Q. Let f,g €
C>(Q)andX,X',Y,Y',Z c T(TQ). An affine connectionV on a manifoldQ is a mapping
[(TQ) x T'(TQ) —> I'(TQ) denoted byV : (X,Y) > VxY which satisfies) Viy, . x' ¥ =
f(VxY) 4+ g(VyY)andb) Vx (fY +gY') = f(VxY) + g (WxY) + (X/)Y + (Xg) Y
GivenX e I'(TQ), the object defined byy : Y — VxY is known as theovariant derivative of
Y along X.

Let (9,/) denote the natural coordinates for the tangent space idducé;’) and letX, Y
be vector fields onQ with coordinate representatiofi(q) = (q",)?"(q)aql-) and Y(q) =
(¢',Y'(g)d,) respectively. Then, in coordinategy Y(¢) = (¢',dY"/dqg’ X/ + Fj’ﬁ,k(q))?f Yy,
wherel'; , are called theChristoffel symbolsassociated withv and are defined by ;d,« =

F]l:’kaqi. By following related conditions ta) andb) given above, it can be defined the covariant
derivative of arbitrary-type tensors over.

Let X, Y, Z be vector fields o). ThetorsiontensorT is a(1,2)-tensor defined by (X, Y) =
VxY — Vy X — [X,Y]. Thecurvature tensoris a(1, 3)-tensor given byR(X,Y)Z = VxZ —
VyZ —Vix,y1Z. In natural coordinates the componeffs = I'}, —T'; andR/, = T}, /dx* —
BF,ij/ax’ + Zm(r;;?r,im — I‘,’;}I‘l"m) are defined by" (0., 0,x) = T;’kax,. andR(0,k,0,1)0,; =
R}klaxj.

A pseudo-Riemannian metrig on Q is a symmetric, non-degenerdi 2)-tensor overQ.
In terms of a local coordinate chart,(8, 2)-tensor given byg = g;;dx'dx’ is symmetric iff
gij = gji,» and is non-degenerated iff the matgy is invertible. A Riemannian metricis a
pseudo-Riemannian metric which also satisfies positifettieness, that ig (v, v) > 0 for every
nonzeraw € TQ. A manifold together with a given Riemannian (respectiyigudo-Riemannian)
metric (Q, g) is said to be a Riemannian (respectively pseudo-Riemajmanifold. For every
(pseudo-) Riemannian manifold?, g) there exist canonical mappings: 70 — T*Q and
f: T*Q — TQ, calledflat and sharp respectively, which are defined by = g(v,-) for
v e TQ,and by =b~!,

Let O and P be Riemannian manifolds with Riemannian metgcands and f : Q — P
an immersion.f is said to basometric(or alternatively an isometry) g(X,Y) = h( f« X, f:Y)
forall X, Y e I'(TQ).

If ¢ € T)(TQ) is a (pseudo—) Riemannian metric, there exists a uniquesafinnection or
such that the torsion tensor equals zero and that paralledlation with respect to this connection
is an isometry. This metric is called thevi-Civita connection(or themetric connectiop In local
coordinates, the Christoffel symbdl‘#k of a Levi-Civita connection are defined by

i lgiz 0gjt | 08k _ 08k
ik 0 gk~ 9q/ gt )

Acurvey : [t),t;] — Q is said to be a geodesic ¥,/)y’(t) = 0. The geodesic spray of a
metric connectiorV is a second-order vector fiell € I'(T TQ) such that the solutions to the
differential equationt = S, are geodesics. In local coordinateg, ¢;) for TQ, the geodesic
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spray is defined by

S@.4) = (q'.4". 4", =T}, (9)d’ §*).

Tangent Lie groups

Assume thaG is a Lie group with group composition denotedbyWe writeL,, R, : G —
G to denote the left and right translations &yn G, respectively. The identity element f@ar
is denoted by € G. A vector fieldX on G is said to be left-invariant iXz;, = Tig(Xh) for
all g,h € G. The set of left-invariant vector fields @ together with the Lie bracket form a
Lie algebrag, which is isomorphic t&,G. The tangent bundl& G, with composition given by
wix,y) = TEnG(x)(y) + Tﬁnc(y)(x), is also a Lie group, usually referred to as taegent Lie
group of G. The identity element, under this compositionQise 7,G (the zero vector iff,G).
The inverse element™! = —TZHG(U)—I o TﬁﬂG(v)_l(v) €T, G- WeletL,, R, : TG —
T G denote the left and right translations bye 7'G, respectively. Sometimes we use y or xy
in place ofuu(x, y).

Control systems

Let X be a vector field onD andt — (x4 () the solution of the differential equation
x = X, with initial conditionx, € Q, t, € R. The vector fieldX is said to becompleteif
for everyr € R and for everyx, € Q, ty € R, ¥(x,,1)(¢) is defined. X is said to bepositive-
completeif ¥, ) are defined for every € R.,. Given a subselV of Q, the vector fieldX is
said to bel/ -positive completd for everyz, € R, xo € U the trajectories of the systein= X,

t = ¢(t, 19, xo) are defined for everyin [ty, 00).

Let X = {X1,...,Xn} C I'(TQ) andg € Q. X is said to satisfy the LARCL{e Algebra
Rank Conditiohatgq if 7,0 = spark(Lie(X),), namely, if X is completely nonintegrable. The
driftless systemx = > 7", u'X; , is said to satisfy the LARC & if X satisfies the LARC at
g. An affine-control systent = D, + > /- u'X;, is said to satisfy the LARC at a poipgtif
the distribution spanned byD, X1, ..., X,,} is completely nonintegrable gt A second-order
(control-affine) systenon TQ is a systemv = S, + > i~ u'Y;, whereS € I'(T TQ) is second-
order and(Yy,...,Y,} Cc T(TTQ""). A second-order system is said to beadfine-connection
control systenif S is the geodesic spray of some affine connecWorkor such a control system,
if V is the Levi-Civita connection for a given (pseudo-) Riemanmmetric the system is said to
admit a (pseudo-) Riemannian metric.

A simple mechanical system (SMSBullo and Lewis [2005]), is a system @fQ defined by
a Riemannian metrig on Q, a real-valued functiof” : Q — R called potential function and a
setofm < n, 1-forms, F = {Fy,..., F,}, whose elements represent forces or torques exerted on
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the system. In natural coordinatgg, ¢') for TQ, the equations of motion are given by

d ot

a9 @ q)——(q q) = ZufF (@). i=1...m

wheref : TQ — R, which is called the_agrangian function of the system, is defined by
L) = %gng(v)(v, v) — V(g (v)). The coordinate-free expression is given by

V=35, -I—Zu Y"ft

where the drift vector field = S¢ — (d V%) is the sum of the geodesic spray associated with
the Riemannian metrig, and minus the vertical lift of vector field correspondingthe poten-
tial function. The control vector field¥™ are vertical lifts of the vector fields given ky=")*.

A particular case of SMS is when the Lagrangian is defined dwylythe kinetic energy, i.e.,
L£(v) = grow)(v,v), then the drift vector field coincides with the geodesic g@asociated to
the Riemannian metrig. In such a case the system is said to ISM6E with zero potential energy
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