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Resumen

En esta tesis se desarrolla y analiza una metodología teórica para atacar la estabilización prác-
tica de configuraciones para sistemas de segundo orden descritos en grupos de Lie. En particular,
esta clase de sistemas surgen de la formulación de Euler-Lagrange que describe la dinámica de
sistemas mecánicos. La estabilización de esta clase de sistemas resulta ser no trivial dado que esta
clase incluye sistemas mecánicos posiblemente restringidos y subactuados. Además, esta clase de
sistemas incluye sistemas que no admiten reducciones cinemáticas, sistemas cuya linealización en
puntos de equilibrio es no controlable y sistemas para los que no existe retroalimentación continua
en el estado que estabilice por ejemplo, puntos de equilibrio. Ejemplos de esta clase de sistemas
son los manipuladores mecánicos subactuados, cuerpos rígidos en el espacio, vehículos a ruedas
y vehículos acuáticos subactuados. Es interesante notar que estos sistemas de control son sistemas
afines en el control para los cuales el campo vectorial de deriva juega un papel importante para
determinar la accesibilidad local del sistema de control.

La metodología analizada en esta tesis, originalmente propuesta en (Sosa [2005]), tiene como
objetivo extender la metodología de estabilización propuesta por Morin y Samson [2003] para
atacar la estabilización práctica de configuraciones para sistemas de segundo orden. Las contribu-
ciones principales de esta tesis se centran, primero, en analizar la cero-dinámica de lazo cerrado
para determinar el comportamiento a largo plazo de las trayectorias del sistema en lazo cerrado y
segundo, en modificar el algoritmo de control propuesto con el objetivo demoldearlas trayectorias
de la cero-dinámica para obtener resultados de estabilidadrequeridos en aplicaciones prácticas. El
desarrollo y el análisis de la metodología teórica presentados en esta tesis sugieren problemas com-
plejos que deben ser resueltos para obtener una metodologíaunificada, sistemática y general para
el control de sistemas mecánicos subactuados via funcionesverticalmente transversas.

V



Abstract

In this dissertation we analyze a theoretical framework to address practical stabilization of
fixed configurations for second-order systems on tangent Liegroups based in vertical transversal-
ity (initially proposed in Sosa [2005]). In particular we are interested in control systems arising
from the Euler-Lagrange formulation for mechanical systems. Stabilization of this class of systems
results nontrivial given that this class encompasses, possibly constrained, underactuated mechan-
ical systems. Within this class one may encounter systems that are not kinematic reductions of
mechanical systems, systems whose linearization at equilibria is non-controllable, and control sys-
tems that cannot be stabilized by means of continuous state feedback. Examples of such systems
include underactuated mechanical manipulators, rigid body systems in space, wheeled vehicles
and underactuated underwater vehicles. It is interesting to remark that these control systems are
affine control systems for which the drift vector field plays akey role in determining important
properties such as local accessibility.

The framework analyzed in this thesis, which was initially proposed in (Sosa [2005]), is in-
tended to provide an extension to the stabilization procedure proposed by Morin and Samson
[2003] to deal with the practical stabilization of configurations for second-order systems. The main
contributions of the thesis center on two important issues.First, in analyzing the closed-loop zero-
dynamics to assess the long-term behavior of the trajectories of the closed-loop system and, second,
in modifying the proposed control algorithm with the objective of shapingthe zero-dynamics tra-
jectories to obtain stability results urged by practical applications. However, the analysis done is
not conclusive towards the developing of a unified and systematically applicable theoretical frame-
work to address configuration stabilization for general mechanical system via vertically transverse
functions.
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Chapter 1

Introduction

This thesis comprises the analysis and characterization ofa theoretical framework, which relies
on tools from differential geometry, to practically stabilize fixed configurations for underactuated
mechanical systems evolving on Lie groups, based on vertical transversality. It also comprises a
modification to this control framework with the aim of havingsuitable stability results required in
typical control applications.

The presented control framework is an extension, to the caseof second-order systems, of the
transverse function approach (TFA) to control proposed by Morin and Samson [2003], which ad-
dresses practical point stabilization and trajectory tracking for controllable driftless systems.

The class of systems targeted by this extension are second-order control systems on tangent
Lie groups of the form

Pv D Sv C
mX

iD1

uiX lift
i;v; (1.1)

whereS is a second-order vector field on a tangent Lie groupTG, X lift
1 ; : : : ; X

lift
m are vertical

lifts of left-invariant vector fields onG satisfying the LARC (Lie Algebra Rank Condition) at
some pointg 2 G, andm � n D dim.G/. All manifolds, mappings, vector fields and related
constructs defined in this thesis are assumed to be smooth unless otherwise stated. (The Reader
may refer to the Appendix for notation and basic concepts used in this thesis). In the Euler-
Lagrange formulation for mechanical systems,S corresponds to the vector field given byS D
SG � .dV ]/lift , that is, the sum of the geodesic spray associated with a Riemannian metricG on
G, and minus the vertical lift of the vector field corresponding to the gradient of a potential energy
functionV W G �! R. The control vector fieldsX lift

i ; i D 1; : : : ; m, correspond to vertical lifts
of the vector fields.F i/] determined bym 1-formsF i related, in a physical sense, to forces or
torques applied to the system.

The class of systems given by (1.1) encompasses possibly constrained, underactuated mechan-
ical systems. In particular, it contains systems that are not kinematic reductions of mechanical
systems in the sense of Bullo and Lewis [2005, chap. 4], systems whose linearization at equilibria
are non-controllable, and critical control systems.

By acritical control systemwe refer to a system that do not satisfies generalizations of Brockett
[1983] necessary condition for the stabilization of equilibrium points by means of continuous pure
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CHAPTER 1. Introduction

state feedback. An extension to Brockett’s condition states the following. LetPx D f .x; u/ be a
control system on an-dimensional manifoldQ, such thatf W Q � R

m �! TQ is continuous and
satisfiesf .q; 0/ D 0 for someq 2 Q. Then, a necessary condition for the asymptotic stabilization
of q by means of a continuous feedback˛ W Q �! R

m is thatf be open at.q; 0/. That is,f ,
viewed as a mapping between topological spaces, maps open neighborhoods of.q; 0/ 2 Q � R

m

into open neighborhoods off ..q; 0// 2 TQ. Furthermore, Coron and Rosier [1994] have shown
that Brockett’s condition still holds even if one allows theuse of discontinuous feedback, provided
that the solutions are interpreted in the sense of Filippov.

However, it is possible to overcome obstructions to regularfeedback stabilization by means
of time-varying feedback.q; t/ 7! ˛.q; t/, as was first shown by Samson [1991] for a particular
critical system, the model of a nonholonomic wheeled-cart.Later, Coron [1992] showed that
continuous and periodic time-varying feedback can be used to stabilize global accessible driftless
systems, but no explicit construction method was provided.

The fact that “underactuated” controllable driftless systems, i.e., those for which the number
of inputs is smaller than the dimension of the state space, are critical (a straightforward result that
follows from Brockett’s condition) motivated further research on time-varying stabilizers and on
providing explicit construction methods to design such feedback laws. For instance, Pomet [1992]
reported an explicit method to design differentiable time-varying feedback to asymptotically sta-
bilize equilibria for driftless control systems based on the introduction of dissipation.

As an example of this type of feedback, consider the kinematic model of a unicycle-type
wheeled mobile robot, schematically depicted in Figure 1.1:

Pq1 D v1 cos.q3/
Pq2 D v1 sin.q3/
Pq3 D v2;

(1.2)

wherev1 is the forward velocity of the midpoint between the rear wheels, andv2 is the velocity of
the “steering” angleq3. This model is obtained under the assumption that the wheelsdo not slip,
that is, the unicycle is allowed to move instantaneously in adirection parallel to the plane of the
wheels. By means of the feedback transformation,x D �.q/, u D  .v; q/, given by

x D �.q/ WD .q3; q1 cos.q3/C q2 sin.q3/; q1 sin.q3/ � q2 cos.q3//;

u D  .v; q/ WD .v2; v1 � .q1 sin.q3/ � q2 cos.q3// v2/;

System (1.2) can be transformed into the3-dimensional,2-input chained form (3-CF),

Px1 D u1
Px2 D u2
Px3 D u1x2:

(1.3)

The 3-CF is a controllable system which is critical. In fact, the mappingf W R
3 � R

2 �! R
3

defined byf W .x; u/ 7! .u1; u2; u1x2/ is not open at.0; 0/ 2 R
3 � R

2 since no point of the
form .0; 0; "/ 2 R

3 for any " > 0 belongs to the image off . Therefore there exists nopure-
statefeedback that renders0 2 R

3 asymptotically stable for (1.3), but a time-varying feedback

2
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.q1; q2/bi

bj

Figure 1.1: Schematic diagram of the unicycle-type wheeledrobot of system (1.2).

may stabilize0 2 R
3. Consider for instance the time-varying differentiable feedback reported by

M’Closkey and Murray [1997],

u1.x; t/ D �x1 C x3 cos.t/
u2.x; t/ D �x2 C x23 sin.t/;

(1.4)

which makes the origin globally asymptotically stable for (1.3). Figure 1.2 (left) shows a numerical
simulation of system (1.3) under this feedback law for a given initial condition.

However, it was observed that differentiable time-varyingfeedback leads to slow convergence
rates, as reported by Samson and Ait-Abderrahim [1991]. Furthermore, Murray et al. [1992]
showed that no pointq 2 Q can be exponentially stabilized for controllable driftless systems
by means of differentiable time-varying feedback.

Then, Gurvits and Li [1992] showed that no time-varying feedback which is locally Lips-
chitz with respect to the state can exponentially stabilizeequilibria for controllable driftless sys-
tems. In order to improve the convergence rate for the trajectories in closed-loop, the time-
varying feedback laws must be at most Hölder-continuous at the point to stabilize. A way to
achieve faster convergence rates for the closed-loop trajectories is to set the closed-loop system
Pq D F.q; t/ WD f .q; ˛.q; t// homogeneous of degree zero with respect to some generalizedno-
tion of homogeneity, as was shown by M’Closkey and Murray [1993] and M’Closkey and Murray
[1997].

Let � > 0. Define aweight vectorto ber D .r1; : : : ; rn/ 2 R
n such thatr1; : : : ; rn > 0. A

dilation onR
n with weightr is a map�r

�
W R

n �! R
n defined by�r

�
.x/ D .�r1x1; : : : ; �

rnxn/.
Then,Er , the Euler vector field corresponding to the dilation�r

�
, is defined in coordinates by

Er D
Pn
iD1 rixi @=@xi . A functionf W R

n �! R is said to be homogeneous of degree� (with
weight vectorr) if LEr

f D �f and a vector fieldX 2 �.TR
n/ is called homogeneous of degree

� (with weight vectorr) if ŒX; Er � D �X . In coordinates,f is homogeneous of degree� iff it
satisfiesf .�r

�
.x// D ��f .x/, andX is homogeneous of degree� iff each of its componentsXi ,

viewed as a mappingRn �! R, is homogeneous of degree� C ri .
It is readily verified that the3-CF systemPx D Xx withXx D .u1; u2; u1x2/ is homogeneous of

degree1 with weight vectorr D .1; 1; 2/. In reference to the3-CF (1.3), consider the time-varying

3



CHAPTER 1. Introduction

feedback

u1.x; t/ D �x1 C sign.x3/
p

jx3j cos.t/
u2.x; t/ D �x2 C

p
jx3j sin.t/;

(1.5)

which makes the closed-loop system homogeneous of degree zero and makes of the origin globally
exponentially stable. Note that the feedback defined in (1.5) is locally Lipschitz, in fact smooth,
for everyx 2 R

3 except atx D 0. However, it can be proved, (see M’Closkey and Murray [1997]),
that the closed-loop system has unique solution determinedby the initial conditions.x0; t0/. Fig-
ure 1.2 (right) shows a numerical simulation of system (1.3)with feedback law (1.5) and same
initial condition as in the simulation of Figure 1.2 (left).

0

0 50 100 150

1:0

0:8

0:6

0:4

0:2

�0:2

�0:4

3-CF state.x1; x2; x3/

Time history

x1 x2

x3

0

0 5 10 15 20 25 30 35 40 45 50

1:0

0:5

�0:5

3-CF state.x1; x2; x3/

Time history

x1

x2

x3

Figure 1.2: Numerical simulation of system (1.3) under feedbacks (1.4) (left) and (1.5) (right),
with initial conditionx0 D .0:7;�0:4; 1:0/.

Zero-degree homogeneity is a convenient property given that, as was established by Rosier
[1992], if the closed-loop systemPq D F.q; t/ is homogeneous of degree zero and admits a locally
asymptotically stable pointq 2 Q, thenq is also globally exponentially stable. Following this line
of ideas, Pomet [1992] proposed a methodology to extend differentiable time-varying stabilizers,
such as those proposed by M’Closkey and Murray [1997] to obtain homogeneous time-varying
stabilizers for homogeneous driftless control systems. Infact, the convergence rate thus obtained
is said to be�-exponential for some homogeneous norm�. That is, ifx.t/ is the trajectory at timet ,
of the closed-loop system, with initial condition.t0; x0/, then it satisfies�.x.t// � ˇ�.x0/e

�˛.t�t0/

for some positive reals̨; ˇ (cf. M’Closkey and Murray [1997]).
A major result in the construction of time-varying feedbackfor driftless systems for point-

stabilization was proposed by Morin et al. [1999]. The authors, based on the results obtained by
Sussmann and Liu [1991] and M’Closkey and Murray [1997], generalized open-loop stabilizers
proposed by Sussmann and Liu [1991] and derived a general andconstructive method to stabilize
equilibria for controllable (possibly not homogeneous) real-analytic driftless systems by means
of homogeneous time-varying feedback. The desired equilibrium point turns out to be globally

4



exponentially stable if the closed-loop system is homogeneous, or locally exponentially stable
otherwise. In spite of the generality of the method, the construction and structure of such stabilizers
can be rather involved even for “simple” control systems, sofurther research followed to construct
stabilizers for canonical systems such as the ones given by Goursat canonical forms or chained
systems (cf. Morin and Samson [2000]; Lizárraga et al. [2001]).

Regardless of the improvement of convergence rates, systems controlled by homogeneous,
Hölder-continuous feedback exhibit non-robustness against small perturbations of system parame-
ters and model uncertainties, as shown by Lizárraga et al. [1999]. Hence, given that differentiable
time-varying feedback yields slow convergence, and homogeneous time-varying feedback presents
non-robustness issues, in addition to results enounced by Lizárraga [2003], which points out that
constructing “universal” stabilizers to asymptotically stabilize arbitrary system trajectories is a
hopeless goal for general driftless systems, one is led to conclude that the asymptotic stabilization
of general trajectories for critical systems seems to be tooambitious a control objective.

In this respect, the transverse function approach (TFA), proposed by Morin and Samson [2003],
relaxes asymptotic point stabilization to practical pointstabilization, a result that seems reasonable
when dealing with control of critical systems. Roughly speaking, the termpractical stabilization
refers to the fact that a specified neighborhood of an equilibrium for the closed-loop system is
rendered stable and that the trajectories ultimately enterthis neighborhood.

The TFA offers some advantages over typical time-varying feedback. For instance, it may
achieve faster convergence rates for the closed-loop system trajectories compared with the poly-
nomial convergence rate of differentiable time-varying feedback. Additionally, the feedback laws
derived from that approach are smooth, so they do not exhibitsome of the non-robustness issues
alluded to by Lizárraga et al. [1999]. Moreover, the TFA is able to deal with the stabilization
of admissible and non-admissible trajectories of driftless controllable systems in a set-up similar
to that for point-stabilization and more recently, it has also been enhanced to deal, under certain
conditions, with the asymptotic stabilization of fixed points for driftless controllable systems (see
Morin and Samson [2004]).

The TFA, in its original formulation, is applicable to control systems of the form

Pq D X0.t; q/C
mX

iD1

uiXi;q; (1.6)

whereX1; : : : ; Xm 2 �.TQ/ are vector fields on ann-dimensional manifoldQ such that the
distribution spanned by Lie.X/ D LiefX1; : : : ; Xmg � �.TQ/ is completely nonintegrable at
some pointq 2 Q. The (possibly null) drift termX0.t; �/ 2 �.TQ/ (t 2 R) may represent model
uncertainties or terms that typically arise in trajectory tracking problems. The non-integrability
of Lie.X/ implies the local accessibility of (1.6) atq. Morin and Samson showed that the non-
integrability of Lie.X/ at someq 2 Q implies, for every neighborhoodU � Q of q, the existence
of a mappingf W T

� �! Q, � � n �m, whose image is contained inU and such that

Tf .�/Q D T�f .T�T
�/C spanR

˚
X1;f .�/; : : : ; Xm;f .�/

	
; (1.7)

for every� 2 T
� . Any such a mappingf is called a (Morin–Samson) transverse function for

X nearq (transverse in a sense that differs from the usual notion of transversality in differential

5



CHAPTER 1. Introduction

topology). Morin and Samson [2003] describe an explicit method to construct transverse functions
for driftless systems on Lie groups.

Let us briefly describe the TFA. Suppose thatQ is a simply connectedn-dimensional Lie group
with group composition.q; p/ 7! y�.q; p/ and that the vector fields inX are left-invariant. Also
suppose, by simplicity, thatX0 is zero in (1.6). Also assume thatQ D G is a Lie group and that
the sum in (1.7) is direct (i.e.,� D n � m). To design a feedback via the TFA one proceeds by
selecting a global frame� D f�1; : : : ; ��g � �.TT

�/ for TT
� , and by defining an auxiliary

control systemP� D
P�
jD1w

j�j .�/, and an error signalz.t/ D y�.q.t/; f .�/�1/. Given the
fact thatf is transverse, for any vector fieldD 2 �.TQ/ admittinge 2 Q as an asymptotically
stable equilibrium point, there exists a smooth feedback, depending on the state of the composite
system.q.t/; �.t//, ˛ W Q � T

� �! R
n such that, along the trajectories of the composite system

Pq D
Pm
iD1 ˛

i.z; �/Xi;q and P� D
P�
jD1 ˛

jCm.z; �/i�j;� , the error satisfiesz.t/ D Dz.t/. Hence,
in closed loop,q.t/ converges tof .�.t// (exponentially if the vector fieldD is adequately selected)
and therefore, there existsT 2 R>0 such thatx.t/ 2 U for everyt � T .

As an example, consider the3-CF in (1.3). The state manifoldR3 can be endowed with a Lie
group composition defined, forx; y 2 R

3, by x � y D .x1 C y1; x2 C y2; x3 C y3 C x2y1/ with
identity element0 2 R

3. The set of control vector fieldsX D fX1; X2g � �.TR
3/, defining

system (1.3), is left-invariant with respect to this group composition. An example of a transverse
functionf W T �! R

3 for X near0 2 R
3 is given byf .�/ D ." sin.�/; " cos.�/; 1

4
"2 sin.2�//

with " strictly positive. Note that for any given neighborhoodU of 0e, the setf .T �/ can be made
to be contained inU by appropriately selecting". Consider the auxiliary system onT given by
P� D w. Then the derivative of the errorz D x � f .�/�1, along the trajectories of the3-CF and
the auxiliary system, can be made to have0 2 R

3 as an exponentially stable equilibrium by means
of smooth feedback.u1.x; �/; u2.x; �/; w.x; �//. Figure 1.3 shows a numerical simulation for
the 3-CF under the feedback obtained with" D 0:05. However, the TFA is not applicable, in
its original formulation, to critical systems for which thedrift vector field is necessary to assure
accessibility, as is the case for mechanical systems that cannot be kinematically reduced in the
sense discussed by Bullo and Lewis [2005, chap. 4]. Instances of this control systems include
planar underactuated manipulators, blimp-like systems and underwater vehicles. The extension
of the TFA to this class of second-order systems is not immediate nor trivial. Two approaches
have been independently developed. The first one, by the original authors of the TFA (cf. Morin
and Samson [2005, 2006]). The second approach, initially addressed in the author’s M.Sc. thesis
(Sosa [2005]), is further described and analyzed in this thesis and allows one to formulate practical
point stabilization problems for second-order systems, inparticular those defined on (tangent) Lie
groups.

Vertically transverse functions for control

The extension of the TFA, the main subject of this thesis, is called thevertically transverse
function approach(VTFA) and allows one to formulate practical configuration stabilization for
second-order systems on tangent Lie groups. This frameworkrelies on the fact that tangent map-
pings of transverse functions satisfyvertical transversality, a property that is similar to Morin and
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Figure 1.3: Numerical simulation of system (1.2) under the feedback designed via the TFA with
" D 0:05 and initial conditionx0 D .0:7;�0:4; 1:0/.

Samson transversality but with relevance to second-order systems. To be precise, the tangent map-
ping Tf W TT

� �! TQ of a transverse functionf W T
� �! Q for X D fX1; : : : ; Xmg near

e 2 Q, satisfies, for every! 2 TT
� ,

TTf .!/TQ
vert D T!Tf ..TT

�/
vert
/C spanR

n
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

o
:

The VTFA is as follows. Suppose thatQ D G is a Lie group (dim.G/ D n) and that the vector
fields in X are left-invariant. Then consider a second-order system evolving on the tangent Lie
groupTG, thetarget system, defined by

Pv D Sv C
mX

iD1

uiX lift
i;v; (1.8)

whereS 2 �.T TG/ is second-order andX lift
1 ; : : : ; X

lift
m 2 �.T TGvert/ are vertical lifts of the

vector fields contained inX . Given that the control vector fields of (1.8) are vertical lifts, the drift
vector fieldS determines, to a large extent, the accessibility of (1.8).

Under these conditions, set� D n �m and define a second-order auxiliary control system on
TT

� ,

P! D �! C
�X

iD1

wi�lift
i;! ; (1.9)

where� 2 �.T TT
�/ is second-order and the set� D f�1; : : : ; �mg � �.TG/ is a global frame

for TT
� . Mimicking the TFA, define anerror function based on the tangent Lie group operation,

z D v � Tf .!/�1, whose purpose is to quantify the difference between the states of the target
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CHAPTER 1. Introduction

and auxiliary systems (1.8)-(1.9). Then it can be shown thatthe dynamics of this error function,
Pz.t/, can be assigned arbitrarily by means of smooth feedback in terms of the compound state,
i.e., the target system state in addition to the auxiliary system state. If the error is set to have
a positive-complete dynamics admitting0e, the zero vector inTeG, as an asymptotically stable
equilibrium point, the configuration coordinates ultimately enter a predefined neighborhood of the
desired configuration provided that the solution of the closed-loop system exists.

Nevertheless, the overall behavior of the closed-loop compound system is not readily assessed.
For instance, the long-term behavior of the fiber (or “velocity”) coordinates is ultimately charac-
terized by a nontrivialzero dynamics. The latter must be analyzed in order to establish stabilityof
the closed-loop system. In general, this closed-loop zero dynamics may not be positive complete
and thus may yield undesirable behavior of the system trajectories.

The compound zero-dynamics may be viewed as the result of constraining the trajectories of
the target system to be contained in the immersed manifoldTf .TT

�/ by means of the feedback
in zero dynamics. That is, if the initial condition of the target system lies inTf .TT

�/, then it will
remain inTf .TT

�/ for every t � t0 whenever the solution of the compound system is defined.
However, the zero-error feedback may not satisfy the Lagrange-d’Alembert principle, i.e., it may
affect the total energy of the compound zero dynamics. The feedback in zero dynamics has a
particular structure in the sense that if the target drift vector field equals the sum of a spray and
a vertical vector field (usually equal to the lift of minus thegradient of the potential energy when
dealing with mechanical systems), then the auxiliary zero dynamics is itself defined by the sum of a
spray and a vertical vector field. In other words, if the target system is an affine-connection control
system, then so is the zero-dynamics auxiliary system. In general, the torsionless connection
associated to the zero dynamics may not be the Levi-Civita connection of any metric. The problem
of determining whether an affine connection admits a (pseudo-) Riemannian metric is, in general,
untractable, given the overdetermined nature of the differential equations to solve, as shown by
Eisenhart and Veblen [1922]. For the case when the target system is underactuated by one control,
we establish a necessary and sufficient condition to determine whether the resulting zero dynamics
admits a (pseudo-) Riemannian metric. For the more general cases it remains an open problem.

Assuming that the closed-loop zero dynamics admits a metric, we show that the closed-loop
compound system controlled by the VTFA has the setf0eg �Z.TT

�/ as locally uniformly stable.
Roughly speaking, this implies that if the initial value of the error signal is sufficiently close to the
target configuration at zero velocity,0e, and the auxiliary system’s initial velocities are sufficiently
small, then the solution of the controlled system is defined for all t � t0, the target velocities
remain small and the error decays exponentially.

In addition to determining whether the zero dynamics admitsa (pseudo-) Riemannian met-
ric, another significant issue is to “introduce dissipation” into the zero dynamics in order to make
the fiber coordinates asymptotically vanish, as required intypical applications. This issue is ad-
dressed by the potential application ofgeneralizedvertically transverse functions to modify the
closed-loop zero dynamics. Generalized transverse functions (GTF) were introduced by Morin
and Samson [2004] to achieve practical andasymptoticstabilization of points and general trajecto-
ries for driftless control systems. In essence, a GTF forX D fX1; : : : ; Xmg � �.TG/ neare 2 G
is a functionf W T

�1 � T
�2 �! G such thatf .�; ˇ/ W ˛ 7! f .˛; ˇ/ 2 G is transverse forX
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neare for everyˇ 2 T
�1 . We present a straightforward generalization of the VTFA inthe case

generalizedvertically transverse functions are used. The interest in this class of functions is that its
application to control leads tonon-autonomouszero dynamics with additional control inputs that
may be used to influence the behavior of the trajectories in zero dynamics. The central objective
is to design these additional control inputs in order to makethe zero-section of the zero dynam-
ics asymptotically stable or, at least, locally attractive. In this work, we explore the possibility of
designing the additional control inputs using time-varying feedback by means of high-order aver-
aging (Vela [2003]; Sarychev [2001]; Agrac̆hev and Gramkrelidze [1979]) since it has proved to
provide useful insights on the construction of time-varying feedback to stabilize driftless systems
and second-order systems. High-order averaging (Sarychev[2001]; Vela [2003]) is based on the
formalism of chronological calculus developed by Agrac̆hev and Gramkrelidze [1979]. In essence,
the latter aims at reducing the qualitative analysis of the flow of a periodic non-autonomous (i.e.,
time-varying) vector field to the analysis of an autonomous (i.e., time-invariant) vector field by
means of asymptotic expansions.

Outline of the thesis

The outline of this thesis is as follows. In Chapter 2 we review the TFA for practical stabiliza-
tion of equilibrium points for driftless controllable systems exposed in (Morin and Samson [2003]).
A section of this chapter encompasses the definition of a (Morin–Samson) transverse function, the
description of the constructive method to obtain a transverse function for driftless systems on Lie
groups and examples of transverse functions for some given control systems. In this chapter it is
also presented the definition of vertically transverse functions and a result which establishes that
the tangent mapping of a transverse function is vertically transverse. Finally, it is outlined the
proposed set-up to practically stabilize configurations for second-order systems on (tangent) Lie
groups by means of vertically transverse functions (VTF).

Chapter 3 includes an analysis for the zero dynamics that results from the application of the
VTFA. In particular, it is proven that target and auxiliary zero dynamics are related and that both
zero dynamics preserve the structure of the target system. That is, the zero dynamics has the struc-
ture of an affine connection control system. Furthermore, a necessary and sufficient condition is
given for the existence of a metric for the zero dynamics of systems controlled by the VTFA un-
deractuated by one control. Also stated and proved is an interesting result concerning the stability
of systems controlled by the VTFA for which the zero dynamicsadmits a metric. An example is
developed in this chapter in order to clarify these notions and results.

Chapter 4 concerns the use of generalized transverse functions to introduce dissipation into the
zero dynamics. A generalization of the VTFA is presented forthe case thatgeneralizedvertically
transverse functions are used. We propose an explicit way toconstruct generalized transverse
functions from a given transverse function. In this chapterit is also shown that, whenever the
application of the VTFA yields a zero dynamics admitting a metric, there is a GTF such that the
resulting non-autonomous zero dynamics also admits a metric. Also reviewed in this chapter is
the theory of high-order averaging to render the zero-section locally attractive. An example and
a numerical simulation are developed to illustrate the application and performance of generalized
vertically transverse functions.

9



CHAPTER 1. Introduction

In Chapter 5 we give some concluding remarks concerning the results presented in this thesis
and the foreseen scope and significance. We also discuss possible future directions of research.

An Appendix at the end of this document serves to set the notation and to define some ba-
sic concepts from differential geometry, the Lagrangian formulation of mechanical systems, and
control theory. The Reader unfamiliar with these concepts may also consult the references cited
therein. The results gathered in this thesis have been partially reported by Lizárraga and Sosa
[2005, 2008], Sosa [2005] and Sosa and Lizárraga [2006, 2008].

10



Chapter 2

Vertically Transverse Functions and their
application to control

In this chapter we outline the proposed framework based on vertically transverse functions,
which aims at practically stabilizing configurations for second-order systems on tangent Lie groups.
This control approach was initially proposed in the M.Sc. thesis (Sosa [2005]) and is further de-
veloped in Chapters 3 and 4 of this thesis. The control systems that this framework addresses are
second-order systems evolving on a tangent Lie groupTG of the form

Px D Sx C
mX

iD1

uiX lift
i;x ; (2.1)

whereS 2 �.T TG/ is second-order, and the setX D fX1; : : : ; Xmg � �.TG/ contains left-
invariant vector fields onG, m � n D dim.G/. Recall that every manifold, mapping, vector
field or any related construct defined in this thesis are assumed to be smooth unless otherwise
stated. Assume that the distribution spanned by Lie.X/ is completely nonintegrable ate 2 G and,
typically, one requires thatS be such that the setfS;X lift g D fS;X lift

1 ; : : : ; X
lift
m g is accessible at

0e 2 TG. System (2.1) is in the sequel referred to as thetarget system.
Section 2.1 of this chapter contains some results concerning the transverse function approach,

including the definition and construction of (Morin–Samson) transverse functions for controllable
driftless systems and some examples. Section 2.2 contains the definition of vertical transversality
and the result that tangent mappings of transverse functions are vertically transverse. Finally,
Section 2.3 describes the proposed framework to control second-order systems.

2.1. Morin–Samson transverse functions for driftless systems

2.1.1. Definition and construction of Morin–Samson transverse functions

Consider a set of vector fieldsX D fX1; : : : ; Xmg � �.TQ/, m � n D dim.Q/ and a point
q 2 TQ. A mapf W T

� �! Q, with � � n �m, is said to betransverse forX (near q) if there

11



CHAPTER 2. Vertically Transverse Functions and their application to control

exists a neighborhoodU of q such thatf .T �/ � U, and for every� 2 T
� ,

Tf .�/Q D Tf .T�T
�/C span

R

˚
X1;f .�/; : : : ; Xm;f .�/

	
: (2.2)

Theorem 2.1(Morin and Samson [2003]). The driftless system defined by the set of control vector
fields X D fX1; : : : ; Xmg � �.TQ/ is locally accessible at a pointq 2 Q iff there exists a
transverse functionf W T

� �! Q for X nearq for some� � n �m.

Letf W T
� �! Q be a transverse function forX nearq 2 Q and let.U; �/ and.V; q/ be local

coordinates forT � andQ such thatq andf .U / are contained inV . Then it can be readily shown
that (Morin-Samson) transversality (2.2) translates into

R
n D span

R

�
X1;f .�/; : : : ; Xm;f .�/;

@f

@�1
.�/; : : : ;

@f

@��
.�/

�
: (2.3)

In other words, the matrix having by columns the elementsX1;f .�/,. . . ,Xm;f .�/, .@f =@�1/.�/; : : : ;
.@f =@��/.�/ is invertible for every� 2 U . WhenQ D G is ann-dimensional Lie group, and the
elements inX are left-invariant,�, in the previous theorem, can be chosen equal ton �m. Thus,
f W T

n�m �! G satisfies, for every� 2 T
n�m,

Tf .�/G D Tf .T�T
n�m/˚ span

R

˚
X1;f .�/; : : : ; Xm;f .�/

	
: (2.4)

In the latter case,f may be explicitly obtained by the construction method givenby Morin and
Samson [2003], which is next outlined. Letg denote the Lie algebra ofG and let�1; : : : ; �m 2 g

to be related to the left-invariant vector fieldsX1; : : : ; Xm (i.e., �i D Xi;e for i D 1; : : : ; m).
Define inductively a familyfGkgk2N

of subspaces ofg, by settingG0 D span
R

f�1; : : : ; �mg and
Gk D Gk�1CŒG0; Gk�1� for k � 1. Then consider mappings�; � W fmC1; : : : ; ng �! f1; : : : ; ng
and an ordered basisf�1; : : : ; �mg of g such that

I. Gk D span
R

f�1; : : : ; �dim.Gk/g for k D 1; : : : ;minfk W Gk D gg.
II . Wheneverk � 2 and dim.Gk�1/ � i � dim.Gk/, one has�i D

�
��i
; ��i

�
, with ��.i/ 2 Ga,

��i
2 Gb anda C b D k.

The setf�1 : : : ; �ng, together with the mappings� and�, constitute a graded basis forg. Next,
associate with such a basis a weight vectorr D .r1; : : : ; rn/ 2 R

n such thatri D k iff �i 2
GknGk�1. Given such a graded basis and weight vector, the construction of a transverse function
proceeds by selecting strictly positive reals"mC1; : : : ; "n and by defining mappingsfi W T �! G

for i D mC 1; : : : ; n, as follows

fi.�/ D exp
�
"
r�.i/

i sin.�/��.i/ C "
r�.i/

i cos.�/��.i/
�
:

Then a transverse functionf W T
n�m �! G is obtained by setting

f .�mC1; : : : ; �n/ D fn.�n/fn�1.�n�1/ � � �fmC1.�mC1/: (2.5)
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2.1. Morin–Samson transverse functions for driftless systems

2.1.2. Examples of Morin–Samson transverse functions

Transverse function for chained forms

Chained forms (CF) are canonical systems which are well known to describe kinematics models
of certain mechanical systems. Examples of such systems arethe rolling penny, the kinematic
model of a unicycle-type wheeled robot and the kinematic model of a car towingn trailers with
“on axle-hitching” (see for instance Murray [1994]). Chained forms are driftless systems for which
the Lie algebra of the set of control vector fields is nilpotent and spans a distribution which is
completely nonintegrable at every point. Then-dimensional,2-input chained form system (n-CF)
is given by

Px1 D u1

Px2 D u2

Px3 D u1x2
:::

Pxn D u1xn�1:

A transverse function for the 3-CF

Consider the3-CF evolving onR
3, Px D u1X1;x C u2X2;x, where the control vector fields in

X D fX1; X2g � �.TR
3/ are given byX1;x D @=@x1 C x2 @=@x

2, andX2;x D @=@x3. Note that
R
3 is a Lie group with group composition defined, for everyx; y 2 R

3, by

y�.x; y/ D x � y D .x1 C y1; x2 C y2; x3 C y3 C x2y1/ : (2.6)

Following the procedure in the previous subsection we haveG0 D span
R

fX1; X2g andG1 D
span

R
fX1; X2; X3g with X3 D ŒX1; X2�. Hence, a graded basis for the Lie algebra ofX is given

by the setfX1; X2; X3g along with the mappings�; � W f3g �! f1; 2; 3g defined by�.3/ D 1 and
�.3/ D 2. The associated weight vector is given byr D .1; 1; 2/. Consider a coordinate system
.U; �/ on T ' S1 � R

2, for instanceU D S1 n f.0; 1/g and�.p/ D 2 arctan. p1

1�p2
/. Then, the

construction procedure yields the following transverse function.

f .�/ D
�
" sin.�/; " cos.�/;

1

4
"2 sin.2�/

�
; " > 0: (2.7)

The latter can be defined for every element ofT by continuity. In coordinates, condition (2.4)
reduces to guaranteeing that the determinant of the matrix

M WD
�
X1;f .�/; X2;f .�/;

@f

@�
.�/

�
D

�
1 0 " cos.�/
0 1 �" sin.�/

" cos.�/ 0 1
2
"2 cos.2�/

�
is different from zero. A computation readily shows that det.M/ D 1

2
"2, which is non-zero pro-

vided that" > 0.
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CHAPTER 2. Vertically Transverse Functions and their application to control

A transverse function for the 4-CF

Consider the4-CF system evolving onR4,

Px1 D u1

Px2 D u2

Px3 D u1x2

Px4 D u1x3:

This system can be written asPx D
P2
iD1 u

iXi;x , withX1;x D @=@x1 C x2 @=@x
3 C x3 @=@x

4, and
X2;x D @=@x2. The distribution onTR

4 spanned byX D fX1; X2g is completely nonintegrable
at everyx 2 R

4, which implies that the4-ECF is (globally) accessible and hence, for anyx 2 R
4

and any neighborhoodU of x, there exists a transverse function as defined in (2.2). The set
fX1; X2; X3; X4g with X3 D ŒX1; X2� D �@=@x3 andX4 D ŒX1; X3� D @=@x4, along with the
weight vectorr D .1; 1; 2; 3/, is a graded basis constructed in the sense described above.R

4 can
be endowed with a differentiable group composition given, for everyx; y 2 R

4, by

x � y D
�
x1 C y1; x2 C y2; x3 C y3 C x2y1; x4 C y4 C x3y1 C 1

2
x2y1

2
�

In what follows of this subsubsection, as we shall often do inthe sequel, we use the convention
sin D s and cosD c. Let "1; "2 2 R>0. The construction procedure yields the functionf W
T
2 �! R

4 given by

f .�/ D
�
"1s.�1/C "2s.�2/; "1c.�1/;

1

4
"1
2s.2 �1/ � "22c.�2/;

1

6
"1
3s2.�1/c.�1/ � 1

4
"2
3s.2 �2/ � "1"22c.�2/s.�1/

�
;

which can be shown to be transverse, for instance, by choosing "2 D k "1 with k > 1:5.

Transverse function for a blimp-like system

Consider a blimp-like system, depicted in Figure 2.1, whichmay represent, for instance, a
hovercraft or a space satellite. This system consists of a planar rigid body moving inSE.2/ with a
thruster to adjust its pose. The force impelled by this thruster is modeled by an ordered pair.�1; �2/
which actuates at a fixed point assumed to be located along thesystem body’s axis, at a distancel
from the center of mass. The configuration of the blimp is determined by.q1; q2; q3/ 2 SE.2/ '
R
2 � S1, where.q1; q2/ 2 R

2 is the position of the center of mass of the body andq3 2 S1 is its
orientation with respect to a fixed basis. The Euler-Lagrange equations describing the motion of
the blimp system yield

m Rq1 �ml sin.q3/ Rq3 �ml cos.q3/ Pq23 D �1
m Rq2 Cml cos.q3/ Rq3 �ml sin.q3/ Pq23 D �2
J Rq3 �ml sin.q3/ Rq1 Cml cos.q3/ Rq2 D 0;

(2.8)
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2.1. Morin–Samson transverse functions for driftless systems

q3
.q1; q2/

l

�1
�2

bi

bj

Figure 2.1: Schematic representation of a blimp-like system.

wherem is the mass of the rigid body andJ is the moment of inertia with respect to the center of
mass. Consider the following transformation of the controlinputs (which amounts to choosing a
different basis of the control distribution):

�1 D m cos.q3/ u1 � m
J

�
J �ml2

�
sin.q3/ u2;

�2 D m sin.q3/ u1 C m
J

�
J �ml2

�
cos.q3/ u2:

After the transformation and rearrangement of the equations, system (2.8) can be rewritten as

Rq1 D l cos.q3/ Pq23 C cos.q3/u1 � sin.q3/u2
Rq2 D l sin.q3/ Pq23 C sin.q3/u1 C cos.q3/u2
Rq3 D a u2;

(2.9)

wherea D �ml=J is a non-zero (negative) constant defined in terms of the system parameters.
By relabeling variables,xi D qi andxiC3 D Pqi for i D 1; : : : ; 3, we may rewrite (2.9) in the form
(2.1), that is:

Px D Sx C u1X lift
1;x C u2X lift

2;x;

whereSx D
P3
iD1 xiCn @=@x

iClc.x3/x26 @=@x4Cls.x3/x26 @=@x5 is the geodesic spray associated
with the Riemannian metric given by the inertia tensor of themechanical system, and the vector
fieldsX1 andX2 are given by

X1;x D c.x3/
@

@x1
C s.x3/

@

@x2
;

X2;x D �s.x3/
@

@x1
C c.x3/

@

@x2
C a

@

@x3
:

Given that the configuration space of the system isR
2 � S1 ' SE.2/, it can be equipped with the

Lie group structure of thespecial Euclidean groupSE.2/. LetG D SE.2/ ' R
2 � S1. The Lie
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CHAPTER 2. Vertically Transverse Functions and their application to control

group compositiony� W G �! G is defined, for everyx; y 2 G, by

y�.x; y/ D .c.x3/y1 � s.x3/y2 C x1; s.x3/y1 C c.x3/y2 C x2; x3 C y3/ : (2.10)

It can be shown that the unlifted control vector fieldsX1; X2 are left-invariant with respect to this
group composition and that the distribution spanned by LiefX1; X2g is completely nonintegrable at
any point. Let us construct a transverse functionf W T �! G for the set of unlifted control vector
fields fX1; X2g by following the procedure described above. A graded basis for the Lie algebra
generated by the setfX1; X2g is the setfX1; X2; X3g with X3 D ŒX1; X2� D as.x3/ @=@x1 �
ac.x3/ @=@x2, along with the weight vectorr D .1; 1; 2/. The construction of the transverse
function yields,

f .�/ D
�

c.a" c.�/ � �/ � c.�/

a c.�/
;
s.a" c.�/ � �/C s.�/

a c.�/
; a" c.�/

�
;

which can be defined, by continuity, for every� 2 Œ��; ��. The transversality condition is deter-
mined by the invertibility of the matrixD.�/ D

�
X1;f .�/; X2;f .�/; @�f .�/

�
. The determinant of

the latter may be shown to be

det.D.�// D �2c.a" c.�// � 1
c.2 �/C 1

;

which can be defined, again by continuity, for� 2 Œ��; ��, and is positive for every" > 0 and
every� 2 Œ��; ��.

2.2. Vertically Transverse Functions

If a mappingf W T
� �! Q is transverse in the sense of Morin and Samson forX near a

givenq 2 Q, thenTf W TT
� �! TQ is vertically transverse forX lift in a sense that is made

clear in Definition 2.1 and Theorem 2.2. However, prior to dwelling on this notion, let us state the
following lemma concerning tangent mappings, which is useful in the proof of Theorem 2.2.

Lemma 2.1. LetQ andP be manifolds andf W Q �! P aC 2 mapping. Then

I. T Tf maps vertical vectors to vertical vectors.
II . If v; w 2 TQ satisfy�Q.v/ D �Q.w/, thenT Tf .lift .v; w// D lift .Tf .v/; Tf .w//.

III . The mappinglift .v; �/ W T�Q.v/Q �! TvTQ
vert is a vector space isomorphism for every

v 2 TQ.

Proof. I . Let ˛ 2 T TQvert, so thatT�Q.˛/ D 0. Given that the following diagram commutes,

TQ
Tf

//

�Q

��

TP

�P

��

Q
f

// P
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2.2. Vertically Transverse Functions

and in view of the chain rule, we haveT�P ı T Tf D Tf ı T�Q. ThenT�P ı T Tf .˛/ D
Tf ı T�Q.˛/ D 0, henceT Tf .˛/ 2 T TP vert, that is,T Tf maps vertical vectors to vertical
vectors.

II . Let v; w 2 TQ satisfy�Q.v/ D �Q.w/ and define the curve
v;w.t/ D v C tw, so
lift .v; w/ D T0
v;w

�
@
@r

ˇ̌
0

�
. Then, in view of the linearity ofTf on restriction to fibers,.Tf ı


v;w/.t/ D Tf .v Cwt/ D Tf .v/C tTf .w/ D 
Tf .v/;Tf .w/. Therefore

T Tf .lift .v; w// D TvTf ı T0
v;w
�
@
@r

ˇ̌
0

�
D T0.Tf ı 
v;w/

�
@
@r

ˇ̌
0

�

D lift .Tf .v/; Tf .w//;

which establishes the claim.
III . Let v 2 TqQ for someq 2 Q. By (I .) in this Lemma, the image of lift.v; �/ is contained

in TvTQvert. To show that lift.v; �/ is linear and bijective, we use a coordinate chart onQ and the
naturally induced coordinates onTQ. If, in such coordinates,v D .q; xv/ andw D .q; xw/ for any
w 2 TqQ, then, the curve defined inII . of this Lemma is given by
v;w.t/ D .q; xv C t xw/. Thus
lift .v; w/ D ..q; xv/; .0; xw//, so lift.v; �/ is linear and injective. Also, if̨ 2 TvTQ has coordinate
expression̨ D ..q; xv/; .˛L; ˛H //, thenT�Q.˛/ D .q; ˛L/, henceu 2 ker.T�Q/ if, and only if,
˛L D 0. Thus, lift.v; �/ is also surjective and, consequently, an isomorphism. �

Definition 2.1 (Vertically Transverse Function). Let X D fX1; : : : ; Xmg � �.TQ/ be a set of
vector fields onQ. A bundle mappingF W TT

� �! TQ is said to be vertically transverse for the
vertical distribution spanned byX lift if, for every! 2 TT

� ,

TF .!/TQ
vert D TF..T!TT

�/vert/C spanR
n
X lift
1;F .!/; : : : ; X

lift
m;F .!/

o
: (2.11)

Theorem 2.2. Let X D fX1; : : : ; Xmg � �.TQ/ be a set of vector fields andf W T
� �! Q a

transverse function forX nearq 2 Q. Then, for every! 2 TT
� ,

TTf .!/TQ
vert D T Tf

�
.T!TT

�/vert
�

C span
R

n
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

o
; (2.12)

that is,Tf is vertically transverse forX lift . Moreover, if� D n � m, i.e., if the sum in (2.2) is
direct, then so is the sum in (2.12).

Proof. Let � 2 T
� and! 2 T�T

� and assume thatv 2 TTf .!/TQ
vert. Given thatv is vertical,

by Lemma 2.1-(III ), there existszv 2 Tf .�/Q such thatv D lift .Tf .!/; zv/. In addition, from
equation (2.2) we deduce the existence of a vectorz! 2 T�T

� and real numbersa1; : : : ; am such
thatzv D Tf .z!/C

Pm
iD1 a

iXi;f .�/. By applying the linear mapping lift.Tf .!/; �/ to both members
of this equation and using Lemma 2.1-(II ), we get

v D lift .Tf .!/; Tf .z!//C lift

 
Tf .!/;

mX

iD1

aiXi;f .�/

!

D T Tf .lift .!; z!//C
mX

iD1

aiX lift
i;Tf .!/:
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Since lift.!; z!/ 2 .T!TT
�/vert, this proves that (2.12) holds. Now suppose that� D n �m, i.e.,

equation (2.4) is satisfied, and assume that

v 2 T Tf
�
.T!TT

�/
vert� \ span

R

˚
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

	
:

We shall prove thatv D 0. By assumption, there exists̨ 2 .T!TT
�/vert and real numbers

a1; : : : ; am such thatv D T Tf .˛/ D
Pm
iD1 a

iX lift
i;Tf .!/

. Since˛ is a vertical vector, Lemma 2.1-
(III ) implies that̨ is given by the vertical lift by! of a vectorz! 2 T�T � , namely˛ D lift .!; z!/.
The mapping lift.Tf .!/; �/ is linear, hence

lift

 
Tf .!/;

mX

iD1

aiXi;f .�/

!
D

mX

iD1

ai lift
�
Tf .!/; Xi;f .�/

�

D
mX

iD1

aiX lift
i;Tf .!/

D lift .Tf .!/; Tf .z!//:

Since lift.Tf .!/; �/ is injective by virtue of Lemma 2.1-(III ), this implies that
Pm
iD1 a

iXi;f .�/ D
Tf .z!/. But the sum in (2.2) is direct, by assumption, hence

Pm
iD1 a

iXi;f .�/ D Tf .z!/ D 0. Using
the linearity of lift.Tf .!/; �/, we conclude thatv D 0, which completes the proof. �

Let .U; �/ and .V; q/ be local coordinate charts onT � and onG such thatf .U / 2 V .
Consider naturally induced coordinate charts forTT

� andT TT
� and forTG andT TG, cor-

respondingly. Vertical transversality in (2.12) implies that for any˛ 2 .TTf .!/TQ/vert, there exist
� 2 .T!TT

�/vert and realsa1; : : : ; am 2 R such that̨ D T Tf .�/ C
Pm
iD1 a

iXi;Tf .�TQ.�//.
Assume that, in coordinates� D .�; P�; 0; �H /. Given that in coordinatesT Tf .�/ D
.f .�/; P� .@f=@�/.�/; 0; �H .@f=@�/.�//, Xi;q D .q; yXi.q// for i D 1; : : : ; m and ˛ D
.f .�/; P� .@f=@�/.�/; 0; ˛H /, one has

˛H D
mX

iD1

ai yXi.x/C @f

@�
.�/ �H :

That is, the “vertical transversality” condition (2.12) reduces to

R
n D span

R

˚
X1;f .�/; : : : ; Xm;f .�/

	
C span

R

�
@f

@�1
.�/; : : : ;

@f

@��
.�/

�
: (2.13)

The coordinate expression of vertical transversality is the same as the expression for (Morin–
Samson) transversality (see equation (2.3)). However, vertical transversality, compared to Morin–
Samson transversality, is a property that occurs in a high-order tangent level (i.e., inT TQ), there-
fore, a natural question which arises is whether the transverse function approach can be extended
to include second-order systems. The next section containsa possible set-up to practically stabilize
configurations for second-order systems based on vertical transversality.
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2.3. Framework for practical point-stabilization using vertically
transverse functions

Consider the target system in (2.1) and assume that the setX contains left-invariant vector
fields onG, an n-dimensional Lie group. Also assume that the distribution spanned byX is
completely nonintegrable at some point, saye 2 G without loss of generality. Under these
conditions, the accessibility of the target system depends, to a large extent, on the drift vector
field S 2 �.T TG/. When dealing with simple mechanical systems (SMS) (Bullo and Lewis
[2005]), the drift vector fieldS is defined in advance and corresponds to the vector field givenby
S D Sg � .dV ]/lift , that is, the sum of the geodesic spray associated with a Riemannian metricg,
and the vertical lift of vector field corresponding to the gradient of the potential energy function.

Under the assumptions made, by Theorems 2.1 and 2.2, there exists a transverse functionf W
T
n�m �! G neare 2 TG, andTf W TT

n�m �! TG is vertically transverse forX lift . Thus, for
every! 2 TT

n�m, Tf satisfies

TTf .!/TG
vert D T Tf

�
.T!TT

�/
vert�˚ span

R

˚
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

	
: (2.14)

The control approach herein presented is much in the spirit of the approach reported by Morin
and Samson [2003]. First, one proceeds by setting� D n � m and by selecting a global frame
� D f�1; : : : ; ��g � �.T TT

�/ for T TT
� . The existence of such a global frame is assured

sinceTT
� is a trivial bundle. Iffƒ1; : : : ; ƒ�g � �.TT

�/ is global frame forTT
�, then� can be

set asfƒlift
1 ; : : : ; ƒ

lift
� g � �.T TT

�/ in view of the result in Lemma 2.1-(III ). Select a second-order
vector field� 2 �.T TT

�/, typically the geodesic spray associated with a flat metric on T
� . Then

define an auxiliary control system onTT
� by

P! D �! C
�X

iD1

wi�i;! ; (2.15)

wherew1; : : : ; w� are viewed as control inputs. Next, define an error signalz.t/ along the trajecto-
ries of thecompound system.x.t/; !.t//, that is, the trajectories of the target system (2.1) and the
auxiliary system (2.15), by using the tangent Lie group composition onTG, z D �.x; Tf .!/�1/,
which we also write asz D x � Tf .!/�1. This error signal is used to quantify the difference
between the state of the target system and the image byTf of the state of the auxiliary system.
By forcing theerror dynamicsPz.t/ to satisfy a second-order differential equation having0e as an
asymptotically stable equilibrium by means of smooth feedback, theerror z.t/ approaches zero as
t increases. This, in turn, forces the target system trajectory x.t/ to approachTf .TT

�/. Hence,
the projection�G.x.t// of the target state to the base manifold (the target system configuration)
approaches the setf .T �/ and, given that the image off is contained in a prespecified neighbor-
hoodU of the target configuratione 2 G, the configuration�G.x.t// ultimately entersU, which
entails practical point-stabilization.

Prior to obtaining the expression for the error dynamicsPz.t/ in terms of the state of the com-
pound system, let us state the following auxiliary proposition, which provides us with an explicit
expression for the derivative of the compositiona � b�1, giving the structure of the error signal.
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Proposition 2.1. LetTG be a tangent Lie group,A 2 �.T TG/ be second-order, andB a second-
order vector field defined along a given curveb W .t0; t1/ �! TG by Pb.t/ D Bb.t/. Then, if
a W .t0; t1/ �! TG is an integral curve ofA, the curvec D �.a; b�1/ D a � b�1 satisfies, for
t 2 .t0; t1/,

Pc.t/ D TRb�1.t/

�
Aa.t/ � TLc.t/

�
Bb.t/

��
; (2.16)

which defines a second-order differential equation onTG.

Proof. Define zB as the vector field along the curveb�1, that is zBb�1.t/ D d
dt
b�1.t/. By differen-

tiatinge D �.b�1.t/; b.t// one easily concludes thatzBb�1.t/ D �TRb�1.t/ ı TLb�1.t/.Bb.t//, and
by differentiatingc.t/ D �.a.t/; b�1.t// one finds thatPc.t/ D TLa.t/. zBb�1.t//CTRb�1.t/.Aa.t//.
Hence, given the fact thatLa.t/ ıRb�1.t/ ı Lb�1.t/ D Lc.t/ ıRb�1.t/ D Rb�1.t/ ı Lc.t/, we get

Pc.t/ D TLa.t/
�
�TRb�1.t/ ı TLb�1.t/.Bb.t//

�
C TRb�1.t/.Aa.t//

D TRb�1.t/

�
Aa.t/ � TLc.t/

�
Bb.t/

��
;

which coincides with (2.16). Next we prove thatPc.t/ defines a second-order equation. For each
ˇ in the image ofb, defineCˇ W 
 7! TRˇ�1

�
A
ˇ � TL


�
Bˇ
��

. It is straightforward to verify
that for t 2 R and
 2 TG one hasCb.t/.
/ 2 T
TG, that is,Cb.t/ is a section ofT TG and
thus a (time-varying) vector field onTG. It remains to show thatT�G ı Cˇ D idTG for every
ˇ 2 b..t0; t1// � TG. Choose any such ǎand note thatT .�G ıRˇ�1/ D T . yR�G.ˇ�1/ ı�G/ and
T .�G ı L
 / D T .yL�G.
/ ı �G/, which, for
 2 TG, entails that

.T�G ı Cˇ /.
/ D T�G
�
TRˇ�1

�
A
ˇ � TL
 .Bˇ /

��

D T yR�G.ˇ�1/ ı T�G
�
A
ˇ � TL
 .Bˇ /

�

D T yR�G.ˇ�1/

�
T�G.A
ˇ / � T yL�G.
/ ı T�G.Bˇ /

�
:

However,A andB are second-order , thusT�G.A
ˇ / D 
ˇ andT�G.Bˇ / D ˇ. Using these equa-
tions, along with
ˇ�T yL�G.
/.ˇ/ D T yR�G.ˇ/.
/, we obtain.T�G ıCˇ /.
/ D T yR�G.ˇ�1/.
ˇ�
T yL�G.
/.ˇ// D 
 , as required. �

In order to apply Proposition 2.1 to obtain the error dynamics, set the curvesa.t/ andb.t/ as
the states of the target and auxiliary systems respectively, i.e.,a.t/ D x.t/ andb.t/ D Tf ı !.t/,
so, the vector fields alonga andb are, respectively,

Ax D Sx C
mX

iD1

uiX lift
i;x and BTf .!/ D T Tf

 
�! C

�X

iD1

wi�i;!

!
:

Therefore

Pz D TRTf .!/�1

 
Sx C

mX

iD1

uiX lift
i;x � TLz ı T Tf

 
�! C

�X

iD1

wi�i;!

!!
:
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By grouping the drift and controlled vector fields and usingx D z � Tf .!/ as well as the left-
invariance ofX lift

1 ; : : : ; X
lift
m , we obtain the following error dynamics which, by Proposition 2.1,

defines a second-order differential equation

Pz D TRTf .!/�1

�
Sz�Tf .!/ � TLz ı T Tf .�!/

�

C TR
Tf .!/

�1 ı TLz
 

mX

iD1

uiX lift
i;Tf .!/ �

�X

iD1

wiT Tf .�i;!/

!
: (2.17)

We now address how vertical transversality may be used for control purposes. The main idea is
that, for second-order systems, the control inputs can onlyshape the second-order time derivatives
of the base trajectories, accelerations when referring to SMS, which amounts to assigning them
values in the vertical subbundle. The relevance of requiring Tf to be vertically transverse is that,
as stated in equation (2.14), the vertical subbundle is spanned by the control distribution and the
image ofT Tf . This fact provides one with full control over the error system and thereforePz.t/
in (2.17) can be made to satisfy an arbitrarily given smooth second-order dynamics by means of
smooth feedback in terms of the compound system trajectory,as stated in the following theorem.

Theorem 2.3(Existence of a feedback to set the error dynamics). Given any smooth, second-order
vector fieldY 2 �.T TG/, there exists a smooth feedback law˛ D .˛1; : : : ; ˛n/ W TG�TT

� �!
R
n such that the errorz D x � Tf .!/�1 satisfiesPz D Y.z/ along the trajectories of the compound

system,

. Px; P!/ D
 
Sx C

mX

iD1

˛i
�
x � Tf .!/�1; !

�
X lift
i;x ; �! C

�X

iD1

˛iCm
�
x � Tf .!/�1; !

�
�i;!

!
: (2.18)

Proof. Finding the required feedback amounts to setting the right-hand side of (2.17) equal toYz,
solving the resulting equation foru1; : : : ; um; w1; : : : ; wn�m in terms of.z; !/, and then checking
that the solutions define a smooth mapping˛ W TG � TT

� �! R
n. The first step leads to

mX

iD1

uiX lift
i;Tf .!/ �

�X

iD1

wiT!Tf .�i;!/ D .TRTf .!/�1 ı TLz/�1.Yz � .D!/z/

D TLz�1 ı TRTf .!/.Yz � .D!/z/;

where, for each! 2 TT
�, we have defined the vector fieldD! 2 �.T TG/ by setting

D! W z 7! TRTf .!/�1.Sz�Tf .!/ � TLz ı T Tf .�!//:

Notice that, since (2.17) is second-order, so isD! for every! 2 TT
� and, by linearity ofT�G

on restriction to the fibers,T�G ı .Yz � .D!/z/ D T�G.Yz/ � T�G..D!/z/ D z � z D 0,
which shows thatY �D! is vertical. On the other hand, it is straightforward to check that one has
T�G ı TL� D TbL�G.�/ ı T�G andT�G ı TR� D TbR�G.�/ ı T�G for every� 2 T TG, and both
of these equations imply thatTLz�1 ı TRTf .!/.Yz � .D!/z/ is vertical.
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CHAPTER 2. Vertically Transverse Functions and their application to control

Given thatTf is vertically transverse, it satisfies

.TTf .!/TG/
vert D span

R

˚
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

	
˚ T!Tf ..T!TT

n�m/vert/

for all ! 2 TT
� . Taking into account the assumption thatf�1; : : : ; �mg is a global frame for

.T TT
�/vert, we conclude that there exists a unique mapping˛ W TG � TT

� �! R
n such that, for

every.z; !/ 2 TG � TT
�,

mX

iD1

˛i.z; !/X lift
i;Tf .!/ �

�X

iD1

˛iCm.z; !/T!Tf .�i;!/ D TLz�1 ı TRTf .!/.Yz � .D!/z/: (2.19)

Let .U; z/ and .V; �/ be coordinate charts onG and onT
� respectively, and.��1

G .U /; .z; Pz//
and .��1

T� .V /; .�; P�// the naturally induced coordinate charts onTG and TT
� , respectively.

Then, by means of (2.13), the left-hand side of equation (2.19) translates into the matrix prod-
uctM.�/ ˛.�; P�; z; Pz/, where

M.�/ WD
�
X1;f .�/; : : : ; Xm;f .�/;

@f

@�1
.�/; : : : ;

@f

@��
.�/

�
;

and˛ is the vector̨ D .˛1; : : : ; ˛n/ 2 R
n. Given that the composition of smooth functions is

smooth, the right-hand side of equation (2.19) is smooth provided thatY andD are smooth vector
fields, as previously was assumed. Therefore, the smoothness of˛ follows from the invertibility of
M.�/ for every� 2 V , a fact that is easily established given thatf is transverse. �
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Chapter 3

Analysis of the Zero Dynamics resulting
from the VTFA

In this chapter we present analysis results regarding the nature of the closed-loop zero dynamics
resulting from the application of the VTF approach proposedin Chapter 2. In particular, in this
chapter we show that the zero dynamics is an affine-connection system (in the sense of Bullo and
Lewis [2005]). We also present a necessary and sufficient condition to determine whether this
affine connection is the Levi-Civita connection of some (pseudo–) Riemannian metric in the case
when the target system is underactuated by one control (� D 1). Then we establish some results
which serve to prove the next important result of this chapter, that is, the stability of the closed-
loop system provided that the zero dynamics admits a metric.Finally we present an example of
application of the proposed control methodology which aimsat illustrating the results in the present
and the previous chapter.

3.1. Structure of the zero dynamics

In the previous chapter we have seen how to formulate the point-stabilization problem for
second-order systems based on vertically transverse functions. Its application yields an error dy-
namics which can be arbitrarily set by means of smooth feedback. In particular, we shall assume
throughout this chapter that a feedback law˛ D .˛1; : : : ; ˛n/ W TG �TT

� �! R
n is determined,

according to Theorem 2.3, by a given of a vector fieldY 2 �.T TG/ for which 0e 2 TG is an
asymptotically stable equilibrium point, so that the errordynamics (2.17):

Pz D TR
Tf .!/

�1

�
Sz�Tf .!/ � TLz ı T Tf .�!/

�

C TRTf .!/�1 ı TLz
 

mX

iD1

uiX lift
i;Tf .!/ �

�X

iD1

wiT Tf .�i;!/

!
: (3.1)

with feedback̨ .z; !/, writes asPz D Yz. In this case, if the auxiliary state!.t/ ultimately remains
in a compact subset ofTT

� , then one may conclude that the target system statex.t/ converges
to Tf .!.t// ast ! 1. This means, in particular, that there existsT 2 R>0 such that the base
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

coordinates�G.x.t// 2 U for t > T , whereU is a neighborhood of the desired configuration
e 2 G determined by the transverse functionf . Hence the target system configuration ultimately
approaches the desired configuratione to within a prescribed tolerance determined byU. However,
further investigation is required to assess the behavior ofthe compound closed-loop system (2.18):

. Px; P!/ D
 
Sx C

mX

iD1

˛i
�
x � Tf .!/�1; !

�
X lift
i;x; �! C

�X

iD1

˛iCm
�
x � Tf .!/�1; !

�
�i;!

!
:

The latter may even fail to be positively complete, i.e., themaximum intervals of existence of some
of its solutions may be bounded inR. The main concern in this chapter is the study of the zero
dynamics, i.e., the restriction of the compound closed-loop dynamics (2.18) to points.x; !/ such
thatz D x � Tf .!/�1 D 0e. This enables us to characterize the long-term behavior of the target
system.

Under the assumptions made, the closed-loop zero dynamics is obtained by settingz D 0e,
ui D ˛i.0e; !/ andwj D ˛jCm.0e; !/, i D 1; : : : ; m; j D 1; : : : ; n � m, in (3.1). This yields,
for ! 2 TT

� ,

0e D TRTf .!/�1

�
STf .!/ � TL0e

ı T Tf .�!/
�

C TR
Tf .!/

�1 ı TL0e

 
mX

iD1

˛i .0e; !/X
lift
i;Tf .!/ �

�X

iD1

˛iCm.0e; !/ T Tf .�i;!/

!
;

or, equivalently, the condition

S ı Tf C
mX

iD1

�i.X lift
i ı Tf / D T Tf

 
�C

�X

jD1

�jCm�j

!
; (3.2)

where the mapping� W TT
� �! R

n is defined by�.!/ D ˛.0e; !/. At first sight, equation (3.2)
may suggest that the target and auxiliary systems areTf -related; strictly speaking, however, the
target and auxiliary systems are notTf -related since the mappingyZ WD SıTf C

Pm
iD1 �

iX lift
i ıTf

is not a vector field onTG. The mappingyZ can be regarded as a section of the pullback bundle
defined by the underlying setTf �.T TG/ D f.!; ˛/ 2 TT

� � T TG W Tf .!/ D �G.˛/g together
with the differentiable structure naturally inherited,

T TT
�

idT T� �T Tf
//

�T T�

��

f �.T TG/
F

//

�

��

T TG

�G

��

TT
�

idT T�
// TT

�
Tf

// TG:

On the other hand, the compound zero dynamics can be viewed asthe result of constraining
the trajectories of the target system to be contained in the immersed manifoldTf .TT

�/ by means
of the zero-error feedback�.!/. The latter adds terms that may be interpreted as forces imposing
a holonomic constraint on the target system, namely, if the initial condition of the target system
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x.t0/ lies inTf .TT
�/, then the statex.t/ will remain inTf .TT

�/ for everyt � t0 for which the
solution of the compound system is defined.

The zero-error feedback�.!/ has a particular structure. It is such that it guarantees that if the
target drift vector field equalsS D Z C P whereZ is a spray andP is a vertical vector field
(usually equal to the lift of minus the gradient of the potential energy when dealing with SMS),
then the auxiliary zero dynamics is itself defined by†C…, where† is a spray and… is a vertical
vector field. Namely, if the target system is an affine-connection control system, then so is the
zero-dynamics auxiliary system, as stated in Theorem 3.1.

Prior to formally establishing this result, note that giventhat the sum in (2.14) is exact:

TTf .!/TG
vert D T Tf

�
.T!TT

�/
vert�˚ span

R

˚
X lift
1;Tf .!/; : : : ; X

lift
m;Tf .!/

	
;

there exists a projectorP which maps vectors inT TGvert lying over points inN WD Tf .TT
�/,

to vectors inT Tf ..T TT
�/vert/. Thus, if w 2 T TGvertjN , there exist! 2 TT

� , u 2
T Tf ..T!TT

�/vert/ andv 2 span
R

fX lift
1;Tf .!/

; : : : ; X lift
m;Tf .!/

g, all uniquely determined, such that
w D uCv. The projectorP W T TGvertjN �! T Tf ..T TT

�/vert/ is defined such thatP .w/ D u.
Correspondingly, ifP 2 �.T TGvert/ is a vertical vector field, then there is a unique vertical vector
field… 2 �..T TT

�/vert/ which satisfiesP ı P ı Tf D T Tf ı….
Let fƒ1; : : : ; ƒ�g � �.TT

�/ be a global frame forTT
�. Given that for every manifold

Q and anyv 2 TQ the mapping lift.v; �/ W T�G.v/G �! TvTG
vert is an isomorphism, (by

Lemma 2.1 (III )), then the setfƒlift
1 ; : : : ; ƒ

lift
� g � �.T TT

�/ is a global frame for.T TT
�/vert. As

a consequence of vertical transversality there exists a mappinga D .a1; : : : ; an/ W TT
� �! R

n

such that

P ı Tf D
mX

iD1

ai
�
X lift
i ı Tf

�
C

�X

jD1

T Tf ı
�
ajCmƒlift

j

�
:

ThenP ı P ı Tf D
P�
jD1 T Tf ı

�
ajCmƒlift

j

�
.

Theorem 3.1. Let � W TT
� �! R

m be such that (3.2) holds. Assume thatS D Z C P , where
Z 2 �.T TG/ is a spray andP 2 �.T TGvert/. Let… 2 �..T TT

�/vert/ be the vector field that
satisfiesP ı P ı Tf D T Tf ı…. Then there exist a spray† 2 �.T TT

�/ and a vertical vector
field… 2 �..T TT

�/vert/ such that

�C
�X

jD1

�jCm�j D †C…:

Proof. Let us first recall a standard procedure, in preparation for the sequel of the proof (cf. e.g.
[Warner, 1983, Prop. 1.35]), which locally extends mappings defined along immersed manifolds.
Consider manifoldsL;M;N and mappingsF W L �! M andh W L �! N , and assume that
TpF is injective for somep 2 L. LetdL anddM denote the dimensions ofL andM , respectively.
Then there exists an open neighborhoodU � L of p such thatF jU is injective, and there exists
a cubic-centered coordinate system.V; '/ for M aboutF.p/ for which F.U / is a slice, that is,
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.V; '/ satisfiesF.p/ 2 V , '.F.p// D 0 2 R
dM and'.F.U // D .�"; "/dL � f0g � R

dL �
R
dM �dL for some" > 0. Now, if � W R

dM �! R
dM denotes the projector�..x1; : : : ; xdM // D

.x1; : : : ; xdL ; 0; : : : ; 0/, then the mappingyh D h ı .F jU /�1 ı '�1 ı � ı ' W V �! N is smooth
and satisfies

yh.F.U // D h ı .F jU /�1 ı '�1 ı � ı '.F.U //
D h ı .F jU /�1 ı F.U /
D h.U /;

since'�1 ı � ı '.F.U // D F.U /. In other words, the mappingyh is explicitly constructed to
“extend”h so that the following diagram commute

U � L
F jU

//

hjU ##HH
HH

HH
HH

H
V � M

yhzzuuuuuuuuu

N

Given thatf W T
� �! G is transverse forX D fX1; : : : ; Xmg neare 2 G, Tf W TT

� �!
TG is vertically transverse tofX lift

1 ; : : : ; X
lift
m g and satisfies (2.14) for every! 2 TT

� . Let
fƒ1; : : : ; ƒ�g � �.TT

�/ be a global frame forTT
� . In view of Lemma 2.1, the setfƒlift

1 ; : : : ; ƒ
lift
� g

is a global frame for the vertical subbundle.T TT
�/vert. Since�j is vertical and smooth, there

exist smooth functions�ij W TT
� �! R, i; j D 1; : : : ; �, such that�j D

P�
iD1 �

i
jƒ

lift
i , for

j D 1; : : : ; �.
Let ! 2 TT

� and set� D �T� .!/. Applying the aforementioned extension procedure, with
F D f , h D Tf ı ƒj , L D T

� , M D G andN D TG, and using the assumption thatT�f is
injective, one deduces the existence of open setsU � T

� andV � G, as well as vector fieldsyƒj
defined onV , such that� 2 U and

yƒj ı f jU D Tf ıƒj jU ; j D 1; : : : ; �: (3.3)

That is, the following diagram commutes.

U � T
�

f jU
//

Tf ıƒj jU %%KKKKKKKKK
V � G

yƒjzzuuuuuuuuu

TG

In the terminology of [Warner, 1983, Def. 1.51],yƒj is a localC1 extension ofƒj . Moreover, by
continuity off ,U can be taken sufficiently small that, by virtue of the transversality property (2.4),
TqG D span

R
fX1;q ; : : : ; Xm;q; yƒ1;q; : : : ; yƒ�;qg for everyq 2 V . It follows from Lemma 2.1 (III )

that, together withX lift
1 ; : : : ; X

lift
m , the lifted vector fieldsyƒlift

1 ; : : : ;
yƒlift
� , defined on�W D ��1

G .V / �
TG, constitute a frame for the vertical bundle over�W :

TvTG
vert D span

R

˚
X lift
1;v; : : : ; X

lift
m;v;

yƒlift
1;v; : : : ;

yƒlift
�;v

	
; 8 v 2 �W : (3.4)
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Let � W TT
� �! R

n be the mapping with components given by� i D �i for i D 1; : : : ; m

and�jCm D P�
kD1 �

kCm�
j

k
, j D 1; : : : ; �. In the extension procedure described above we take

h D � , L D TT
� , M D TG andN D R

n, and replaceF by Tf , the tangent mapping off
which is injective as remarked above, to deduce the existence of open neighborhoodsyU of ! and
yV of Tf .!/, as well as a mappingy� W yV �! R

n such that

y� i ı Tf j yU D � i j yU ; i D 1; : : : ; n:

That is, the following diagram commutes.

zU � TT
�

Tf j
zU

//

� i jU %%KK
KK

KKK
KK

K
zV � TG

y� i
zzuuuuuuuuu

R
n

Again, by continuity ofTf , yU can be taken so small thatyV � �W , so that yƒlift
1 ; : : : ;

yƒlift
�

and the functionsy� i are defined onyV � TG. Using the ingredients above, in particular the
verticality and smoothness ofP , along with (3.4), we ascertain the existence of a smooth mapping
ya D .ya1; : : : ; yan/ W yV �! R

n such that

P D
mX

iD1

yaiX lift
i C

�X

jD1

yajCm yƒlift
j : (3.5)

Let C 2 �.T TGvert/ denote the Liouville vector field associated withG. From the definition
above and the fact thatŒC; X lift

i � D �X lift
i for i D 1; : : : ; m, it follows that

ŒC; P � D
mX

iD1

.�yai C C.yai //X lift
i C

�X

jD1

.�yajCm C C.yajCm//yƒlift
j

D �P C
mX

iD1

C.yai /X lift
i C

�X

jD1

C.yajCm/yƒlift
j : (3.6)

Now, we claim that the vector fields

† D �C
�X

jD1

.�jCm � ajCm/ƒlift
j and … D

�X

jD1

ajCmƒlift
j ; (3.7)

with a D yaıTf j yU , satisfy the properties in the statement. By definition ofP ıP ıTf D T Tf ı…,
the proof reduces to showing that† is a spray. Since† is a second-order vector field, as follows
immediately from its definition, it suffices to prove thatŒ yC ;†� D †, where yC D CT�

denotes the
Liouville vector field associated withT �. Using the definition of† and the fact that� is a spray
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

we obtain

Œ yC ;†� D Œ yC;��C
�X

jD1

h
yC; .�jCm � ajCm/ƒlift

j

i

D �C
�X

jD1

.�.�jCm � ajCm/ƒlift
j C yC.�jCm � ajCm/ƒlift

j /: (3.8)

As suggested by this equation, in order to prove the claim we shall find an expression foryC.�jCm�
ajCm/, the Lie derivative of.�jCm � ajCm/ in the direction ofyC , j D 1; : : : ; �. Note that we
have

�
C; S C

Pm
iD1 y� iX lift

i

�
ı Tf j yU D ŒC;Z C P � ı Tf j yU C

mX

iD1

�
C; y� iX lift

i

�
ı Tf j yU

D Z ı Tf j yU C ŒC; P � ı Tf j yU

C
mX

iD1

..�y� i C C.y� i//X lift
i / ı Tf j yU ; (3.9)

and

T Tf ı

2
4 yC;�C

�X

jD1

�jCmƒlift
j

3
5 D T Tf ı

0
@Œ yC;��C

�X

jD1

�
�jCmŒ yC;ƒlift

j �C yC.�jCm/ƒlift
j

�
1
A

D T Tf ı�

C
�X

jD1

T Tf ı
�
.��jCm C yC.�jCm//ƒlift

j

�
: (3.10)

Now, from (3.2) and the definition ofy� i it follows that Œ yC;�C
P�
jD1 �

jCmƒlift
j � andŒC; S CPm

iD1 y� iX lift
i � areTf -related, hence the respective members of (3.9) and (3.10) are equal. Equat-

ing the right-hand sides of (3.9) and (3.10), and then replacing P andŒC; P � by their equivalent
expressions as given by (3.5) and (3.6), respectively, we obtain

0
@Z C

mX

iD1

.C.yai C y�i/ � .yai C y�i//X lift
i C

�X

jD1

�
C.yajCm/ � yajCm

� yƒlift
j

1
A ı Tf j yU D

T Tf ı�C
�X

jD1

T Tf ı
�
.��jCm C yC.�jCm//ƒlift

j

�
: (3.11)

Now, by the equality of (3.2), the substraction of
�
Z ı Tf C P ı Tf C

Pm
iD1 z� i.X lift

i ı Tf /
�

to
the left-hand member of (3.11) and the substraction ofT Tf

�
�C

P�
jD1 �

jCm�j
�

to its right-
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3.1. Structure of the zero dynamics

hand member, must yield an equivalent equation. After simplifying we obtain

mX

iD1

..C.yai C y� i/ � 2.yai C y� i//X lift
i / ı Tf j yU

C
�X

jD1

..C.yajCm/ � 2yajCm/yƒlift
j / ı Tf j yU D

T Tf ı

0
@

�X

jD1

. yC.�jCm/ � 2�jCm/ƒlift
j

1
A : (3.12)

Using the fact thatyC andC areTf -related, along with the definitions of tangent mapping and of
a D ya ı Tf j yU , one has forj D 1; : : : ; �,

C.yajCm/ ı Tf j yU D .T Tf ı yC/.yajCm/

D yC.yajCm ı Tf j yU /

D yC.ajCm/:

Moreover, by definition of lift of a vector field and using (3.3) and Lemma 2.1 one obtains

yƒlift
j ı Tf j yU .!/ D lift .Tf .!/; yƒj;f .�//

D lift .Tf .!/; Tf .ƒj;� //

D T Tf .lift .!;ƒj;� //

D T Tf .ƒlift
j;!/;

thusyƒlift
j ıTf j yU D T Tf ıƒlift

j , j D 1; : : : ; �. These expressions, along with the fiberwise linearity
of T Tf , enable us to write (3.12) as

mX

iD1

�
.C.yai C y� i / � 2.yai C y� i //X lift

i

�
ı Tf j yU

C
�X

jD1

�
yC.ajCm � �jCm/ � 2.ajCm � �jCm/

� �
T Tf ıƒlift

j

�
D 0:

In view of the vertical transversality condition (2.14), the coefficient ofT Tf ıƒlift
j must be zero,

which implies that

yC.ajCm � �jCm/ D 2.ajCm � �jCm/;

for j D 1; : : : ; �. Finally, we substitute these equations in (3.8) to conclude thatŒ yC;†� D †, as
was to be shown. �
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

As the previous theorem establishes, the long-term behavior of the compound system can be
determined by studying the solutions of the auxiliary zero dynamics given byP! D †! C …! .
The latter inherits the structure of the target system in thesense that it is defined by the spray
associated to an affine connection plus a vertical vector field whenever the target system has this
same structure. An interesting fact is also the effect of thevertical vector fieldP on the zero
dynamics. The definition (3.7) of† and… reveals thatonly the projectionP .P ıTf / has an effect
on the zero dynamics, while the effects of the complementary component ofP are “absorbed” by
the control scheme.

3.2. Existence of a metric for the case of mechanical systems
underactuated by one control

A natural issue to address next is to determine if the zero dynamics is positive-complete, i.e.,
whether each of its solutions can be extended to be defined on an interval Œt0;1/ � R, and if
so, whether its solutions remain in a compact neighborhood of the zero-section ofTT

�. For the
general case there are not conclusive results, however, in the case of target systems underactuated
by one control we give a sufficient and necessary condition.

Assume, for simplicity, thatS D ZCP satisfies the assumptions of Theorem 3.1 and, in addi-
tion,P .P ıTf / D 0, so that the zero dynamics writes asP! D †!. By virtue of Theorem 3.1,† is a
spray, so it determines a unique torsionless affine connectionr† onTT

� . If r† is the Levi-Civita
connection of some (pseudo–) Riemannian metricg† on T

�, then one can deduce the complete-
ness of the zero dynamics since every compact (pseudo–) Riemannian manifold is geodesically
complete (cf. Kobayashi and Nomizu [1996]). Moreover, since in that case the energy would be
constant along the solutions, these would evolve in a relatively compact neighborhood of the zero-
section ofTT

� , that is, the corresponding velocity coordinates would remain bounded. However,
determining the existence of a (pseudo-) Riemannian metricfor a given torsionless connection
is an untractable problem given the overdetermined nature of the Levi-Civita metric differential
equations as stated by Eisenhart and Veblen [1922]. The problem has been addressed formerly, for
instance by Schmidt [1973], who shows that, although integrability conditions can be drawn from
the equations relating the metric with the corresponding Christoffel symbols, geometric conditions
can also be stated in terms of the holonomy group of the connection. Thus, for� 2 T

�, Schmidt
considerŝ .�/, theholonomy group with reference point� , whose elements are endomorphisms
of T�T � obtained via parallel transport along all piecewise-smooth loops on the base having� as
endpoints. More precisely, for every loop
 W Œ0; 1� �! T

� satisfying
.0/ D 
.1/ D � , there is
a linear mappingL
 W T�T � �! T�T

� in ˆ.�/ which maps! 2 T�T
� to its parallel translation

along
 . Equivalently,L
 .!/ D u.1/, whereu W Œ0; 1� �! TT
� is the unique curve that satisfies

�T� ı u D 
 , as well as the initial value problem

r†
P
.t/u.t/ D 0; t 2 Œ0; 1�; u.0/ D !:

The group structure on̂ .�/ is defined by considering parallel translation along concatenated
curves on the base, as well as along curves traversed in “reverse.” Moreover, sinceT � is connected,
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3.2. Existence of a metric for the case of mechanical systemsunderactuated by one control

ˆ.�/ andˆ.� 0/ are isomorphic for all�; � 0 2 T
�, a fact that is easily established. Schmidt proves

a general version of the following result.

Proposition 3.1 (Schmidt [1973]). A connectionr† on T
� is the Levi-Civita connection of a

metric onT
� with signature.p; q/ iff there exists a non-degenerate quadratic formg on T�T � ,

with signature.p; q/, which is invariant under̂ .�/.

Let us remark that, in the statement of the previous result, the invariance condition ong means
that, for everyL 2 ˆ.�/ and all!; !0 2 T�T � ,

g.!; !0/ D g.L.!/; L.!0//:

For practical purposes, determining whether a given connection r† satisfies the assumptions of
Proposition 3.1 is a rather involved task, especially due tothe facts that the connectionr† needs
not be flat and thatT � is not simply connected. In the particular case of a system underactuated
by one control, that is,� D n � m D 1, a simple condition can be stated, as we now show. Let
Conn.TT / denote the set of affine connections on the tangent bundleTT and, for every nowhere
vanishing vector fields 2 �.TT /, define a mapping�s W Conn.TT / �! �1.T / by setting
�s.r/ D A, whereA is the unique differential one-form determined byA˝ s D rs.

Proposition 3.2. I . There exists a unique mapping� of Conn.TT / intoH 1.T /, the first de Rham
cohomology group ofT , such that for every global frames 2 �.TT / the following diagram
commutes

Conn.TT /

�
&&MMMMMMMMMM

�s
// �1.T /

�

��

H 1.T /

II . An affine, torsionless connectionr onT is the Levi-Civita connection of a pseudo-Riemannian
metric iff�.r/ D 0.

Proof. I . Given thatT is one-dimensional,�1.T / is contained in the kernel ofd , so we have
only to prove that ifs; s0 2 �.TT / are two nowhere vanishing vector fields and�s.r/ D A and
�s0.r/ D A0, thenA � A0 D df for somef 2 C1.T /. Sinces ands0 are nowhere vanishing
vector fields, there exists a nowhere vanishing functionh 2 C1.T / such thats D hs0. Then,
using the distributivity properties of tensor products of sections as well as the Leibniz property for
connections we get

A˝ s D r.hs0/

D dh˝ s0 C hrs0

D dh˝ s0 C hA0 ˝ s0

D
�
dh=hC A0

�
˝ s;

whenceA � A0 D dh=h. But h is nowhere null, hencejhj and lnıjhj are smooth and satisfy
dh=h D d.ln ıjhj/, which establishes the claim.
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

II . Let r 2 Conn.TT / be torsionless, lets 2 �.TT / be a nowhere vanishing vector field, and
pick an orientation forT and a point� 2 T . SinceA is a one-form on an oriented one-dimensional
manifold, it makes sense to define the integralIA WD

R
T
A. Moreover, given a loop
 W Œa; b� �!

T such that
.a/ D 
.b/ and a vector! D ks.�/ in T�T , its parallel transport around
 is
given byL
 .!/ D exp.IA/ ks.�/: SinceT is one-dimensional, a simple computation shows that
the curvature tensorR is zero, sor is a flat connection. Therefore, the holonomy around a loop

 W Œa; b� �! T depends only on its homotopy classŒ
� in �.T ; �/, the fundamental group ofT
based at� (cf. [Kobayashi and Nomizu, 1996, Chap. II-9]). But�.T ; �/ ' Z, consequently for
every such loop
 there existsn 2 Z such thatL
 .!/ D exp.nIA/ ks.�/. Given a quadratic non-
degenerate formg onT�T , there existsG ¤ 0 such thatg.s.�/; s.�// D G. Thusg is preserved
byˆ.�/ if and only if, for everyk; k0 2 R and everyn 2 Z, one has

Gkk0 D g.ks.�/; k0s.�//

D g
�
k exp.nIA/ s.�/; k

0 exp.nIA/ s.�/
�

D G .exp.nIA//
2 kk0;

that is, if and only ifj exp.nIA/ j D 1 for all n 2 Z. But this is equivalent toIA D
R

T
A D 0 and,

in turn, sincedA D 0, to the existence of a functionf 2 C1.T / such thatA WD �s.r/ D df ,
that is�.r/ D 0. On applying Proposition 3.1 one obtains the required result. �

3.3. Long-term behavior of the compound system

In this section we study the analysis of the closed-loop system under the assumption that the
zero dynamics is determined by a spray that admits a (pseudo–) Riemannian metric. We shall
show that if the error dynamics has0e as a locally exponentially stable point (in a sense defined
below), and the zero dynamics admits a kinetic energy function, then the setf0eg � Z.TT

�/

is uniformly stable for the compound system, whereZ.TT
�/ denotes the zero-section ofTT

� .
Roughly speaking, this implies that if the initial value of the error signal is sufficiently close to0e,
and the auxiliary system’s initial velocities are sufficiently small, then the solution of the controlled
system is defined for allt � t0, its velocities remain small and the error decays exponentially.

Before dwelling on this result, precisely stated in Theorem3.4, we establish some results in
preparation for its proof. Theorem 3.3 establishes positive completeness and uniform stability
for a certain class of systemsPx D f .x; t/, wheref .x; t/ can be decomposed in two factors,
one of which is exponentially decreasing with respect to time. Lemma 3.1 establishes that, given
a covering manifold�M for M , T �M is a covering manifold forTM , and finally, Lemma 3.2
establishes that there exists a covering isomorphismfT � �! R

� wherefT � is a covering forT �

andR
� is a covering forR�=Z�.

The following is a basic theorem (cf. Coddington and Levison[1984]), concerning the ex-
istence of solutions for differential equations defined by continuous (not necessarily Lipschitz)
functions, which is to be used in the proof for Theorem 3.3.
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3.3. Long-term behavior of the compound system

Theorem 3.2(Cauchy-Peano Existence Theorem). Consider the initial value problem

Px D f .x; t/; .x0; t0/ 2 R
n � R; (3.13)

wheref W R
n � R �! R

n. If f is continuous onR D f.x; t/ 2 R
n � R W 0 � t � t0 � a; jjx �

x0jj � bg for a; b 2 R>0, then (3.13) admits a differentiable solution�.x0;t0/ W t 7! �.x0;t0/.t/

defined inŒt0; t0 C ˛�, where˛ D min
�
a; b

M

�
andM D maxfjjf .x; t/jj W .x; t/ 2 Rg. Moreover

jj�.x0;t0/.t/ � x0jj � M.t � t0/ for .x; t/ 2 R.

Theorem 3.3. LetF W R
n �! R

n be a continuous mapping, and letK be strictly positive. Then
.0; 0/ is uniformly stable under the dynamics defined onR

nC1 by

Px D z F.x/ (3.14)

Pz D �K z (3.15)

Proof. It is straightforward to verify thatf.x0; 0/ 2 R
n � Rg is a set of equilibria for (3.14)-(3.15)

and, in particular,.0; 0/ 2 R
n � R belongs to this set. In order to establish uniform stabilityof this

equilibrium point we shall show that, for any neighborhoodV � R
n � R of .0; 0/, there exists a

neighborhoodU � R
n�R of .0; 0/ such that for anyt0 2 R, if .x.t0/; z.t0// D .x0; z0/ 2 U then

any solution .x0;z0/ W t 7!  .x0;z0/.t/ of (3.14)–(3.15) is defined and satisfies .x0;z0/.t/ 2 V for
everyt � t0.

In the sequel givena; b 2 R with a < b, and an integerq > 0, we letŒa; b�q and.a; b/q denote
theq-fold Cartesian products of the intervalŒa; b� and.a; b/ respectively. Lett0 2 R be given,
and letV � R

n � R be a neighborhood of.0; 0/. By definition ofV , there exists" > 0 such
that Œ�"; "�.nC1/ � V . It is straightforward to verify thatRn � f0g is a continuum of equilibria
for (3.14)-(3.15), and each of the corresponding constant solutions is uniquely determined by the
initial condition. Hence, ifx0 2 .�"; "/n, the trajectory of (3.14)-(3.15) issued from.x0; 0/ at
time t0 belongs toV for all t � t0. Let us now assume thatz0 ¤ 0, so that the solution of (3.15),
z.t/ D z0e

�K.t�t0/, is defined for everyt � t0. In such a case, (3.14) can be written as

Px D z0e
�K.t�t0/F.x/: (3.16)

Let Fmax D maxfjjF.x/jj W x 2 Œ�"; "�ng. Clearly,Fmax exists sinceF is continuous andŒ�"; "�n
is compact. IfFmax D 0, then the restriction ofF to Œ�"; "�n, which determines the derivative of
the componentx.t/ of the solution, is identically zero. In this case, ifx0 2 .�"; "/n, the unique
trajectory issued from.x0; z0/ writes ast 7! .x0; z0e

�K.t�t0//, so it suffices to takez0 2 .�"; "/ to
ensure that such solution remains inV for everyt � t0. On the other hand, assume thatFmax ¤ 0

and set

ı D .2K � 1/ "
2K

min

�
1;

1

2K Fmax

�
: (3.17)

Clearly, ı is strictly positive sinceK > 0; moreoverı < " for K > 0. Choose any.x0; z0/ 2
.�ı; ı/.nC1/. Thenjz.t/j < ıe�K.t�t0/ � ı for everyt � t0 and hence,z.t/ 2 .�"; "/ for every
t0 2 R and everyt � t0. Consider the sequence.bm/1mD0, where

bm D .2K � 1/ "
2K.mC1/

;
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

as well as the seriesBm D
Pm
iD0 bi . One readily checks that

P1
mD0 bm D limm!1Bm D ".

For eachm � 1, define the closed setRm D f.x; t/ W x 2 Œ�"; "�n; t � t0 C m � 1g. Since the
function .x; t/ 7! z0e

�K.t�t0/F.x/ is continuous onRm and strictly decreasing with respect to
its second argument,Mm D maxfjjz0e�K.t�t0/F.x/jj W .x; t/ 2 Rmg exists and satisfiesMm D
jz0jFmaxe

�K.m�1/.
Givenp 2 Œ�Bm�1; Bm�1�

n, from the Cauchy-Peano existence Theorem 3.2, one concludes
that there exists a solution .t0Cm�1;p/ W t 7!  .t0Cm�1;p/.t/ for (3.16), defined on the interval
Œt0 Cm � 1; t0 Cm�, provided thatbm

Mm
� 1, that is

bm

Mm

D .2K � 1/ "
2K.mC1/ jz0jFmaxe�K.m�1/

� 1:

But this inequality is satisfied for everyz0 2 .�ı; ı/ and everyn � 1, for if

jz0j < ı � .2K � 1/"
4KFmax

;

andn � 1, then

bm

Mm

D .2K � 1/ "

2K.mC1/ jz0jFmaxe�K.m�1/
>

4K

2K.mC1/e�K.m�1/
� 4K

22K
D 1:

Therefore, for everym and everyp 2 ŒBm�1; Bm�
n, there exists a solutionxm W t 7!  .t0Cm�1;p/.t/

for (3.16) defined inŒt0 C m � 1; t0 C m�. In addition this solution satisfiesjjxm.t/ � pjj �
Mm.t � .t0 C m � 1// for all t 2 Œt0 C m � 1; t0 C m�. Hence, takingt D t0 C m one gets
jjxm.t0 C m/ � pjj � Mm. Given thatbm � Mm, it follows that jjxm.t0 C m/ � pjj � bm. But
jjpjj � Bm�1, hencejjxm.t0 C m/ � pjj � Bm. We have thus shown that, for everym � 1, if
 .t0;x/ is defined onŒt0; t0Cm�1� and satisfiesjj .t0;x/.t0Cm�1/jj � Bn�1, then .t0;x/ can be
extended to be defined onŒt0; t0Cm� and satisfiesjj .t0;x/.t0Cm/jj � Bn. Sincejjx0jj < ı D B0,
by induction onm we deduce that the solution .x0;t0/ is defined onŒt0;1/ and satisfiesjjx.t/jj �
supfBm W m � 1g D " for all t � t0. Therefore, for everyt0 2 R and every neighborhoodV of
.0; 0/, if .x0; z0/ is in .�ı; ı/.nC1/ (with ı given in (3.17)), the trajectories of (3.14)–(3.15) exist
and satisfy.x.t/; z.t// 2 V for everyt � t0, as was to be shown. �

Theorem 3.3 essentially states that if the initial conditionsx0; z0 for system (3.14)–(3.15) are
sufficiently small, so thatx.t/ does not grow “too quickly,” then the exponentially decaying factor
in the derivative ofx forces the solutionx.t/ to remain bounded (and possibly even converge).
However, if the initial conditions are not small enough,x.t/ may growunboundeddespite the
exponentially vanishing nature ofjzj, and even do soin finite time. It is worth pointing out that
the mappingF is not assumed to be locally Lipschitz–the solution to (3.13) may not be uniquely
defined–or to have zero as an asymptotically stable equilibrium. The following corollary is a
straightforward result from the previous theorem that is directly applicable in the proof of Theo-
rem 3.4.

Corollary 3.1. If F W R �! R is continuous andK > 0, then.0; 0/ 2 R
2 is uniformly stable

under the dynamics defined byf Px D jzjF.x/I Pz D �Kzg.
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3.3. Long-term behavior of the compound system

In order to illustrate the result in the previous corollary,consider, for example, the autonomous
system

Px D jzj x2
Pz D �z:

Indeed, the solution with initial condition.x0; z0/ at t D 0, given by

x.t/ D x0

1 � .1 � e�t/ x0z0
; z.t/ D e�tz0;

is not defined for anyt such that the denominator1 � .1 � e�t/x0z0 vanishes, namely fort1 D
ln
�

x0z0

x0z0�1

�
. If x0z0 < 1 then eithert1 < 0 or ln

�
x0z0

x0z0�1

�
is undefined, thus the solutionx.t/

exists forŒ0;1/ and limt!1 x.t/ D x0

1�x0z0
, so the solution converges and is therefore bounded.

If x0z0 D 1, thenx.t/ D x0e
t , so limt!1 jx.t/j ! 1, that is, the solution is defined onŒ0;1/

but it grows unbounded. Ifx0z0 > 1, thent1 > 0, so the solution is defined onŒ0; t1/ and leaves
any compact interval ast ! t1.

Lemma 3.1. Let M be a manifold and let�M be a smooth covering space ofM with smooth
covering mapp W �M �! M . ThenT �M is a smooth covering space ofTM with smooth covering
mapTp W T �M �! TM .

Proof. Let � W TM �! M andz� W T �M �! �M denote the tangent bundle projections. We shall
show thatT �M is isomorphic to the pullback covering space��. �M/, which is uniquely defined up
to isomorphism of covering spaces (cf. Godbillon [1971] or Spanier [1989] for basic definitions
and properties of covering spaces). As a set,��. �M/ D f.v; q/ 2 TM � �M W v 2 Tp.q/M g, and
the covering map isp1 W .v; q/ 7! v. Now, sinceTqp W Tq �M �! Tp.q/M is an isomorphism
for everyq 2 �M , one has a map̂ W ��. �M/ �! T �M given byˆ.v; q/ D .Tqp/

�1.v/ which
is smooth sincep is a local diffeomorphism. In addition,̂ is injective, for if .Tqp/�1.v/ D
.Tq0p/�1.v0/ for some.v; q/; .v0; q0/ 2 ��. �M/, thenq D q0 since.Tqp/�1.v/ belongs to both
Tq �M andTq0

�M . Hencev D v0. Also,ˆ is surjective, for ifw 2 T �M , then there existsq 2 �M
such thatw 2 Tq �M , and hencê .Tqp.w/; q/ D w. Thusˆ admits an inversê �1 W w 7!
.Tz�.w/p.w/; z�.w// which is clearly smooth, sô is a diffeomorphism. Moreover,Tpıˆ.v; q/ D
Tqp..Tqp/

�1.v// D v D idTM ı p1.v; q/, so the following diagram commutes:

��. �M/

p1

��

ˆ
//
T �M

Tp

��

TM
idTM

// TM

Let v 2 TM . By definition of covering space and the fact that��. �M/ is one forTM , there
exists an open neighborhoodV � TM of v, a discrete manifoldF (i.e., dim.F / D 0) and a
diffeomorphism‰ W p�1

1 .V / �! V � F . We claim that̂ .p�1
1 .V // D .Tp/�1.V /. Indeed, if
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

w 2 ˆ.p�1
1 .V // then, sincê is a diffeomorphism, there existsa 2 p�1

1 .V / such thatw D ˆ.a/,
soTp.w/ D Tp.ˆ.a// D p1.a/ 2 V , hencew 2 .Tp/�1.V /. To prove the opposite inclusion,
assume thatw 2 .Tp/�1.V /. Thenp1.ˆ�1.w// D Tp.w/ 2 V , sow 2 ˆ.p�1

1 .V //. Therefore
the claim is true. Now,‰ ı ˆ�1..Tp/�1.V // D ‰.p�1

1 .V // D V � F , which shows thatT �M
is a covering space forTM . (The fact thatp1 D Tp ı ˆ, with ˆ a diffeomorphism, implies that
ˆ W ��. �M/ �! T �M is anisomorphism of covering spacesover the identity idTM .) �

Lemma 3.2. Consider universal coveringsp W eT � �! T
� and� W R

� �! R
�=Z�, and let˛ be

a covering isomorphism over̨0 as in the commutative diagram

eT �

p

��

˛
// R
�

�

��

T
� ˛0

// R
�=Z�

(3.18)

Given the coveringP D Tp W TeT � �! TT
� , endowTeT � with the global chart.TeT �;  /

naturally induced by̨ . Then:

I. For every neighborhoodU � TT
� of the zero-sectionZ.TT

�/, there exists a compact neigh-
borhoodV � R

� of 0 such thatP ı  �1.R� � V / is a neighborhood ofZ.TT
�/ contained

in U .

II . The push-forwardP�@=@ 
i is well defined fori D 1; : : : ; 2�.

III . Givenf 2 C1.TT
�/, a compact setV � R

� , and an iterated differential operator of the
formD D @=@ i1 � � � @=@ ik , i1; : : : ; ik D 1; : : : ; 2�, k � 0, the functionD.P �f / ı  �1

attains its maximum at some point inR
� � V .

Proof. Givenk 2 Z
�, the mappings�k W x 7! x C k andz�k D ˛�1 ı �k ı ˛ define smooth, right

actions ofZ� on R
� and oneT � , respectively. Obviously,p ı z�k D p and henceTp ı T z�k D Tp.

Note that ifq; xq 2 T eT � satisfyTp.q/ D Tp.xq/, then there exists 2 eT � andk 2 Z
� such that

q 2 TseT � andxq 2 Tz�k.s/
eT �. HenceTp.T z�k.q/ � xq/ D Tp ı T z�k.q/ � Tp.xq/ D 0 and, sincep

is a local diffeomorphism,xq D T z�k.q/.
I . If U is a neighborhood ofZ.TT

�/, then ı P �1.U / � R
� � R

� is a neighborhood of
R
� � f0g. Thus for everyx 2 Œ0; 1�� � R

� there isıx > 0 such thatVx D Bıx
.x/ � Bıx

.0/ �
R
� � R

� is contained in ı P �1.U / (whereBıx
.y/ is the open ball of radiusıx centered ony).

The collection.Vx/x2Œ0;1�� is an open cover of the compact setC D Œ0; 1�� � f0g, so there exists
a finite setF � Œ0; 1�� such that.Vx/x2F still coversC . But then, settingı D minfıx W x 2 F g,
R
��Bı.0/ is a neighborhood ofC contained in ıP �1.U /. Since �1.Œ0; 1���f0g/ is projected

ontoZ.TT
�/ byP , the setV D Bı.0/ satisfies the required condition.

II . If X 2 �.T TeT �/ isT z�k-related to itself, i.e.,T T z�k ıX D X ıT z�k, then the push-forward
P�X 2 �.T TT

�/ is well defined by the relation.P�X/P.q/ D TqP.Xq/. To see this, note that
TP.Xxq/ D T Tp.XT z�k.q// D T Tp.T T z�k.Xq// D T .Tp ı T z�k/.Xq/ D T Tp.Xq/ D TP.Xq/

which, along with the fact thatP is surjective, implies thatP�X is indeed defined. To show that
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3.3. Long-term behavior of the compound system

this is also the case forP�@=@ 
i , it suffices to show that@=@ i is T z�k-related to itself. To this

purpose, letf 2 C1.TeT �/ and define representativesF D f ı  �1 andG D  ı T z�k ı  �1

of f andT z�k, respectively. Then, forq 2 TeT � and i D 1; : : : ; 2�, @=@ i jq.f ı T z�k/ D
@=@r i j .q/.f ıT z�k ı �1/ D @=@r i j .q/.F ıG/D

P
j @F=@r

j . ıT z�k.q// � @Gj=@r i. .q// D
@F=@r i. ı T z�k.q// D @=@ i jT z�k.q/.f /, that is,T T z�k ı @=@ i D @=@ i ı T z�k. Therefore
P�@=@ 

i is defined.
III . To establish this claim it is sufficient to prove the following two facts:(a) If f 2 C1.TT

�/

andi D 1; : : : ; 2�, then@=@ i.P �f / D P�@=@ 
i.f / ı P ; and(b) If V � R

� is compact, then
P ı �1.R� �V / is compact inTT

� . Indeed, provided these two facts hold, any smooth function
of the form @=@ i.P �f / ı  �1 factors through a smooth function onTT

� , which attains its
maximum on the compact setP ı �1.R��V /, and an obvious induction argument then completes
the proof. (a) If q 2 TeT �, then@=@ i jq.P �f / D @=@ i jq.f ı P / D TP.@=@ i jq/.f / D
.P�@=@ 

i/P.q/.f /, that is,@=@ i.P �f / D P�@=@ 
i.f / ı P , as claimed.(b) Let .U�/�2ƒ be an

open cover ofP ı  �1.R� � V /. Then. ı P �1.U�//�2ƒ is an open cover ofR� � V and, since
Œ0; 1�� �V is a compact subset of the latter, there is a finite setJ � ƒ such that. ıP �1.Uj //j2J

covers it. But the images byP ı �1 of Œ0; 1�� �V andR
� �V coincide, hence.Uj /j2J is a finite

subcover ofP ı  �1.R� � V /, so the latter is compact. �

Theorem 3.4.LetY 2 �.T TG/ be a vector field that admits0e 2 TG as a locally exponentially
stable equilibrium and assume that a feedback law is appliedto the controlled system (2.1) so that
the combined error and auxiliary dynamics writes as

.Pz; P!/ D
 
Yz; �! C

n�mX

iD1

˛iCm.z; !/�i;!

!
: (3.19)

Assume, furthermore, that the auxiliary zero dynamics is given by P! D †! D �! CPn�m
iD1 ˛

iCm.0e; !/�i;! , with† 2 �.T TT
n�m/ a spray, and that there exists a positive-definite

metric tensorG on T
n�m such that the functionK W TG � TT

n�m �! R defined byK.z; !/ D
1
2
G .!; !/ is constant along the trajectories ofP! D †!. Then the setf0eg � Z.TT

n�m/, where
Z.TT

n�m/ denotes the zero-section ofTT
n�m, is uniformly stable under the dynamics defined by

(3.19).

Under the assumptions of Theorem 3.4, if the error decreases“exponentially fast” and the zero
dynamics is conservative, thus the conclusion appears to beintuitively clear. However, the proof
of the result is slightly involved due to two facts. First, the stability notion involved pertains to a
set which cannot be covered by a single coordinate chart, so the analysis is carried out, instead,
by “lifting” the system to an appropriate covering manifold. Second, the limiting system that
determines the asymptotic properties of the trajectories—the zero dynamics—does not admit an
exponentially stable equilibrium, thus ruling out the application of many of the well-known theo-
rems regarding stability in the presence of disturbances. To palliate this difficulty, we reduce the
problem to proving stability of a point for a system that satisfies the assumption of Theorem 3.3.

Proof. Let � D n � m, M D TG � TT
� , and defineA 2 �.TM/ to be the vector field whose

value at.z; !/ 2 M is given by the right-hand side of (3.19), with the usual identificationT .TG�
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

TT
�/ ' T TG � T TT

� . (In the sequel of the proof we shall appeal to similar identifications
without explicit mention.) The setf0eg � Z.TT

�/ is invariant underA; indeed, if� 2 T
� , then

any constant function of the formt 7! .0e; 0�/ is an equilibrium solution of (3.19), forY0e
D 0, by

the assumption that0e is an equilibrium ofY , and†0�
D 0, since† is assumed to be a spray. We

shall show that, for every neighborhoodV of f0eg�Z.TT
�/, there exists a neighborhoodU of the

same set such that (3.19) isU -positive-complete and, for everyx0 2 U , one has�.t; 0; x0/ 2 V

for all t 2 Œ0;C1/. Once that claim is established, the result will follow fromthe fact that the
dynamics (3.19) is autonomous (i.e., it does not depend explicitly on time, soU can be taken to be
independent oft0).

Let yY ; y† 2 �.TM/ be the vector fields given by

yY.z;!/ D .Y; 0!/ ; y†.z;!/ D .0z; †!/ ;

where0z 2 TzTG and0! 2 T!TT
� denote the zero vectors in their respective tangent spaces.

Similarly, define a vector field� 2 �.TM/ by setting

�.z;!/ D
 
0z;

�X

iD1

.˛iCm.z; !/ � ˛iCm.0e; !//�i;!

!
:

With such objects defined,A D yY C y†C �, so the closed-loop error dynamics (3.19) writes as

.Pz; P!/ D A.z;!/ D yY.z;!/ C y†.z;!/ C �.z;!/: (3.20)

The ensuing analysis shall be carried out by pulling the dynamics (3.20) back to a covering mani-
fold ofM . For definitions and properties of covering spaces and projections, the Reader may wish
to consult e.g. [Godbillon, 1971, Chap. X.3]). Trivially, idTG W TG �! TG is a covering ofTG
whereas theuniversalcovering�T � of T

� , endowed with the unique differentiable structure that
makes the covering projectionp W �T � �! T

� differentiable and of maximal rank, is diffeomor-
phic toR

� . Using Lemma 3.1 we see thatTp W T�T � �! TT
� is (diffeomorphic to) the universal

covering space ofTT
� . Since the product of covering spaces is a covering space in the obvious

way, if we set�M D TG � T �T � , thenP W �M �! M is a covering manifold ofM , with covering
projectionP W .z; q/ 7! .z; Tp.q//. By definition,P is a local diffeomorphism, soT.z;q/P is an
isomorphism for every.z; q/ 2 M ; as a consequence, iff 2 C1.M/ andX 2 �.TM/, then the
pullbacksP �f 2 C1. �M/ andP �X 2 �.T �M/ are well defined by setting

P �f D f ı P and .P �X/.z;q/ D .T.z;q/P /
�1
�
X.z;Tp.q//

�
:

Moreover, these definitions entail thatP �X.P �f / D P �.X.f //. System (3.20), together with
the projectionP , induce a system on�M given by

.Pz; Pq/ D P �A.z;q/ D P � yY.z;q/ C P � y†.z;q/ C P ��.z;q/; (3.21)

and, sinceA isP -related toP �A, every trajectory of (3.21) projects byP to a trajectory of (3.20)
(one also says that trajectories of (3.21) areliftings by P of trajectories of (3.20)). SinceK does
not depend explicitly onz, so yY .K/ D 0, and is invariant under†, so y†.K/ D 0, one has

P �A.P �K/ D P �.. yY C y†C �/.K// D P �.�.K// D P ��.P �K/: (3.22)
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3.3. Long-term behavior of the compound system

Let .O; �/ be a coordinate chart onTG about0e such that�.0e/ D 0. As is easily checked, the
canonical projection� W R

� �! R
�=Z� defines a covering space isomorphic top W �T � �!

T
� , so there exist diffeomorphisms̨ W �T � �! R

� and˛0 W T
� �! R

�=Z� such that� ı
˛ D ˛0 ı p. Clearly,.�T � ; ˛/ is a global coordinate chart, which then induces naturally aglobal
chart .T �T � ; y̨/ on T�T � . The coordinates� and y̨ induce a chart.O � T�T �;  / on �M , with
 W O � T�T � �! R

2nC2� given by .z; q/ D .�.z/; y̨.q//. We shall label these coordinates
as yz D .yz1; : : : ; yz2n/ D . 1; : : : ;  2n/, � D .�1; : : : ; ��/ D . 2nC1; : : : ;  2nC�/ and P� D
. P�1; : : : ; P��/ D . 2nC�C1; : : : ;  2nC2�/. (The choice of these coordinates and labels corresponds,
of course, to their intuitive interpretation, the� is representing angle-like functions and theP� is
“angular velocities.”) Clearly, the points in�M with coordinatesyz D 0 and P� D 0 project onto
f0eg � Z.TT

�/, i.e.,P ı  �1.f0g � R
� � f0g/ D f0eg � Z.TT

�/. Given points.z0; !0/ 2 M

and.z0; q0/ 2 P �1.f.z; !/g/, we let t 7! .z.t/; !.t// andt 7! .z.t/; q.t// denote the solutions
of (3.20) and (3.21) initialized, fort D 0, at .z0; !0/ and.z0; q0/, respectively. The representative
of t 7! .z.t/; q.t// in the coordinates shall be denoted byt 7! .yz.t/; �.t/; P�.t//.

At this point, the proof reduces to showing that the setf0g � R
� � f0g is uniformly stable

under the representative of system (3.21) in the coordinates  , i.e., under the pullback vector
field yA WD .P ı  �1/�A 2 �.TR

2nC2�/. Indeed, suppose this claim holds, and letV � M

be a neighborhood off0eg � Z.TT
�/. By virtue of Lemma 3.2-(I ), there exist convex, compact

neighborhoodsV1 � R
2n andV2 � R

� of the respective origins, such thatP ı �1.V1�R
��V2/ is

a neighborhood off0eg�Z.TT
�/ contained inV . Sincef0g�R

��f0g is assumed to be uniformly
stable underyA, there exists an open neighborhoodU1 � R

2nC2� of f0g�R
��f0g such thatyA isU1-

positive-complete and such that, for any initial condition.z0; q0/ 2 �M such that .z0; q0/ 2 U1,
the integral curve .z.t/; q.t// of yA, initialized at .z0; q0/, satisfies .z.t/; q.t// 2 V1�R

��V2
for all t � 0. Then the setU D P ı  �1.U1/ � M has the required property that if.z0; !0/ 2 U
then.z.t/; !.t// 2 V for all t � 0, for in that case.z.t/; !.t// D P.z.t/; q.t// 2 P ı  �1.V1 �
R
� � V2/ D V for all t � 0.

By smoothness of the right-hand side of (3.21),.z.t/; q.t// is defined fort in some neighbor-
hood of0; for any sucht , the derivative ofW W t 7! P �K.z.t/; q.t// can then be computed as
follows

W 0.t/ D P �A.z.t/;q.t//.P
�K/

D P ��.z.t/;q.t//.P
�K/:

And, since�z is vertical, one has,

W 0.t/ D
�X

iD1

�
@.P �K/

@� i
� 0C @.P �K/

@ P� i
.P ��/2nC�Ci

�ˇ̌
ˇ̌
ˇ
 �1.yz.t/;�.t/; P�.t//

DW � ı  �1.yz.t/; �.t/; P�.t//;
with � 2 C1. �M/ given by� D

P�
iD1 @.P

�K/=@ P� i � .P ��/2nC�Ci . Given the choice of coordi-
nates, there exist functionsgi;j W R

� �! R such thatP �K ı  �1 (i.e., the representative ofP �K

in the coordinates) writes as

P �K ı  �1.yz; �; P�/ D 1

2
gi;j .�/ P� i P� j :
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

(Here and in the sequel of the proof the summation conventionis in place.) Also, since�.0;!/ D 0

for all ! 2 TT
� , thenP ��.0;q/ D 0 for all q 2 T�T �, whence� ı  �1.0; � ; � / D 0. Therefore,

using a Taylor expansion with remainder, along with the factthat the representativeP �K ı �1 is
quadratic in the components ofP� , one obtains, after straightforward computations:

W 0.t/ D
��

1

2

@2�

@ P�k@yzi
ı  �1.0; �.t/; 0/C 1

6

@3�

@ P�k@yzj@yzi
ı  �1.c1yz.t/; �.t/; 0/ � yzj .t/

C 1

6

@3�

@ P�`@ P�k@yzi
ı  �1.0; �.t/; c2 P�.t// � P�`.t/

C 1

24

@4�

@ P�`@ P�k@yzj@yzi
ı  �1.c1yz.t/; �.t/; c2 P�.t// � P�`.t/ � yzj .t/

�
P�k.t/

�
yzi.t/;

for some realsc1; c2 2 .0; 1/. Without loss of generality, one may assume that the coordinates
� were selected in such a way that, in view of the assumption of local exponential stability of0e
for Y , there exist realsC1; C2 > 0 such thatjyzi .t/j � kyz.t/k � C1kyz0ke�C2t for i D 1; : : : ; n.
Moreover, sinceP �K ı  �1 is positive-definite, quadratic in theP� is, and independent ofyz, there
existsC3 > 0 such thatj P�k.t/j � C3.P

�K ı �1.yz.t/; �.t/; P�.t/// 1
2 D C3W.t/

1
2 for k D 1; : : : ; �

andt � 0 . For i D 1; : : : ; n andk D 1; : : : ; � let

Ni;k D max

� ˇ̌
ˇ̌1
2

@2�

@ P�k@yzi
ı  �1.0; �; 0/C 1

6

@3�

@ P�k@yzj@yzi
ı  �1.yz; �; 0/ � yzj

C 1

6

@3�

@ P�`@ P�k@yzi
ı  �1.0; �; P�/ � P�`

C 1

24

@4�

@ P�`@ P�k@yzj@yzi
ı  �1.yz; �; P�/ � P�` � yzj

ˇ̌
ˇ̌ W .yz; �; P�/ 2 V1 � R

� � V2
�
:

That these maxima exist is easily deduced by an obvious extension of Lemma 3.2-(III ) and the
compactness ofV1 andV2. LetC4 D maxfNi;k W i D 1; : : : ; n; k D 1; : : : ; �g. Therefore

W 0.t/ � C4j P�k.t/jjyzi .t/j
� C3C4.W.t//

1
2 jyzi .t/j

� C1C3C4.W.t//
1
2 kyz0ke�C2t :

Given a neighborhoodV � R
2n � R

� � R
� of f0g � R

� � f0g, consider neighborhoodsV1 � R
2n

andV2 � R
� of the respective origins. Let" > 0 be such thatfyz 2 R

2n W kyzk < "g � V1 andf P� 2
R
� W k P�k < "g � V2. By assumption, ifkyz0k < ı1 WD "=C1, thenyz.t/ < " for t � 0. Moreover, by

applying Theorem 3.3, along with theComparison Lemma[Khalil, 1996, Lemma 2.5], we deduce
that there existsı2 > 0 such that, ifW.0/ < ı2, then.W.t//

1
2 < "=.C3

p
�/, that is,k P�.t/k < " for

all t � 0. It follows that if the initial condition.z0; �0; P�0/ is such thatkyz0k < ı1 andk P�k < ı2,
then.yz.t/; �.t/; P�.t// 2 V1 � R

� � V2 for all t � 0, thus completing the proof. �
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3.4. Example: The3-ECF

In this section we apply the methodology proposed in Section2.3 to a particular example of
second-order system in order to illustrate some of the concepts and results presented in this chapter.
Consider the3-dimensional Extended Chained Form (ECF), which is a systemon TR

3 ' R
6

described by the following equations.

Rx1 D u1
Rx2 D u2
Rx3 D u1x2:

The latter can be viewed as a SMS of the form (2.1),

Px D Sx C u1X
lift
1;x C u2X

lift
2;x; (3.23)

whereSx D
P3
iD1 xiC3 @=@x

i is the geodesic spray given by the Euclidean metric onR
3, and

X lift
1;x D @=@x4 C x2 @=@x

6,X lift
2;x D @=@x5 are vertical vector fields onTR

3 ' R
6.

It is well known (cf. Imura et al. [1996]) that the ECF is static-feedback equivalent to the model
of a planar, underactuated, horizontal PPR (Prismatic-Prismatic-Rotational) manipulator, the rota-
tional joint of which is passive. In this model, friction andgravity effects are not considered. The
schematics of this mechanical manipulator is depicted in Figure 3.1. The configuration manifold

x y

�

Figure 3.1: Schematic representation of the underactuatedPPR manipulator of system (3.24).

for this system isSE.2/ ' R
2 � S1 and, using coordinates.x; y; �; Px; Py; P�/ for T .SE.2//, the

Euler-Lagrange equations yield the dynamic model

M1 Rx �m3ls.�/ R� �m3lc.�/ P�2 D �1
M2 Ry Cm3lc.�/ R� �m3ls.�/ P�2 D �2

�m3ls.�/ Rx Cm3lc.�/ Ry C J R� D 0;

(3.24)

wheremi is the mass of thei -th link, Mi D
P3
jDi mj , and for the third link,J and l are the

moment of inertia and the position of the center of mass, bothwith respect to the joint axis.�i is
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

the force applied to thei -th link, i D 1; 2. (In the above model, as we shall often do in the sequel,
we use the convention sinD s and cosD c.) The VTF approach can be directly applied to system
(3.24) given that it can be rewritten of the form (2.1) with left-invariant control vector fields on
the tangent Lie group ofSE.2/ (with group composition (2.10)). However, in order to deal with
simpler computations that convey the main ideas more transparently, we apply the VTFA to the
ECF (3.23).

Consider the Lie groupR3 with composition law given, for everyx; y 2 R
3, by

y�.x; y/ D . x1 C y1; x2 C y2; x3 C y3 C x2y1 /:

Consider natural (global) coordinates on the tangent Lie groupTR
3 tangent groupTG. Using

these coordinates, the (tangent) Lie group operation onTR
3 is given by

�.x; y/ D x � y D .x1 C y1; x2 C y2; x3 C y3 C x2y1;

x4 C y4; x5 C y5; x6 C y6 C x2y4 C x5y1/ (3.25)

It is straightforward to check that bothXi andX lift
i .i D 1; 2/ are left-invariant under the respective

left translations inG andTG. Also note thatŒX1; X2� D �@=@q3, so that LiefX1; X2g.q/ D TqG

for everyq 2 G. Consequently one can apply the procedure of Morin and Samson [2003], recalled
in Section 2.1, to construct a transverse functionf W T �! R

3 for the3-CF systemPx D u1X1;xC
u2X2;x near zero. Take for instance the function in equation (2.7) of Subsection 2.1.2,

f .�/ D
�
" sin.�/; " cos.�/;

1

4
"2 sin.2�/

�
; (3.26)

with " > 0 arbitrary, and extended to every element inT by continuity. The transversality condition
(2.4) is equivalent to the non-vanishing of the determinantof the matrix with columnsX1;f .�/,
X2;f .�/ andf 0.�/, i.e.,

M.�/ WD
�
X1;f .�/; X2;f .�/;

@f

@�
.�/

�
D

�
1 0 " cos.�/
0 1 �" sin.�/

" cos.�/ 0 1
2
"2 cos.2�/

�
:

A simple computation shows that det.M.�// D �1
2
"2, hencef is transverse.

Using natural coordinates.�; P�/ for TT , the tangent mappingTf is defined, for every! D
.�; P�/ 2 T�T , by

T�f .!/ D
�
"s.�/; "c.�/; 1

4
"2s.2�/; "c.�/ P�; �"s.�/ P�; 1

2
"2c.2�/ P�

�
:

The vertical transversality condition (2.14) is easy to establish. Consider natural coordinates
.�; P�; ˛L; ˛H / for T TT . First evaluatethe tangentof Tf at a vertical vector̨ 2 .T!TT /vert (i.e.,
˛ 2 ker.T!�T /), which, by the result in Lemma 2.1 yields a vertical vector.SinceT!�T maps
.�; P�; ˛L; ˛H / to .�; ˛L/, ˛ is in the kernel ofT!�T if and only if it has the form̨ D .�; P�; 0; ˛H /,
so for simplicity we takeQ̨ D .�; P�; 0; 1/. Carrying out the operations one obtains

T!Tf . Q̨ / D
�
0; 0; 0; "c.�/;�"s.�/; 1

2
"2c.2�/

�
:
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3.4. Example: The3-ECF

Now let us check thatX lift
1 , X lift

2 andT!Tf . Q̨ / span the vertical subspace.TTf .!/TG/vert. In this
case, any vector in the latter is of the form

P3
iD1 ˛i @=@ Pqi , that is, its first three components are

zero. Hence the verification reduces to computing the determinant of the submatrix consisting
of the lower three rows of the matrix with columnsX lift

1;Tf .!/
, X lift

2;Tf .!/
andT!Tf . Q̨ /, but this is

exactly the matrixM.�/ defined above, the determinant of which equals�1
2
"2, so Tf indeed

satisfies (2.14).
Define an auxiliary system evolving onTT by

R� D w; (3.27)

wherew 2 R is a control input. This system can be viewed as a (flat) affine-connection control
system onT ; in fact, the affine connection which defines it is the Levi-Civita connection of a
Euclidean onT . Note that (3.27) can be written in the form of (2.15) if we set�! D P� @=@� ,
� D 1 and�1;! D @=@ P� . Define also the corresponding error function to bez D �.x; Tf .!/�1/,

z D
�
x1 � "s.�/; x2 � "c.�/; x3 C 1

4
"2s.2�/ � x2"s.�/;

x4 � "c.�/ P�; x5 C "s.�/ P�; x3 � x5"s.�/ � x2"c.�/ P� C 1
2
"2c.2�/ P�

�
:

By differentiating this expression we get the error dynamics

Pz D F.z; !/C
3X

iD1

uiGi.z; !/; (3.28)

whereu3 D w, G1.z; !/ D @=@x4 C .z2 C "c.�//@=@x6, G2.z; !/ D @=@x5 � "s.�/@=@x6,
G3.z; !/ D �"c.�/@=@x4 C "s.�/@=@x5 C .�1

2
"2 � "c.�/z2/@=@x6, and

F.z; !/ D
�
z4; z5; z6; "s.�/ P�2; "c.�/ P�2; 1

2
"2s.2�/ P�2 C "s.�/z2 P�2 � 2"c.�/z5 P�

�
:

Each of the objectsGi for i D 1; 2; 3, as well asF , may be seen as families of vector fields on
TG indexed by! D .�; P�/ 2 T�T . Moreover, it is clear thatF.�; !/ is second-order whereasG1,
G2 andG3 are vertical, thus the error dynamics (3.28) is second-order for every! 2 TT .

In order to construct a control law as outlined in Theorem 3.4we select for the desired dynamics
a second-order vector fieldS 2 �.T TG/ which has0 as exponentially stable equilibrium point,
for instance

Sz D .z4; z5; z6; �k1z1 � k2z4; �k1z2 � k2z5; �k1z3 � k2z6/;

where the control gainsk1; k2 are strictly positive. From this point on, the control design translates
into the search for a functionu W TG � TT �! R

3 such that

F.z; !/C
3X

iD1

ui.z; !/ Gi.z; !/ D Sz
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CHAPTER 3. Analysis of the Zero Dynamics resulting from the VTFA

for all .z; !/ 2 TG�TT . Inspecting the structure of the error dynamics (3.28) one easily deduces
that this problem is equivalent to solving (2.19), which in this case boils down to solving foru in
the following matrix equation�

1 0 �"c.�/
0 1 "s.�/

z2 C "c.�/ �"s.�/ �1
2
"2 � "c.�/z2

�
u D

�
� P�2"s.�/ � k1z1 � k2z4
� P�2"c.�/ � k1z2 � k2z5

�1
2
"2s.2�/ P�2 � "s.�/z2 P�2 C 2"c.�/z5 P� � k1z3 � k2z6

�
:

This equation is solvable since the invertibility of the coefficient ofu is equivalent to the invertibil-
ity of the matrix which ensures the vertical transversalityof Tf ; its determinant, in particular, is
equal to1

2
"2. In order to illustrate the time evolution for the error and target systems, we include a

simple numerical simulation withx0 D .1:5;�1:0; 2:2; 0; 0; 0/, !0 D .�0; P�0/ D .0; 0/, " D 0:45

and control gainsk1 D 0:08, k2 D 0:4. Figure 3.2 shows that the error tends to zero whereas the

0
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Figure 3.2: Numerical simulation of the ECF under the VTFA with initial conditionsx0 D
.1:5;�1:0; 2:2; 0; 0; 0/, �0 D 0, P�0 D 0, " D 0:45 andk1 D 0:08, k2 D 0:4.

logarithm of its norm decays sublinearly, so thatz.t/ ! 0 exponentially. On the other hand, the
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3.4. Example: The3-ECF

configuration of the ECF.x1; x2; x3/ and the velocities.x4; x5; x6/ seem to converge to a periodic
motion whereas the base curveq.t/ D .�G ı v/.t/ ultimately converges to a bounded set, the ex-
tent of which can be made arbitrarily small by decreasing". Taking smaller values of", however,
typically leads to increments in the peak excursions of the control signals and in the frequency of
the steady-state oscillations. Concerning the velocitiesPq.t/, they also converge to a bounded set,
but the extent of that set depends on the initial conditions.v0; !0/, hence one cannot specify it in
advance.

Let us now turn to the zero dynamics of the compound system, which, in accordance with
Theorem 3.1, is determined by a spray†:

P! D †! D
� P�

� sin.2�/ P�2
�
: (3.29)

This vector field† determines a torsionless connectionr W �.TT / �! �.T �
T ˝ TT / with

Christoffel symbol�.�/ D sin.2�/, so thatr @
@�

@
@�

D �.�/ @
@�

. Using the notation of the para-

graph preceding Proposition 3.2, ifs D @
@�

is a local section on the domain of.U; �/, then
�s.r/ D sin.2�/d� , the cohomology class of which is zero. By Proposition 3.2,r is the Levi-
Civita connection of a family of metrics onTT , namely

g� D Ae� cos.2�/d� ˝ d�; A > 0:

By defining the Lagrangian functionL W TT �! R as

L.!/ D 1

2
g�. P�; P�/ D 1

2
Ae� cos.2�/ P�2;

one readily checks that the associated Euler-Lagrange equation r P�
P� D 0 precisely coincides with

the zero dynamics (3.29), irrespective of the value ofA. As pointed out above, the zero dynamics is
itself a simple mechanical system, in this case with zero potential. Since in this case.L ı!/0 D 0,
the (kinetic) energy is a conserved quantity and, given thatit is bounded with respect to� and
depends quadratically onP� , it follows that P�.t/ remains bounded for allt 2 Œt0;1/. Consequently,
bothTf .!.t// andv.t/ converge to a bounded neighborhood of the zero-section inTG. In this
case it is also clear that such neighborhood depends on the initial conditions. Intuitively, one can
think of the errorz.t/ as converging to0 exponentially at the expense of a gradual increase in the
kinetic energy “stored” in the auxiliary system.
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Chapter 4

Generalized Transverse Functions

The application of vertically transverse functions to control, as proposed in Chapter 2, poses
two issues that deserve additional analysis. One of these issues consists in finding conditions to de-
termine whether the resulting zero dynamics admits a (pseudo-) Riemannian metric in the general
situation, for in such case stability is ensured for the closed-loop system as established in Theo-
rem 3.4. The other issue concerns the introduction of dissipation into the zero dynamics to ensure
that the system velocities (i.e., the fiber coordinates) vanish asymptotically, as would be required
in typical applications. The main purpose of this chapter isto explore the potential application of
generalized transverse functions to “inject” dissipationinto the resulting zero dynamics. General-
ized transverse functions (GTF) were introduced by Morin and Samson [2004] to achieve practical
andasymptoticstabilization of points and general trajectories for driftless control systems. Basi-
cally, a GTF for a distribution spanned by a setX D fX1; : : : ; Xmg � �.TG/ neare 2 G is a
functionf W T

�1 �T
�2 �! G such thatf .�; ˇ/ W ˛ 7! f .˛; ˇ/ 2 G, is transverse forX neare (in

the sense defined by equation (2.2)) for everyˇ 2 T
�1 . In Section 4.1 we make precise this defini-

tion and show that the tangent mapping of a GTF isgeneralized vertically transverse. Section 4.2
presents a straightforward generalization of the vertically transverse function approach for the case
of vertically transverse functions derived from generalized transverse functions. The interest in
this class of functions is that its application to control leads to anon-autonomouszero dynamics
with additional control inputs which may be used to influencethe behavior of the trajectories in
zero dynamics. The central objective is to design these additional control inputs in order to make
the zero-section of the zero dynamics asymptotically stable or, at least, locally attractive. Two
approaches may be followed: the introduction of dissipation à la Jurdjevic-Quinn given that the
resulting non-controlled zero dynamics admits a metric, and the design of time-varying feedback
via high-order averaging (Sarychev [2001]; Agrac̆hev and Gramkrelidze [1979]) as proposed by
Vela [2003]. Particulary, the latter is developed for the ECF, for which the numerical simulations
presented below show promising results.
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CHAPTER 4. Generalized Transverse Functions

4.1. Generalized transverse functions

Generalized transverse functions (GTF) were introduced byMorin and Samson [2004]. Their
application to control provides the closed-loop system with extra control inputs that can be used,
under appropriate conditions, to address complementary control objectives such as asymptotic
rather than practical stabilization of points and trajectories for driftless systems. In this thesis,
tangent mappings of generalized transverse functions are used to endow the closed-loop zero dy-
namics with additional inputs which may be designed, much inthe spirit of Morin and Samson
[2004], to render the zero-section locally attractive and,therefore, to ensure that the velocities
vanish asymptotically. The following definition is a slightly weakened version of the definition
introduced by Morin and Samson [2004] which is suitable for its application to second-order sys-
tems.

Definition 4.1 (Generalized transverse functions). LetQ be ann-dimensional manifold. Given
a neighborhoodU of q 2 Q, and a set of vector fieldsfX1; : : : ; Xmg � �.TQ/, a generalized
transverse function (GTF) nearq 2 Q is a mappingf W T

�1 � T
�2 �! Q, with �1 � n�m and

�2 � 1, such that

a) f .T �1 � T
�2/ � U,

b) Tf .�/Q D span
R

˚
X1;f .�/; : : : ; Xm;f .�/

	
C T˛fˇ .T˛T

�1/, for every� D .˛; ˇ/ 2 T
�1 � T

�2 ,

where
�
fˇ
�
ˇ2T�2

is the family of maps, indexed by̌, defined byfˇ .˛/ D f .˛; ˇ/.

In particular, in contrast with the original definition, we do not require thatf .0; ˇ/ D e 2 G for
everyˇ 2 T

�2 as is required in (Morin and Samson [2004]). When computed inlocal coordinates,
for a given coordinate chart� D .˛; ˇ/ D .˛i ; ˇj / of T

�1 � T
�2 , conditionb) translates into

R
n D span

R

˚
X1;f .�/; : : : ; Xm;f .�/

	
C span

R

�
@fˇ

@˛1
.˛/; : : : ;

@fˇ

@˛�1
.˛/

�
;

namely,fˇ is transverse, in the sense of equation (2.2), for everyˇ 2 T
�2 .

A generalized transverse function can be constructed from any given transverse function. For
instance, the following proposition provides us with an explicit way to construct a generalized
transverse function given a transverse function for a set ofleft-invariant vector fields on a Lie
group.

Proposition 4.1(Construction of a GTF). LetG be ann-dimensional Lie group andg W T
�1 �!

G with �1 D n �m, transverse (neare 2 G) for a setfX1; : : : ; Xmg of left-invariant vector fields
onG. Then, for every.˛; ˇ/ 2 T

�1 � T
�2 , the following choices forf W T

�1 � T
�2 �! G, yield

generalized transverse functions.

a) f .˛; ˇ/ D g.˛ C �.ˇ//,

b) f .˛; ˇ/ D g.�.ˇ//�1 � g.˛ C �.ˇ//,

where “C” is the Lie group composition inT �1 and� W T
�2 �! T

�1 is any mapping.
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Proof. Let � D .˛; ˇ/ 2 T
�1 � T

�2 . For any choice,a) or b), of f W T
�1 � T

�2 �! G, we must
prove that for anyw D Tf .�/G there exist realsa1; : : : ; am and! 2 T˛T

�1 such that

w D
mX

iD1

aiXi;f .�/ C T˛fˇ .!/:

a) Sinceg W T
�1 �! G is transverse, there exist realsb1; : : : ; bm and z! 2 T˛C�.ˇ/T

�1 such
that

w D
mX

iD1

biXi;g.˛C�.ˇ// C T˛C�.ˇ/g.z!/:

Let bR� W T
�1 �! T

�1 denote the right translation inT �1 by an element� 2 T
�1 . SinceTbR� W

TT
�1 �! TT

�1 is a diffeomorphism for every� 2 T
�1 there existsx! 2 T˛T

�1 such that
z! D T˛bR�.ˇ/.x!/. Then, by using the chain rule and the fact thatfˇ .˛/ D g ı bR�.ˇ/.˛/ for any
.˛; ˇ/ 2 T

�1 � T
�2 , one obtains

w D
mX

iD1

biXi;f .˛;ˇ/ C T˛C�.ˇ/g ı T˛bR�.ˇ/.x!/;

D
mX

iD1

biXi;f .˛;ˇ/ C T˛

�
g ı bR�.ˇ/

�
.x!/;

D
mX

iD1

biXi;f .˛;ˇ/ C T˛fˇ .x!/;

as was required.

b) Let Lx W TG �! TG be the left translation in the Lie groupG by an elementx 2 G.
Given thatTLx is a diffeomorphism for everyx 2 G, there existsv 2 Tg.˛C�.ˇ//G such that
w D Tg.˛C�.ˇ//Lg.�.ˇ//�1 . By the transversality ofg W T

�1 �! G, there exist realsb1; : : : ; bm

and z! 2 T˛C�.ˇ/T
�1 such that

v D
mX

iD1

biXi;g.˛C�.ˇ// C T˛C�.ˇ/g.z!/:

Then

w D Tg.˛C�.ˇ//Lg.�.ˇ//�1

 
mX

iD1

biXi;g.˛C�.ˇ// C T˛C�.ˇ/g.z!/
!
:

By using the chain rule and the left-invariance ofXi , i D 1; : : : ; m, one obtains

w D
mX

iD1

biXi;f .˛;ˇ/ C T˛C�.ˇ/

�
Lg.�.ˇ//�1 ı g

�
.z!/:
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By using the argument in the proof fora)above, there existsx! 2 T˛T
�1 such thatz! D T˛bR�.ˇ/.x!/,

and so, by using the chain rule, one obtains

w D
mX

iD1

biXi;f .˛;ˇ/ C T˛C�.ˇ/

�
Lg.�.ˇ//�1 ı g

�
.T˛bR�.ˇ/.x!//;

D
mX

iD1

biXi;f .˛;ˇ/ C T˛

�
Lg.�.ˇ//�1 ı g ı bR�.ˇ/

�
.x!//;

D
mX

iD1

biXi;f .˛;ˇ/ C T˛fˇ .x!//;

as was to be shown. �

If �1 D �2 then a GTF can be built simply by settingf .˛; ˇ/ D .g.ˇ//�1 �g.˛Cˇ/. Straight-
forward examples of GTF, for the case�1 D 1 and�2 � 1, areg.�/ D g.�1 C � � � C ��2C1/ and
g.�/ D g.�2 C � � � C ��2C1/

�1 � g.�1 C � � � C ��2C1/ for every� D .�1; : : : ; ��2C1/ 2 T � T
�2 .

It is clear, as a result from Theorem 2.2, that the tangent mapping of any transverse function
fˇ for some fixeď 2 T

�2 is vertically transverse. However we define the tangent map of a
generalized transverse function to be generalized vertically transverse in the sense made clear in
the following proposition.

Proposition 4.2 (Generalized Vertical Transversality). Let f W T
�1 � T

�2 �! G be general-
ized transverse for the set of vector fieldsfX1; : : : ; Xmg � �.TG/ near e 2 G. ThenTf W
TT

�1C�2 �! TG is generalized vertically transversefor
˚
X lift
1 ; : : : ; X

lift
m

	
in the sense that, for

every� 2 TT
�1C�2 , it satisfies

TTf .�/TG
vert D span

R

˚
X lift
1;Tf .�/; : : : ; X

lift
m;Tf .�/

	
C T Tf ıH

�
.T!TT

�1/vert � f0gxh.�/

�
; (4.1)

whereH W T TT
�1 � T TT

�2 �! T TT
�1C�2 and xh W TT

�1C�2 �! TT
�2 are natural diffeomor-

phisms.

Proof. Let v 2 TTf .�/TG
vert. Sincev is vertical, there existsx 2 Tf .�/G such thatv D

lift .Tf .�/; x/. Given thatf is generalized transverse (cf. Definition 4.1), there existai 2 R,
for i D 1; : : : ; m, andz! 2 T˛T

�1 such thatx D
Pm
iD1 a

iXi;f .�/ C T˛fˇ .z!/. Thus,

v D lift

 
Tf .�/;

mX

iD1

aiXi;f .�/ C T˛fˇ .z!/
!

D lift

 
Tf .�/;

mX

iD1

aiXi;f .�/

!
C lift

�
Tf .�/; T˛fˇ .z!/

�
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Note thatT˛fˇ .z!/ D Tf ıh.z!; 0ˇ / whereh W TT
�1 �TT

�2 �! T
�
T
�1C�2

�
denotes the natural

identification defined, in coordinates, byh ..�1; !1/; .�2; !2// D .�1; �2; !1; !2/. Hence

v D
mX

iD1

aiX lift
i;Tf .�/ C lift

�
Tf .�/; Tf ı h.z!; 0ˇ /

�

D
mX

iD1

aiX lift
i;Tf .�/ C T Tf

�
lift
�
�; h.z!; 0ˇ /

��
:

Note that lift
�
�; h.z!; 0ˇ /

�
is in H

�
.T!TT

�1/vert � f0gxh.�/

�
, wherexh W TT

�1C�2 �! TT
�2 is

defined in coordinates byxh.�1; �2; !1; !2/ D .�2; !2/, which completes the proof. �

4.2. Control framework using generalized VTF

This section formalizes the way generalized vertically transverse functions are used for con-
trol purposes. The main objective is to obtain an expressionfor the closed-loop zero dynamics
which, under the proposed methodology, shall be endowed with additional control inputs that may
influence the target zero dynamics. Consider the target system (2.1) (rewritten as (4.2) below)

Px D Sx C
mX

iD1

uiX lift
i;x ; (4.2)

and assume thatfX1; : : : ; Xmg � �.TG/ are left-invariant vector fields onG, ann-dimensional
Lie group, which span a distribution that is completely nonintegrable at some point, saye 2 G

without loss of generality. Under these conditions there exists a generalized transverse function
f W T

�1 � T
�2 �! G for fX1; : : : ; Xmg neare 2 G with �1 D n � m (in the sequel we set

�1 D n � m) and�2 � 1. SoTf W T .T �1C�2/ �! G satisfies (4.1). The procedure herein
developed is analogous to the methodology described in Section 2.3 and Chapter 3. Consider an
auxiliary control system evolving onTT

�1 � TT
�2 of the form

P! D ‚! C
�1X

jD1

vj‡j;! ; (4.3)

P� D …� C
�2X

kD1

wk‰k;� ; (4.4)

where‚ 2 �.T TT
�1/ and… 2 �.T TT

�2/ are second-order vector fields, typically sprays
that define flat, torsionless, affine connections onTT

�1 andTT
�2 respectively. The sets of vector

fieldsf‡1; : : : ; ‡�1
g andf‰1; : : : ; ‰�2

g constitute global frames for.T TT
�1/vert and.T TT

�2/vert,
respectively. The auxiliary system (4.3)-(4.4) can be rewritten as a system evolving onTT

�1C�2
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by means of the natural diffeomorphismh W TT
�1 � TT

�2 �! TT
�1C�2 . For instance, consider

the following commutative diagram:

T TT
�1 � T TT

�2
�

//

�

��

T .T �1 � TT
�2/

T h
//

�T T
�1 �T T

�2

��

T TT
�1C�2

�
T T

�1C�2

��

TT
�1 � TT

�2
id

T T
�1 �T T

�2
// TT

�1 � TT
�2

h
// TT

�1C�2

(4.5)

Let x� WD .‚;…/ and define� D h�
x�. It is straightforward to show that� so defined is a

second-order vector field onTT
�1C�2 ; in fact it is a spray which defines a flat, torsionless, affine

connection whenever‚ and… are sprays defining flat, torsionless, affine connections. Inan
analogous way, setx‡j .!;$/ D

�
‡j;!; 0$

�
for j D 1; : : : ; �1, and x‰k.!;$/ D .0!; ‰k;$ / for

k D 1; : : : ; �2, for every.!;$/ 2 TT
�1 � TT

�2 , and define vertical vectors fields onTT
�1C�2 ,

�j WD h�
x‡j , ˆk WD h�

x‰k, for j D 1; : : : ; �1 andk D 1; : : : ; �2. Note that the setf�j ; ˆk; j D
1; : : : ; �1; k D 1; : : : ; �2g � �..T TT

�1C�2/vert/ defines a global frame for
�
T TT

�1C�2
�vert

. Let
� D h.!; �/, then system (4.3)-(4.4) can be written as

P� D �� C
�1X

iD1

vi�i;� C
�2X

jD1

wj ĵ;� : (4.6)

Define an error signalz WD x � Tf .�/�1 along the trajectories of the auxiliary and target systems
(4.2)-(4.6). By differentiating along the trajectories ofthe compound system (4.2)-(4.6) (by virtue
of Proposition 2.1), one checks that

Pz.t/ D TR
Tf .�.t//

�1

�
Px.t/ � TLz ı T Tf . P�.t//

�
;

for everyt 2 R for which the trajectories of the compound system are defined. Hence

Pz D TR
Tf .�/

�1

  
Sx C

mX

iD1

uiX lift
i;x

!
� TLz ı T Tf

 
�� C

�1X

iD1

vi�i;� C
�2X

jD1

wj ĵ;�

!!
:

Define a non-autonomous second-order vector fieldD.�;w/ 2 �.T TG/, for each.�; w/ 2
TT

�1C�2 � R
�2 , by

D.�;w/ W z 7! TRTf .�/�1

 
Sz�Tf .�/ � TLz ı T Tf

 
�� C

�2X

jD1

wj ĵ;�

!!
:

Then, by making use of the left-invariance of the vector fieldsX lift
i ; i D 1; : : : ; m, and the fiberwise

linearity of the tangent maps we obtain

Pz D D.�;w/.z/C TR
Tf .�/

�1 ı TLz
 

mX

iD1

uiX lift
i;Tf .�/ �

�1X

iD1

vi T Tf .�i;�/

!
: (4.7)
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Proposition 4.3. Given any second-order vector fieldY 2 �.T TG/ andw D .w1; : : : ; w�2/ 2
R
�2 , there is a unique smooth feedback law˛ D .˛1; : : : ; ˛n/ W TG � TT

�1C�2 � R
�2 �! R

n

such that the error dynamics (4.7), satisfiesPz.t/ D Yz.t/.

Proof. The proof boils down to setting the right-hand side of (4.7) equal toYz and solving for
.u; v/ D .u1; : : : ; um; v1; : : : v�1/. This yields

D.�;w/.z/C TRTf .�/�1 ı TLz
 

mX

iD1

uiX lift
i;Tf .�/ �

�1X

iD1

vi T Tf .�i;�/

!
D Yz :

Rearranging one has

TLz�1 ı TRTf .�/
�
Yz �D.�;w/.z/

�
D
 

mX

iD1

uiX lift
i;Tf .�/ � T Tf

 
�1X

iD1

vi �i;�

!!
:

Note that, in reference to the commutative diagram (4.5),�i D h�
x‡j D H.‡j ; 0$/, for j D

1; : : : ; �1. Hence, given thatTf satisfies (4.1) andf‡1; : : : ; ‡�1
g is a global frame for.T TT

�1/vert,
there exists a mapping̨ W TG � TT

�1C�2 � R
�2 �! R

n such that, for every.z; �/ 2 TG �
TT

�1C�2 ,

 
mX

iD1

˛i.z; �; w/X lift
i;Tf .�/ �

�1X

iD1

˛iCm.z; �; w/ T Tf ı�i;�
!

D

TLz�1 ı TRTf .�/
�
Yz �D.�;w/.z/

�
:

One can easily show that˛ so defined is smooth. �

In accordance with the previous proposition, by appropriately selecting a feedback̨ D
.˛1; : : : ; ˛n/ for (4.2)-(4.6) in terms of the error statez.t/, the state of the auxiliary system�.t/
and of the additional control inputsw D .w1; : : : ; w�2/, the error dynamics can be arbitrarily set.
In particular, assume, as in Chapter 3, that such a feedback is obtained by requiring that the error
dynamics (4.7) satisfy a second-order differential equation defined byY 2 �.T TG/ and that the
latter admits0e 2 TG as an asymptotically stable equilibrium point.

In such a case, the behavior of the closed-loop system is qualitatively analogous to the behavior
of the closed-loop system under the VTFA, in the sense that the state of the target system (4.2) con-
verges to the image byTf of the trajectory of the auxiliary system (4.6), provided that the solutions
of the closed-loop system are defined. Given that, by definition,f .T �1C�2/ is contained in a prede-
fined neighborhoodU of e, the configuration coordinates of the target system approach the desired
equilibrium configuration, independently of how the extra control inputsw D .w1; : : : ; w�2/ are
chosen. The ensuing objective is to design these additionalinputs, in terms of the auxiliary sys-
tem state� 2 TT

�1C�2 , such that the zero-section of the auxiliary zero-dynamicsZ.TT
�1C�2/ is

locally attractive for, in that case, the target system velocities vanish asymptotically.
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The closed-loop zero dynamics is obtained by settingz D 0e in (4.7),

 
STf .�/ C

mX

iD1

˛i.0e; �; w/X
lift
i;Tf .�/

!
D T Tf

 
�� C

�1X

iD1

˛iCm.0e; �; w/�i;� C
�2X

jD1

wj ĵ;�

!
:

(4.8)

Observe that the target zero dynamics is completely determined by the auxiliary zero dynamics.
The latter is given by the right-hand member of equation (4.8),

P� D �� C
�1X

iD1

˛iCm.0e; �; w/�i;� C
�2X

jD1

wj ĵ;� : (4.9)

The auxiliary zero dynamics can be realized as a control system onTT
�1C�2 with control inputs

wj , j D 1; : : : ; �2. Note that these control inputs also determine the zero-error feedback terms
˛iCm, i D 1; : : : ; �1. If one manages to designw1; : : : ; w�2 in terms of the auxiliary system state
� such that the zero-section ofT .T �1C�2/ is (locally) attractive, the effect should be that the veloc-
ities of the auxiliary and target systems vanish asymptotically. Although stabilizing only a subset,
e.g. the zero-section, of the state manifold may seem more relaxed an aim than stabilizing a point,
the zero dynamics (4.9) may bear some undesirable properties. For instance, it may be critical
and may also fail to be accessible but at generic points. The given structure of the zero dynamics
depends, to a large degree, on the structure of the GTF used. Therefore, the goal of having the ve-
locities asymptotically vanish apparently calls for the use of time-varying feedback. In Section 4.3
we explore the application of high-order averaging methods, as exposed in (Vela [2003]; Agrac̆hev
and Gramkrelidze [1979]; Sarychev [2001]), with a view toward the design of time-varying feed-
back to render the zero-section (locally) attractive for the auxiliary zero dynamics. An example is
also developed which illustrates, via a numerical simulation, that the asymptotic convergence of
the velocities to zero may be achievable by means of time-varying feedback laws.

As an additional approach, one may also try to introduce dissipation into the auxiliary zero dy-
namics by means of Jurdjevic-Quinn (damping control) method (cf. Bacciotti and Rosier [2001]).
The application of this method requires the knowledge of a “weak” Lyapunov function for the un-
controlled system (system (4.9) withw1; : : : ; w�2 D 0). That is, the knowledge of a differentiable,
positive-definite functionV W T

�1C�2 �! R such thatV.�/ D 0 if � D 0, andL y�V.�/ � 0 for
every� 2 T

�1C�2 , where

y�� WD �� C
�1X

iD1

˛iCm.0e; �; 0/�i;�: (4.10)

In the case that the sprayy� admits a Riemannian metricG , such a function can be naturally
defined by settingV.�/ WD 1

2
g.�; �/. It is readily verified thatV is positive definite and that

the derivative ofV along y� is zero. However, as stated in Chapter 3, determining and finding a
(pseudo-) Riemannian metric for a given sprayy� is, in general, an untractable problem, given the
overdetermined nature of the Levi-Civita metric differential equations.
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4.2. Control framework using generalized VTF

In the case that the VTFA (described in Section 2.3) yields a zero dynamics which admits a
(pseudo–) Riemannian metric, there exists a GTF such that the approach described in this section
yields a (non-autonomous) zero dynamics whose drift vectorfield, defined by (4.10), admits a
(pseudo–) Riemannian metric. In other words, the resultingnon-autonomous zero dynamics is a
Levi-Civita connection system for some metric onT

�1C�2 . Let us make this result precise.

Theorem 4.1(Existence of a metric for a particular case). Letg W T
�1 �! G, with n D dim.G/,

be transverse forfX1; : : : ; Xmg � �.TG/ near e 2 G with �1 D n � m. Assume that the
application of the VTFA to (4.2), with auxiliary control system (4.3), results in an auxiliary zero
dynamicsP! D †! which admits a metric. Then, the use of a GTFf W T

�1 � T
�2 �! G of the

formf D g ı�, where� W T
�1 � T

�2 �! T
�1 is smooth, yields a non-autonomous zero dynamics

whose drift vector field admits a metric.

Proof. It is straightforward to show thatf D g ı � W T
�1 � T

�1 �! G is generalized transverse
for every smooth� W T

�1 � T
�2 �! T

�1 . Let � D .�1; : : : ; �n/ W TG � TT
�1 �! R

n be the
feedback resulting of applying the VTFA (cf. Theorem 2.3) byrequiring the error dynamics satisfy
Pxz D Yxz with Y 2 �.T TG/ a second-order vector field having0e 2 TG as an asymptotically stable
point. In other words,� W TG � TT

�1 �! R
n satisfies

mX

iD1

� i .z; !/X lift
i;Tg.!/ �

�1X

iD1

� iCm.z; !/ T Tg.‡i;!/ D

TLz�1

�
TRTg.!/.Yz/ � Sz�Tg.!/

�
C T Tg.‚!/: (4.11)

Define a second-order auxiliary control system onTT
�1C�2 ,

P� D �� C
�1X

iD1

vi�i;� C
�2X

jD1

wj ĵ;�; (4.12)

such that� isT�-related to‚, and�i isT�-related to‡i , for i D 1; : : : ; �1. Also define mappings
z̨ D .z̨1; : : : ; z̨n/ W TG � TT

�1C�2 �! R
n andx̨ D .x̨1; : : : ; x̨n/ W TT

�1C�2 � R
�2 �! R

n such
that they satisfy

mX

iD1

z̨i.z; �/X lift
i;Tf .�/ �

�1X

iD1

z̨iCm.z; �/ T Tf .�i;�/ D

TLz�1

�
TRTf .�/.Yz/ � Sz�Tf .�/

�
C T Tf .��/; (4.13)

and

mX

iD1

x̨i.�; w/X lift
i;Tf .�/ �

�1X

iD1

x̨iCm.�; w/ T Tf .�i;�/ D T Tf

 
�2X

jD1

wj ĵ;�

!
; (4.14)

respectively. It is straightforward to check (cf. Proposition 4.3) that˛ D .z̨ C x̨/ W TG �
TT

�1C�2 � R
�2 �! R

n is such that the error dynamics (4.7) writes asPz D Yz. In particular,
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the auxiliary dynamics is given by

P� D �� C
�1X

iD1

z̨iCm.z; �/�i;� C
 
�1X

iD1

x̨iCm.�; w/�i;� C
�2X

jD1

wj ĵ;�

!
:

The long-term behavior is determined by the auxiliary zero dynamics obtained by settingz D 0 in
the equation above. This yields

P� D y�� C
�1X

iD1

x̨iCm.�; w/�i;� C
�2X

jD1

wj ĵ;� ; (4.15)

with

y�� WD �� C
�1X

iD1

z̨iCm.0e; �/�i;� :

Note thaty� 2 �.T TT
�1C�2/, which is second-order, is the drift vector field of the auxiliary zero

dynamics sincex̨iCm.�; 0/ equals zero by virtue of equation (4.14). Thus we have to prove thaty�
admits a metric. Note that equation (4.13) can be written as

mX

iD1

z̨i.z; �/X lift
i;TgıT�.�/ �

�1X

iD1

z̨iCm.z; �/ T Tg ı T T� .�i;�/ D

TLz�1

�
TRTgıT�.�/.Yz/ � Sz�TgıT�.�/

�
C T Tg ı T T�.��/;

By construction of the auxiliary system in (4.12),T T�.�i;�/ D ‡i;T�.�/ andT T�.��/ D ‚T�.�/
so

mX

iD1

z̨i.z; �/X lift
i;TgıT�.�/ �

�1X

iD1

z̨iCm.z; �/ T Tg
�
‡i;T�.�/

�
D

TLz�1

�
TRTgıT�.�/.Yz/ � Sz�TgıT�.�/

�
C T Tg

�
‚i;T�.�/

�
;

Thereforez̨.z; T�.�// coincides with�.z; !/ in equation (4.11), so the spray† and y� areT�-
related and, therefore, if† admits a metric onTT

�1 , y� admits aT�-induced metric onTT
�1C�2 .

�

However it is still an open problem to determine when, for a given generalized transverse
function, the resulting non-autonomous zero dynamics satisfies appropriate conditions to enable
the introduction of damping so that the velocity coordinates approach zero as time increases (see
cf. Bacciotti [1992]).

56



4.3. Rendering the zero section locally attractive via high-order averaging

4.3. Rendering the zero section locally attractive via high-order
averaging

In this section we explore the use of high-order averaging todesign time-varying feedbacks
with the objective of rendering the zero-section locally attractive for the resulting auxiliary zero
dynamics (4.9). The choice of a given transverse function plays an important role for it defines
the structure of the resulting auxiliary zero dynamics (4.9) and, consequently desirable properties
such as local accessibility. In general, the resulting zerodynamics is a second-order control system
that may be critical; therefore, dealing with asymptotic stabilization apparently calls for the use of
time-varying techniques.

High-order averaging (Sarychev [2001]; Vela [2003]) is based on the formalism of chrono-
logical calculus developed by Agrac̆hev and Gramkrelidze [1979]. In essence, the latter aims
at reducing the qualitative analysis of the flow of periodic non-autonomous (i.e., time-varying)
vector fields to the analysis of autonomous (i.e., time invariant) vector fields by means of asymp-
totic expansions. High-order averaging has proved to be useful in devising time-varying feedback
laws to asymptotically stabilize fixed points for driftlesscontrol systems and second-order systems
(see Vela [2003]). However, in typical situations, it is difficult to draw conclusions regarding the
asymptotic stability of the closed-loop system (see Sarychev [2001]).

In this section we review high-order averaging (Sarychev [2001]; Vela [2003]) and its applica-
tion to design time-varying feedbacks for stabilization ofdriftless control systems and second-order
control systems as reported by Vela [2003]. We also present an example of its application to design
time-varying control laws with the objective of making the zero-section locally attractive for the
zero dynamics of the controlled ECF for a given generalized transverse function. We also present
a numerical simulation of the closed-loop system which suggests promising results.

4.3.1. High-order averaging theory revisited.

In this subsection we summarize basic concepts of chronological calculus as presented by
Agrac̆hev and Gramkrelidze [1979] and high-order averaging theory as presented by Sarychev
[2001] and Vela [2003] with a view toward the design of time-varying feedback to render the zero
section (locally) attractive for the zero dynamics resulting from the use of GVTF. The Reader may
consult (Vela [2003]) for more details on this subject.

Consider a periodic system onR
n written in thestandard form for averaging, that is

Px D �X.x; t/; (4.16)

with X a T -periodic time-varying vector field onRn, i.e.,X. � ; t / D X. � ; t C T / for everyt 2
R, and� a “small” strictly positive real. The “classical” (first-order) average ofX (cf. Khalil
[1996]) is an autonomous vector field defined, forx 2 R

n, by SX.x/ D 1
T

R t0CT

t0
X� .x/ d� , where

X� WD X.�; �/. Under certain conditionsSX may preserve certain properties ofX . For instance,
assuming thatX is continuous and bounded and have continuous and bounded partial derivatives
up to second-order with respect tox, if x� 2 R

n is an equilibrium for (4.16) which is exponentially
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stable forSX , then there exists�0 > 0 such that for every� � �0, x� is locally exponentially stable
for (4.16).

High-order averaging (Sarychev [2001]) provides one with more general expressions for av-
eraging computed from truncates of asymptotic series expansions approximatingX� which may
determine stability for cases for which the first-order averaging is not conclusive. These asymp-
totic expansions are due to Agrac̆hev and Gramkrelidze [1979] and are based on the Volterra series
expansion of the solution of a time-varying differential equation of the form

Px.t/ D Xt.x.t//; (4.17)

whereXt is a vector field onRn for every t 2 R and where it is assumedX to be absolutely
continuous ont . (This can be generalized to the case of time-varying vectorfields on ann-
dimensional smooth manifoldM .) Agrac̆hev and Gramkrelidze [1979] address this problem by
using a formalism that is “dual” to the standard point of view. Grosso modo, the idea is to replace
a nonlinear object by a linear, although infinite-dimensional, one. For instance, a pointx 2 M

defines a linear functionalyx W C1.M/ �! R by yx.f / D f .x/ for f 2 C1.M/. In turn
a vector fieldX 2 �1.TM/ defines a linear functional�X W C1.M/ �! C1.M/ such that
�X.f /.x/ D Xx.f / for x 2 M , and a diffeomorphismP W M �! M defines an automor-
phism yP W C1.M/ �! C1.M/ of the algebraC1.M/ by . yP .f //.x/ D f .P.x// for x 2 M

andf 2 C1.M/. So, equation (4.17) corresponds to a differential equation given, in the dual
formalism, by

Pyx.t/ D yx.t/ ı �Xt : (4.18)

(For further details the Reader may consult the book of Agrac̆hev and Sachkov [2004] and the
work of Agrăchev and Gramkrelidze [1979]). The solutionyx.t/ to the differential equation above,
for a given initial condition.yx0; t0/ at timet , may be obtained by the Volterra series expansion,
which in the terminology of Agrăchev and Gramkrelidze [1979], is called the(right) chronological

exponentialof the vector fieldXt , and is denoted by�!exp
�R t
t0
X� d�

�
.

Averaging theory concerns with the existence of a (time-parameterized,) autonomous vector

field
�!
V .t0;t /.X� / 2 �.TM/ such that its flow at unit time, with initial timet 00 D 0 coincides with

the flow ofX in equation (4.17) at timet with initial time t0, i.e., such that

�!exp

�Z t

t0

X� d�

�
ı id D exp

��!
V .t0;t /.X� /

�
:

A series expansion exists for this vector field and, assumingconvergence, it is called thelogarithm
of the chronological exponential:

�!
V .t0;t /.X�/ D

1X

mD1

�!
V
.m/

.t0;t /
.X�/ D ln

�
�!exp

�Z t

t0

X�d�

�
ı id

�
: (4.19)

The term
�!
V
.m/

.t0;t /
.X� / for m D 1; : : : ;1, is called them-th variation of the identity flow corre-

sponding to the perturbation fieldX� . The Reader may consult some convergence results given by
Agrac̆hev and Gramkrelidze [1979].
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In reference to aT -periodic system in the standard form for averaging (4.16),one concerns in
obtaining anaveraged system

Pz D Z.z/; (4.20)

where the autonomous vector fieldZ is defined by

exp.ZT / D �!exp

�Z T

0

X� d�

�
ı id;

or equivalently, by

Z D 1

T
ln �!exp

�Z T

0

X� d�

�
:

Z is such that the trajectories of (4.16) coincide with the trajectories of (4.20) up to atime-periodic
diffeomorphism or flow, i.e.,x.t/ D P.t; z.t// andP.t C T; � / D P.t; �/, whereP is called the
Floquet mapping, (cf. Vela [2003]). Typically, however,Z is very difficult to compute explic-
itly, and the way to circumvent this difficulty is by using an infinite series expansion of the form

Z Š 1
T

P1
iD1 �

iƒ.i/.X� /, whereƒ.i/.X�/ D �!
V
.m/

.t0;t /
.X�/. By analyzing themth-partial sum (or

“truncate”) Truncm.Z/ D 1
T

Pm
iD1 �

iƒ.i/.X�/, one may infer some stability properties of (4.16)
for sufficiently small values of�.

The first termsƒ.1/; : : : ; ƒ.3/ may be expressed in terms of the Lie bracket (cf. Sarychev
[2001] and Vela [2003]).

ƒ.1/ D SX

ƒ.2/ D 1

2

�Z t

0

X� d�; Xt

�

ƒ.3/ D 1

2
T
h
ƒ.1/; ƒ.2/

i
C 1

3

�Z �

0

X�1
d�1;

�Z �

0

X�1
d�1; X�

��

ƒ.4/ D � 1

12

Z �

0

�Z �1

0

�Z �2

0

X�3
d�3; X�2

�
d�2; ŒX�1

; X� �

�
d�1

� 1

12

�Z �

0

�Z �1

0

�Z �2

0

X�3
d�3; X�2

�
d�2; X�1

�
d�1; X�

�

� 1

12

Z �

0

�Z �1

0

X�2
d�2;

��Z �1

0

X�2
d�2; X�1

�
; X�

��
d�1

High-order averaging of driftless control systems

In this subsubsection we give the explicit forms for the firstorder truncates of averaging, in
terms of Lie brackets and integrals of the control inputs, ofthe series approximating driftless
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control systems. Consider a driftless control system onR
n of the form

Pq D
mX

iD1

uiXi;q :

Assume thatn > m and that the system is controllable. Consider time-periodic feedback of the
form ui.q; t/ D f i.q/C vi.t=�/ for i D 1; : : :m, where the termsf i are intended to stabilize the
directly controlled variables of the state. Substitution yields

Pq D XS;q C
mX

iD1

vi.t=�/Xi;q;

whereXS D
Pm
iD1 f

i.q/Xi .q/. By making a time transformationt 7! �� we obtain a system in
the standard form for averaging:

dq

dt
D �

 
XS;q C

mX

iD1

vi.�/Xi;q

!
:

Define the following integral terms of the time-varying partof the input proposed.

V
.i/

.n/
.t/ D

Z t

t0

Z sn�1

t0

� � �
Z s2

t0

vi.s1/ ds1 : : : dsn�1:

Also defineV .i1;:::;ik/
.n1;:::;nk/

.t/ D V
.i1/

.n1/
.t/ � � �V .ik/

.nk/
.t/ for k � 1, i; ik D 1; : : : ; m and, in a similar

manner, define integrals and averages of these terms. For instanceV .
yi /

.yn/
.t/ D

R t
t0
V
.i/

.n/
.�/ d� and

V
.i/

.n/
.t/ D 1

T

R t
t0
V
.i/

.n/
.�/ d� and the difference between the integral and averaged terms by zV .i/

.n/
D

V
.i/

.n/
� V .i/

.n/
.�/. Then, the averaged system of orderm D 1; 2; 3 in the time variablet is given by

Pz D 1

�
Truncm.Z/;

where,

Trunc1.Z/z D XS.z/C V
.i/

.0/
.t/Yi.z/;
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4.3. Rendering the zero section locally attractive via high-order averaging

and assuming that the first order time averages of the inputsvi vanish, i.e.,V .i/
.0/
.t/ D 0, the second

and third order averaged truncates are given by

Trunc2.Z/z D Trunc1.Z/z C �V
.i/

.1/
.t/ ŒYi ; XS �z C 1

2
� V

.i;j /

.1;0/
.t/
�
Yi ; Yj

�
z
; (4.21)

Trunc3.Z/z D Trunc2.Z/z C �2
�
V
.i/

.2/
.t/ � 1

2
T V

.i/

.1/
.t/

�
ŒXS ; ŒXS ; Yi ��z

�1
3
�2
�
V
.bi;j /
. y1;0/

.t/ � 1

2
T V

.i;j /

.1;0/
.t/

� �
XS ;

�
Yi ; Yj

��
z

C1
3
�2
�
V
.i;j /

.1;1/
.t/C V

.bi;j /
. y1;0/

.t/ � T V .i;j /
.1;0/

.t/

� �
Yi ;
�
Yj ; XS

��
z

C1
3
�2V

.i;j;k/

.1;1;0/
.t/
�
Yi ;
�
Yj ; Yk

��
z
: (4.22)

As an example of the application of high-order averaging to intuitively design time-varying feed-
back, consider the stabilization of zero (0 2 R

3) for the chained form (3-CF).

Px1 D u1
Px2 D u2
Px3 D u1x2:

(4.23)

As above, consider a feedback lawu W R
3 � R �! R

3 of the formu.x; t/ D f .x/ C v.t=�/,
wheref involves stabilizing terms linear in the directly controlled components of the state. For
instance chooseu to be defined by

u1.x; t/ D �k1x1 C ˛ sin.t=�/
u2.x; t/ D �k2x2 C ˇ cos.t=�/;

(4.24)

where˛ andˇ are to be defined. Given that sin and cos are zero-average, periodic functions,
first-order averaging applied to (4.23)-(4.24) yields:

Px1 D �k1x1
Px2 D �k2x2
Px3 D �k1x1x2:

(4.25)

The first-order averaging is an autonomous system for which we cannot conclude stability of zero.
However, consider the second-order averaging expression:

Px1 D �k1x1
Px2 D �k2x2
Px3 D �k1x1x2 C 1

2
�˛ˇ:

(4.26)

Note that if we select̨ D �2 sign.k3x3/
p

jk3x3j andˇ D
p

jk3x3j with k3 > 0, then zero is
exponentially stable for (4.26). In fact, it can be shown, byusing homogeneity arguments, that the
feedback (4.24) with the chosen̨; ˇ, i.e.,

u1.x; t/ D �k1x1 � 2 sign.k3x3/
p

jk3x3j sin.t=�/
u2.x; t/ D �k2x2 C

p
jk3x3j cos.t=�/;

(4.27)
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applied to the3-CF yields the closed-loop system having zero as asymptotically stable equilibrium
point. Figure 4.1 shows a numerical simulation of the averaged system (4.26) with the chosen
˛ andˇ, and of the closed-loop system (4.23)–(4.27) for an arbitrarily selected initial condition
x0 D .0:4;�1:2; 1:8/ and� D 0:5.

0
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Figure 4.1: Numerical simulation for the averaged system (4.26) (left) and for the closed-loop
system (4.23)–(4.27) (right).

High-order averaging for second-order control systems

These ideas can also be used to design time-varying feedbackfor second-order systems, as
proposed by Vela [2003]. Consider the class of systems onTR

n of the form

Px D Xx C
mX

iD1

uiY lift
i;x ; (4.28)

whereX is a spray andYi , i D 1; : : : ; m, a vector field onRn. The continuous mappingui W
R
n � R �! R is assumed to have the formui.x; t/ D f i.x/ C 1

�
vi.t=�/ for i D 1; : : : ; m,

with � > 0. Following the procedure in (Vela [2003]), we rescale the time variable and consider a
truncate of the “nonlinear variation of constants” for (4.28) which yields a system in the standard
form for averaging (4.16):

Px D �

�
XS;x C V

.i/

.1/
.t/
�
Y lift
i ; XS

�
x

� 1

2
V
.i;j /

.1;1/
.t/
˝
Yi W Yj

˛lift
x

�
: (4.29)

Here,XS D X C
Pm
iD1 f

iY lift
i and the operatorh� W �i, a generalization of the notion of symmetric

product (cf. Bullo and Lewis [2005]), is given byhX W Y ilift D
�
X lift ;

�
XS ; Y

lift
��

.
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4.3. Rendering the zero section locally attractive via high-order averaging

Assuming that the first order time averages of the inputsvi vanish, i.e.,V .i/
.0/
.t/ D vi.t/ D 0,

the first and second-order averaged truncates in terms of Liebrackets and symmetric products of
the drift and control vector fields in (4.29) are

Trunc1.Z/z D XS;z C V
.i/

.1/
.t/

�
Y lift
i ; XS

�
z

� 1

2
V
.i;j /

.1;1/
.t/

˝
Yi W Yj

˛lift
z
; (4.30)

Trunc2.Z/z D Trunc1.Z/z C �

�
V
.i/

.2/
.t/ � 1

2
T V

.i/

.1/
.t/

� ��
Y lift
i ; XS

�
; XS

�
z

�1
2
�

�
V
.bi;j /
. y1;1/

.t/ � 1

2
T V

.i;j /

.1;1/
.t/

�h˝
Yi W Yj

˛lift
; XS

i
z

C1
2
�V

.i;j /

.2;1/
.t/
��
Y lift
i ; XS

�
;
�
Y lift
j ; XS

��
z

C1
2
�

�
V
.i;j;k/

.2;1;1/
.t/ � 1

2
T V

.i/

.1/
.t/V

.j;k/

.1;1/
.t/

� ˝
Yi W

˝
Yj W Yk

˛˛lift
z
: (4.31)

Suppose that the objective is to render the zero-section locally attractive (as the final objective for
the non-autonomous zero-dynamics (4.9)). The rationale todesignui.x; t/ for system (4.28) is to
setf i.x/ such that it stabilizes the state components that are “directly controlled.” The inputsvi

are chosen as zero-average functions oft , e.g. a sin.!t/ C b cos.2!t/, wherea andb are to be
designed in terms ofz in order to render the zero-section locally attractive. This idea is exemplified
next with the aim of rendering the zero-section locally attractive for the3-ECF (3.4). Assume that
the time-varying feedback considered is of the form

u1.x; t/ D �k1;2x4 C 1

�
˛1;1 sin.t=�/

u2.x; t/ D �k2;1x2 � k2;2x5 C 1

�
˛2;1 sin.t=�/:

(4.32)

The first-order averaged system is given by

Px1 D x4

Px2 D x5

Px3 D x6

Px4 D �k12x4
Px5 D �k21x2 � k22x5
Px6 D �k12x2x4 � 1

2
˛1;1˛2;1:

(4.33)

It is thus clear that, in order to have the velocity variablesx4; x5 andx6 asymptotically approaching
zero for the averaged system, a possible choice for˛1;1, ˛2;1 is

˛1;1 D k32sign.x6/
p

jx6j
˛2;1 D

p
jx6j:

(4.34)
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Figure 4.2: Numerical simulation for the3-ECF under the feedback (4.32)-(4.34).

The Figure 4.2 shows a numerical simulation for the averagedsystem (4.33) with̨ 1;1 and˛1;2
given by (4.34) andk12 D 1:0, k21 D 1:0, k22 D 1:0, k32 D 0:6. The initial condition is
x0 D .1:6;�3; 2; 0:5;�1;�2/. The Figure 4.3 shows numerical simulations for the3-ECF (3.4)
under the time-varying feedback (4.32), with˛1;1 and˛2;1 given by (4.34), for two different values
of �. The values of the parametersk12; k21; k22 andk32 and the initial condition are the same than
in the simulation of Figure 4.2. In the upper two plots of Figure 4.3� D 1:0 and in the lower
two plots� D 0:1. One may observe that the zero-section is attractive. It is important to remark
that, although high-order averaging is a technique that canbe used to heuristically design time-
varying feedback as shown in the examples above, it is not easy to draw conclusions concerning
the stability properties of the closed-loop system.

4.3.2. Application of high-order averaging to the ECF

In this section we illustrate the application of GVTF, alongwith averaging techniques, to ex-
amine the possibility of rendering the zero-section ofTT

�1 � TT
�2 locally attractive under the

zero dynamics. Although stabilizing only a subset, e.g. thezero-section, of the state manifold may
seem more relaxed an aim than stabilizing a point, it should be kept in mind that the zero dynam-
ics in the form (4.10) may be critical in the sense that it may not satisfy analogous conditions to
Brockett’s condition for the stabilization of a set via pure-state static feedback.

Consider the3-dimensional Extended Chained Form (ECF), a SMS with state.x; Px/ evolving
onTR

3 ' R
6 (also analyzed under the VTFA in Section 3.4) given by:

Px D Sx C u1X
lift
1;x C u2X

lift
2;x; (4.35)

whereSx D x4 @=@x
1 C x5 @=@x

2 C x6 @=@x
3 is the geodesic spray given by the Euclidean metric

on R
3 andX lift

1;x D @=@x4 C x2 @=@x
6, X lift

2;x D @=@x5 are the control vector fields onTR
3 ' R

6.
Since the setfX1; X2g satisfies the LARC ate D 0 2 R

3, there exists a transverse function neare,

64



4.3. Rendering the zero section locally attractive via high-order averaging

0

0 5 10 15 20 25 30

2:0

1:0

�1:0

�2:0

�3:0

�4:0

Configuration variables.x1; x2; x3/

Time history

x1

x2

x3

0

0 5 10 15 20 25 30

2:5

2:0

1:5

1:0

0:5

�0:5

�1:0

�1:5

�2:0

Velocity variables.x4; x5; x6/

Time history

x4

x5

x6

0

0 5 10 15 20 25 30

3:0

2:0

1:0

�1:0

�2:0

�3:0

�4:0

Configuration variables.x1; x2; x3/

Time history

x1

x2

x3

0

0 5 10 15 20 25 30

3:0

2:0

1:0

�1:0

�2:0

�3:0

�4:0

Velocity variables.x4; x5; x6/

Time history

x4

x5

x6

Figure 4.3: Numerical simulation for the3-ECF under the feedback (4.32)-(4.34).
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an instance of which is the mapf W T �! R
3 given by

f .�/ D
�
" sin.�/; " cos.�/;

1

4
"2 sin.2�/

�
; " > 0: (4.36)

Note that, by taking" sufficiently small,f .T / may be made to lie in an arbitrarily predefined
neighborhoodU of e. A GTF g1 W T � T �! R can be constructed by definingg1.�/ D
f .�2/ � f .�1 C �2/

�1 for � D .�1; �2/ 2 T � T . Explicitly one has

g1.�1; �2/ D
�
".s.�1 C �2/ � s.�2//; ".c.�1 C �2/ � c.�2//;

"2

4
.s.2�2/C s.2�1 C 2�2// � "2

2
.s.2�2 C �1/C s.�1//

�
:

It is readily verified thatg1 satisfies the conditions given in Definition 4.1, hence, it isa GTF
for (4.35). Consider the auxiliary control systemR�1 D u3; R�2 D u4 on TT � TT . Define
an error signalz D x � Tg1.�; !/�1, where! D P� . Given a second-order vector field, say
Sd .z/ D .z4; z5; z6;�z1 � z4;�z2 � z5;�z3 � z6/, by Proposition 4.3 there exists a unique feed-
back law.u1.x; �; !; u4/; u2.x; �; !; u4/; u3.x; �; !; u4// which sets the error dynamics equal to
Pz D Sd .z/. Thus, in closed-loop, the trajectoryz.t/ approaches zero exponentially, which in turn
forces the statex.t/ to approachesTg1.�; !/, forcing, in turn, the configuration trajectories to
ultimately enter a neighborhood ofe. The zero dynamics, however, must be analyzed to determine
the evolution of the fiber-coordinates. Moreover, the trajectories should be made to converge to the
zero-section. The resultingcontrolledzero dynamics is given by� P�1

P�2
P!1
P!2

˘
D

�
!1
!2

�1.�; !/

0

˘
C

�
0

0

�2C 2 c.�1/
1

˘
u4; (4.37)

where

�1.�; P�/ D �s.2�1 C 2�2/ P�21 � 2 s.2�1 C 2�2/ P�1 P�2 � 2 s.�1/ P�1 P�2 C 2 s.�1 C 2�2/ P�1 P�2
�s.2 �2/ P�22 C 2 s.�1 C 2�2/ P�22 � 2 s.2�1 C 2�2/ P�22 :

Consider an input of the form

u4.!; t/ D �k2!2 C 1

�
.˛1;1s.t=�/C ˛1;2c.t=�/C � � � C ˛n;1s.n t=�/C ˛n;2c.n t=�// ;

with k2 > 0. Computing the truncated expressions for averaging, at least forn � 4, the lineariza-
tion of the truncated first order averaged system is of the form

Pz1 D z3

Pz2 D z4

Pz3 D a1;1.z/ ˛1;1
2 C a1;2.z/ ˛1;2

2 C � � � C an;1.z/ ˛n;1
2 C an;2.z/ ˛n;2

2

Pz4 D �k2z4;
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4.3. Rendering the zero section locally attractive via high-order averaging

where the termsai;j are sums of sines and cosines of functions ofz1 andz2. Note, however, that it
is impossible to solve for̨1;1 and˛1;2 in terms ofz if one wishes to obtain, say,Pz3 D �k1z3.

By examining next the truncated expression for second orderaveraging, settingu4 as in (4.3.2),
with n D 1, we end up with a system that is no longer second-order. To preserve the second-order
nature, one may chooseu4 D �k2z4 C ˛1;2c.t=�/. However, the application of such input yields
Pz3 D a1;2.z/˛

2
1;2 leading, in turn, to the impossibility of designing̨1;2 to make the zero-section

locally attractive.
The choice of a GTF may be essential to determine properties of the resulting zero dynamics,

such as accessibility. Therefore, alternative GTFs may yield a controlled zero dynamics which
allows one to achieve the required goals. Consider, for instance, the GTF defined onT3 given by

g.�/ D
�
"s.�1=2/C "s.�3/; "c.�1=2/;

1

4
"2s.�1/C "2s.�2/

�
: (4.38)

The resulting controlled zero dynamics is

� P�
P!

�
D S.�;!/ C

0
BBBBBB@

0

0

0

4c.�2/
1

0

1
CCCCCCA
u4 C

0
BBBBBB@

0

0

0

�4c.�1=2/c.�3/
0

1

1
CCCCCCA
u5; (4.39)

where S.�;!/ D .!1; !2; !3; �.�; !/; 0; 0/ and �.�; !/ D �1=2 s.�1/!21 � 4 s.�2/!22 C
4 c.�1=2/s.�3/!23 . The unlifted control vector fields of (4.39),X1;� D 4 c.�2/ @=@�1 C @=@�2

andX2;� D �4 c.�1=2/c.�3/ @=@�1 C @=@�3 satisfy the LARC at every point inT3 except, pos-
sibly, at points in a subset of measure zero. Hence, depending on the drift vector fieldS , we may
expect (4.39) to be accessible at generic points.�; !/ in TT

3.

u4 D �k2z2 � k5z5 C 1=� ˛ s.t=�/

u5 D �k3z3 � k6z6 C 1=� ˇ s.t=�/;
(4.40)

applied to system (4.39), is given by

Pz1 D z4

Pz2 D z5

Pz3 D z6

Pz4 D a.z; ˛; ˇ/

Pz5 D �k2z2 � k5z5

Pz6 D �k3z3 � k6z6;
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where the terma.z; ˛; ˇ/ is given by

a.z; ˛; ˇ/ D �1
2
s.z1/z4

2 � 4 s.z2/z5
2 C 4 c.z1=2/s.z3/z6

2 � 4 k2z2c.z2/ � 4 c.z2/k5z5

C4 k3z3c.z1=2/c.z3/C 4 c.z1=2/c.z3/k6z6 � 4 ˛2s.z1/c
2.z2/

�4 ˛ ˇ c.z2/s.z1=2/c.z3/C 8 ˛ ˇ c.z2/s.z1/c.z1=2/c.z3/

C4 ˇ2s.z1=2/c2.z3/c.z1=2/ � 4 ˇ2c2.z1=2/c2.z3/s.z1/:

Observe that ifk2; k5; k3 andk6 are strictly positive, then the components of the statez2; z5; z3
andz6 converge to zero exponentially. Hence we may focus on componentsz1 andz4 of the first
order average truncate, under the assumption that the remaining components equal zero, namely

Pz1 D z4

Pz4 D �1
2
s.z1/z

2
4 � 4˛2 s.z1/C 4˛ˇ s.3z1=2/� ˇ2 s.2z1/:

(4.41)

It is not intuitively evident how to design̨ andˇ as functions ofz such thatz4 converges to zero.
However, we may set them such thatPz4 is quadratic inz4, and such that the term that involves the
product˛ˇ in (4.41) introduces “dissipation.” For example, consider

˛ D �k1 s.3z1=2/sign.z4/z4;
ˇ D k4z4;

(4.42)

with k1; k4 strictly positive. A numerical simulation with appropriately fixed parameters�,
k1; : : : ; k6, suggests that the zero-section is locally attractive. However, at present, we have no
proof of the attractiveness of the zero-section.
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4.3. Rendering the zero section locally attractive via high-order averaging

Furthermore, numerical simulations for thecompound system with control feedback
.u1; u2; u3/.z; �; !; u4; u5/ designed using the generalized vertically transverse function associ-
ated with (4.38), and.u4; u5/.z; t/ designed by means of high-order averaging in equations (4.40)
and (4.42), suggest that the zero-section is locally attractive. Indeed, the simulation shown in the
figure below is representative of the qualitative behavior exhibited by the compound system with
different initial conditions. As depicted, the configuration components seem to enter a prescribed
bounded neighborhood ofe whereas the velocities seem to vanish asymptotically.
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Chapter 5

Concluding Remarks and possible Future
Research

In this dissertation we develop and analyze a theoretical framework to address stabilization of
configurations for second-order systems on tangent Lie groups. In particular, we are interested in
control systems arising from the Euler-Lagrange formulation for mechanical systems. Stabilization
of this class of systems happens to be nontrivial, given thatthis class encompasses possibly con-
strained, underactuated mechanical systems. Within this class one may encounter systems that are
not kinematic reductions of mechanical systems, systems whose linearization at equilibria are non-
controllable, and control systems that cannot be stabilized by means of continuous state feedback.
Examples of such systems include underactuated mechanicalmanipulators, rigid body systems in
space, wheeled vehicles and underactuated underwater vehicles. It is interesting to remark that
these control systems are control-affine systems for which the drift vector field plays a key role in
determining important properties, such as local accessibility.

The framework analyzed in this thesis (initially proposed by Sosa [2005] and described in
Chapter 2 of this thesis) is intended to provide an extensionof the stabilization procedure pro-
posed by Morin and Samson [2003] to deal with the practical stabilization of configurations for
second-order systems. The main contributions of the thesis(Chapters 3–4) center on two important
issues. First, in analyzing the closed-loop zero dynamics to assess the long-term behavior of the
trajectories of the closed-loop system and, second, in modifying the proposed control algorithm
with the objective ofshapingthe zero-dynamics trajectories to obtain stability results urged by
practical applications. However, the analysis done is not conclusive towards the developing of a
unified and systematically applicable theoretical framework to address configuration stabilization
for general mechanical system via vertically transverse function, given that the remaining problems
may result involved and possibly untractable.

5.1. Conclusions

The existence of a (Morin–Samson) transverse functionf W T
� �! G for a set of vector fields

X D fX1; : : : ; Xmg � �.TG/ near a pointq 2 G is equivalent to the local accessibility ofX at
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that point, as shown by Morin and Samson [2003].
Vertical transversality is a direct consequence of Morin–Samson transversality in the sense that

the tangent mapping of every Morin–Samson transverse function Tf W TT
� �! TG is verti-

cally transverse. Based on this property we develop a control methodology intended to practically
stabilize configurations for second-order systems evolving on tangent Lie groups.

The procedure of application is as follows. First, we attachan auxiliary system to thetar-
get system. This auxiliary system is itself a “completely actuated” second-order control system
evolving on the tangent bundle of the�-dimensional torusTT

� . Then, based on the tangent Lie
group composition, we define an error function whose derivative along the trajectories of the target
and auxiliary system satisfies a second-order differentialequation and can be assigned arbitrarily
by means of smooth feedback depending on the state of the composite system (target-auxiliary
system).

In particular, we make the error dynamics to admit zero as an asymptotically stable equilibrium
point. If the initial conditions of the target system do not belong to the image of the vertically
transverse function, (i.e., if the initial error is different from zero), the feedback effect is to force
the target trajectories to asymptotically approach the image of the vertically transverse function.
This entails that the bundle projection of the target trajectories�G.x.t//, i.e., the configuration
variables, which in a mechanical system represent positions and orientations, ultimately enter into
a prespecified neighborhood of the desired configuration.

On the other hand, if the target system has initial conditions in the image of the vertically
transverse function, i.e., if the initial error is zero, then the effect of the feedback on the target
system may be interpreted, as “forces” that holonomically constrain the target system. These
forces may not satisfy d’Alembert principle and so they may introduce non-zero energy into the
zero dynamics.

In general, it is difficult to determine whether the closed-loop composite system is positive
complete i.e., whether its solutions are defined for every instant time after the initial time. In fact,
the velocity variables may grow unbounded or even escape in finite time. In order to single out
conditions to ensure stability of the closed-loop system and, therefore, boundedness of the trajec-
tories, one is compelled to study the zero dynamics, that is,the dynamics obtained by restricting
the error to be identically zero.

We prove that the resulting control inputs in zero dynamics,the zero-error feedback, has a
particular structure. First, the target and auxiliary zerodynamics are related, so it suffices to study
the auxiliary dynamics to draw conclusions on the target zero dynamics. Moreover, the auxiliary
zero dynamics is an affine connection system that preserves the structure of the target system, that
is, the zero dynamics is defined by the sum of a spray† 2 �.T TT

�/ and a vertical vector field
… 2 �..T TT

�/vert/. In particular, this structure may be regarded as that of a mechanical system
with the sum of a spray—having terms quadratic in the velocities—plus a vertical vector field that
may arise from the gradient of a potential energy function.

The spray† defines a torsionless connection. In the general case, the latter is not the Levi-
Civita connection of any metric, for most torsionless connections are not Levi-Civita given the
overdetermined nature of the necessary conditions (cf. Eisenhart and Veblen [1922]). However,
the situation when the zero dynamics admits a Riemannian metric is of interest for, in that case,
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one may establish positive completeness of the zero dynamics; indeed, every compact (pseudo–)
Riemannian manifold, e.g.T � , is geodesically complete (Kobayashi and Nomizu [1996]).

Although at the present there is not an easily computable characterization of when a given tor-
sionless connection admits a metric, in the case when the target system is underactuated by one
control, we establish necessary and sufficient conditions for the existence of a (pseudo–) Rieman-
nian metric.

Considering that the target system is underactuated by one or more controls, and assuming
that the zero dynamics admits a (pseudo–) Riemannian metric, we prove stability of the closed-
loop system controlled by feedback laws based on verticallytransverse functions. This is done by
defining a positive-definite functionK W TG�TT

� �! R which is invariant along the trajectories
of the zero dynamics and proving that its trajectories remain bounded. This is rather involved given
the topology ofT � , which is not simply connected, and therefore more than one chart would be
necessary to cover it and carry out computations in coordinates. An approach based in coordinates,
however, would rise some issues at the moment of gluing the local results to give the global one. An
alternative method is presented in this thesis which extends the dynamics to a covering manifold
and then establishes global uniform stability of the zero-section.

We also propose the use of tangent mappings of generalized transverse functions in order to
provide the zero dynamics with additionalcontrol inputsthat may be designed in order to make
the velocities converge to zero. Roughly speaking, a generalized transverse function first defined
by Morin and Samson [2004], is a transverse function which depends on additional parameters.
We present a straightforward generalization of the VTFA forthe case of vertically transverse func-
tions derived from generalized transverse functions. The interest in this class of functions is that
its application to control leads tonon-autonomouszero dynamics with additional control inputs
which may be used to influence the behavior of the trajectories in zero dynamics. The central
objective is to design these additional control inputs in order to make the zero-section of the zero
dynamics asymptotically stable or, at least, locally attractive. We prove that if the VTFA yields a
zero dynamics admitting a metric, then there is a generalized transverse function that results in a
non autonomous zero dynamics that also admits a metric. We explore the use of high-order aver-
aging as presented by Vela [2003] in order to design time-varying feedback to force the velocities
to asymptotically approach zero. Particulary, we develop an example for the3-ECF for which the
numerical simulations presented show promising results.

5.2. Future Research

The main problem of practical point stabilization with asymptotically vanishing velocities re-
mains to be solved in the general case under the control methodology proposed. Additional open
problems include that of finding an associated metric for thezero dynamics, and constructing gen-
eralized transverse functions that lead to non-autonomous, accessible zero dynamics with sprays
that admit metrics. When addressing the study of these problems, however, a number of interesting
subproblems arise in a natural way. The following are possible directions for future work directly
related with the proposed control approach.
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Given that most torsionless affine connections are not Levi-Civita, a possible line of research
is to study conditions on transverse functions which yield zero dynamics that admit metrics.

It seems that specific choice of a generalized transverse function is very important in defining
the structure of the resulting non-autonomous zero dynamics. Therefore, it is of interest to
study the relation between a given generalized transverse function and the accessibility of
the resulting zero dynamics.

The adaptation of the proposed methodology to tackle practical trajectory stabilization for
mechanical systems. However this cannot be immediately done given that there are hard
issues to be answered for its application to point-stabilization.
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Appendix

This Appendix is intended to fix the notation and to introducebasic notions from differential
geometry, the Lagrangian formulation of mechanical systems, and control theory. The Reader may
consult the following references for further details on these topics.

Differential Geometry:

Warner [1983], Kobayashi and Nomizu [1996], Boothby [2003], Grifone [1972], Godbillon
[1971], Hatcher [2001], Hatcher [2003].

Mechanical Systems:

Bullo and Lewis [2005], Abraham and Marsden [1985].

Control Theory :

Nijmeijer and van der Schaft [1991], Isidori [1995].

Differential-geometric notions

We shall refer to objects of classC1 assmoothor differentiable. All manifolds, mappings,
vector fields and related constructs are assumed to be smoothunless otherwise stated. We shall
sometimes use Einstein summation convention to shorten notation, that is, repeated, doubled in-
dices in quantities multiplied together are implicitly summed. For exampleaibi for i D 1; : : : ; n

denotes the sum
Pn
iD1 aib

i .

LetQ be a Hausdorff, paracompactn-dimensional manifold. For each pointq inQ we denote
byTqQ thetangent space ofQ at q. The first and second tangent bundles ofQ are denoted byTQ
andT TQ respectively, and their projections onto the base spaces by�Q W TQ �! Q and�TQ W
T TQ �! TQ. Given two manifoldsQ andP , and a mapf W Q �! P , we denote thetangent
map off at q 2 Q byTqf W TqQ �! Tf .q/P and byTf W TQ �! TP the bundle map covering
f . A mappingf W Q �! P defines a unique, up to isomorphism vector bundle overQ, f �.TP /

called thepullback bundle byf defined byf �.TP / D f.q; v/ 2 Q � TP W f .q/ D �P .v/g with
bundle projection� W .q; v/ 7! q along with the differentiable structure naturally inherited.
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A map f W Q �! P between topological spaces is said to beopenat q 2 Q if for any
neighborhoodU of q, f .U/ is a neighborhood off .q/. The set of vector fields onQ (respectively
TQ) is denoted by�.TQ/ (respectively�.T TQ/). Given a vector fieldX , we write eitherXq or
X.q/ to denote its value at a pointq. Let X D fX1; : : : ; Xmg � �.TQ/. Lie.X/ denotes the Lie
algebra generated by the setX . Let f W Q �! P be a map between manifolds andX , Y vector
fields onQ andP respectively.X is said to bef -related toY if Y ı f D Tf ıX . A coordinate
chart onQ is denoted by.U; q/ whereU is an open set inQ andq D .q1; : : : ; qn/ W U �! R

n

is a homeomorphism. Given any such chart there are naturallydefined coordinate charts onTQ
and onT TQ (see Warner [1983]), defined on��1

Q .U / and on��1
TQ ı ��1

Q .U /, respectively. These
coordinate charts are denoted by.q; Pq/ D .qi ; Pqi/ and by.q; Pq; ˛L; ˛H / D .qi ; Pqi ; ˛iL; ˛iH / and are
referred to asnatural coordinates induced by.U; q/ on TQ andT TQ respectively. We letr D
.r1; : : : ; rn/ denote the canonical coordinates onR

n. A parallelizablen-dimensional manifold
is ann-dimensional manifold that admits a global frame, i.e., onefor which there exists a set of
n, linearly independent vector fieldsX D fX1; : : : ; Xng � �.TQ/ such thatXq D TqQ at any
q 2 Q. It is straightforward to see that ifQ is parallelizable thenTQ is parallelizable.

Thezero-sectionof a tangent bundleTQ is the subbundle, denoted byZ.TQ/, of zero-vectors
in TQ; as an embedded submanifold, it is diffeomorphic toQ. T

� denotes the�-dimension torus.
As an instance of an “angular” coordinate system.U; �/ on T ' S1 � R

2 take for example
U D S1 n f.0; 1/g and�.p/ D 2 arctan. p1

1�p2
/.

A vector fieldX 2 �.T TQ/ is said to besecond-orderif T�Q ı X D idTQ. In natural
coordinates,X 2 �.T TQ/ is second-order iffX.q; Pq/ D .q; Pq; Pq;XH .q; Pq//. This notion may be
extended to vector fields along a curve inTQ as follows. LetX be defined on the image of a curve

 W .t0; t1/ �! TQ, thenX is second-order along
 if for every t 2 .t0; t1/, T�Q

�
X
t

�
D 
t .

Givenv 2 TQ, thevertical space overv is the subset ofTvTQ given byTvTQvert D f˛ 2
TvTQ W Tv�.˛/ D 0g. The disjoint union of the spacesTvTQvert, v 2 TQ, with the differentiable
structure naturally induced byT TQ, is called thevertical subbundleof T TQ and is denoted by
T TQvert. A vertical vectoris an element̨ 2 T TQvert. In natural coordinates a vertical vector,˛,
is written as̨ D .q; Pq; 0; ˛H /. A sectionX 2 � .T TQvert/ of the vertical subbundle is said to be
a vertical-valued(or simplyvertical) vector field onTQ. By definition,X 2 �.T TQ/ is vertical
iff T�Q ıX D 0.

Givenv; w 2 TQ with�Q.v/ D �Q.w/ the vector inTvTQ defined by lift.v; w/ D d
dt

ˇ̌
tD0

.vC
tw/ is called thevertical lift of w by v. In natural coordinates, ifv D .x; Px/ andv D .x; Py/ then
lift .v; w/ D .x; Px; 0; Py/. Thevertical lift of a vector fieldX onQ is a vector field onTQ given
byX lift .v/ D lift .v; X�Q.v//. LetX be expressed in natural coordinates byX.q/ D .q; yX.q/ then
X lift .q; Pq/ D .q; Pq; 0; yX.q//.

The Liouville vector fieldC onQ is defined byC.v/ D lift .v; v/. The canonical almost
tangent structureJ on Q is defined byJ.X/v D lift .v; T�Q ı Xv/. So defined,J satisfies
ŒC; J � D �J . A sprayX is a second-order vector field satisfyingŒC; X� D X . In natural
coordinates,X 2 �.T TQ/ is a spray iffX.q; Pq/ D .q; Pq; Pq;XH .q; Pq// and the componentsX i

H

are quadratic in the coordinatesPq, i.e.X i
H .q; Pq/ D �i

j;k
.q/ Pqj Pqk for some functions�i

j;k
2 C1.Q/,

i; j; k D 1; : : : ; n. Alternatively, letX 2 �.T TQ/. It is then readily verified thatX is second-
order iff J.X/ D C andX is vertical iff J.X/ D 0. If Y 2 �.TQ/, then

�
C; Y lift

�
D �Y lift .
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An .r; s/-tensor (field) t overQ is anr-times contravariant,s-times covariant tensor field on
Q, i.e., t is a section of the tensor bundleT rs .TQ/ WD Nr

iD1 TQ ˝ Ns
iD1 T

�Q. Let f; g 2
C1.Q/ andX;X

0

; Y; Y
0

; Z � �.TQ/. An affine connectionr on a manifoldQ is a mapping
�.TQ/ � �.TQ/ �! �.TQ/ denoted byr W .X; Y / 7! rXY which satisfiesa) rfXCgX 0Y D
f .rXY / C g .rX 0Y / andb) rX

�
f Y C gY

0
�

D f .rXY / C g
�
rXY

0
�

C .Xf / Y C .Xg/ Y
0

.
GivenX 2 �.TQ/, the object defined byrX W Y 7! rXY is known as thecovariant derivative of
Y alongX .

Let .@qi / denote the natural coordinates for the tangent space induced by .qi/ and letX; Y
be vector fields onQ with coordinate representationX.q/ D .qi ; yX i.q/@qi / and Y.q/ D
.qi ; yY i.q/@qi / respectively. Then, in coordinates,rXY.q/ D .qi ; @ yY i=@qj yXj C � i

j;k
.q/ yXj yY k/,

where� i
j;k

are called theChristoffel symbolsassociated withr and are defined byr@
qj
@qk D

� i
j;k
@qi . By following related conditions toa) andb) given above, it can be defined the covariant

derivative of arbitrary-type tensors overQ.
LetX; Y;Z be vector fields onQ. Thetorsion tensorT is a.1; 2/-tensor defined byT .X; Y / D

rXY � rYX � ŒX; Y �. Thecurvature tensoris a .1; 3/-tensor given byR.X; Y /Z D rXZ �
rYZ� rŒX;Y �Z. In natural coordinates the componentsT i

jk
D � i

jk
�� i

kj
andRi

ijk
D @� i

lj
=@xk �

@� i
kj
=@xl C

P
m.�

m
lj
� i
km

� �m
kj
� i
lm
/ are defined byT .@xj ; @xk/ D T i

jk
@xi

andR.@xk ; @xl /@xj D
Ri
jkl
@xj .

A pseudo-Riemannian metricg onQ is a symmetric, non-degenerate.0; 2/-tensor overQ.
In terms of a local coordinate chart, a.0; 2/-tensor given byg D gijdx

idxj is symmetric iff
gij D gj i , and is non-degenerated iff the matrixgij is invertible. A Riemannian metricis a
pseudo-Riemannian metric which also satisfies positive-definiteness, that isg.v; v/ > 0 for every
nonzerov 2 TQ. A manifold together with a given Riemannian (respectivelypseudo-Riemannian)
metric .Q; g/ is said to be a Riemannian (respectively pseudo-Riemannian) manifold. For every
(pseudo-) Riemannian manifold.Q; g/ there exist canonical mappings[ W TQ �! T �Q and
] W T �Q �! TQ, calledflat and sharp respectively, which are defined byv[ D g.v; �/ for
v 2 TQ, and by] D [�1.

LetQ andP be Riemannian manifolds with Riemannian metricsg andh andf W Q �! P

an immersion.f is said to beisometric(or alternatively an isometry) ifg.X; Y / D h.f�X; f�Y /

for all X; Y 2 �.TQ/.
If g 2 T 02 .TQ/ is a (pseudo–) Riemannian metric, there exists a unique affine connection onQ

such that the torsion tensor equals zero and that parallel translation with respect to this connection
is an isometry. This metric is called theLevi-Civita connection(or themetric connection). In local
coordinates, the Christoffel symbols� i

jk
of a Levi-Civita connection are defined by

� ijk D 1

2
gil

�
@gjl

@qk
C @gkl

@qj
� @gjk

@ql

�
:

A curve
 W Œt0; t1� �! Q is said to be a geodesic ifr
 0.t/

0.t/ D 0. The geodesic spray of a

metric connectionr is a second-order vector fieldS 2 �.T TQ/ such that the solutions to the
differential equationPx D Sx are geodesics. In local coordinates.qi ; Pqi/ for TQ, the geodesic
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spray is defined by

S.q; Pq/ D .qi ; Pqi ; Pqi ;�� ij;k.q/ Pqj Pqk/:

Tangent Lie groups

Assume thatG is a Lie group with group composition denoted byb�. We write yLa; yRa W G �!
G to denote the left and right translations bya on G, respectively. The identity element fory�
is denoted bye 2 G. A vector fieldX onG is said to be left-invariant ifXgh D T yLg.Xh/ for
all g; h 2 G. The set of left-invariant vector fields onG together with the Lie bracket form a
Lie algebrag, which is isomorphic toTeG. The tangent bundleTG, with composition given by
�.x; y/ D T yL�G.x/.y/ C T yR�G.y/.x/, is also a Lie group, usually referred to as thetangent Lie
group of G. The identity element, under this composition, is0e 2 TeG (the zero vector inTeG).
The inverse elementv�1 D �T yL

�G.v/
�1 ı T yR

�G.v/
�1.v/ 2 T

�G.v/
�1G. We letLv; Rv W TG �!

TG denote the left and right translations byv 2 TG, respectively. Sometimes we usex � y or xy
in place of�.x; y/.

Control systems

Let X be a vector field onQ and t 7!  .x0;t0/.t/ the solution of the differential equation
Px D Xx with initial condition x0 2 Q, t0 2 R. The vector fieldX is said to becompleteif
for every t 2 R and for everyx0 2 Q, t0 2 R,  .x0;t0/.t/ is defined.X is said to bepositive-
completeif  .x0;t0/ are defined for everyt 2 R>0. Given a subsetU of Q, the vector fieldX is
said to beU -positive completeif for every t0 2 R, x0 2 U the trajectories of the systemPx D Xx,
t 7! �.t; t0; x0/ are defined for everyt in Œt0;1/.

Let X D fX1; : : : ; Xmg � �.TQ/ andq 2 Q. X is said to satisfy the LARC (Lie Algebra
Rank Condition) at q if TqQ D span

R
.Lie.X/q/, namely, ifX is completely nonintegrable. The

driftless systemPx D
Pm
iD1 u

iXi;x is said to satisfy the LARC atq if X satisfies the LARC at
q. An affine-control systemPx D Dx C

Pm
iD1 u

iXi;x is said to satisfy the LARC at a pointq if
the distribution spanned byfD;X1; : : : ; Xmg is completely nonintegrable atq. A second-order
(control-affine) systemonTQ is a systemPv D Sv C

Pm
iD1 u

iYi;v whereS 2 �.T TQ/ is second-
order andfY1; : : : ; Ymg � �.T TQvert/. A second-order system is said to be anaffine-connection
control systemif S is the geodesic spray of some affine connectionr. For such a control system,
if r is the Levi-Civita connection for a given (pseudo-) Riemannian metric the system is said to
admit a (pseudo-) Riemannian metric.

A simple mechanical system (SMS), (Bullo and Lewis [2005]), is a system onTQ defined by
a Riemannian metricg onQ, a real-valued functionV W Q �! R called potential function and a
set ofm � n, 1-forms,F D fF1; : : : ; Fmg, whose elements represent forces or torques exerted on
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the system. In natural coordinates.qi ; Pqi/ for TQ, the equations of motion are given by

d

dt

@L

@ Pqi .q; Pq/ � @L

@qi
.q; Pq/ D

mX

jD1

ujF ij .q/; i D 1; : : : ; nI

whereL W TQ �! R, which is called theLagrangian function of the system, is defined by
L.v/ D 1

2
g�Q.v/.v; v/� V.�Q.v//. The coordinate-free expression is given by

Pv D Sv C
mX

iD1

uiY lift
i;v

where the drift vector fieldS D Sg � .dV ]/lift is the sum of the geodesic spray associated with
the Riemannian metricg, and minus the vertical lift of vector field corresponding tothe poten-
tial function. The control vector fieldsY lift

i are vertical lifts of the vector fields given by.F i/].
A particular case of SMS is when the Lagrangian is defined onlyby the kinetic energy, i.e.,
L.v/ D g�Q.v/.v; v/, then the drift vector field coincides with the geodesic spray associated to
the Riemannian metricg. In such a case the system is said to be aSMS with zero potential energy.
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