

INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.

POSGRADO EN CIENCIAS EN BIOLOGIA MOLECULAR

Identificación del sitio de inserción del transgén en los ratones Δ-202

Tesis que presenta

Merit Mendoza Torres

Para obtener el grado de Maestra en Ciencias en Biología Molecular

> Codirectores de la Tesis: Dr. Luis Antonio Salazar Olivo Dr. Rubén Hipólito López Revilla

> > San Luis Potosí, S.L.P., Agosto de 2004.

Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Acta de Examen de Grado

COPIA CERTIFICADA

El Secretario Académico del Instituto Potosino de Investigación Científica y Tecnológica, A.C., certifica que en el Acta 006 del Libro Primero de Actas de Exámenes de Grado del Programa de Maestría en Ciencias en Biología Molecular está asentado lo siguiente:

En la ciudad de San Luis Potosí a los 13 días del mes de agosto del año 2004, se reunió a las 10:00 horas en las instalaciones del Instituto Potosino de Investigación Científica y Tecnológica, A.C., el Jurado integrado por:

Dr. Luis Antonio Salazar Olivo	Presidente	IPICYT
Dr. Carlos Barajas López	Secretario	IPICYT
Dr. Rubén Hipólito López Revilla	Sinodal	IPICYT

a fin de efectuar el examen, que para obtener el Grado de:

MAESTRA EN CIENCIAS EN BIOLOGÍA MOLECULAR

sustentó la C.

Merit Mendoza Torres

sobre la Tesis intitulada:

Identificación del sitio de inserción del transgén en los ratones delta-202

que se desarrolló bajo la dirección de

Dr. Luis Antonio Salazar Olivo Dr. Rubén Hipólito López Revilla

El Jurado, después de deliberar, determinó

APROBARLA

Dándose por terminado el acto a las 12:15 horas, procediendo a la firma del Acta los integrantes del Jurado. Dando fé el Secretario Académico del Instituto.

A petición de la interesada y para los fines que a la misma convengan, se extiende el presente documento en la ciudad de San Luis Potosí, S.L.P., México, a los 13 días del mes agosto de 2004.

La presente tesis de maestría en ciencias en la especialidad de biología molecular fue elaborada por Merit Mendoza Torres y aprobada el 6 de agosto de 2004 por los suscritos, designados por el Colegio de Profesores del Departamento de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Dr. Rubén López Revilla

NÒ Dr. Luis Salazar Olivo

Dr. Carlos Barajas López

Esta tesis fue elaborada en el Laboratorio de Biotecnología Médica y Pecuaria del Departamento de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Rubén López Revilla. Durante la realización del trabajo la autora recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (No. 172347).

DEDICATORIAS

Esta tesis la dedico a mis Padres, a mi hermano Sinuhe y a mis tías Chava y Mary porque son lo más valioso que poseo. En la distancia siempre estuvieron conmigo, su recuerdo nunca dejó que me sintiera sola y su cariño me alentó a seguir adelante.

También se la dedico a mis amigos Víctor y Eloísa, que han estado conmigo en las buenas y en las malas, los quiero mucho.

AGRADECIMIENTOS

Al Dr. Rubén López Revilla por el apoyo y por todas las enseñanzas que compartió conmigo. Y sobre todo por dirigirme en este camino de la investigación; sus consejos son invaluables y sé que me acompañarán por siempre.

A la Biól. Mireya Sánchez Garza, porque siempre estuvo ahí de gran ayuda, siempre amiga, siempre amable, siempre con una idea para solucionar un problema, muchas gracias.

Al Dr. Juan Francisco Jiménez Bremont porque sin su ayuda este trabajo no hubiera sido posible.

A las compañeras del Laboratorio 3, sobre todo a Cytlallic y Adriana.

A la MC Magdalena Rodríguez, cuyo trabajo fue la base para el desarrollo del mío.

Al IPICYT por todo el apoyo para continuar mis estudios.

Al CONACYT por la beca que me permitió subsistir durante estos dos años.

ÍNDICE

Hoja de aprobación de la tesis	
Dedicatorias	4
Agradecimientos	5
Lista de tablas	7
Lista de Figuras	8
Resumen	9
Abstract	10

Introducción	11
Material y Métodos	15
Resultados	18
Discusión	20
Referencias	21

Tablas	23
Figuras	26
Anexos	42

LISTA DE TABLAS

1.	Parejas de oligonucleótidos utilizadas	23
2.	Vectores con los insertos clonados	24
3.	Cepas de <i>E. coli</i> utilizadas	25

LISTA DE FIGURAS

1.	Mapa de la construcción ∆202	26
2.	Ratón macho de 101 días afectado con el síndrome neurológico	27
3.	Secuencia de 797 pb obtenida por Magdalena Rodríguez	28
4.	Características de la secuencia de 797 pb determinada por Magdalena	29
	Rodríguez	
5.	Uso de la PCR inversa para amplificar las secuencias que flanquean una	30
	secuencia conocida o transgén	
6.	Enzimas de restricción usadas y productos de PCRi esperados con DNA	31
	Δ 202 como molde	
7.	Amplificación mediante PCRi anidada en tres etapas	32
8.	Montaje de la PCRi con pSV Δ 202 linearizado y recircularizado amplificado	33
	con la pareja de oligos MR9-1 y MR9-2	
9.	Reacción 1 de PCRi 1, con DNA genómico de ratones $\Delta 202$ fragmentado	34
	con <i>Bam</i> HI, <i>Eco</i> RI o <i>Xba</i> I y amplificado con la pareja de oligos 1	
10	Reacción 2 de PCRi, anidada con la pareja de oligos 2 usando como molde	35
	los productos generados en la Reacción 1	
11.	Reacción 3 de PCRi, anidada con la pareja de oligos 3 y usando como molde	36
	los productos de la Reacción 2	
12	. Secuencia de 823 pb determinada con el inserto 2X (Clona MM105)	37
13	. Secuencia de 542 pb determinado con el inserto 3X (Clona MM108)	38
14	Alineación de las secuencias de 823 pb y 543 pb	39
15	. Secuencia consenso obtenida a partir de ambas secuencias	40
16	Alineación del extremo izquierdo de la secuencia consenso con el extremo	41
	izquierdo del transgén	
17.	. Alineación del extremo derecho de la secuencia consenso con el extremo	42
	derecho del transgén	
18	. Alineación de los flancos del transgén con la secuencia de 797 pb obtenida	43
	por Magdalena Rodríguez	
19	. Estrategia de obtención de las secuencias de 542 y 823 pb	44

RESUMEN

Los astrocitos constituyen el tipo celular más abundante y los astrocitomas son el cáncer más frecuente del sistema nervioso central (SNC). La línea murina A202 (modelo transgénico de astrocitoma desarrollado en nuestro grupo) fue obtenida a partir de un cigoto microinyectado con la construcción SVA202. Los ratones homócigos para el transgén desarrollan un síndrome neurológico (SN) caracterizado por parálisis, atrofia y proliferación de astrocitos. Tres hipótesis alternativas pueden explicar la patogenia del SN: el transgén 1) inactiva un antioncogén astrocito-específico, 2) activa un protooncogén astrocito-específico o 3) genera un polipéptido de fusión oncogénico. Para poner a prueba estas hipótesis es necesario identificar primero el sitio de inserción del transgén en el genoma murino. Con este propósito empleamos la técnica de PCR inversa (PCRi), que permite amplificar las secuencias desconocidas que flanquean a una secuencia conocida o transgén. En un trabajo preliminar identificamos una secuencia de 797 pares de bases (pb) con homología del 98% al segmento chr3:36422278-36422935; como esta secuencia carecía de los extremos del transgén, no podía asegurarse que flangueara al transgén. En este trabajo extendimos la estrategia de amplificación del transgén hacia los flancos genómicos mediante tres reacciones sucesivas de PCRi anidada, empleando tres parejas de oligonucleótidos localizadas cada vez más cerca de los extremos del transgén. Amplificamos DNA ∆202 que había sido fragmentado con Bam HI (B), *Eco* RI (E) o *Xba* I (X) y obtuvimos seis productos que pudieron ser clonados y secuenciados. Las clonas derivadas de DNA digerido con E y B sólo permitieron identificar secuencias del transgén pero las derivadas de DNA digerido con X permitieron identificar los extremos derecho e izquierdo del transgén y las secuencias murinas que los flanguean, las cuales coincidieron con la secuencia de 797 pb. Nuestros resultados confirman el sitio de inserción del transgén en la región chr3:36422278-36422935, que interviene en la diferenciación de los astrocitos y el desarrollo del SNC.

9

ABSTRACT

Astrocytes are the most abundant cell type and astrocytomas the most frequent cancer of the central nervous system (CNS). The $\triangle 202$ mouse line (transgenic astrocytoma model developed by our group) was obtained from a zygote microinjectied with the SVA202 construct. Mice homozygous for the transgene develop a neurologic syndrome (NS) characterized by paralysis, atrophy and astrocyte proliferation. Three alternative hypotheses might explain the pathogenesis of the NS: the transgene ether 1) inactivates an astrocyte-specific antioncogene, 2) activates an astrocyte-specific protooncogene or 3) generates an oncogenic fusion polypeptide. To test these hypotheses the transgene insertion site in the mouse genome must be identified. To attempt this we used reverse PCR (rPCR), which allows amplification of the unknown sequences flanking a known sequence or a transgene. Our preliminary rPCR results had identified a 797 base pair (pb) seq uence with 98% homology to the segment chr3:36422278-36422935 of chromosome 3, lacking the transgene ends and thus unable to assure that the sequence flanked the transgene. In this work we extended the amplification strategy towards the genomic flanks using two successive nested rPCR reactions with three oligonucleotide pairs, each located closer to the transgene ends. From \triangle 202 DNA fragmented with *Bam* HI (B), *Eco* RI (E) or *Xba* I (X) we obtained six amplification products that could be cloned and sequenced. The clones derived from DNA digested with E and and B allowed the identification of transgene sequences only, whereas those derived from DNA digested with X allowed the identification of the right and left transgene ends as well as the mouse genomic sequences flanking them, which coincided with the 797 pb sequence. Our results confirm the transgene insertion site in the chr3:36422278-36422935 region, which is involved in astrocyte differentiation and CNS development.

10

INTRODUCCIÓN

Los astrocitos son células gliales del sistema nervioso central (SNC), dentro del cual constituyen el tipo celular más abundante (Reilly y Jacks 2001, Hu et al 2004). Existen dos tipos de astrocitos: los protoplásmicos, localizados en la materia gris, con terminales que conectan sinapsis y vasos sanguíneos; y los fibrosos, localizados en la materia blanca, con terminales que se unen a nodos de Ranvier y vasos sanguíneos (Peters et al 1991, Fields y Stevens-Graham 2004).

Los astrocitos realizan diversas funciones en el SNC, incluyendo la regulación de la proliferación y la supervivencia de las neuronas, la guía de la migración celular y del crecimiento axonal durante el desarrollo neural, la promoción de la formación de sinapsis, la modulación de la transmisión sináptica y la organización de las respuestas inflamatorias e inmunitarias en infecciones y daño cerebral (Wechsler-Reya y Scott 2001, Takuma et al 2004, Gimsa et al 2004). En algunas regiones cerebrales los astrocitos comienzan a desarrollarse después de las neuronas y continúan apareciendo después de que las neuronas han dejado de proliferar (Wechsler-Reya y Scott 2001).

Los astrocitomas y gliomas son tumores del SNC derivados de astrocitos o sus precursores. Son la forma más común de cáncer cerebral humano y representan casi el 45% de todos los tumores primarios del cerebro (CBTRUS, 2002). A diferencia de las neuronas terminalmente diferenciadas, los astrocitos (o una subpoblación de ellos) son capaces de reingresar al ciclo celular y proliferar en respuesta al daño cerebral. Este potencial proliferativo podría estar relacionado con la alta incidencia de astrocitomas entre los tumores del SNC (Reilly y Jacks 2001).

La línea de ratones transgénicos ∆202 fue obtenida por el grupo del Prof. Dieter Paul (Hannover, Alemania) a partir de un cigoto recién fertilizado que había sido microinyectado con la construcción SV∆202 (derivada de la construcción SV202, de la cual se deletó el extremo 3' para inactivar la hormona de crecimiento), que permite expresar la región temprana de SV40 bajo control del enhancer de la metalotioneína 1 murina (Fig. 1) y consta de 4552 pb (Anexo 1).

Los ratones $\Delta 202$ heterócigos para el transgén desarrollan tumores en el hígado, el timo y el tejido adiposo (López-Revilla et al 2004). Los ratones $\Delta 202$ homócigos para el transgén desarrollan un síndrome neurológico (SN) caracterizado por parálisis flácida y atrofia progresivas acompañadas de proliferación difusa de astrocitos en el SNC. La parálisis y atrofia de las patas traseras acompañadas de pérdida de peso corporal empiezan a ser evidente a los 35 días de edad y progresan de manera que a los 60 días de edad los miembros posteriores están flexionados e inmóviles (Fig. 2). Los ratones afectados se desplazan arrastrándose con las patas delanteras y mueren alrededor de los 90 ± 30 días de edad. Estudios histológicos e inmunohistoquímicos muestran que los ratones homócigos para el transgén desarrollan anaplasia difusa de astrocitos (López-Revilla et al 2004). Este modelo ha sido registrado en la base de datos de los Modelos Murinos de Cáncer del National Cancer Institute (MMHCC 2004).

Los modelos transgénicos de tumores de astrocitos se basan en la sobreexpresión de oncogenes o la inactivación de genes supresores de tumores y han proporcionado datos sobre los pasos que conducen a la oncogénesis (Reilly y Jacks 2001). Hay dos modelos murinos de astrocitoma, basados en la *sobreexpresión de oncogenes* controlados por el promotor de la proteína fibrilar acídica glial (específica de astrocitos). El primero poco conveniente por ser difícilmente reproducible, consiste en ratones transgénicos generados con una construcción que codifica el antígeno T del virus SV40 y aparece precozmente en animales microinyectados con el transgén que no han madurado sexualmente y por lo tanto no permite establecer una línea murina transgénica (Danks et al 1995). El segundo expresa el transgén v-*src* y manifiesta astrogliosis pero es muy variable en el momento de su inicio y en la progresión de la enfermedad (Weissenberger et al 1997).

12

El modelo de enfermedad neurológica de la línea transgénica murina $\Delta 202$ descrita por López-Revilla et al (2004) tiene las siguientes ventajas sobre los modelos transgénicos de astrocitoma que han sido descritos por otros autores: (1) La colonia $\Delta 202$ se mantiene mediante cruzas de animales silvestres con los que portan el transgén en estado heterócigo que no desarrollan el SN y sobreviven alrededor de 300 días; (2) las cruzas de padres y madres $\Delta 202$ heterócigos generan animales normales, heterócigos y homócigos para el transgén, en proporciones 1:2:1; (3) en los ratones $\Delta 202$ homócigos para el transgén la penetrancia del SN es del 100% (i.e., todos son afectados), la evolución de la enfermedad es reproducible (inicio, progresión, muerte) y suficientemente lenta para permitir el estudio fisiológico y patológico de los individuos afectados. Los ratones $\Delta 202$ homócigos para el transgén podrían emplearse para estudiar la proliferación, la diferenciación y la tumorigénesis de los astrocitos, así como para establecer líneas celulares $\Delta 202$ inmortalizadas de astrocitos y otras estirpes celulares.

La aparición del SN en los ratones $\triangle 202$ podría deberse a que el transgén está insertado en secuencias génicas que por analogía con los modelos transgénicos pudiesen estar provocando: (1) la inactivación de un antioncogén específico de astrocitos, o (2) la activación de un protooncogén astrocitoespecífico, o (3) la generación de de un polipéptido de fusión oncogénico.

Para tratar de determinar la base genética del SN de los ratones $\Delta 202$ decidimos emplear la técnica de PCR inversa (PCRi) utilizando como molde el DNA genómico para obtener productos que (1) muestren las secuencias de los extremos derecho e izquierdo del transgén, (2) las secuencias que lo flanquean en el genoma y (3) la relación estructural del transgén con las secuencias vecinas.

Magdalena Rodríguez (estudiante de doctorado en el CINVESTAV-DF) inició este enfoque y obtuvo un producto de PCRi de 797 pb amplificando el DNA genómico de ratones $\Delta 202$ que había sido restringido con *Xba* I y empleando una pareja de oligonucleótidos que empiezan a amplificar a 41 y 4521 pb de los flancos del transgén (Figs. 3 y 4) la comparación de esta secuencia con el genoma murino mostró una homología del 98% con el segmento **chr3:36422278-36422935**

13

del cromosoma 3 del ratón. Sin embargo, como la secuencia comparada no contenía los extremos del transgén, no permitió asegurar que efectivamente flanquea al transgén ni determinar su relación estructural con el sitio de inserción del transgén en el genoma de los ratones $\Delta 202$.

Por esta razón decidí extender el trabajo de Magdalena Rodríguez empleando parejas de oligonucleótidos adicionales que iniciaran la amplificación del transgén en regiones más alejadas de sus extremos derecho e izquierdo para que los productos de PCRi incluyesen tanto los extremos del transgén como las secuencias genómicas vecinas de los flancos derecho e izquierdo del transgén.

Para este propósito utilicé tres parejas de oligonucleótidos para PCRi localizadas en regiones más internas del transgén que la pareja de Magdalena Rodríguez. Además utilicé las enzimas de restricción *Bam* HI, *Eco* RI y *Xba* I para digerir el DNA genómico de los ratones Δ 202 que serviría como molde en las reacciones de amplificación cuyos productos de PCRi incluirían el flanco derecho y el izquierdo.

Primero usando la pareja de oligonucleótidos MR9-1/MM8-2 (localizados a 1267 pb y 2831 pb de los flancos izquierdo del transgén) amplifiqué mediante PCRi del DNA genómico de un ratón afectado con el SN restringido alternativamente con *Bam* HI, *Eco* RI y *Xba* I. Empleando dos parejas de oligonucleótidos: MM8-1/MR9-2 (localizados a 847 y 3639 pb de los extremos derecho e izquierdo del transgén) y MM4-1/ MR10-2 (localizados a 419 y 4521 pb de los de los extremos derecho e izquierdo del transgén), a partir del producto de la primera reacción obtuve los seis productos de PCRi anidada, que luego cloné en el vector pCR4TOPO. De esta manera obtuve seis clonas con insertos que pudieron ser secuenciados. El análisis de las secuencias mostró que: (1) las clonas provenientes de DNA genómico Δ 202 digerido con *Eco* RI y *Bam* HI sólo permitieron identificar secuencias del transgén; (2) las clonas derivadas de DNA genómico Δ 202 digerido con *Xba* I permitieron identificar tanto los extremos derecho e izquierdo del transgén como las secuencias murinas que los flanquean y coinciden con la secuencia de 797 pb obtenida por Magdalena Rodríguez. Estos resultados confirman y amplían las características del sitio de inserción del transgén en la región **chr3:36422278-36422935** del cromosoma 3 de ratón y esperamos que sirvan para definir la base genética del SN de los ratones $\Delta 202$.

MATERIAL Y MÉTODOS

PCR inversa

Se emplea para amplificar las secuencias de DNA desconocidas que flanquean a una secuencia conocida que puede ser un gen silvestre o un transgén (Ochman et al 1988, Schneider et al 2000). El DNA genómico se digiere con una enzima de restricción que genere extremos cohesivos y no corte la secuencia conocida o transgén. Los fragmentos lineales se sellan con ligasa para obtener moléculas circulares, que se usan como molde en una PCR inversa (PCRi) con oligos diseñados para amplificar a partir de un punto dado de la secuencia conocida hacia los flancos con secuencias desconocidas (Fig. 5).

PCRi con el plásmido pSV/202

Con el fin de montar el método de amplificación de la PCRi desarrollada previamente por Magdalena Rodríguez, utilicé como molde 1 µg de DNA plasmídico (pSV Δ 202 7122 pb) que había sido digerido con *Eco* RI (Invitrogen) por 3 h a 37°C. Trescientos-ng del plásmido digerido se recircularizaron con 1 U de ligasa de T4 (Invitrogen) incubando a 16°C durante toda la noche. Para llevar a cabo la PCRi utilizamos como molde 50 ng de pSV Δ 202 (intacto, linearizado o recircularizado) con los oligos MR9-1 y MR9-2 (diseñados por Magdalena Rodríguez y localizados a 1267 y 3639 pb de los extremos izquierdo y derecho del transgén) y polimerasa Platinum *Taq* (Invitrogen). Las mezclas de reacción fueron incubadas en el termociclador Touchgene Gradient (Techne) a 95°C durante 5 min, seguidas por 30 ciclos de 94°C por 30 s, 60°C por 30 s y 68°C por 4 min, para terminar con un ciclo de 68°C por 10 min. Esperaba un producto de amplificación de 4750 pb con 2180 pb de los extremos derecho (1267 pb) e izquierdo (913 pb) del transgén y 2570 pb de los flancos del transgén en el plásmido.

PCRi anidada con DNA de la línea murina \(\triangle 202\)

Para asegurar que el producto de amplificación de la PCRi contuviese las secuencias con los extremos derecho e izquierdo del transgén llevé a cabo la PCRi anidada en tres reacciones sucesivas con seis oligonucléotidos ubicados en diferentes regiones del transgén (Tabla 1, Anexo 1). Usé la pareja de oligos 1 (la más alejada de los extremos del transgén) para la primera reacción de PCRi (Reacción 1), con la cual esperaba un producto con los flancos y 2988 pb de los extremos derecho e izquierdo del transgén. Para la segunda reacción (Reacción 2), primera anidada, utilicé la pareja de oligos 2 cuyo producto de amplificación contendría 1761 pb del transgén y sería 1227 pb más corto que el de la primera reacción. Para la tercera reacción de PCRi, segunda anidada (Reacción 3) use la pareja de oligos 3, cuyo producto sería 1311 pb más corto que el de la segunda reacción y contendría 450 pb del transgén (Fig. 6).

Decidí digerir el DNA genómico $\triangle 202$ alternativamente con *Bam* HI, *Eco* RI y *Xba* I, porque el único sitio *Bam* HI se encuentra en el extremo izquierdo del transgén y el único sitio *Eco* RI se encuentra en el extremo derecho del transgén. La restricción con estas dos enzimas generaría fragmentos lineales que contendrían el extremo correspondiente y un solo flanco, mientras que la restricción con *Xba* I generaría fragmentos lineales que contendrían secuencias de los dos flancos del transgén (Fig. 7).

Cuatro-µg de DNA puro extraído de un ratón $\Delta 202$ afectado con el SN fueron digeridos con 1 U de *Bam* HI, *Eco* RI o *Xba* I (Invitrogen) durante 3 h a 37°C. Los fragmentos lineales obtenidos con cada enzima de restricción fueron circularizados con 1 U de ligasa de T4 (Invitrogen) mediante incubación a 16°C durante toda la noche y empleados como molde para la Reacción 1 de PCRi con la pareja de oligos 1 (los más internos del transgén) con Elongase Enzyme Mix (Invitrogen). Las mezclas incubadas 5 min a 94°C, fueron seguidas por 40 ciclos a 94°C, 1 min a 60°C, y 8 min a 68°C, para concluir con un ciclo de 8 min a 68°C.

Las mezclas con los productos de la PCRi obtenidos con DNA genómico Δ 202 que había sido digerido con cada una de las tres enzimas y la pareja de

oligos 1 (Reacción 1) fueron diluidas 1:50 para usarlas como molde en la Reacción 2, anidada con la pareja de oligos 2; el mismo procedimiento fue repetido para la Reacción 3, anidada con la pareja de oligos 3. Los ciclos de incubación fueron como los usados con pSV Δ 202.

Clonación y secuenciación de los productos de PCRi

Utilicé el TA cloning kit (Invitrogen) para clonar en el plásmido pCR4TOPO (Anexo 3) los productos de las tres reacciones de PCRi obtenidos por amplificación de los fragmentos del DNA genómico $\Delta 202$ circularizados después de la digestión con *Bam* HI, *Eco* RI o *Xba* I y la pareja de oligos 2. De la misma manera amplifiqué los tres productos generados con la pareja de oligos 3 con Platinum *Taq* Polymerase (Invitrogen) para asegurar que los tuviesen extremos cohesivos. Obtuve seis plásmidos que contenían cada uno de los productos amplificados (Tabla 2).

Utilicé células competentes de *Escherichia coli* TOP10 para obtener transformantes de los seis plásmidos mediante choque térmico. Seleccioné las colonias transformantes con ampicilina y obtuve clonas de cada transformante mediante dos pases sucesivos en agar LB con ampicilina y las caractericé con el método ultrarrápido (DBM-IPICYT 2003). Purifiqué DNA plasmídico de las clonas transformantes con el UltraClean 6 minute Mini Plasmid Prep Kit (Mo Bio Laboratories Inc). Los insertos de los vectores clonados fueron secuenciados por un método automático en la Unidad de Biología Molecular del Instituto de Fisiología Celular de la Universidad Nacional Autónoma de México utilizando el oligo T3 como iniciador.

RESULTADOS

Montaje de la PCRi con pSV∆202

Empleando pSV Δ 202 como molde y la pareja de oligos MR9-1 y MR9-2 traté de generar el producto que había obtenido Magdalena Rodríguez. El experimento fue controlado tanto con pSV Δ 202 linearizado con *Eco* RI, donde no se generó el producto, como con pSV Δ 202 linearizado y recircularizado con el cual sí se obtuvo el producto esperado de 4750 pb (Fig. 8).

PCRi con DNA genómico de ratones $\triangle 202$

Mezclas de Reacción 1. Luego de restringir el DNA genómico murino ∆202 con *Bam* HI, *Eco* RI o *Xba* I, llevé a cabo la PCRi con la pareja de oligos 1 y no observé una banda principal del producto de amplificación, sino un aumento del fondo a lo largo de todos los carriles en los que analicé la mezcla de reacción (Fig. 9).

Mezclas de Reacción 2. Con las Mezclas de Reacción 1 hice diluciones 1:50 para emplear los productos potenciales como molde para la Reacción 2, anidada con la pareja 2 de oligos. El análisis de los productos de PCR de la mezcla con DNA genómico $\triangle 202$ restringido con *Bam* HI (2B) mostró una banda nítida de ≈ 1800 pb. Con la mezcla que contenía DNA genómico $\triangle 202$ digerido con *Eco* RI (2E) obtuve una banda nítida de ≈ 1850 pb, mientras que con la mezcla que contenía DNA D202 digerido con *Xba* I (2X) obtuve una banda nítida de ≈ 1900 pb (Fig. 10).

Mezclas de Reacción 3. Obtuve diluciones 1:50 de las Mezclas de Reacción 2 para emplearlas como moldes en la Reacción 3, anidada con la pareja de oligos 3. Esperaba (1) que el tamaño de los productos amplificados disminuyese 1311 pb

por la localización en el transgén de la pareja de oligos empleada para la amplificación y (2) que los productos contuviesen 450 pb del transgén.

El producto 3B fue de \approx 500 pb por lo que probablemente contiene \approx 50 pb del flanco izquierdo del transgén. El producto de amplificación 3E fue de \approx 550 pb por lo cual podría contener \approx 100 pb del flanco derecho del transgén. El producto 3X de \approx 600 pb contendría \approx 150 pb con las secuencias de ambos flancos del transgén (Fig. 11).

Clonación de los productos de PCRi con DNA genómico A202

Los seis productos del DNA ∆202 digerido con *Bam* HI, *Eco* RI y *Xba* I y luego circularizado y amplificado en las reacciones anidadas 2 y 3 fueron clonados en pCR4TOPO (Tabla 2).

Los seis vectores fueron luego utilizados para obtener transformantes de *E. coli* TOP10 seleccionadas con ampicilina y confirmadas por detección ultrarrápida. Después de ser caracterizadas, las seis cepas bacterianas fueron criopreservadas (Tabla 3).

Análisis de las secuencias de los insertos

Los insertos obtenidos con los productos de amplificación del DNA \triangle 202 digerido con *Bam* HI y *Eco* RI (2B, 3B, 2E y 3E) sólo permitieron determinar secuencias del transgén, pero no las de los flancos de su inserción en el genoma murino.

En contraste, los insertos obtenidos con DNA genómico $\triangle 202$ digerido con *Xba* I y amplificado en las reacciones 2 y 3 (2X y 3X) permitieron determinar tanto secuencias del transgén como de los flancos de su inserción en el genoma murino.

El inserto 2X permitió determinar una secuencia híbrida de 823 pb con 689 pb del transgén y 130 pb que tenían un alto grado de homología con la secuencia de 797 pb de Magdalena Rodríguez (Fig. 12).

El inserto obtenido de la Reacción 3 con DNA genómico ∆202 digerido con *Xba* I y amplificado con la pareja de oligos 3 (3X) permitió determinar una secuencia de 542 pb con 408 pb del transgén (387 pb del flanco izquierdo y 21 pb del extremo derecho) y 133 pb (Fig. 13) que también resultó homóloga a la secuencia de 797 pb de Magdalena Rodríguez.

Al alinear las secuencias derivadas de los insertos 2X y 3X pudimos obtener la secuencia consenso (Figs. 13 y 14).

Alineación de las secuencias híbridas

Una vez identificado el sitio de corte *Xba* I, mediante la alineación de los extremos del transgén (Figs. 16 y 17) como de las secuencias murinas homólogas a la de Magdalena Rodríguez (Fig. 18), identificamos las secuencias de los extremos derecho e izquierdo del transgén y las del genoma murino en los flancos derecho e izquierdo del transgén.

DISCUSIÓN

Como la secuencia de 797 pb no contenía secuencias del transgén, nos propusimos obtener productos de PCRi híbridos (i.e., que contuvieran tanto secuencias del transgén como las secuencias murinas vecinas en el sitio de inserción). Para iniciar el trabajo requeríamos montar la PCRi y repetir los resultados previos usando como molde a pSV Δ 202 (intacto, linearizado y recircularizado) y la pareja de oligos MR9-1/MR9-2; de esta manera confirmamos las condiciones y los resultados previos: obtuvimos la banda esperada de 4750 pb con pSV Δ 202 intacto y recircularizado pero no con pSV Δ 202 linearizado.

La determinación de las secuencias de los flancos en el sitio de inserción del transgén mediante PCRi demanda que los productos de amplificación (1) sean híbridos y (2) las secuencias del transgén sean suficientemente largas para obtener datos no ambiguos. Para lograrlo diseñamos un experimento de PCRi anidada en tres reacciones sucesivas, con parejas de oligonucléotidos localizadas en regiones cada vez más cercanas a los extremos del transgén y empleando como molde DNA genómico de la línea murina Δ 202 restringido con tres enzimas que no cortan el transgén.

Digerimos el DNA genómico con *Bam* HI, *Eco* RI o *Xba* I. Para las dos primeras hay sitios de corte en el extremo izquierdo y derecho de la construcción Δ 202, respectivamente. En el caso de que ambos sitios fuesen conservados en el sitio de inserción del transgén, la digestión con estas enzimas generaría fragmentos lineales que tendrían sólo el extremo correspondiente, mientras que *Xba* I generaría fragmentos lineales que contendrían secuencias de ambos flancos del transgén.

El DNA ∆202 fragmentado con cada una de las tres enzimas sirvió de molde para la Reacción 1 de PCRi. Empleamos los productos obtenidos como

22

molde en la Reacción 2 y los productos de ésta a su vez para la Reacción 3. Así obtuve seis productos de PCRi anidada (tres de la Reacción 2 y tres de la Reacción 3) que luego cloné en el vector pCR4TOPO. De esta manera obtuve seis clonas con insertos que pudieron ser secuenciados.

Los cuatro productos derivados de DNA ∆202 digerido con *Eco* RI y *Bam* HI sólo permitieron identificar secuencias del transgén, mientras que los dos derivados de DNA digerido con *Xba* I en las reacciones 2 y 3 (2X y 3X) permitieron identificar tanto secuencias murinas como de los extremos del transgén. Así obtuve una secuencia consenso de 823 pb que contiene 444 pb del extremo izquierdo del transgén, 246 pb del extremo derecho del transgén y 133 pb que alinean con la secuencia de 797 pb.

En la secuencia de 133 pb localicé el sitio de corte de *Xba* I, a partir del cual pude identificar los flancos: (1) 125 pb del flanco izquierdo y (2) 8 pb del flanco derecho. La alineación con la secuencia de 797 pb fue casi perfecta y confirma la ubicación del flanco izquierdo junto al extremo izquierdo del transgén. El sitio de inserción del transgén por lo tanto corresponde a la región **chr3:36422278-36422935**, localizada en el cromosoma tres.

En la secuencia consenso se han perdido los sitios *Eco* RI y *Bam* HI localizados originalmente en los extremos de la construcción que permitió obtener la línea transgénica. Este dato implica que los fragmentos genómicos generados con estas enzimas deben tenr los sitios de restricción a cierta distancia de los extremos del transgén.

La identificación del sitio de inserción del transgén en la línea murina $\Delta 202$ lograda con este trabajo constituye una base firme para tratar de aislar, secuenciar y caracterizar la región genómica vecina al sitio de la inserción. El trabajo futuro podría también ayudar a definir la expresión y la función de esta región genómica ligada a la diferenciación y tumorigénesis de los astrocitos y al desarrollo del sistema nervioso central.

23

REFERENCIAS

- CBTRUS (2002) 2002 Annual Report by Central Brain Tumor Registry of the United States, <u>www.cbtrus.org</u>
- Danks RA, Orian JM, Gonzales MF, Tan S-S, Alexander B, Mikoshiba K, Kaye AH. Transformation of astrocytes in transgenic mice expresing SV40 T antigen under the transcriptional control of the glial fibrillary acidic protein promoter. Cancer Res 55:4302-4310, 1995
- DBM–IPICYT. Manual del Curso de Practicas del Laboratorio de Biología Molecular. 2003
- Fields RD,Stevens-Graham B. New insights into neuron glia communication. Science 298:556-562, 2002
- Gimsa U, ORen A, Pandiyan P, Teichmann D, Bechmann I, Nitsch R, Brunner-Weinzierl MC. Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152). J Mol Med 82:364-372, 2004
- Hu B, Sun S, Tong E. NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes 1. Acta Pharmacol Sinica, 2004
- López-Revilla R, Soto-Zárate C, Ridaura C, Chávez-Dueñas L, Paul D. Progressive paralysis associated with diffuse astrocyte anaplasia in delta 202 mice homozygous for a transgene encoding the SV40 T antigen. Neuropathology 2430-2437, 2004
- MMHCC Cancer Models Database: http://cancermodelsstage.nci.nih.gov/mm hcc/searchResultsDetail.jsp?modelId=2256&modelName=delta+202+
- Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics 120:621-623, 1988

- Peters A, Palay SL, Webster HF. The fine structure of the nervous system. New York: Oxford University Press 1991
- Reilly KM and Jacks T. Genetically engineered mouse models of astrocytoma: GEMs in the rough? Sem Cancer Biol 11:177-190, 2001
- Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M: Long-term experimental evolution in *Escherichia coli*. IX. Characterization of insertion sequence-mediated mutations and rearrangements. *Genetics* 156:477-88, 2000
- Takuma K, Babab A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Progr in Neurobiol 72:111-127, 2004
- Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Ann Rev Neurosci 24:385-428, 2001
- Weissenberger J, Steinbach JP, Malin G, Spada S, Rülicke T, Aguzzi A. Development and malignant progression of astrocytomas in GFAP-v-*src* transgenic mice. Oncogene 14:2005-2013, 1997

Pareja	Nombre	Secuencia (5'→3')	Posición en el	Tm
			transgén	(°C)
1	MR9-1	CAAAAAACCATATGCCAACAGG	1267	58.0
	MM4-2	ATGATGTTCCACACGTCACATG	2831	60.8
2	MM8-1	AGGATGTAAAGGGCACTGGA	848	60.4
	MR9-2	AGGAGGAGACTAAGGAGCTCAGG	3639	66.3
3	MM4-1	ATGAAGTTTAATGTGGCTATGGGA	419	59.4
	MR10-2	TGCTTGGCACTGTCCTCTCA	4521	62.5

Tabla 1. Parejas de oligonucleótidos utilizadas

 Tabla 2. Vectores con los seis Insertos clonados en pCR4TOPO^a

	Vector	Inserto
	pMM103	2B
	pMM104	2E
	pMM105	2X
	pMM106	3B
	pMM107	3E
_	pMM108	3X
а	Invitrogen	

Tabla 3. Cepas de *E. coli* utilizadas

Сера	Descripción
MM100	<i>E. coli</i> Top10 ^a
MM101	MM100 con pSV∆202
MM103	MM100 con pMM103
MM104	MM100 con pMM104
MM105	MM100 con pMM105
MM106	MM100 con pMM106
MM107	MM100 con pMM107
MM108	MM100 con pMM108

^a Obtenida de Salvador Ambriz

Fig. 1. Mapa de la construcción ∆202.

Fig. 2. Ratón macho de 101 días afectado con el síndrome neurológico (Tomado de López-Revilla et al, 2004).

1 10 20 3	0 40
-----------	------

GCCCAGGNTTACGGCCANGNNGANAANAAACCCTCNCTAAAGGGNGGAGN	50
NCCGGNNGGGGGAAACGAANTCGGCCNTGGAATTGGCNCGGGNCTCTCAC	100
ANACACACTCTATTTCACACACACACTTTGTNTGTGNACACACACACACA	150
CCATCTTTCACACATACACTCTTTCACACACGCACACACA	200
CTCTCTNACACACATAAACTCTTTCACACACACACACTCTTTGTATCTCA	250
CATACACTCTCTCACACACATGCTCTCTCTATCTCACACACA	300
ATCTCACACACTCTCTCTCACACACACACTCTCTCTATCTCACACACA	350
CACTCACACACTCTCTCTCTCACACACACTCTCTCCACACACACTC	400
TCACCCACACACACTCTCTCTCTCTCTCACACACTCTCGCNCACAC	450
ACACACTCTCTCACACACACACTCTATATACACACACAC	500
CTCACACACACTCTCACACACACACACACACACACTCTCTCTCACA	550
CACACACACACTCTCTCTCCCCTCACACACTCTCACACACACTCTCA	600
CACACACTCTCACACACACACTCTCTCTCACACACACAC	650
CACACTCTCACACACATACTCTCTCACACACACACTTTCTCACACACTCA	700
CACACACACATACACACACACTCTCTCTCTCTCACACACACATGAG	750
AGAGCAGTGCGAATTCAAAGGGNGAATTCGCGGCCGCTAAATCAAAA	797

Fig. 3. Secuencia de 797pb obtenida por Magdalena Rodríguez por amplificación del DNA genómico ∆202 restringido con *Xba* I y amplificado por PCRi con la pareja de oligos MR10-1 y MR10-2.

Fig. 4. Características de la secuencia de 797 pb determinada por Magdalena Rodríguez, antecedente directo de este trabajo. (FI) Flanco Izquierdo, (FD) Flanco derecho, (Ext I) Extremo izquierdo del transgén, (Ext D) Extremo derecho del transgén

Fig. 5. Uso de la PCR inversa para amplificar las secuencias que flanquean una secuencia conocida o transgén.

Productos de PCRi esperados

Fig. 6. Enzimas de restricción usadas y productos de PCRi esperados con las diferentes moléculas circulares de DNA genómico Δ 202 generadas y empleadas como molde.

Fig. 7. Amplificación mediante PCRi anidada en tres etapas, empleada en este trabajo. El diagrama modela las moléculas circulares de DNA obtenidas por restricción con *Xba* I y los productos correspondientes esperados en las tres reacciones de PCRi sucesivas. Por la ubicación de los olgonucleótidos usados, en la Reacción 1 el producto obtenido tendría 2988 pb correspondientes al transgén (1267 pb FI y 1721 pb FD); en la Reacción 2, el producto tendría 1761 pb del transgén (848 pb FI y 913 pb FD) y en la Reacción 3, tendría 450 pb del transgén (419 pb FI y 31 pb FI).

Fig. 8. Montaje de la PCRi con pSV∆202 intacto linearizado y recircularizado, amplificado con la pareja de oligos MR9-1 y MR9-2. *Carril 1*, 1kb ladder. *Carril 2*, PCRi con pSV∆202 intacto con una banda principal de 4750 pb. *Carril 3*, PCRi con pSV∆202 linearizado con *Eco* RI; no se observa la banda de 4750 pb. *Carril 4*, PCRi con pSV∆202 linearizado y recircularizado con ligasa; se observa la banda de 4750 pb.

Fig. 9. Mezclas de la Reacción 1 de PCRi con DNA genómico de ratones Δ202 fragmentado con *Bam* HI (B), *Eco* RI (E) o *Xba* I (X) y amplificados con la pareja de oligos 1. *Carril 1*, 1kb ladder. *Carril 2* (Reacción 1X), DNA Δ202 digerido con *Xba* I. *Carril 3* (Reacción 1E), DNA Δ202 digerido con *Eco* RI. *Carril 4* (Reacción 1B), DNA Δ202 digerido con *Bam* HI.

Fig. 10. Mezclas de la Reacción 2 de PCRi usando como molde los probables generados en la Reacción 1 anidados con la pareja de oligos 2. *Carril 1*, 1kb ladder. *Carril 2* (2B), se observa una banda principal de \approx 1800 pb. *Carril 3* (2E), se observa una banda principal de \approx 1850 pb. *Carril 4* (2B), con una banda principal de \approx 1900 pb.

Fig. 11. Mezcla de la Reacción 3 de PCRi usando como molde los productos de la Reacción 2 anidados con la pareja de oligos 3. *Carril 1,* 1 kb ladder. *Carril 2* (3X), con una banda principal de \approx 600 pb. *Carril 3* (3E), con una banda principal de \approx 550 pb. *Carril 4* (3B), con una banda principal de \approx 500 pb.

Posible sitio de corte Xba I Flancos del transgén 133 pb

Fig. 12. Secuencia de 823 pb determinada con el inserto 2X (Clona MM105). 117 N, 14% de ambigüedad. Extremo Izquierdo (EI) 444 pb, Extremo derecho (ED) 298 pb.

	1	10	20	30	40	
(TACNAC	FACTACTNO	TGTCGGTCCN	NTTACGNCT	ANTTTTANNTCTA	CCA 50
	NCCCTCI	NTNNTGTAC	CTTNTNAGTCO	CCGTACTTT	GTCCNTAACTAAG	TGT 100
	CAGGGT	FCNGAGTA	GTCCGGGGAGI	NCAGGNGTG	TCAGACNAGTACI	'AGT 150
J	NTTAGT	CGNNATGGI	GNAANGATGC	ICCAAAANN	AACGANATTTTTT	'GGA 200
1	NGGTGT	GGAGGNGGA	CNTGGACTTT	GTANNTTAC	TTACGTTNACAAC	AAN 250
	AATTGAA	ACAANTAAC	GTCGAATATN	ACCAATGTT	TATTTCGTTATCG	TAG 300
	TGTTTA	AAGTGNTTA	TTTCGTAAAAI	NAAGTGACN	TAAGATCAANACC	AAA 350
	CAGGTT	FGAGTAGTI	ANATAGAATAI	NTACAGACC	NNG <mark>CACTCTCTC</mark>	<u>'CTC</u> 400
	TCACACA	ACACACATO	GCCCAGGNTTA	ACGGCCANG	NNGANAANAAACC	<mark>'CTC</mark> 450
	NCTAAA(<mark>GGGNGGAGN</mark>	INCCGGNNGGG	<mark>GGAAACGAA</mark>	NTCGGCCNTGGAA	TTG 500
	GCNCGG(GNC TCTAGN	NACAC NNTGT	CCGNGATGN	CTCACCN 🔪	542
	Posible	e sitio d	le corte Xba	a I	\searrow	ED
	Flancos	s del tra	nsgén 133 p	<mark>dc</mark>		

Fig. 13. Secuencia de 542 pb determinado con el inserto 3X (Clona MM108), (67 N, 12% de ambigüedad) Extremo izquierdo (El) 385 pb, Extremo Derecho (ED) 21 pb

EI

CXTCXAATTAC	********	тххаахстса	******	GAXXTCTTIX	TCAXTACTAC		GTCGGTCCTXTT Maje
10	20	30	40	50	60	70	80
CNTCNAATTAC	ANNGANACCO	TNNAANCTCA	NATCNTNACC	GANSTCTTT	TCANTACTAC	TACTACTNCT TACNACTTCT	GTCGGTCCNNTT 541 GTCGGTCCTNTT sec
GACTATITIA	CXTCTACCAT	CCCTCXTXXT	GTACCTTCTG	AGTCCCGTAC	TTTGTCCGT	ACTANGTOTO	AGGGTTCCGAGT Mark
90	100	110	120	130	140	150	160 170
SNCIANTITA	NNTCTACCAN	CCCICNINNT	GTACCTININ	AGTCCCGTAC	TITETCCNT	ACTARGIGIC	AGGGTTCNGAGT 541
FACTATITI NA	CNICIACCAI	CCCTCNTNNT	GIACCIICIG	AGTCCCNTAC	TINGICCGI	ACTANGIGIC	AGGGINCCGAGI see
GTCCGGGGAG	TCAGGXGTGT	CAGACXAGTA	CTAGTXTTAG	TCGXXATGGT	GXAAXGATGO	TCCAAAAXXA	ACGAXATTTTT Majo
180	190	200	210	220	230	240	250
GTCCGGGGAG GT <mark>NCGGGGAG</mark>	N C A G G N G T G T T C A G <mark>N N G T G T</mark>	CAGACNAGTA	CTAGINITAG CTAGI <mark>N</mark> ITAG	TCGNNATGGT TCGNNATGGT	GNAANGATGO GNAANGATGO	TCCAAAANNA	ACGANATTTTT 541 ACGANATTTTT sec
XGGTGTGGAG	GXGGACXTGG	ACTITGTAXX	TTACTTACGT	TXACAACAAX	ANTTGANCAN	XTAACGTCGA	ATATXACCAATG Mate
260	270	280	290	200	210	320	320 340
Neerereere	GNGGACNTGG	ACTITGIANS	ттасттасет	TNACAACAAN	AATTGAACAJ	STAACGICGA	ATATNACCAATG 541
SCCICICCAC	e Neey C Nies	ACTTIGIANN	TTACITACGT	TNACAA - AAN	ΑΑΤΤGΑΑCΑ	NTAACGICGA	ATATNACCAATG sec
ATTTCGTTAT	CGTAGTGTTT	A A A G T G X T T A	ΤΤΤΟ ΕΤΆ Ά Ά Ά	XAAGTGACCT	TAGATCAAXA	CCAAACAGGT	TTGAGTAGTTAX Majo
350	360	370	380	390	400	410	420
ATTTCGTTAT	CGTAGIGITI	AAAGTGNTTA	TTTCGTAAAA	NAAGTGNACN	TAGATCAAN	CCAAACAGGT	TIGAGIAGIAN S41
GANTAXTACA	GACCTAGCAC	TETETETETE	TCACACACAC	ACATGGCCCA	GGCTTACGG		AXAAACCCTCXC Mate
430	440	450	460	470	460	490	500 510
GAATANTACA	GACCNNGCAC		TCACACACAC	ACATESCCCA	GGNTTACGG	CANGNNGANA	ANAAACCCTCNC 541
GAATASTACA	GACCTAGNAC	releterere	TCACACACAC	ACATGGCCCA	GECITACEE	CANGNNGANA	ANNAACCCTCNC see
Y C C C C C C Y C X	TCCGGXXGGG	GGAAACGAAX	TCGGCCXTGG	AATTGGCXCG	GGXCTCTAG	CAACACGIIG	TCCGTAGATGAC Majo
520	520	540	550	560	570	580	590
A G G G G G G A G N	TCCGG X X G G G	GGAAACGAAN	X C G G C C X I G G	AATTGGCNCG	GENCICIAS	CAACACGTTG	TCCNTAGANGAC sec
CCTXXXXXXXX	******	******	*******	******	********	*******	X X X X X X X X X X X Marie
600	610	620	620	640	650	660	670 680
	~~~						

Fig. 14. Alineación de las secuencias de 823 pb y 543 pb.

	1 10	20	30	40	
(	TACNTCNAATT	ACANNGANACCCT	NNAANCTCANA	TCNTNACCGANN	ITCT 50
	TTNTCANTACT	ACTACNACTTCTG	TCGGTCCTNTT	ACGACTATTTN	JACN 100
	TCTACCATCCC	TCNTNNTGTACCT	TCTGAGTCCCN	TACTTNGTCCGT	TAAC 150
ы	TAAGTGTCAGG	GTNCCGAGTAAAG	TNCGGGGAGTC	AGNNGTGTCAGA	ACNA 200
	GTACTAGTNTT	AGTCGNNATGGTG	NAANGATGCTC	CAAAANNAACGA	NAT 250
	TTTTTGGANGG	TGTGGAGGNGGAC	NTGGACTTTGT	ANNTTACTTAC	GTTN 300
	ACAAAANAATT	GAACAANTAACGT	CGAATATNACC	AATGTTTATTTC	GTT 350
	ATCGTAGTGTT	TAAAGTGNTTATT	TCGTAAAANAA	GTGAACTTAGAT	CAA 400
l	NACCAAACAGG	TTTGAGTAGTTAN	ATAGAATANTA	CAGACCTAGC <mark>AC</mark>	CTCT 450
	CTCTCTCTCAC	<mark>ACACACACATGGC</mark>	CCAGGCTTACG	GCCAAGNNGANA	ANN 500
	<mark>AACCCTCNCTA</mark>	<mark>AAGGGGGGGAGNTC</mark>	CGGNNGGGGGA	AACGAANTCGGC	CNT 550
	<mark>GGAATTGGCNC</mark>	GGGNC <b>TCTAGA</b> CA	<mark>ACAC</mark> GTTGTCC	GTAGANGACTCA	ANNT 600
ſ	GGGTTGCNTAC	TCTCNTGTACCGG	TTNNTTCGTTG	AGTNTACAGNGI	GGC 650
ED {	CAACCNGGTAC	CGTCNATCNGATA	CGACNNNGACC	TGCAGGANGACO	GACC 700
	NTATNNATAAA	ATTNNAGTCTTCC	TNTCCCTNCCC	TCNTCACCAAGT	NCG 750
	GACATTAGGNN	CGTTNAACCCTNN	GNTTCCANNCA	TCTAGNNGACTO	CTAN 800
C	TCCTCNNCNTC	TNNTCNGACNGG			823

Fig. 15. Secuencia consenso de los flancos del sitio de inserción derivada de las secuencias de 823 pb y 543 pb.



Fig. 16. Alineación del extremo izquierdo de la secuencia consenso obtenida de los flancos del sitio de inserción con el extremo izquierdo del transgén.



Fig. 17. Alineación del extremo derecho de la secuencia consenso del sitio de inserción con el extremo derecho del transgén.



Fig. 18. Alineación de los flancos del transgén con la secuencia de 797 pb obtenida por Magdalena Rodríguez

![](_page_47_Figure_0.jpeg)

Fig. 19. Resumen del trabajo. Productos de PCRi de las reacciones 1X, 2X Y 3X y secuencias derivadas de los insertos 2X Y 3X.

## Anexo 1

Secuencia de la construcción  $\triangle 202$  y ubicación de los oligonucléotidos en el

transgén

![](_page_48_Figure_3.jpeg)

(	1	10	20	30	40	50	60	
	GATCC	AGACATGAT	AAGATACATTG	ATGAGTTT <mark>GGA</mark>	CAAACCACA	ACTAGAATG	CAGTGAAAAAAATGCT	70
	TTATT	TGTGAAATT	IGTGATGCTAT	TGCTTTATTTG	TAACCATTA	TAAGCTGCA	АТАААСААGTTAACAA	140
	CAACA	ATTGCATTC	ATTTTATGTTT	CAGGTTCAGGG	GGAGGTGTG	GGAGGTTTT'	TTAAAGCAAGTAAAAC	210
	CTCTA	CAAATGTGG	FATGGCTGATT	ATGATCATGAA	CAGACTGTG	AGGACTGAG	GGGCCTGAAATGAGCC	280
	TTGGG	ACTGTGAAT	CAATGCCTGTT	TCATGCCCTGA	GTCTTCCAT	GTTCTTCTC	CCCACCATCTTCATTT	350
	TTATC	AGCATTTTC	CTGGCTGTCTT	CATCATCATCA	TCACTGTTT	CTTAGCCAA	TCTAAAACTCCAAT <b>TC</b>	420
	CCATA	GCCACATTA	AACTTCATTTT	TTGATACACTG	ACAAACTAA	ACTCTTTGT	CCAATCTCTCTTTCCA	490
	CTCCA	CAATTCTGC	FCTGAATACTT	TGAGCAAACTC	AGCCACAGG	TCTGTACCA	AATTAACATAAGAAGC	560
	ACACT	GCCATCCAA	ATAATCCCTTA	AATTGTCCAGG	TTATTATT	CCCTGACCT	GAAGGCAAATCTCTGG	840
	ACTCC	CCTCCAGTG	CCTTTACATC	<b>СТ</b> САААААСТА	CTAAAAACT	GGTCAATAG	CTACTCCTAGCTCAAA	910
	GTTCA	GCCTGTCCA	AGGGCAAATTA	ACATTTAAAGC	TTTCCCCCC	ACATAATTC.	AAGCAAAGCAGCTGCT	980
$\overline{\ }$	AATCT	GTTTGTTAA	CATTTGTTCTC	TAGTTAATTGT	AGGCTATCA	ACCCGCTTT	TTAGCTAAAACAGTAT	1260
	CAACA	GCCTGTTGG	CATATGGTTTT	<b>TTG</b> GTTTTTGC	TGTCAGCAA	ATATAGCAG	CATTTGCATAATGCTT	1330
~								
(		• • • • • • • • •						
	CTCCA	AAAAAGCCTC	CCTCACTACTT	CTGGAATAGCT	CAGAGGCCG	AGGCGGCCT	CGGCCTCTGCATAAAT	2730
	AAAAA	AAATTAGTCA	AGCTGAGTTCT	CGTAAACTCCA	GAGCAGCGA	TAGGCCGTA	ATATCGGGGAAAGCAC	2800
	TATAG	GGAC <b>ATGAT</b>	<i><b>JTTCCACACGT</b></i>	<b>CACATG</b> GGTCG	TCCTATCCG	AGCCAGTCG	TGCCAAAGGGGGCGGTC	2870
	CCGCT	GTGCACACTO	GGCGCTCCAGG	GAGCTCTGCAC	TCCGCCCGA	AAAGTGCGC'	TCGGCTCTGCCAAGGA	2940
		• • • • • • • • •						
	CGCCC	ATCGTCTGC	ACCAGCTGGCC	TTTGACACCTA	CCAGGAGTT	TGTAAGCTC'	TTGGGGAATGGGTGCG	3570
	CATCA	GGGGTGGCA	GGAAGGGGTGA	CTTTCCCCCGC	TGGAAATAA	G <b>AGGAGGAG</b>	ACTAAGGAGCTCAGGG	3640
	TTTTT	CCCGACCGC	GAAAATGCAGG	CAGATGAGCAC	ACGCTGAGC	TAGGTTCCC.	AGAAAAGTAAAATGGG	3710
	AGCAG	GTCTCAGCT	CAGACCTTGGT	GGGCGGTCCTT	CTCCTAGGA	AGAAGCCTA	TATCCCAAAGGAACAG	3780
	CTGAT	TTTAAAATA	ACTATACCAGC	AGGAGGACGTC	CAGACACAG	CATAGGCTA	CCTGCCATGGCCCAAC	4480
	CGGTG	GGACATTTGA	AGTTGCT <b>TGCT</b>	TGGCACTGTCC	TCTCATGCG	TTGGGTCCA	CTCAGTAGATGCCTGT	4550
	TG							

ΕI

ED

#### Anexo 2

#### Mapa del plásmido pCR4TOPO

## Map of pCR[®]4-TOPO[®]

**pCR®4-TOPO® Map** The map below shows the features of pCR®4-TOPO® and the sequence surrounding the TOPO® Cloning site. Restriction sites are labeled to indicate the actual cleavage site. The complete sequence of pCR®4-TOPO® is available for downloading from our Web site (www.invitrogen.com) or by contacting

![](_page_49_Figure_4.jpeg)

## Anexo 3

Secuencias obtenidas con los productos de amplificación 2B, 2E, 3B Y 3E

1 10	20	30	40	
GTTTAACGAATT	CGCCCTTAGGATG	LAAAGGGCAC.	IGGACTCATGGAGTI	50
GGCATTACAAAT	GGTTGGGGGTAGCA	AGGCTGCTAGA	AAATTGAACTTGGGI	100
CCTCAGTGAGAG	CCACAAGTGTTAA	AACCACGGAG	CCATCTCTCCAGCAC	150
CTGGTTTGGGTT	ACTTTGAGTGTCT	CAAGTAGGTCA	ACACTAGTTTTATAC	200
TCTCTCAGTATC	CAGTAGCTAGACC	FGAGCTCCTT <i>I</i>	AGTCTCCTCCTAAGG	250
GCGAATTCGCGG	CCGCTAAATTCAAT	TTCGCCCTAT#	AGTGAGTCGTATTAC	300
AATTCACTGGCC	GTCGTTTTACAAC	GTCGTGACTG	GGAAAACCCTGGCGI	350
TACCCAACTTAA	TCGCCTTGCAGCA	CATCCCCCTT	FCGCCAGCTGGCGTA	400
ATAGCGAAGAGG	CCCGCACCGATCG	CCCTTCCCAA	CAGTTGCGCAGCCTA	. 450
TACGTACGGCAG	TTTAAGGTTTACA	CCTATAAAAGA	AGAGAGCCGTTATCO	500
TCTGTTTGTGGA	TGTACAGAGTGAT	ATTATTGACA	CGCCGGGGGCGACGGA	. 550
TGGTGATCCCCC	TGGCCAGTGCACG	FCTGCTGTCA	GATAAAGTCTCCCGI	600
GAACTTTACCCG	GTGGTGCATATCG	GGGATGAAAG	CTGGCGCATGATGAC	650
CACCGATATGGC	CAGTGTGCCGGTC	FCGTTATCGG	GGAAGAAGTGGCTGA	. 700
TCTCAGCCACCG	CGAAAATGACATCA	AAAAACGCCAT	FTAACCTGATGTTCI	750
GGGGAATATAAA	TGTCAGGCATGAG	ATTATCAAAAO	GGATCTNCNCCTAGA	. 800
TCCTTTTCACGT	AGAAAGCCAGTCC	GCAAAAACGGI	NGCTGACCCNGGANA	. 850
ATGTCAGCTACT	GGGCTATCTGGAN	AGGGAAAACCA	AAGCGCA	892

Anexo 3.1 Secuencia de 892 pb determinada con el inserto 2B (Clona MM103).

1 10	20	30	40	
CTGNCCTGCANGTTTA	CGAATTCGC	CCTTAGGATN	NNNTNAGGAGGG	NAA 50
NGGTTTTTTNCCGANTN	CNANATGAG	GGCAGTGAAG	CGCACNCTGAGT	GTG 100
GTTCCCAGAAAANNNA	CAATGGGGA	GCTNCCTCTC	TCAGCCGTAGTA	CCT 150
TGGAAGGGCNGNCCTT	CTCCTNGNA	AGAAGCNTAT	ATNCCAAAGGAA	.CAG 200
AAGGATTCATTCCTGN	ANAACCCCC	AGACCTCCCT	CTGTTTCTCAGA	GTC 250
TATTCCGACNCCCTCC	AACAGGGAG	GAAACACAAC	AGAAATCCGTGA	GTG 300
GATGCCTTCTCCCCAG	GCGGGNGAT	GGNGGAGACC	TGTAGTCAGAGN	CCC 350
CGGGANGGNATCCCTG	TGANCCCTC	CNCAGTGCCT	CTCCTGGCCCTG	GAA 400
GNTGCCACTCCAGTGC	CCTTTACAT	CCTAAGGGCG	AATTCGCGGCCG	CTA 450
AATTCAATTCGCCCTA	TAGTGAGTC	GTATTACAAT	TCACTGGCCGTC	GTT 500
TTACAACGTCGTGACT	GGGAAAACC	CTGGCGTTAC	CCAACTTAATCG	CCT 550
TGCAGCACATCCCCCT	TTCGCCAGC	IGGCGTAATA	GCGAAGAGGNCC	GCA 600
CCGATTGNCCTTNCCA	ACAGNTGNG	CAGCCTATNC	GNACNGNAGNTT	AAG 650
GNTTACNCCTATNAAA	NANAGANCCI	NNTNTCGNCT	GNTTNNGGATGN	ANN 700
NANNGNTNTTNTTGAN	NCCCCNGGNI	NNACNGANGG	NGANNCCCCNTG	GNC 750
AGGGNNCNTNTNNTTN	NAAAAANNN	ICCNGNAANT	TTNCCGGGGGGGN	NTT 800
TNGGNATNAAA				811

Anexo 3.2 Secuencia de 811pb determinada con el inserto 2E (Clona MM104).

1	10	20	30	40		
CTCAAC	STAGGTCACA	CTAGTTTTATA	CTCTCTCAC	GTATCCAGTAG	CTAGA	50
CCTGAG	GCTCCTTAGT	CTCCTCCTAAG	GGCGAATTO	CGCGGCCGCTA	AATTC	100
AATTCO	GCCCTATAGT	GAGTCGTATTA	CAATTCACT	IGGCCGTCGTT	TTACA	150
ACGTCO	GTGACTGGGA	AAACCCTGGCG	TTACCCAAC	CTTAATCGCCT	TGCAG	200
CACATO	CCCCCTTTCG	CCAGCTGGCGT	'AATAGCGA <i>I</i>	AGAGGCCCGCA	CCGAT	250
CGCCCI	TCCCAACAG	TTGCGCAGCCT	ATACGTAC	GCAGTTTAAG	GTTTA	300
CACCTA	TAAAAGAGA	GAGCCGTTATC	GTCTGTTTC	GTGGATGTACA	GAGTG	350
ATATTA	TTGACACGC	CGGGGGCGACGG	ATGGTGATC	CCCCCTGGCCA	GTGCA	400
CGTCTC	GCTGTCAGAT	AAAG				419

Anexo 3.3 Secuencia de 419 pb determinada con el inserto 3B (Clona MM106).

1	10	20	30	40		
TCTGC	CANGGTTTAACG	AAATTCGCC	CTTAGGTATO	SCCNAGTGGCN	CATGG	50
CAGTO	GNNNCTTTCCA	GAGNTCCAN	GAATGAGGCG	GACTGATGGAA	.GGCGC	100
CNCTO	GAGTNTGGCANC	CCGAGGAAN	ATCTNCACTA	GGGGANCTNC	CCCTC	150
TCCCC	CGNAGTNGCTTN	GAAGGGANN	CNCTTCTCCN	INTNNNGAAGC	NTATA	200
TNCCN	IATGGAACAGGA	ANGATTCAT	TCCTGNANAA	CCCCCAGACC	TCCCT	250
CTGTI	TCTCAGAGTCT	ATNCCGACA	CCCTCCAACA	GGGAGGAAAC	ACAAC	300
AGAAA	TCCGTGAGTGG	ATGCCTTCT	CCCCAGGCGG	GGATGGGGGA	GACCT	350
GTAGI	NNGAGTCCCCN	'TTTTGGTNA'	TCNNNTGTGA	CCCCNTCTNN	AGTGT	400
ATTCA	NCTNGTNCTTT	'NNNGNTGTT'	TTTCCATNNN	INCNTTCANTT	TCTAT	450
NANTI	ANAATTANNNC	1				466

Anexo 3.4 Secuencia de 466 pb determinada con el inserto 3E (Clona MM107).