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Er ligt wie gedruck.

Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational and contrary to the spirit of chemistry... If
mathematical analysis should ever had prominent place in chemistry - an aberration,
which is happily almost impossible - it would be a rapid and widespread degeneration

of that science.

—Auguste Comte, Philosophie Positive (1830)
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N: Stoichiometric matrix.
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Resumen

El dogma fundamental de la cinética quimica establece que puede existir mas de una
red de reaccién quimica (RRQ) que explique los datos experimentales. Més atin,
las RRQ validadas experimentalmente no necesariamente son del mismo tamano, es
decir, pueden diferir entre ellas en el nimero de especies y/o reacciones quimicas.
Sin embargo, las Ecuaciones Diferenciales Ordinarias (EDOs) que se derivan de las
RRQ candidatas, son capaces de reproducir el comportamiento experimental para
un conjunto apropiado de valores de pardmetros, representados por las constantes
cinéticas de reaccion en la respectivas RRQ.

Un ejemplo del dogma antes mencionado en el campo de la cinética quimica no
lineal, es la reaccién quimica oscilatoria de Belousov-Zhabotinsky (BZ). Varias RRQ
se han propuesto y validado para explicar el comportamiento oscilatorio y cadtico
que la reacciéon BZ es capaz de generar [3]. En particular, en este trabajo se discuten
la RRQ denominada Oregonator, con tres especies quimicas, y las RRQ reportadas
en [1], que toman en cuenta nueve, siete y cuatro especies quimicas, respectivamente,
las cuales modelan la reaccin de BZ. La dindmica de las especies quimicas en el
Oregonator, y las tres primeras RRQ en [1], estan descritas por EDOs derivadas de
la Ley de Accién de Masas (LAM); las EDOs asociadas a la cuarta RRQ en [1] no
son del tipo LAM, sin embargo, ajustan muy bien las observaciones experimentales.

Lo anterior motiva las siguiente preguntas: ;Por qué distintas RRQ de la reaccién
BZ son capaces de reproducir la misma realidad experimental, a pesar de las difer-
encias en el nimero de especies y reacciones quimicas?. ;En qué sentido las EDOs

de dos o0 mas RRQ que explican las mismas observaciones experimentales pueden ser

poel



consideradas equivalentes?.

Como primera aproximacion para responder estas preguntas, se aplicaron elemen-
tos de teorfa de grafos y Analisis Estequiométrico de la Red (ASR) [4], a las RRQ
Oregonator y Brusselator, siendo esta tltima la primera RRQ que demostro la capaci-
dad de EDOs-LAM de exhibir oscilaciones en las concentraciones de especies quimicas,
de manera analoga a las observadas en la reaccién BZ. El uso de esta aproximacion
permitié hallar una transformacién no invertible tal que el pseudo-grafo dirigido y
pesado del Brusselator posea el mismo patron de direccion y pesos que el del Oreg-
onator, pero no lo opuesto. Esto es, el Brusselator es equivalente graficamente al
Oregonator bajo la accion de un mapa no invertible.

En la busqueda de equivalencia entre el Brusselator, Oregonator y las RRQ en
[1], se aplicaron otros criterios basados en teorfa de grafos: (1) Teoria de Redes
de Reaccion Quimica (TRRQ) [5] v, (2) la Clasificacién Mecanistica de Osciladores
Quimicos (CMOQ) [2]. La aplicacién de ambas teorfas no permitié establecer con-
clusiones definitivas en relacién a la posible equivalencia entre las RR(Q mencionadas.

Por lo anterior, en esta tesis se propone el concepto de equivalencia dindmica entre
EDOs no (necesariamente del tipo de LAM) inducidas por RRQ. La equivalencia
dindmica se define como la composicién de funciones difeomorficas construidas con
las derivadas de Lie de una funcién observable, que asignan la evoluciéon temporal
de las concentraciones de especies quimicas (espacio de estados) de una RRQ a otra,
y viceversa. Este enfoque se aplica al Brusselator, el Oregonator y la cuarta RRQ

reportada en [1].

Palabras clave: equivalencia dinamica, redes de reaccién quimica, autocatalisis.
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Abstract

The fundamental dogma of chemical kinetics states that there might be more than
one Chemical Reaction Network (CRN) that fits a given experimental reality. More-
over, the experimentally validated CRNs are not necessarily of the same size, that is,
they might differ in the number of chemical species and reactions. Nevertheless, the
Ordinary Differential Equations (ODEs) induced by the candidate CRNs, are able
to reproduce the observed experimental behavior for a particular set of parameters,
represented by reaction rate kinetic constants of the CRNs.

An example of the mentioned dogma in the field of nonlinear kinetics, is the os-
cillatory reaction of Belousov-Zhabotinsky (BZ). Several CRNs has been propounded
and validated to explain the oscillatory and chaotic behavior in the BZ reaction [3]. In
particular, in this work are discussed the CRN termed Oregonator, with three chem-
ical species, and CRNs reported in [1], with nine, seven and four chemical species,
respectively, all of them valid models for the BZ reaction. The dynamics of the Oreg-
onator’s chemical species, and the first three CRNs in [1], are governed by ODEs
derived from Mass Action Kinetics (MAK); ODEs associated to the fourth CRN in
[1] are not ODEs of MAK type, nevertheless, they fit very well the experimental
observations.

The aforementioned facts motivates the following questions: Why different CRNs
of the BZ reaction are able to account for the same experimental reality, despite their
differences in the number of chemical species and reactions? In what sense the sets
of ODEs from two or more CRNs explaining the same experimental reality can be
considered equivalents?

As a first approximation to answer these questions, elements from graph theory
and Stoichiometric Network Analysis (SNA) [4], were applied to the Oregonator and
Brusselator, the latter being the first CRN whose MAK-ODEs exhibit oscillations

xXx1i1



in the chemical species concentration space, analogous to those observed in the BZ
reaction. Using this approach is possible to find a non-invertible map such that the
directed and weighted Brusselator’s pseudo-graph have the same pattern of direction
and weights of the Oregonator’s pseudo-graph, but not the opposite. That is, the
Brusselator is equivalent from a graph viewpoint to the Oregonator under the action
of a non-invertible map.

Searching equivalence among the Brusselator, Oregonator and CRNs reported in
[1], other criteria based on graph theory were applied: (1) Chemical Reaction Net-
work Theory (CRNT) [5] and, (2) Mechanistic Classification of Chemical Oscillators
(MCCO) [2]. The application of both theories does not offer definitive conclusions
concerning the possible equivalence among the mentioned CRNs.

In order to circumvent this issue, in this thesis we propose the concept of dynamical
equivalence among ODEs (MAK type or not) induced by CRNs. Dynamical equiva-
lence is defined as the composition of diffeomorphic functions, constructed using the
Lie derivatives of an observable function, which map chemical species concentrations
(state space) of one CRNs to a second CRN, and vice versa. This approach is applied
to the Brusselator, the Oregonator and the fourth CRN in [1].

Keywords: dynamical equivalence, chemical reaction networks, autocatalysis.

XXiv



1. Introduction

The fundamental dogma of chemical kinetics states that there might be more than
one Chemical Reaction Network (CRN) that fits a given experimental reality. Those
valid CRNs not necessarily share the same number of chemical species or reactions.
Nevertheless, their Ordinary Differential Equations (ODEs) are able to reproduce the
same observed experimental behavior. Furthermore, it might be the case that the
set of ODEs induced by the validated CRNs are not of the same type, e.g. Mass
Action Kinetics (MAK) type. Thus, it is possible to have ODEs derived from CRNs
with different dimension whose solutions, i.e. the time evolution of chemical species
concentrations, behaves in the same way as observed in experiments. Then, it is
natural to think that, despite their differences in dimension, the validated CRNs
have common features: they are equivalent in some sense.

This thesis focus on the study of dynamical equivalence in CRNs. In particular, it
can be distinguished two possible scenarios: (1) the system of ODEs of two or more
CRNs have the same dimension or, (2) the system of ODEs among the CRNs are of
distinct dimension. In the first scenario, two CRNs are said to be dynamical equiva-
lents if it is possible to map solutions (concentrations of chemical species) of one CRN
into solutions of a second CRN, through the composition of two diffeomorphic maps.
For the second scenario, the system with higher dimension can be “immersed” into

the system of lower dimension, thus defining a projection after composition of their
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respective diffeomorphic maps. Because both systems do not have the same dimen-
sion, they are termed partially dynamical equivalents. For both cases, diffeomorphic
maps are constructed by means of recursive Lie derivatives [6, 7, 8] of a single observ-
able function (single output in the control literature) along the vector field defined
by the set of ODEs induced by the CRN.

The remaining of this chapter provides the motivation to study the equivalence
among CRNs trough a series of examples which illustrates the fundamental dogma in
chemical kinetics. The literature review related with equivalence concepts in CRNs
is presented as well. Finally, a description of this thesis is given along with the

hypothesis, the general objective of this work and the applied methodology.

1.1 Motivating examples

The every day job of a chemist is to use different techniques to identify as much
chemical species can provide him for a particular reaction. Then, based on experience,
previous results reported in journals, and even by pure intuition, the chemist proceed
to write down several candidate CRNs. We can think that a CRN is an algorithm
of how the already identified chemical species combine with each other in order to
produce the measured chemical products at the enda of the reaction. Some CRNs
will fit the data, some others not. The worst case scenario arises when none of the
candidate CRNs fits the data. For those CRNs that do stand for the experimental
observations, structural differences within the set of validated CRNs are possible,
such as variations in the number of chemical species and reactions. This fact it is
known as the fundamental dogma of chemical kinetics [3]: more than one CRN can
explain the observed global reaction.

By means of three examples, it is clarified what do we mean by global reaction and

how the corresponding ODEs are derived assuming MAK from the validated CRNs.
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The first example comes from the ethylene hydrogenation on a rhodium catalytic
surface [9] for which nine CRNs fit the experimental data. The second example
shows several biochemical reaction networks (BCRN) which stands for the formation
of products by means of a single substrate [10]. Third example is the par ezcellence

in nonlinear kinetics, the Belusouv-Zhabotinsky (BZ) reaction [3].

1.1.1 A heterogeneous catalytic example

Suppose that chemical species ethylene and hydrogen, Cs Hy, H», respectively, are fed
at a constant rate into a well mixed Continuous Flow Stirred Tank Reactor (CFSTR),
i.e. a chamber where is a sufficient amount of catalyst (rhodium) so that the main
product at the end of the reactor is composed by CsHg, primarily; Co Hy and Hs are
carried out from the reactor in minor quantities. Also, let us assume that the reaction

takes place at constant temperature. Then, the global reaction can be written as:
CoHy+ Hy "™ CyHg (1.1)

Let us consider the following CRN for this global reaction, which reflects what is

supposed to be occurring inside the reactor:

Hy + 2%« —— 2H — %
02H4—|—2>I< S 02H4—2*

CoHy — 2% 4+2%x ———= (CoH3—3*x+H — % (1.2)

CoHy +2C5H, — 2 % +2% — 02H6 + 202H3 — 3 %

02H4 — 2% +H2 02H6 + 2%

where the symbol “x” represents vacant catalytic sites on the surface’s catalyst. The

adsorbed chemical species upon the catalytic surface are represented by “chemical
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specie—x”, e.g the hydrogen 2H — . In order to model the inlet and outlet of

chemical species to and from the CFSTR, we add the following pseudo-reactions:

k k
H, :9 @ - 02H4
klO k12
kis 1 (1.3)
CyHg

The symbol “="in CRN (1.2), indicates a reversible reaction; it is a condensed way
to express that both reactions, Ho+2%x — 2H — and 2H —% — Hy+2% —, are taking
place at a rate encoded by the kinetic constants, k; and ks, respectively. Additionally,
the pseudo-reaction, ) — Hj, stands for the entering of Hs into the reactor, with a fed
rate of k19. On the other hand, the reverse pseudo-reaction, Hy — (), serves to depict
the leaving of Hs from the reactor with a rate k9. Following this nomenclature, we
have that CyH, enters and leaves the reactor meanwhile Cy Hg only leaves the reactor,
both at their corresponding rates. Hence, the () symbol represents the surroundings
or constant pool of chemical species [11].

As we can see, the CRN (1.2) tell us in a detailed fashion how chemical species
CyH,, H, react each other to form CyHg, with the participation of intermediate

species formed during the course of the reaction. For example, reactions:

ki

ks

Hy + 2 x 2H — % (1.4)

express that bimolecular hydrogen hit two vacant sites on the catalytic surface, giving
as a consequence two hydrogen atoms adsorbed on both vacant sites in a reversible
process. In the same way, CyHy hits the catalytic surface becoming adsorbed by two
vacant sites, CoHy; — 2x. This adsorbed species reacts with two adjacent catalytic
sites to produce more adsorbed species, CoH3 — 3% and H — . Then, adsorbed

species 2C5 Hy — 2% along with two catalytic sites 2% reacts with Cy H4 to produce the
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final product CsHg, accompanied by the adsorbed specie 2CsH3 — 3. Finally, the
adsorbed specie CyHy — 2% reacts with bimolecular hydrogen to produce CyHg and
the two original catalytic sites, 2%, showed at the beginning of the reaction. Thus, the
number of catalytic sites must be conserved, i.e. the number of vacant sites plus the
number of adsorbed chemical species do not vary as time goes by. Such a conservation

relation can be written as:

where z;(t), i = 1,...,7, represents the instant concentration (in appropriate units)
of chemical species x1(t) = Ha, x2(t) = *, x3(t) = H — *, x4(t) = CoHy, z5(t) =
CoHy — 2%, x6(t) = CoHz — 3% and z7(t) = CyHg.

It is pertinent to illustrate how the CRN (1.2) along with (1.3) gives rise to
an associated set of MAK-ODEs. Accordingly, MAK states that reaction rates (at
constant temperature) are proportional to products of reactants’ concentrations. The
form of the rate functions can be deduced from the reaction itself. To begin with, let

us choose the chemical specie, Hy, which participates in reactions:

Hy + 2% —— 2H —* (1.6)

02H4 — 2% +H2 — OQHG + 2 % (17)

Consider reaction (1.7). The likelihood of the Hjy collision with two catalytic sites
“¥” is presumably reflected in the product zi(t)z3(t), where the powers 1 and 2, at
which concentrations are raised, are known as stoichiometric coefficients. Thus, the
molar occurrence rate is taken to be kyz(t)x3(t), where k; is a rate constant for the

reaction Hy+ 2% — 2H — *. Similarly, the reverse reaction, 2H —* — Hy+ 2%, induce
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the reaction rate function l@x%(t). Reaction CoHy — 2 ¥ +Hy — CyHg + 2% requires
that the adsorbed specie CyHy be hit by one molecule of Hs, so the occurrence rate
is taken to be kgxi(t)x5(t). To account for the concentration of H, at the exit of
the reactor, we have the reaction Hy, — (), from which it is derived the rate kgxy(t);
opposite reaction, ) — Hj, described the entering of H, at a constants rate k9. Now,
we are in a position to formulate the MAK-ODE that govern the Hy concentration. It
only remains to identify if we loose (-) or gain (4) molecules of H; for every reaction
at a rate indicated by the reaction: if Hs appears at the left of the chemical arrow,
we loose molecules of Hy; we gain molecules of Hj if it is located at the right of the
chemical arrow.

From the convention adopted above, we write for H, and the remaining species:

dl’dlft) — l’l(t) = —k’ll‘l(t)l’g(t) + k2x§(t) — ksxl(t)x5(t) —_ k'gl'l(t) + klO
io(t) = —2kyxw5(t) + 2kox3(t) — 2ksx3(t)z4(t) + 2kyws(t) — 2ksw3(t)ws(t)

t) — 2kox5(t) s (t) T2 (t) + 2ksxy (t)25(1)

(1) — 2kox3(t) + ksx3(t)s5(t) — kews(t)ws(t)

i4(t) = —ksz3(t)wa(t) + kaws(t) — ko () g () 22(t) + kiy — kiowa(t) (1.9)
kyxs(t) — ksas(t)zs + kews(t)xe(t) — 2krw3(t) 24 (t) 2

+2]€6£L‘3( ) (
l’3(t) = 2]{311‘1(15) )
l’5(t) = k’gl'Q(t l’4(t

l’ﬁ(t) = k‘5l’2(t l’5(t ]{61’3(t)$6(t) + 2]{371‘3(15)1‘4(15)1‘%(15)

()4(

Jz4(t) —
—kgx1(t)xs(t)

Jas(t) —
i7(t) = kead(t)zy(t)w: + kg (t)zs(t) — ks (t)
Then, the system of Equations (1.9), constitutes the full system of MAK-ODEs in-
duced by CRN (1.2)-(1.3). Note that the existence of conservation relation (1.5)
restricts the solutions of Equations (1.9) to evolve within the plane defined by Equa-

tion (1.5).
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Now, let us consider an alternate CRN for the global reaction (1.1):

Hy+ 2% —— 2H —x

02H4 + 2% = 02H4 — 2%

CoHy —2x+H — x —— 02H5—2*+*

02H4—2*+H2 ESS—— C2H5—*+H—*

02H5—*+2* s 02H4—2>|<+H—>I<

02H5—*+H—* — C2H6+2*
]{13 k15

CoH,

H,

It is straightforward to check the participation of eight chemical species trough sev-
enteen reactions in CRN (1.10): it has and additional chemical specie and four more
reactions with respect to CRN (1.2). We identify the chemical species concentrations
of CRN (1.10) by z1(t) = Ha, ma(t) = *, x3(t) = H — *, x4(t) = CoHy, z5(t) =
CoHy — 2%, x¢(t) = CoHs — 2%, x7(t) = CyHg, w5(t) = CoHs — . The full set of
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MAK-ODEs for CRN (1.10) is:

T1(t)

(1)

o3(t)

Ty(t)

o5(t)

()

o7 (t)

og(t)

—kywy (8)25(t) + kow3 (t) — kgzy (t)z5(t) + koxs(t)ws(t) — kizz(t) + kg
—2k1 21 ()23 (1) + ka3 (t) — 2ks3x3(t) 4 (t) + 2kyws(t) + ksas(t)zs(t)
—kezo(t)x6(t) + 3kra5(t)T6(t) — 2k1073 (1) 28(t) + 2k1125(t)25(1)
+2k10a3(t)zs(t)

k11 (1) w5 () — 2kox3(t) — kswz(t)xs(t) + kewa(t)z6(t) — krws(t)ws(t)

+kgry (t)z5(t) — kozs(t)xs(t) + k1023 (t)z8(t) — k113(t)zs(t)

t)l‘4 t) + ]{4$5(t) + ]{15 — k?161’4(t) (111)

subject to the conservation relation, i.e. balance of surface catalytic sites:

$2(t) + l’3(t) + 21‘5(15) + 2$6(t) + $8(t) =w E R+,Vt >0 (112)

It turns out that both sets of MAK-ODEs, Equations (1.9)-(1.11), are two of nine,

among the eighty one proposed CRNs for global reaction (1.1), that can support the

pair of stable steady states founded experimentally along with the conserved number

of catalytic sites [9]. Note that CRNs (1.2) and (1.10) does not induce MAK-ODEs

of the same dimension. Nevertheless, both CRNs and their corresponding MAK-

ODEs are consistent with the available data collected from experiments [9]. In other

words, there are kinetic constants that parametrize the set of MAK-ODEs (1.9) and
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(1.11) such that both set of solutions converge to specific steady states in chemical
species concentration spaces, not necessarily of the same dimension. Therefore, CRNs
(1.2)-(1.3) and (1.10), along with their MAK-ODES, are equivalent, as stated by the
fundamental dogma in chemical kinetics.

It is noteworthy that examples of the fundamental dogma in chemical kinetics are
not exclusive of the chemical engineering field. Biochemical systems are also a source
of examples of the fundamental dogma. Furthermore, it might be CRNs standing for
the same global reaction but with different properties, such as the capacity or not
for bistability. This issue is illustrated for a set of putative Biochemical Reaction

Networks (BCRNS).

1.1.2 A biochemical reaction network example

Metabolic pathways involved on the cell operation are also susceptible to be modeled
by MAK, using the same concepts showed for the heterogeneous catalytic example.
In this situation, the cell is modeled as a CFSTR. For the case of elementary enzyme
catalysis involved on the transformation of a single substrate, S, (a molecule that
is catalyzed by an enzyme, E) into a product, P, we have four commonly accepted

BCRNSs [12] which account for the global reaction:
sEp (1.13)
Michaelis-Menten kinetics:
E+S=2ES—E+P (1.14)

Competitive inhibition:

E+S =2 ES—FE+P

E+I = EI (1.15)
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Uncompetitive inhibition:

E+S =2 ES—FE+P

ES+1 & FESI (1.16)
Mixed inhibition:

E+S 2@ ES—E+P
E+I = EI (1.17)

ES+1 = ESI=FEI+S

where ES is the chemical complex enzyme-substrate, I stands for the inhibitor, F'I
and ESI are the chemical complexes of enzyme-inhibitor and enzyme-substrate-
inhibitor, respectively; P is the final product of reaction. In addition, we assume
that substrates and inhibitors are supplied at fixed rates into the CFSTR; the total
concentration of enzyme is conserved (is the same fashion as catalytic sites) and the
free enzyme remains entrapped within the CFSTR; substrates, inhibitors, and prod-
ucts are removed (or degraded) at rates proportional to their current concentrations.
For the sake of brevity, the appropriate pseudo-reactions for inlet and outlet to and
from the CFSTR of substrates, inhibitors and products, has been omitted.

By visual inspection it can be checked that BCRN (1.14) is a subnetwork of
(1.15)-(1.17). Also, BCRN (1.15) is a subnetwork of (1.17), along with BCRN (1.16).
Nevertheless, even though there exists structural similarities among them, only (1.17)
has the property of bistability [10]. Thus, it might be the case that several CRNs
stand for the same global reaction, but some of them can possess additional dynamical
properties, such as bistability or oscillations. A biochemical example closely related
to this issue is presented in Chapter 5, where two BCRN stands for a neurodegenera-
tive disease, representing two possible routes of production of a pathological protein.

However, both BCRNs displays different dynamical scenarios [13].

10
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Another reaction which offers an ample variety of CRNs with different dimensions
and distinct dynamical features among them [3, and references therein| is the BZ
reaction. Due to its dynamical richness, there has been multiple efforts to condense in
one CRN all the range of nonlinear behaviors the BZ reaction is capable of, sometimes
leading to scientific controversy (see for example [14, 15]). Next section briefly reviews
some CRNs designed for the BZ reaction, which allow us to make patent the issue of

dynamical equivalence among CRNs.

1.1.3 The Belusouv-Zhabotinsky reaction

At the beginning of the 1950’s, Russian chemist Boris Pavlovich Belusouv was devel-
oping an inorganic model of the Krebs cycle. This reaction is an universal part of
the metabolism by which acetyl residues are oxidized to carbon dioxide at the mito-
chondria. He propose the metal ion cerium instead of the protein-bound metal ions
common in the enzymes of living cells, this lead to a mixed solution of citric acid in
water with acidified bromate as oxidant and yellow ceric ions as catalyst. The solu-
tion exhibited periodic states, it turned from colorless to yellow, and back again (see
Figure 1.1). Oscillations were observable for as long as one hour, while effervescing
carbon dioxide. By 1951, Belusuov sent photos of the course of the reaction along
with a detailed formulation to several Russian journals. His work was rejected on the
basis that his reaction violates the second law of thermodynamics. Four years later,
in 1955, Ilya Prigogine stablished its theory on non-equilibrium thermodynamics give
an explanation for how sustained oscillations might arise from chemical reactions.
Meanwhile, Belousov published his results in the memories of a radiology congress,
later published into English [3, and references therein]|.

In 1961, Anatole Zhabotinsky became aware of the Belousov’s discovery and de-

velop a better formulation of reaction to study the observed oscillations. Later on,

11
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BREER
13

t=25s t=30s

Figure 1.1: Experimental dynamics of the BZ reaction. Upper panel: oscillations in
color under batch and well stirred conditions. Lower panel: pattern formation in a

Petri dish where the solution is not well stirred.

12
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in 1967, Prigogine and Lefever [16] published the Brusselator, a CRN modeled with
Mass Action Kinetics (MAK) that exhibit sustained oscillations and pattern forma-
tion as in the BZ reaction. The next year, during a conference on Biochemical and
Biological Oscillators held at Prague, the scientific community of Western countries
took notice of the BZ reaction and the growing evidence that nonlinear phenomena
can be exhibit by CRNs.

Field, Koros and Noyes (FKN) [17] from Oregon University, designed in 1972 the
first CRN specifically to explain the BZ reaction experimental behavior. They provide
a set of reaction rate kinetic constants based on thermodynamic and experiment
collected data. The FKN-CRN contains fifteen chemical species and eleven reactions.
Two years later, Field and Noyes [18] simplified the FKN-CRN, reducing it up to
five reactions and three chemical species (HBrOy, Br~ and Ce*?), yet preserving
the essential dynamics of the observed BZ reaction which has been coined as the
Oregonator. Dynamic analysis of the Oregonator showed that it could reproduce and
predict most of the observed behavior, e.g. oscillations and bistability, but could not
display complex oscillations or chaos [19].

Janz, Vanecek and Field [19] expanded the Oregonator to modeled as a CFSTR;
they find bursting phenomena similar to those observed in experiments at low flow
rate. Turner et. al. [19] model all the reactions in the Oregonator as reversible ones
under CFSTR conditions. Increasing the flow rates they find periodic and chaotic
regions but not at the rates used for experiments. Showalter, Noyes and Bar-Eli (SNB)
[19] expanded the Oregonator up to a seven variable CRN, allowing reversibility and
replacing the autocatalytic reaction by two reactions that account for oxybromine
chemistry. This expansion reproduced complex periodic waveforms at approximately
the correct flow rates but not chaos.

Several CRNs of different chemistry and dimensions were proposed along the years

to fit the new collected data concerning the detailed chemical processes in the BZ

13
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reaction. Among others, Gyorgy and Field [1], based on a CRN with a eighty reactions
accounting for the new detailed chemistry derived from experiments, devised a CRN
with eleven variable chemical species and nineteen reactions (hereafter CRN GF y4;
see Figure 1.2) under a CFSTR operation. Surprisingly, CRN GF 4 embodied and
agreed with virtually all experimentally observed complex phenomena displayed by

the BZ reaction at low flow rates [19].

TABLE I: Model A*
rate constant ref
Al HOBr + Br + [H*) = Br; + {H,0} 6OE+8 M 5! 46
A2, Bry + [H,0] = HOBr + Br" + {H*} 2047 46
A3. Br + HBrO, + (H*) ~ 2HOBr S2E45 M1 5 25,26
A4, Br + [BrO;1 + 2H] = HOBr + HBIO, 001382 5 2,26
AS. HOBr + HBrO, — Br" + [Br0,7] + [2H*| 3IAM s 25
A6, 2HBYO, = [BrOy] + HOBr + [H*] 30E+3 M ¢ 2
A7, [BrO;1 + HBrO, + [H*) - 2B10;' + [H,0} 0858 5° 25,26
A8, 2BrO;’ + [H;0] = [BrOy) + HBrO, + [H] 42847 M ¢ 2
A9, Ce(l11) 4 BrO;' + [H*) ~ HBYO, + Ce(IV) 1612E+4 MY 57 25, %
Al0. HBrO, + Ce(1V) — Ce(1ll) + BrO,* + [HY T0E+3 M 5! 25,26
AlL MA + Br, = BIMA + Br + H') H00M ¢ 4
Al2. MA + HOBr — BrMA + {H,0] 82M7s" 4
Al3. MA + Ce(IV) ~ MA* + Ce(III) + [HY| 0.3 M5! i
Al4. BrMA + Ce(1V) = Ce(1I1) + Br" + {products| 3006 M 5! n
AlS. MA® + BrtMA -+ MA + Br* + {products| 24E+4 M 57! byl
Al6, MA® + Br, = BrMA + Br* |.SE+8 M 57! 26,49
Al7. MA* + HOBr - Br* + [products) 1OE+T M1 ¢ 26, 49
Al8. 2MA* = MA + {products| J0EH9 M ! 1,50
Al9. Br' + MA = Br- + MA" + {products| LOE+5 M~ 57! 26

#The values [H,0] = 55 M, [BrO;7] = 0.1 M, {H*] = 0.26 M are included in the appropriate rate constants. The mixed-feed concentrations are
[MA] = 0.25 M, [Ce(I1T)] ¢ = 0.000833 M. These are exactly the experimental conditions of refs 14-18. E+n = X10. *MA = CH,(COOH),;
MA"* # *CH(COOH),; BrMA = BrCH(COOH),. Adjustable rate constant.

Figure 1.2: GF5 CRN, taken from [1]. Chemical species in curly braces are held

constant during the course of reaction.

Further analysis of CRN GF4 lead to a set of reduced CRNs: GFpg, with nine
variables and thirteen reactions (Figure 1.3, upper panel); GF¢, a seven variable
CRN with eleven reactions (Figure 1.3, middle panel) and two four variable CRNs
not following MAK, GFp (Figure 1.3, lower panel). The first GFp model is derived

using quasi-steady-state assumption (QSSA), meanwhile the second is obtained by

14



Introduction 1.1 Motivating examples

TABLE II: Model B

rate constant

Bl. HOBr + Br~ + {H* — Br, + {H,0} 6.0E+8 M™! 57!
B2. Br- + HBrO, + (H*} — 2HOBr 5.2E+5 M- 57!
B3. Br~ + (BrOy} + [2H*} — HOBr + HBrO,  0.01352 57!

B4. 2HBrO, — [BrO,7} + HOBr + {H*} 3.0E+3 M5!

BS. [BrO,} + HBrO, + {H*] — 2BrO," + [H,0] 0.858 5!

B6. 2BrO," + [H,0] — {BrO;7] + HBrO, + [H* d4.2E+7 M- 5!
B7. Ce(lll) + BrO;* + (H*) — HBrO, + Ce(IV) 1.612E+4 M~ 5
B8. HBrO, + Ce(IV) — Ce(Ill) + BrO,* + [H*] 7.0E+3 M~ 5°!

BY. IMA} + Br, — BrMA + Br~ + [H¥} 40.0 [MA)] 5™

B10. {MA] + Ce(IV) — MA" + Ce(1II) + [H* 0.3 [MA] s}

B11l. BrMA + Ce(IV) — Ce(IIl) + Br + 30.0° M1 5!
{products}

Bi12. MA® + BrMA — [MA] + Br™ + [products] 2.4E+4° M1 5!

B13. 2MA* — [MA| + [products) 3.0E+9 M~ 5™

%A 9-variable model derived from model A. [H,0] = 55 M, [Br-
0y7] = 0.1 M, [H*] = 0.26 M are included in the appropriate rate
constants. *MA = CH,(COOH),; MA* = *‘CH(COOH),; BrMA =
BrCH(COOH),. ¢Adjustable rate constant.

TABLE III: Model C*

rate constant
Cl. Br" + HBrO, + |H*} — 2BrMA S.2E+5 M 57!
C2. Br™ + [BrOy7} + [2H*} = BrMA + HBrO,  0.01352 5™
C3. 2HBrO, — {BrO;7| + BrMA + [H*} 3.0E+3 M 57!

C4. [BrOy} + HBrO, + (H*} — 2BrO;" + {H,0} 0.858 5™

CS. 2BrO;* + [H;0} — {BrOy| + HBrO, + (H*] 4.2E+7 M~ s~
C6. Ce(111) + BrO;* + {H*} — HBrO, + Ce(IV) 1.612E+4 M- s°!
C7. HBrO, + Ce(IV) — Ce(IlI) + BrO,* + {H*] 7.0E+3 M~ 57!
C8. [MA] + Ce(IV) — MA* + Ce(Ill) + [H*} 0.3 [MA] s

C9. BrMA + Ce(IV) — Ce(III) + Br~ + 3006 Mt 57!
|products}

C10. MA® + BrMA — [MA} + Br~ + |products} 2.4E+4° M~ 57!

Cl11. 2MA* — {MA| + [products} 3.0E+0 M ¢!

® A 7-variable chaotic model derived from model B. [H,0] = 55 M,
[BrO;7] = 0.1 M, [H*] = 0.26 M are included in the appropriate rate
constants. *MA = CH,(COOH);; MA* = *CH(COOH),; BrMA =
BrCH(COOH),. ¢Adjustable rate constant.

TABLE IV: Model D*

rate (r)
DI. Br + HBrO, + [H*] — 2BrMA 7, = kpy[H*][Br][HBrO;] kp, = 2.0E+6 M2 5™
D2. Br + [BrOy} + [2HY] — BrMA + HBrO, ry = kpy[BrOs ) [H*)}[Br] kp; = 2.0 M~ ™!
D3. 2HBrO, — BrMA ry = kpy[HBrO,)? kpy = 3.0E+3 M~ ¢!
D4. 0.SHBrO; + [BrOy| + [H*] — HBrO, + Ce(IV) 74 = kpu[H*]([Cely ~ [CeIV)D[BrO; o kpq = 6.2E+4 M35
DS. HBrO, + Ce(IV) — 0.5HBrO, ry = kps[HBrO,)[Ce(IV)] kps = 7.0E+3 M~ 57!
D6, Ce(IV) + [MA} — rs = kpg[MA][Ce(IV)] kp = 0.3 M~ 571
D7. BtMA + Ce(IV) — Br- ry = kpn[Ce(IV)][BrMA] kp; = 30.0¢ M~ 7!
DS. BrMA — Br rs = kpg[BrMA][MA*]qes kpe = 24E+4 M~ 57!

“Chemical scheme of the two 4-variable models (depending on whether eq 3 or 4 is used for [BrO,'],,) derived from mode! C. In this model
BrO,", H* and MA have fixed concentrations. The differential equations for these models are given in the text. *MA = CH,(COOH),;; MA* =
*CH(COOH);; BrMA = BrCH(COOH),. [MA"]qss and [BrO,'],, are defined in the text. °Adjustable rate constant.

Figure 1.3: GFp (upper panel), GFc (middle panel) and GFp (lower panel) CRNs
were taken from [1]. Chemical species in curly braces are held constant during the

course of reaction.
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Introduction 1.2 State of knowledge

equilibrium assumptions (EQ). The latter model (GFp,,) match better the experi-
ments for low flow rates than GFp,,,,; both show complex periodicities and chaos at
high flow rates [1].

By no means CRNs reported by Gyorgy and Field [1] are unique, but are some of
the most well documented in terms of reaction rates constants obtained from experi-
ments. In this respect, we stress the fact that the non MAK model (GFp) fits very
well the experiments, which in mathematical terms means that there are fractional
powers in the ODES associated to the product of chemical species concentrations
taking place within the CRN.

Taking into account the aforementioned examples as a motivation, in this thesis
the concept of dynamical equivalence for CRNs is studied. The dynamical equivalence
is obtained when the time evolution of chemical species concentrations are carried to
a second space of chemical species concentrations from a second CRN, which might

have a different dimension than the former CRN. The maps that carries solutions from

one space into another are local diffeomorphisms, constructed using Lie derivatives

6, 7, 8.

1.2 State of knowledge

The topic of determining conditions under which CRNs with different reaction struc-
ture, i.e. different number of chemical species and reaction, exhibit the same qual-
itative dynamics (fundamental dogma of chemical kinetics), has gained attention
recently [20, 21, 22, 23, 24, 25].

Structural indistinguishability stands for the problem of determining the unique-
ness of the parameterisation or model structure, from input/output data [22, 23].
In a series of papers[22, 23, and references therein|, the indistinguishability is tested

for competing models structures (CRNs) for a given process with a given output.

16



Introduction 1.2 State of knowledge

Corollary 4 in [22] allows for testing structural indistinguishability between two can-
didate CRNs. As a case study, author’s in [23], analyze the distinguishability of two
CRNs standing for the single enzyme-single substrate reaction (Michaelins-Menten
and Henry CRNs), for distinct output functions. The approach presented involves
constructing, when possible, a smooth mapping between the trajectories of two can-
didate models. The smooth map is founded using Lie derivatives of the outputs after
the (nonlinear) observability rank condition is fulfilled [6, 7]. This approach is fo-
cused on systems of ODEs derived from chemical kinetics in a broad sense, i.e. is not
restricted to MAK-ODEs though they must have the same dimension.

Johnston and Siegel [24] consider MAK-ODEs induced by different CRNs with the
same number of chemical species but not necessarily the same number of complexes
and reactions. They call two MAK-ODESs conjugate systems if there exists a non-
trivial linear mapping (not the identity map) which takes trajectories of one system
into trajectories of the other. In particular, they focus on the subset of linearly
conjugate systems. Author’s in [24] do not require a priori knowledge of the second
candidate CRN. Instead, they exploit the concept of source complezes, (i.e the linear
combination of chemical species at the left of the chemical arrow), defined in [20] in
order to construct a target CRN which is a linear conjugate of the first (and known)
CRN. Moreover, the target CRN has the property of being weakly reversible, i.e. there
is a path connecting each complex (i.e the linear combination of chemical species at
the left and right of the chemical arrow) in the CRN, which has been proved to have
locally stable dynamics (see [26] for details). Thus, the (possible more complex) CRN
from which the target CRN is derived, also will posses locally stable dynamics.

Necessary and sufficient conditions have been provided in [20], such that two CRNs
are capable of induce the same MAK-ODEs under an appropriate selection of kinetic
constants. Authors in [20] named this feature confoundability, where the key point is

that the vector space spanned by the linear combination of chemical species located
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at the left hand of the chemical arrow in both CRNs is not empty (|20, see Theorem
4.4]). Also, MAK-ODEs are required to be of the same dimension.

In [21, 25|, two (or more) CRNs are dynamically equivalent if they have the same
MAK-ODEs, for a fixed set of complexes. Using a linear programming approach,
author’s in [21, 25] are able to find sparse and dense realizations of a given CRN
21, 25]. A sparse realization is a CRN with the minimal number of reactions that
induce the same dynamics of the original one. On the contrary, a dense realization
posses the maximal number of reactions that induce the same dynamics of the initial
CRN. Moreover, dense realizations are unique and contain all the possible CRNs
dynamical equivalent as a proper subgraph. In particular, the aim of the algorithm
reported in [21] is to find realizations for which the MAK-ODEs exhibits locally
stable dynamics. Thus, contrary to the work in [24], all the complexes can be used
to construct the realizations, not just the source complexes (i.e. those at the left of
the chemical arrow).

The approaches discussed above does not consider the scenario where two systems
of ODEs are of distinct dimension, which do occurs in practice. Moreover, from a
control system point of view, it is also required that the output between candidate
systems be the same (cf. [22, 23]). It will be seen that the approach propounded in
this thesis is less restrictive.

Next, a description of this thesis is given along with the chapters that conformed.

1.8 Description of the thesis

1.5.1 Hypothesis
The hypothesis of this thesis can be stated as:
“It is possible to express the time evolution of chemical species concentrations of

one CRN as function of the time evolution of chemical species concentrations of a

18



Introduction 1.3 Description of the thesis

second CRN; even when both sets of ODEs are not of the same dimension, by means
of a change of coordinates.”

Specifically, it is proposed in this thesis to carry the solutions of one set of ODEs
into a second set of solutions of another CRN via the mathematical composition of
(local) diffeomorphic maps. We say that two CRNs are dynamical equivalents if the
composition of diffeomorphic maps is possible and well defined within the domain of
interest, i.e the semi-positive orthant. When one of the CRNs under consideration
for dynamical equivalence is of distinct dimension and the composition is possible and
well defined, then we say that the CRNs are partially dynamically equivalents. To
the best of our knowledge, this situation has not been explored within the chemical
kinetics literature. Thus, it is expected that results derived from the hypothesis

contribute to a better understanding of the fundamental dogma in chemical kinetics

for CRNs.

1.3.2  Objectives

The objective of this thesis is to analyze and propound methodologies to establish
the equivalence between CRNs, with not necessarily the same dimension in the vector
fields defined by the ODEs derived from the CRNs.

We can identify the following particular objectives: (1) set the mathematical
conditions for the existence of dynamical equivalence for ODEs from CRNs with the
same or distinct dimension. (2) Interpretation of the results in terms of chemical

kinetics.

1.3.3 Methodology

In order to achieve the objective we propose the diffeomorphic maps be constructed

using the recursive Lie derivatives of a single observable (output) function along the
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vector field defined by the ODEs induced by the CRNs. We identify the singular
points where diffeomorphic maps are not valid, along with those point in both pa-
rameter and state space where the mathematical composition of diffeomorphic maps
carries solutions to the semi-positive orthant, the domain of phenomenological in-
terest. Furthermore, we do not restrict the proposed approach to ask for the same
observable function for the ODEs induced by the CRNs under consideration.

To illustrate our approach, we state preference for oscillatory CRNs such as Brus-
selator, Oregonator and the four dimensional CRN described in [1], which are closely
related with the BZ reaction presented in the motivational examples section.

Chapter 2 is devoted to provide the mathematical framework on which CRNs
are modeled along with its induced ODEs. A pair of graph theoretical formalisms
oriented to classify and extract dynamical properties from CRNs structure alone, is
also discussed. In addition, because its paramount role in the dynamical equivalence
definition, construction of a change of coordinates (diffeomorphism) by means of
recursive Lie derivatives is also explained.

A first attempt to approach the notion of dynamical equivalence between CRNs
using graph theory and Lie derivatives is presented in Chapter 3. In particular,
dynamical equivalence between two oscillatory CRNs of different dimension, 2 and 3,
respectively, is studied.

Ideas presented in Chapter 3 are implemented in Chapter 4 to study the dynamical
equivalence among several CRNs which stands for the BZ reaction. Particularly, the
dynamical equivalence between Oregonator and a CRN that does not follows MAK
but stands very well for the experimental evidence is presented.

Due to the extension from three to four years for PhD studies by CONACyT, as
an aside, the dynamics of an autocatalytic CRN which models a neurodegenerative
disease progression is investigated at Chapter 5. The deficiency formalism presented in

Chapter 2 is exploited to identify sets of kinetic constants inducing complex behavior,
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e.g bistability, sustained oscillations. Motivated by the existence of a steady state
fulfilling one of the Shilnikov’s conditions [27], a bifurcation analysis on the Prion
system was performed, revealing the existence of degenerate steady states such as
Bogdanov-Takens points.

Discussion of results are drawn in Chapter 6.
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2. Mathematical Framework

The aim of this chapter is to provide the mathematical framework on which reaction
systems are modeled. The dynamics of reaction systems are commonly described by
ODEs derived from standard mass balance considerations. These dynamics result
from the combination of a chemical reaction network (CRN), which encodes the re-
actions that are supposed to occur in the reactor, and reaction kinetics, e.g. positive
scalar functions of a particular form. Additionally, the Chemical Reaction Network
Theory (CRNT) formalism is presented, which allows to classify any CRN under the
assumption of MAK with a nonnegative index, called the deficiency (§ > 0), com-
puted from the network structure alone [5]. The CRNT is useful to determine whether
or not a CRN endowed with MAK can or cannot support multiple (positive) steady
states [5, 28]. In the same vein, Stoichiometric Network Analysis (SNA) is a graph
theoretical formalism which enable to decompose the entire CRN into subnetworks
in order to identify those subnetworks responsible for bistabilty or oscillations [4].
Mechanistic Classification of Chemical Oscillators (MCCO) developed in [2] relies
heavily upon the SNA.

2.1 Chemaical reaction networks

A CRN is a detailed description of the pathway leading from the reactants to the

products, including as complete a characterization as possible of the composition and
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Mathematical Framework 2.1 Chemical reaction networks

other properties of reaction intermediates [29]. Formally:

Definition 2.1.1 ([30]). A chemical reaction network consists of three finite sets:
1. a set S of distinct species of the network;
2. asetC C Ri of distinct complezes of the network;
3. a set R C C x C of distinct reactions, with the following properties:

(a) (u,u) ¢ R for anyu € R.

(b) for each uw € C there exists u' € C such that (u,u’) € R or such that
(v',u) € R.

The set of complexes are linear combinations of chemical species which appear
at the left and rigth of the chemical arrow. We note that the word “complex” is
often taken to mean, within the (bio)chemistry literature, a macromolecular assembly.
Because the term “complex”has a longstanding tradition in the CRNT literature, we
thought it best to retain its usage.

For illustrative purposes, let us consider the full Brusselator CRN [3].

X3 — X
2X1+X2 — 3X1
X4+X1 — X2+X5

X1—>X6

where the first reaction express that one molecule of X3 gives one molecule of Xj.
Second reaction tell us that two molecules of X; combines with one molecule of
X5 in order to get three molecules of X;: there is a net gain of one molecule for
specie X;. This type of reaction is called autocatalytic, because a species catalyse

its own production. The remaining reactions can be read in the same manner. In
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Mathematical Framework 2.1 Chemical reaction networks

terms of sets, we have that S = {X3,..., Xs}, with s = 6. The set of complexes
C ={X5,X1,2X1+X5,3X3, Xy+ X1, Xo+X5, X6} and ¢ = 7. Note that complex { X7}
appears as product (right side of reaction arrow) and as a reactive (left side of reaction
arrow), but it is counted once; this rule applies for every complex in the CRN. The set
of reactions is then R = { X3 — X1,2X1+ Xy — 3X1, Xu+ X1 — Xo+ X5, X7 — X6},
where » = 4. The associated graph of the full Brusselator CRN is depicted in Figure
2.1.

X; — X, — X,

X;+ X, —> X, + X,

Figure 2.1: CRN associated to the full Brusselator.

Note that the set of complexes are the vertices of the associated graph of the CRN.
Henceforth, the complexes of a CRN are the vertices of the associated graph of the
CRN. Following the convention stated in [30], they must be displayed once.

Thus, we can generalize a CRN as:

i=1 i=1

where aj; and bj; are nonnegative integers, called stoichiometric coefficients, arranged
in their associated matrices A, B € Z"*5. The stoichiometric matrix N € Z**" is
then defined as:

N = (B - A" (2.6)

where tr denotes the usual matrix transpose operation. For the full Brusselator we
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Mathematical Framework 2.1 Chemical reaction networks

have: A, B € Z**

001000 100 0 0O
210000 300 000
100100 01 0010
(10000 0| (00000 1|

to finally obtain N € Z5%4:

11 -1 -1 ]
0 -1 1 0
10 0 0
N = (2.8)
0 0 -1 0
0 0 1 0
0o 0 0 1

In general, N does not have maximal row rank. For d = rank(N), there exist s — d
conservation relations:

Wz =w (2.9)

with W'- N =0 for a W € R**(5=9_ where w € R,. It can be seen that d = 4 for
matrix (2.8), thus there are 6 — 4 = 2 conservation relations in the chemical species

concentration space. These can be computed to be:

l’1+$2+l’3+$6 = Wi, thO (210)

T4+ x5 = wa, VtZO (2.11)

Thus, conservation relations can be used to reduce the number of MAK-ODESs induced

by a CRN; in this particular case, by two.
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Mathematical Framework 2.2 Reaction kinetics

2.2 Reaction kinetics

The rate of reactant consumption and product formation in the reactor is expressed
by the reaction kinetics. Each reaction in the CRN has associated a reaction rate,

basically a nonnegative time varying function:

’Uj(k,X(t)) = k‘j ¢j($(t)), j = 1, Lo, T (212)

where k; is called the rate constant. Hereafter, we assume that k; belongs to the
positive orthant R’ ,V¢ > 0. The form of the scalar function ¢;, is readily obtained
from the CRN invoking MAK, which states that the rate of reaction is proportional
(reaction rate constant) to the product of the concentrations of the reactants raised

by their stoichiometric coefficients as reactants. Mathematically:
¢i(x(t) =[]« @), i=1,....r (2.13)
i=1

where x(t) = (z1(t),...,xs(t))" is the vector of time varying chemical species con-
centrations, belonging to the nonnegative orthant, R% = R% (J{0}. Thus, as soon
as one of the reactants becomes exhausted or is not present at the beginning of the
reaction, then ¢,(x(t)) = 0 for some x;(¢). We shall assume that reactants are always
present in the reaction. Also, for the sake of brevity the explicit dependence on time
of x;(t) will be omitted hereafter. In particular, the vector of MAK reaction rates for

the full Brusselator CRN reads as follows:
’U(k, X) = (k’1$3, k‘gl’?ﬁg, k‘3£L‘1$4, k‘4£L‘1)T (214)

Now, we have all the elements to derive the associated set of MAK-ODEs for a
given CRN.
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Mathematical Framework 2.3 Differential equations associated to CRNs

2.8  Differential equations associated to CRNs

The dynamics of a CRN within an isothermal well stirred closed chemical reactor, in
liquid solution such that not appreciable variation within the reactor volume exists

as reaction progress, are described by the following set of ODEs:

Ccll_}t( =x=N-v(x,k)=f(x,k), x(0) >0 (2.15)
If v(k,x) is derived from MAK, then we say that Equation (2.15) are the MAK-
ODEs induced by a CRN. For instance, let us assume an excess amount of reactants
X3, X4 in the full Brusselator CRN are initially present inside the reactor, at constant
temperature and with no interchange of mass, that is, none chemical species enters
or leaves the reactor as time goes by. Then, assuming MAK and following Equation

(2.15), the dynamics of the chemical species within the closed reactor are modeled

by:

T = ks + koxizy — kswizy — kawy, 21(0) >0 (2.16)
By = —kow173 + kawimy, 79(0) >0 (2.17)
T3 = —kizs, 23(0)>0 (2.18)
Ty = —ksxixy, 74(0) >0 (2.19)
5 = ksrizy, x5(0) >0 (2.20)
t¢ = kyry, x6(0) >0 (2.21)

In order to account for an open operation of the reactor, i.e a CFSTR operation,
we define the zero complex, (), which stands for the interchange of mass into and
from the reactor and does not have any participation in the dynamics: () is not a
chemical specie with an associated row in matrices A or B: is the zero vector in R?;
this simply stresses the fact that a chemical specie is entering or leaving the reactor.

If a chemical(s) specie(s) enters the reactor, then it is necessary to add to the CRN
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the following pseudo-reaction(s), ) — X;. Here X; is a product, thus should be
counted in the B matrix. Using MAK the feed rate has the form Fz!", where F is
the feed rate velocity and z!* the concentration of X; in the feed stream. Both are
considered as time invariant, thus they can be expressed as a kinetic constant, say
kjf = F-z™. On the other hand, to model the withdrawal of a chemical specie(s) from
the reactor we add the following pseudo-reaction(s) X; — (), where X; is a reactant
whose stoichiometric coefficient need to be considered in matrix A. Following MAK,
we have the reaction rate kjz;(t), where k; can be considered as the rate of depletion
of X; from the reactor. Note that X; might not enter and leave the reactor at the
same rate, that is, F' # kJ.

Using again the full Brusselator CRN, let us consider that X; enters and leaves
the reactor at different rates. Then, the following reactions need to be added to
the full Brusselator CRN, () 2 X7, where the forward reaction (entering) induce the

MAK rate Fzi" and for the reverse reaction (depletion) we have k*z;. Thus, the new

dynamics of X reads:
i‘l = k’lilfg + k‘gl’ll‘g — ]{3$1£L‘4 - k’4$1 + szln — ]{*1‘1, 1’1(0) >0 (222)

Nevertheless, the zero complex can also appear when modeling a CRN when certain
chemical species are considered constant. For example, we shall suppose for the full
Brusselator that species X3, X, and X5, Xg are added to or removed from the reactor
in such a manner within the reactor fixed at values z3, z}, =i, x, respectively. Then,

for some reasonable time scale, the CRN of real interest will be:

2X, + X» 223X,
kiﬂ; /%
X1 = Xy (2.23)

0

ka

where chemical species X3, Xy, X5 and X has been stripped away from the original
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CRN. The resulting (full row rank) stoichiometric matrix and MAK rate vector are:

1 1 -1 -1
N = s U(X, k) = (k‘l, k‘gl’%ﬂg, ]{31’1, k’4£L‘1)T (224)

0 -1 1 0
where k; = kjx3%, ks = ki), because i3 = &4, = 0 along with &5 = @6 = 0. Then, the

resulting MAK-ODEs induced by the reduced Brusselator CRN are:

i‘l = ]{51 + ]{521’%1'2 - ]{53$1 - k’4l’1, 1’1(0) 2 0 (225)
i‘g = —k’QiL'%J?Q + k’3l‘1, 1'2(0) 2 0 (226)
It is convenient for the rest of this thesis to present the Oregonator CRN and their as-
sociated MAK-ODEs. Following the same procedure as in the Brusselator of stripping

away those time invariant chemical species, we get the CRN [18]:

X 2 ox, B ox, Boox, 4 X,

X+ X, 208 ox, (2.27)

with stoichiometric matrix and vector of reaction rates
1 =11 -20
N=| -1 -10 0 1 , v(x, k) = (kizo, kow1 @, kszy, kax?, kszs)T (2.28)
0 0 1 0 -1

to finally obtain the MAK-ODEs corresponding to Oregonator CRN:

il = k‘ll‘g — ]{2$11’2 + ]{3$1 — 2](341‘%
iQ = —k‘ll’Q — k’QiL‘ll’Q + k’5£L‘3 (229)
T3 = kzry — k53

Next, we briefly review a mathematical formalism oriented to elucidate whether
or not MAK-ODEs can support multiple (positive) steady states, from the CRN’s

structure.
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2.4  Chemical reaction network theory

The CNRT is a formalism based on a non-negative integer called deficiency, 6 > 0,
of a CRN [30, 28]. This integer relates the structure of the CRN with the existence
or not of (multiple) equilibria for the corresponding system of MAK-ODEs. The
dynamical information the deficiency provides is embraced by the Deficiency Zero
Theorem (DZT), and the Deficiency One Theorem (DOT) along with the Advanced
Deficiency One Theory (ADOT). Before review them, some terminology inherent to
the CRNT formalism is presented.

The complexes of a CRN are the linear combinations of chemical species that
appear before and after the reaction arrow [5]. Complexes are restricted to appear
just once in the graphical representation of the CRN under study, including the
zero complex, (). Thus, from a graph theoretical point of view, complexes are the
vertex of the graph associated to the CRN. Additionally, a CRN it can be composed
by more than one subnetwork, that is, it might be sub-graphs whose union yield
the whole CRN. Such pieces are termed linkage classes. Formally, a linkage class
is a group of complexes that are connected by reaction arrows, i.e. the number of
separate “pieces” of which the network is composed. If all reactions within the CRN
are reversible, i.e. all complexes are linked by =, then it is said that the CRN
is reversible [5]. Nevertheless, a CRN is weakly reversible if, whenever there is a
directed (reaction) arrow path leading from complex, say C' to complex C’, there is
also a directed arrow path leading from C’ back to C. Thus, all reversible CRNs are
weakly CRNs, but not the converse [5]. Alternatively, a CRN is weakly reversible if
each reaction arrow is contained within a directed arrow cycle.

The mathematical definition of the deficiency is:
d=|C| = |L] —rank(N) (2.30)

where |C| is the number of complexes (including the zero complex, () and |L£| the
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number of linkage classes.
Now, we have the sufficient terminology to state the DZT (further details can be
found at[5]).

Theorem 2.4.1. For any reaction network of deficiency zero, the following state-

ments hold true:

1. If the network is not weakly reversible, then for arbitrary kinetics (not necessar-
ily mass action), the differential equations for the corresponding reaction system

cannot admit a positive steady state (i.e. a steady state in R? ).

2. If the network is not weakly reversible, then for arbitrary kinetics (not necessar-
ily mass action), the differential equations for the corresponding reaction system
cannot admit a cyclic composition trajectory along which all species concentra-

tions are positive.

3. If the network is weakly reversible, then for mass action kinetics (but regardless
of the positive values the rate constants take), the resulting differential equations

have the following properties:

There exists within each positive stoichiometric compatibility class precisely one steady
state; that steady state is asymptotically stable; there is no nontrivial cyclic composi-

tion trajectory along which all species concentrations are positive.

For example, let us consider the following CRN:

Xi+Xy = X3—>2X1

We have that the set of complexes is C = { X1 + Xa, X3,2X7, X1,2X5}, thus |C| = 5.
In the same way, we can identify the set of linkage classes: £ = {{X; + X, =
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X3 — 2X3}, {X1 = 2Xs5}}. Therefore, |[£| = 2. It is straightforward to check that
rank(N) = 3, where N € R¥*®. In addition, the CRN is not weakly reversible; then
9 =5—2—3=0. Thus, condition (1) and (2) of the DZT hold.

The DOT provides less powerful results than similar to the DZT: is restricted to
CRN whose dynamics are governed by MAK and gives no stability information [5].
Nevertheless, the DOT has been extended to embrace CRNs with deficiency higher
than one: the ADOT [31]. The DOT has been implemented in a freely available
Windows program [28]. To get a full description of the DOT, see [31].

The dynamical information the DOT along with its enhancement, the ADOT, can

be summarized as follows:

e If ) = 1 and the network satisfies some additional conditions, DOT can decide
whether the CRN can or cannot admit multiple steady states by solving systems

of equalities and inequalities which are guaranteed to be linear [28, 30, 31, 32].

e If § > 1, the ADOT along with its algorithm [28, 32, 31] might have to consider

nonlinear inequalities to decided about multistationarity of the CRN.

It is beyond the scope of this thesis to provide a thoroughly description of DOT
and the ADOT; the interested reader is referred to [31] for details. We turn now our

attention to a second graph theoretical approach.

2.5 Stoichiometric network analysis and the mechanistic

classification of chemical oscillators

The key feature of SNA theory is to analyze the dynamics of the system in the
reaction rate space, rather than in the species concentration space (see Figure 2.2).

This approach enables to draw some conclusions about the CRN dynamics without
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specifying the concentration values or kinetic parameters evaluated at the steady
state. That is, for a chosen set of parameters k € R, any steady state of the system

must satisfies the condition:

N-v(x,k) =0 (2.32)

where all the stationary reaction rates belongs to the intersection of the ker(N) with
R’ , forming a convex polyhedral cone, Ky ) [4], as depicted in Figure 2.2. The
unique and minimal set of generating vectors spanning K, k) are called extreme cur-
rents, arranged in the matrix £ € R}/, where f > dim(ker(N)) [4]. The extreme
currents presented in this thesis were computed with the program routine FluxAna-

lyzer [33].

Kowry = {v(x,k) €R} |N v(x,k) =0,v(z,k) > 0} (2.33)
= {ker(N)NRL} (2.34)

/
= > _ipE,>0,Yp} (2.35)

The non-negative entries of the extreme currents denote subnetworks for which
a steady state exists [4]. The parameters j > 0, are called convexr parameters and
quantify the influence of an extreme current on full network dynamics. The reaction

rates can be expressed as a linear combination of convex parameters as follows:

/
v(j) = ijEp (2.36)

The jacobian matrix, after a suitable map transformation [4], and the use of Equation

(3.9), can be expressed as:

Jac(v) = Ndiag(v)x"diag(h;) (2.37)
f

= Jac(j) = Ndiag() _ j,E,)r" diag(h;) (2.38)
p=1
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Rate 2

Rate 1

Figure 2.2: The convex cone formed by reaction rates in a CRN.
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-1
1,58

where h; =z, ..,i = 1,..., s is the inverse steady state concentrations and k € R**"
is the kinetic matriz where the kinetic exponents of the i—th chemical specie in the
j—th reaction are arranged [4, 2.

SNA can be used to identify those extreme currents cycles leading to instability.
A classification of chemical oscillators based on certain characteristics of these cycles
has been reported to be fruitful [2, 4]. To perform the MCCO is necessary to draw
the entire network diagram, Dy, where the chemical species are connected by arrows
denoting reactions. The total number of feathers of an arrow equals the stoichio-
metric number of that specie as reactant and the total number of barbs equals the
stoichiometric number of a specie as product in the corresponding reaction. Using
those subnetworks defined by the extreme currents, a current diagram Dg, is drawn
in the same fashion. This D¢ requires that the sum over all feathers equals the sum
over all barbs for every species in the diagram (see Figure 2.3).

The current cycles are classified depending upon if the kinetic order (number of
feathers) of the exit reaction (Kez;) from the cycle is lower than, equal to, or higher

than the kinetic order of the cycle (kcyae). Figure 2.3 graphically summarize these

concepts.
o if Kegit > Keyeae the current is a weak current cycle, which is always stable.

o if Kepit = Keyae the current cycle is termed critical current cycle (CCC), which
can lead to instability (and possibly to oscillations) depending in other features

of the network.

® if Kegit < Keyele the network has a strong cycle (SC) and therefore a source of

instability.

Based on this classification is possible to categorize oscillatory reactions into two

majors classes [2]:
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Kcycle é//{ea:z't
a) X->2X
2X = Product
Reycle é—’ﬁexit
X
b) X 2X
X = Product
Reycle Cb/ﬁexit
c) 2X - 3X X
X = Product

Figure 2.3: Simple current cycles adapted from [2]. (a) weak (2,1; Keyit = 2, Keyele =
1); (b) critical (1,1); and (c) strong (1,2).
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e Category 1. Networks containing a CCC and a destabilizing exit reaction.
e Category 2. Networks whose instability arises from a SC

Up to now, the graph theoretical approaches are valid tools under steady state
conditions. Next section presents a dynamical approach based on a change a coordi-

nates using Lie derivatives.

2.6 Change of coordinates via Lie derivatives

Modern nonlinear control theory makes extensive use of geometrical methods to feed-
back linearize nonlinear systems as opposed to the standard Taylor approximation
approach by means of a change of coordinates defined by a diffeomorphism [6, 7, §].
Such a change of coordinates allows to write the nonlinear system as a linearized one
upon which is easier to perform control tasks locally [6, 7, 8]. Then, the concept
of diffeomorphism can be considered as a generalization of the concept of change of

coordinates. In this sense, we can define it as:

Definition 2.6.1. A function ® : R* — R", defined in a region 2, is called a

diffeomorphism if it is smooth, and if its inverse ®~1 exists and is smooth.

If the region Q) is the whole space R", then ®(x) is a global diffeomorphism;
otherwise, it is said to be a local diffeomorphism, i.e. the transformation is defined
in a finite neighborhood of a given point. Thus, given a nonlinear function ®(x), it is
possible to verify whether if it is a local or global diffeomorphism using the following

lemma [8]:

Lemma 2.6.2. Let ®(x) be a smooth function defined in a region Q in R™. If the

Jacobian matrix &«g_ix) is nonsingular at a point x = xg of 2, then ®(x) defines a local

diffeomorphism in a subregion of €.
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There are several ways to construct diffeomorphisms, ranging from pure intuition
to differential embeddings, among others [34, 35, 36]. Within the control literature,
the construction of diffeomorphisms it is straightforward by means of recursive Lie
derivatives of a scalar function, i.e. an observable function [6, 7, 8].

Formally, we can write the set of MAK-ODEs as x = f(x, k), where f is the vector
field that maps points from some open set D C R"™ to a tangent space. Consider the
existence of a smooth output function y = h(x), where h : R® — R. In particu-
lar, for chemical reactions, any measurable chemical specie(s) concentration(s) or a
(non)linear combination of them will be valid as an output function. A coordinate
transformation (diffeomorphism) z = ®(x) around x; can be constructed via Lie

derivatives as follows [6, 7, 8]:
z=®(x) = (h(x), Lsh(x),..., L;‘lh(x))" (2.39)

where s is the dimension of the chemical species concentration vector, x = (z1, ..., ;).
The Lie derivative of the output or observable function y = h(x) along the vector

field, f(x, k), is defined as:

Lih(x) = Z fi(x,k) ag}(:) (2.40)

The new system of ODEs as a function of z’s is obtained using x = ®~(z):

. 6@(X)X _ 0P (x) '

I I f(x, k) (2.41)
which yields to:
ZHo= 2
Zy = 23
Zs_1 = Zg
Zs = w(z1,...,2s) (2.42)
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The “staircase” form of Equation (2.47) is known in the control literature as the
Brunovsky canonical and controllable form [6, 7]. Nevertheless, along this thesis, we
do not consider explicitly a control input, i.e. a second vector field (typically denoted
as g(x)), added to the ODEs induced by the CRNs. Because we do not take into
account for the construction of ®(x) the role of g(x) upon the CRN dynamics, the
concept of relative degree, i.e. the number of Lie derivatives that the output function
need to be computed along the vector field such that control input appears explicitly
[6, 7], is not explored.

Now, let us illustrate the procedure of change of coordinates using Lie derivatives
for the Brusselator (2.25) with y = h(x) = z; as the observable function. Following
Equations (2.39) and (2.40), we have:

z = ®x)=(h(x), Lih(x))"
21(x) = h(x)=1 (2.43)

ZQ(X) = th(X) = k‘l + k‘zl‘?ﬁg — (k‘g + k‘4)l’1 (244)
with an inverse, i.e. x = ®71(z) as:

rn = z (245)

Z9 + (k‘g + k‘g)Zl — k’l
= 2.4
T2 k‘QZ% ( 6)

It not difficult to check from Equation (2.43) that det (&g_ix)) = kyx? # 0. Therefore,
the diffeomorphism @ is a local one whenever z(t) > 0, V¢ > 0; kinetic constants are
assumed to be positive, unless stated otherwise. Using Equation (2.45) we can write

the Brusselator’s MAK-ODEs (2.25) in terms of variables z’s instead of chemical
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concentrations, x’s:

5 = 22 g (2.47)
Jx
5o (2.48)
2 —
2y = —ko(ko + k3)2i + (k1 — z0)kozi + (ka + ks)z1 + @ (2.49)
1

As we can see, diffeomorphisms allows to map solutions, i.e. trajectories of a set of
MAK-ODESs into an equivalent space formed by recursive derivatives. This is shown

in Figure 2.4 for the reduced Brusselator.

2.7 Concluding comments

The mathematical framework for the modeling of CRNs has been established. In
particular, the ODEs from the MAK assumption were derived for an isothermal,
closed and open, chemical reactor. It was illustrated for the Brusselator and Orego-
nator CRNs that, stripping away those chemical species considered as time invariant,
the resulting CRN might induce MAK-ODEs associated to open reactor conditions.
Graph formalism such as the CRNT and MCCO were introduced as useful tools to
classify CRNs. However, these formalisms assume steady state conditions. The con-
struction of a diffeomorphism (change of coordinates) using recursive Lie derivatives
of an observable function along the ODEs derived from a particular CRN, is not re-
stricted to a steady state assumption as illustrated for the Brusselator CRN in its
oscillatory regime.

The mathematical framework presented in this chapter are revisited and investi-

gated in chapter 3 for oscillatory CRNs of the same and distinct dimension.
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Figure 2.4: Oscillatory dynamics of the reduced Brusselator for both chemical and
transformed spaces. Kinetic constants k1 = ko = ky = 1, k3 = 2. Initial conditions
x(0) = (1,1). (a) Time evolution of x1 (solid line) and x5 (dotted line); (b) Chemical
species concentration state space; (c) Time evolution of x1 (solid line) and x5 (dotte
line) after change of coordinates, i.e. z; and zy as in Equation (2.45); (d) Dynamics

in transformed state space.
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3. Towards a Dynamical

Equivalence Between Distinct

Oscillatory CRNs

This chapter presents an implementation of both graph approaches reviewed in chap-
ter 1 and the Lie derivative approach, i.e. a change of coordinates, towards a dynam-
ical equivalent between two oscillatory CRNs of different dimension (two and three,
respectively). The CRNs used as core examples are the Brusselator and the Orego-
nator. The former the first designed reaction network oriented to explain, mathemat-
ically, the sustained oscillations and pattern formation observed in the BZ reaction

[3]; the latter, the first chemically respectable reaction network for the BZ [3].

3.1 Graph approaches

3.1.1 Chemical reaction network theory

The CNRT is a formalism based on a non-negative integer called deficiency, §, of a
CRN [30, 28]. This integer relates the structure of the network with the existence or

not of (multiple) equilibria for the corresponding system of ODEs as in (2.32). Let
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us recall the mathematical definition of the deficiency given in chapter 2:
0 =|C| — |L] — rank(N) (3.1)

where |C| is the number of complexes (including the zero complex, () and |L£| the
number of linkage classes.

We might ask if for two or more oscillatory CRN that stands for the same reac-
tion, does the deficiency must be the same? Let us find out for the Brusselator and

Oregonator, depicted below:

Brusselator Oregonator

2X1+X22>3X1 XgﬁX2gX122X1+X3

k - L L
—x, X, L+ X mp80x,
ks

We shall denote as X;, i = 1, 2,3 the species for the Oregonator; lower case letters are
reserved for chemical species concentrations. In order to compute their deficiencies,
we need the dimension of their stoichiometric spaces, thus for the networks above we

have:

1 -1 -1 1
N = (3.2)

1 -1 1 -2 0
N=|-1-10 0 1 (3.3)
0O 0 1 0 -1
None of them is rank deficiency, thus no conservation relations exists.
Recall that complexes of a CRN are the objects that appear before and after the

reaction arrows, and each one of them must appear only once in the network. The set
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of complexes for the Brusselator CRN are: {0}, X, X, 2X;+ X5, 3X;}, thus |C| = 5.
Brusselator is composed by two linkage classes, the sets of complexes L; ={2X; +
Xy, 3X1}and Ly = {0, X;, X5}, thus |£]| = 2. In addition, rank(NN) = 2. Therefore,
d =5—2—2=1. The DOT implemented in [28] returns: the network cannot admit
multiple positive steady states or a degenerate positive steady state (a non-hyperbolic
steady state) no matter what positive values the kinetic constants might have. The
DOT remains silent about the stability of the system. It is straightforward to check
the uniqueness of a steady state in the Brusselator CRN, and its lost of stability so
that trajectories reach a stable limit cycle, i.e. sustained oscillations [37]. Note that
multistationarity does not preclude the possibility for oscillations to appear [38].

For the Oregonator CRN the set of complexes reads: {0, X1, Xo, X3, 2X1, 2X,+
X5, X1+ )~(2}, therefore |(f| = 7. It can be seen that Oregonator CRN is composed
by two linkage classes, thus |£| = 2. Accordingly, rank(N) = 3. Computing the
deficiency for the Oregonator we have: & = 7—2— 3 = 2. Moreover, using the CRNT
Toolbox [28] to apply the ADT, it is concluded that taken with mass action kinetics,
the network cannot admit multiple steady states or a degenerate steady state no
matter what (positive) values the rate constants might have.

Thus, we have shown that, despite their distinct deficiencies, both Brusselator and
Oregonator share the following dynamical properties: (1) non-existence of multiple
positive steady states and, (2) capacity for sustained oscillations. Therefore, if one
has interest to classify (in this case) oscillatory CRNs such a classification cannot be
based on the deficiency concept solely. On the other hand, it can be proved that a
CRN must have § > 1 in order to support bistability or oscillations [30, 32]. Moreover,
if two or more CRNs support the same experimental data, deficiencies among them
need not to be equal, as shown in [31, 11, 9]. In this sense, the concept of deficiency

is not suitable as an equivalence property at the steady state for Brusselator and

Oregonator CRN.
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In order to circumvent this issue, a complementary graphical approach, strongly

oriented for chemical oscillators, is implemented in the next section.

3.1.2  Mechanistic classification of chemical oscillators.

It was stated in Section 2.5 that SNA can be used to identify those extreme currents
cycles leading to instability. A classification of chemical oscillators based on certain
characteristics of these cycles has been reported to be fruitfull [2, 4].

In order to perform the Mechanistic Classification of Chemical Oscillators (MCCO)
it is necessary to extract, from the stoichiometric matrix, the extreme currents vectors.
Such vectors lie in the intersection of the null space of the stoichiometric matrix, IV,
and the non-negative orthant, R’ ; this intersection defines sub-networks that may
cause instabilities which ultimately lead to sustained oscillations or more complex
behavior [2, 4].

Using those subnetworks defined by the extreme currents, a extreme current
diagram, Dg, is drawn. This Dg requires that the sum over all feathers equals the
sum over all barbs for every species in the diagram. From (3.2), we have the extreme

currents for the Brusselator:

2X1 + X2 — 3X1

B =(1, 1, 0, 0) (3.4)
X1 — Xy
X, —0

E,=(0,0 1, 1) " (3.5)
X1 — @

meanwhile for the Oregonator, the extreme currents computed from (3.3) are:
Xl + XQ — @
Ey=(0,1,1,0, )" ¢ X; —2X; + X3 (3.6)
X?, - Xz
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X2—>X1
X, - 2X, + X
Er=(1,0, 1,1, 1)y = T (3.7)
2X, — 0

X3—>X2

\

The extreme currents (3.4) and (3.6), which lead to oscillations for both Brusselator

and Oregonator, respectively, are depicted in Figures 3.1 and 3.2.

(a) Brusselator

Rexit

Strong Cycle Hexit < Hcycle

Figure 3.1: Brusselator extreme current diagram, where X = X, Y = X,. Adapted

from [2].

Following nomenclature in [2], and comparison of Figures 3.1-3.2 with Figure 2.3,
it can be seen that Brusselator CRN belongs to Category 2 due to the presence of a
strong cycle [2]. On the other hand, because the Oregonator CRN contains a CCC
and Y = X, is generated in a chain reaction via at least one intermediate, Z = X3,
this oscillator belongs to a subdivision of Category 1, the so-called 1B [2]. As we
can see the MCCO approach also shows that both, Brusselator and Oregonator, have

unrelated mechanistic structure at steady state.
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Oregonator
Kexit
1 X Y
Reycle l\

Z

7

Critical Current Cycle Kexjt = KReycle

Figure 3.2: Oregonator extreme current diagram where X = X, Y = Xo, Z = X;.

Adapted from [2].

Nevertheless, recall that extreme currents vectors span the steady state space by

means of the convex cone:

Kowry = {v(x,k) €R} |N v(x,k) =0,v(z,k) > 0}
= {ker(N)NR"}

f
= {D ik, > 0,p} (3.8)

where the parameters 7 > 0, are called convex parameters and quantify the influence
of an extreme current on the full network dynamics. Note that the steady state space
of both Brusselator and Oregonator is spanned by two extreme current vectors. Thus,
both CRNs define a line segment in a four and five dimensional space, respectively.
That is, their jacobian matrices will be weighted by two convex parameters and their

linear combinations. As shown in Section 2.5, reaction rates can be expressed as a
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linear combination of convex parameters as follows:

/
v(j) = ijEp (3.9)

and the jacobian matrix, after a suitable map transformation [4] with the use of

Equation 3.9, can be expressed as:

Jac(v) = Ndiag(v)x"diag(h;)

/
= Jac(j) = Ndiag() _ jE,)r" diag(h;) (3.10)
p=1
where h; = x;_ L,i=1,...,sis the inverse of steady state concentrations and x € R**"

is the kinetic matriz where the kinetic exponents of the i—th chemical specie in the
j—th reaction are arranged [4, 2.

For the Brusselator, the kinetic matrix is:

2110
K= (3.11)
1000
meanwhile for the Oregonator:
01120
k=|11000 (3.12)
000O0°T1

Then, using (3.10), (3.4) and (3.11) without the diag(hi, he) term, the jacobian for

the Brusselator in convex coordinates is:

Jac|grus = Tz (3.13)
—j1 —
In the same way, using (3.10), (3.6) and (3.12), Oregonator’s jacobian can be written

as:
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-3j,  Ja—h 0
Jac|oreg = - —hi—J2 JitJe (3.14)
J1+ Ja 0 T

In terms of graph theory, the jacobian defines a directed graph, Gp, because is not
a symmetric matrix in general. How the arcs are oriented is encoded in the adjacency
(=jacobian) matrix. For instance, let vy, vy, ..., v, be the vertices of a directed
graph Gp. Then, the adjacency matriz of Gp is the v x v matrix A=[a;;] in which
aj; is the number of arcs of Gp with tail v; and head v;. With each arc of Gp let
there be associated a real number w, called its weight, i.e. the entries of the jacobian
matrix. Additionally, within the context of CRNs, a pseudograph is a graph that have
self-loops and multi-arcs (or multi-edges) [39].

Recalling graph definitions above and defining chemical species as vertices, the

Brusselator’s pseudograph is depicted in Figure 3.3, and Oregonator’s pseudograph

=
Ji—= ./2@' — )Q~./1
7

in Figure 3.4.

Figure 3.3: Weighted directed pseudograph for Brusselator. X = X1, Y = X,

It can be seen that the structure of the Brusselator’s graph is embedded in the
Oregonator’s graph (see interaction between species {X, Y} and {X,Y}), i. e. both
graphs share this particular interaction or motif. Nevertheless, this interaction does
not suffices to declare both Brusselator and Oregonator as equivalent chemical os-
cillators because their source of instabilities is different. Moreover, one can find a

transformation from the Oregonator’s space defined by its jacobian into the Brus-
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=9=J

/)O +
/- \D"

J1+
-3 X <€

}
=¥t

Figure 3.4: Weighted directed pseudograph for Oregonator. X = X, Y = X, Z =
X
selator’s jacobian space, i.e. a transformation that changes the linear combination

of weights to obtain the same linear combination of weights as in the Brusselator’s

jacobian. Mathematically, the idea can be written as:

Jach,., = T Jacore (3.15)
JachH, ey - Jacaieg =T (3.16)

33—3;%—3{32 5{—5}7152{-% 52—55132-1-3%
2j2(52—251)  2J2(52—251)  2j2(j2—271)

T=| 20422 5Gjp—j)  51(4j2—5) (3.17)
2j2(52—251)  2J2(52—251)  2j2(j2—271)
0 0 0

Where “*” serves to identify the target Oregonator’s jacobian with the same linear
combination of convex parameters, j's, as in the Brusselator’s jacobian. We note that
Jacp,., 1s a square matrix with the third row and column with zeroes; otherwise, it
could not be interpreted as an adjacency matrix of the new pseudo-graph with the
same entries as in the Brusselator. Furthermore, T has nonlinear entries, which are
difficult to interpret within the context of the MCCO approach and the SNA.

On the other hand, if we want to follow the same idea to find a transformation

from the Brusselator’s jacobian to Oregonator’s jacobian entries, is not possible to
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invert the augmented (from two to three) Brusselator jacobian because the row and
column of zeroes. In this sense, next section shows an alternative approach where the
inversion of continuous and differentiable maps is assured for some neighborhood in
state space thus allowing to express one CRN’s state space as function of a second

CRN’s state space.

3.2 Change of coordinates using Lie derivatives

This section presents a coordinate transformation defined by the composition of dif-
feomorphic maps as a dynamical equivalence criteria between two vector fields induced
by different oscillatory CRN. The diffeomorphic maps are constructed by means of Lie
derivatives which creates a tangent space to the vector fields. These maps, through
their inverses, makes possible to express the concentrations of chemical species of both
CRN as a function of the other, point by point in time. We call these composition of
maps the dynamical equivalence. The dynamical equivalence concept is illustrated by
means of an example between Brusselator and the Minimal MAK System with Limit
Cycle (MMAKS-LC) CRN, both with the same dimension of states (chemical species
concentrations) but different number of reactions and observable functions. In partic-
ular, for these systems the dynamical equivalence approach yield to a quite interested
phenomena, coined in [40] as chirality in a synchronization framework: trajectories
of one system are the mirror reflection of the other one. Afterwards, the dynamical
equivalence for CRN of distinct state dimension is investigated using the Brusselator
and Oregonator CRNs.

Let us consider two (non)linear systems from vector fields induced by CRNs given
by x = f(x,k), y = h(x) and X = f(X,K/), § = h(X). For these systems the state
variables are x € Ri and X € Ri’, with smooth vector fields f : Ri x R — R®,

f:RY x Ri — R¥. Associated to each system there is a smooth scalar output

ol



Dynamical Equivalence Between CRNs 3.2 Change of coordinates

function h : R® — R and h : R® — R. Then, it is possible to construct a change
of coordinates, z = ®(x), for each system using their trajectories and the associated

tangent spaces by means of Lie derivatives, as shown in Section 2.6.

h(x)
Lih(x
z=0x)=| ' ‘( ) (3.18)
I L;‘lh(x) |
where s is the number of elements forming the vector x = (zy,...,xs), of chemical

species concentrations. Note that if x, is a steady state for (x5, k) = 0 and if also
h(xss) = 0, then z,, = ®(x,,) = 0. That is, the steady state is also preserved under
the action of ®. Condition h(xss) = 0 can be always be satisfied by a suitable origin
translation of the output space.

We are interested in finding a transformation H : R®* — R which map the
tangents spaces of one system into the state space of another system. This is defined

as dynamical equivalence. Formally:

Definition 3.2.1. Two vector fields, f(x,k),x € Ry, k € R, and f(x,k),x €
R;O,k’ € R’;’O, Jor xo € Ry, and X¢ € R;O, with s,r non necessarily equal to

s',r', induced by CRNs are dynamically equivalent if there exist X,x € R%, and

k € R,k € RY; such that x(t) = @ 1o ®(x(t), 1o d : R® — Ry, or
%(t) = @ 1o ®d(x(t)),d o d : R® — RS, for all t > 0, with ®, O being diffeo-

morphic maps. In addition,
e ifs=s thenf and f are completely dynamically equivalent and
o if s£ 5 thenf and f are partially dynamically equivalent.

Next, the concept of dynamical equivalence for two socillatory CRNs of same

dimension is illustrated.
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3.2.1 Illustrative example

The example explores the use of two different observable functions. The first one
serves as an illustration of the ideas above discussed. The second one stress the
fact that there are observable functions that can lead to an simpler mathematical
expression that enables a better picture for the dynamic equivalence.

Let us consider the following two vector fields induced by different CRNs. The

first vector field comes from the Brusselator [37]:

. 2
ry = k1$1$2 — k‘gl’l — k’3$1 + k'4

ig = —kll’%l‘g-Fk'gl’l (319)

where x = (z1,22)" € R%. The second vector field is induced by the Minimal MAK
System With Limit Cycle (MMAKSWLC) [41]:

T = k| — ki3

Ty = khi 72 — ki, (3.20)
where X = (%1, Z2)" € R2.

(a) Let us take y = h(x) = 21, § = h(X) = T2 as observable functions for Equations
(3.19) and (3.20), respectively. We compute the Lie derivatives as in Equation
(3.18) to construct ®(x) = (h(x), Lsh(x))" which is well defined on D =
{(x1,22) € R?|z; > 0}. On the other hand ®(%) = (h(%), Lsh())"", which is
valid at the domain D = {(21,%2) € R*|Z2 > 0}.

T

z = O(x)= ! and (3.21)
klﬁfl’z — k’zl‘l — k3$1 + k’4

~ T

i = $%) = (3.22)
k3132 — KL
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whose inverses reads as follows:

21
_ -1 _
x = ¢ (Z)_ zo+(ko+k3)z1—ka (323)
klz%

b
I
KR
R
—~~
N2
N~—
Il
x
(V)
=

(3.24)

Then, solving the equivalence z = z = ®(x) = ®(X), it is possible to compose

the maps in order to get:

~ To
— p1 3) —
x=0" 0d(x) = 52 (ks kL) and (3.25)
klig

kiz?zo+(kl—ko—k3)z1+ky
~ ! .2
x=0 1o (I)(X) — kyxy (326)
x1

from where ®(x) = ®(X) = x = & (z) and X = & !(z). Figure 3.5 illus-
trates graphically how the compositions are observed in the chemical species

concentration space.

(b) Now, let us take a linear combination of states , i.e., y = h(x) = x1 + 22 and
g = h(X) = 1 + T4, as observable for Equations (3.19) and (3.20), respectively.

Following above ideas, we compute the Lie derivatives to obtain:

T+
z=>o(x) = b and (3.27)
—k‘gl’l + k4
~ 1+ T
i—dE)=| T (3.28)
k| — k4o
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Figure 3.5: Composition of diffeomorphic functions for Brusselator and MMAK-
WLC CRNs, using as observable functions y = h(x) = x1 and § = h(X) = Z».
Upper panel: Brusselator’s states as function of MMAKWLC's states. Lower panel:
MMAKWLC's states as function of Brusselator’s states. Initial conditions and kinetic
parameters for the Brusselator: xgr(0) = (2,2), k1 = 1,ky = 2, k3 = 1, ky = 1. Initial
conditions and kinetic parameters for the MMAKWLC: xpymakwre(0) = (2,2), k) =

1,k = 27,k = 3.
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Dynamical Equivalence Between CRNs 3.2 Change of coordinates

with inverses given by:

ka—zo
x=0"1(z) = ks . and (3.29)
21 + Z2k—3 4
i 5+ 2h
x=0Yz)=| g (3.30)
ks

For this particular choice of h(x), we have for both systems that D = D =
Ri, because the determinant of the Jacobian is independent of the states x, X;
that is, det(0®(x)/0x) = ks, and —kj, respectively. Again, by solving the

equivalence z = z = ®(x) = ®(X), the composition of the maps yields:

x=0"1o ()= i hs2 ks ) and (3.31)

kqa—k
~ = To + (1 — k—?’) 1+ =t
x=0"od(x) = ) A " ks (3.32)
KT+ T
3

to conclude that ®(x) = ®(x) = x = ®7!(z) and ®~1(z). These composi-

b3
I

tion of maps are depicted in Figure 3.6.

Note that the dynamical equivalence between vector field (3.19) and (3.20) is
general and can adopt distinct forms depending on: (1) the chosen observable
and (2) parameter space. In particular, for the case (2), a mirror reflection of
the state phase of both oscillators is found for the pair (ks, ks) = (K}, k}) €
P* = R{ NR3 | where P* is not an empty set. If such parameter relation holds,
we have that state variables of Equation (3.19) and Equation (3.20) become
T1 = To,xy = I1. Figure 3.7 shows that the mirror reflection holds on for x, X,

satisfying (3.19) and (3.20), for a x(0),%(0) € R and for all ¢ > 0. A notable
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Figure 3.6: Composition of diffeomorphic functions for Brusselator and MMAK-
WLC CRNs, using as observable functions y = h(x) = @1 + &5 and § = h(X) =
1+ Ta. (a) MMAKWL state phase. (b) Brusselator’s states as function of MMAK-
WLC's states. (c) Brusselator state phase. (d) MMAKWLC’s states as function of
Brusselator’s states. Initial conditions and kinetic parameters for the Brusselator:
xpr(0) = (2,2), k1 = 1,ky = 3.2)ks = 2,kqy = 1. Initial conditions and kinetic
parameters for the MMAKWLC: xpymakwrne(0) = (2,2), k) = 1,k = 8.5, k5 = 2.
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Dynamical Equivalence Between CRNs 3.2 Change of coordinates

fact is that the Lie algebra of derivations, from a observable along a vector field
induced by a CRN, allows one to reproduce the time-evolution in this fashion,
which depicts chirality onto the dynamics of both chemical reaction networks.
Chirality phenomenon in dynamical systems has been previously reported in the
reduced order chaos synchronization between Chua and Duffin oscillators [40].
Contrary to the work in [40], chirality in these CRNs was not achieved by
a control command, both systems are of the same dimension and the mirror

reflection of the dynamics can be superimposed.

25 [ T T
— Brusselator
-=-MMAKS-LC

Tz, T1

Symmetry axis

1, 9

Figure 3.7: Dynamical chirality phenomenon between Brusselator and the MMAK-
SWLC is found for (ks,ks) = (K}, k1) € P* =RL NRY for any x(0),%(0) € R and

for all t > 0, where P* is not an empty set.

So far, we have analyzed systems of the same dimension. Next, we turn our at-

tention to the situation when both systems have distinct dimension and observable
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functions using the Brusselator and Oregonator as case study. Because both CRNs
have a common historical root, i.e. the BZ reaction, have different sources of in-
stability (cf. Section 3.1.2) and they are of distinct dimension, they offer a good
opportunity to study how can be related dynamically.

3.2.2  Brusselator and Oregonator dynamical equivalence.

The Oregonator CRN stands for the dynamical behavior of the chemical species
HBrO,, Br~ and Ce** in the BZ reaction. Let us denote by #; = HBrO,, T = Br~
and T3 = Cet*, their chemical concentrations, respectively. Let us recall the MAK-

ODEs associated to this CRN:

T1 = k|Ty — khT Ty + kT — 2,77
Ty = —kiTy— khi Ty + kLis (3.33)
Ty = ki, — kiZs

Choosing § = h(Z) = Z3 as an output function we have that:

zor = ®(%0or) = (h(%), Lyh(Z), Lih(Z))"
where:
h(z) = 3
Lih(3) = KiF1 — Kids (3.34)
Lin(E) = K5((K) — kyT1)Zo + (K — 2k4%1)21))
— ki(k3Zy — k5T3)

which is well defined for the set Dog := {(Z1, T2, T3) € R3] 7, # %, (T9, T3) >

0}, thus dop : Dor — R, x R x R. The associate inverse map @_1(203) =
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(ngl, QEQ_I, (;33‘1)” reads as follows:

- ~ 1~ Zo+ kLZ
h=0'(2) = = (3.35)
3
oy E— Wk — 2K+ R (kg — k)
= = .36
B (K, — ko) (339
B=d'E) = & (3.37)

kggl—‘riz k

where p(Z) = ===, such that Z,+ Lz, #
A 5

;ICZE”, to avoid singularity for ¢3!, In order

to get the chemical species concentrations of the Brusselator as function of the Oreg-

onator’s concentrations, we define the following composition x5 = ®55(Por(Xor)):
T3

*
BR b &1+ (katka—kL)E3—ka ( )

=2
klz3

Wk

where stands for the composed states. The Oregonator’s concentrations as func-

tion of Brusselator’s are defined according to: X5, = ®oh(Ppr(XpR)):

kiz2zo+(kl—ko—ks)z1+ks

ks
~% _ z3—kb (kb —2kae)e+kL (khx1—kLe)
%, — A £ (ki 3.39
OR kg (K —kyz1) (3.39)
1

k1 {E%(l)z—l—(k:g—kz—kg).’l)l

where €(zpgr) = i

. Note that 3 ,r depends also on Z3, which can be
considered as zero because the Brusselator is a two dimensional system.

Of particular interest are the compositions defined in Equation (3.38)-(3.39).
Through these compositions it is possible to map trajectories from the Brussela-
tor’s concentration space to Oregonator’s concentration space, and vice versa. That
is, @g}% o @OR : Dor — Dppr and @5}% o ®pr : Dgr — Dogr. Looking at Equations
(3.38)-(3.39), we have that 27 pr = T3 and T3 oz = 71,pr. Although the remainder
chemical concentrations are mapped by rational expressions to other scales of mag-

nitudes, =1 g, T30r are mapped by the identity map (free of parameters), thus we
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Dynamical Equivalence Between CRNs 3.2 Change of coordinates

can state that Brusselator and Oregonator are partially dynamical equivalent under
this particular choice of (h(z), h(Z)).

The regions of phenomenological interest for chemical species concentrations to
be mapped are Dgr C Ri, Dor C Ri- To assure that trajectories from either
subsets do not cross to the negative orthant, is not trivial because the composition
maps depend on kinetic constants from both, Brusselator and Oregonator CRNs.
Nevertheless, despite its apparent complexity, for the composition map (i)a}% o dppg,

a set of kinetic constants and initial conditions, are readily find it as follows. From

kiz2zo+(kl—ko—k3)z1
kj

Equation (3.39) we have 7] or = , and we want that 27 o5 > 0,

thus:

k’ll'iﬂg + (k’é — k’g — k’g)ﬂ?l >0
(k‘ll‘1$2 + k‘é — k‘g — k‘3)l’1 >0

]{1$11’2 + (k’g — ]{2 — k’g) >0

and we arrive at the condition:

ks +he— K, 1

ky Z2,BR

r1,8R > ( (3.40)

Again, from Equation (3.39), 3 , > 0 is equivalent (after e factorization) to 2kjkse*—
(K + k2)e + kikiz; > 0. Doing the proper algebraic manipulations to solve for zy,

we arrive to the following inequality:

€\, K
T1,BR > (?)(k’g + ? — 2]{346) (341)
5 3
which implies that:
< (L) + 15 (3.42)
T Y '

Notice that e = 77 5 > 0, if Equation (3.40) holds.
The Brusselator undergoes a Hopf bifurcation for kinetics constants k; = k3 =

ky = 1 and ke = 2 [37]. From [18], we set k5 = 8 x 10?, kL = 1. Then, Equations
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(3.40)-(3.42) holds for initial conditions xgg(0, 0) = (1, 3). This particular sets of
parameters and initial conditions lead to € < 4000. On the other hand, condition
T30r > 0 is trivially satisfied. Figure (3.8) shows that dok o Dy preserves the

qualitative behavior of Brusselator’s states in the Oregonator’s state space.

Composed Oregonator
Brusselator

0.6 3,0R 1,BR

Figure 3.8: Trajectories from Brusselator (blue) space mapped by 3.39 to R3 (red).

Conditions that the map ®5}, o o must satisfies in order to stay in the positive
orthant can be derived in the same manner; for instance, xj pr > 0 is trivially satis-
fied. Condition z3gz, > 0 is equivalent to k5%, + (ko + ks — k5 )Zs — kg > 0, which can
be written as:
ko + ks — ki k4

K )Z30R K,

From this inequality is possible to prove the existence of kinetic constants such that

T10r + ( (3.43)

(3.43) holds, if ky + k3 > ki. Furthermore, upper and lower limits for Z; or, Z30r

can be derived from:
ka ko + ks — ki _

T10r > 7, — (———)T30r (3.44)

ks ks
which implies that Z3 op < k2+llz—;l—kg On the other hand, assuming 3 or = 0, implies
Z1.0R > k4~ Using the above numerical values for kinetics constants, we have T1,0R >

7
3

2.5 x 1073 and 73 0r < 0.5. The problem is that, for this set of parameters, 71 0r —
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1 x 107 as ¢ — oo, which is quite below condition Z1 or > 2.5 x 1073. In this sense,
it is required to explore the parameters space in order to fulfill the above conditions.
It might be possible that, for those parameters, the Oregonator’s MAK-ODEs do not

display oscillations or any nonlinear phenomena at all.

3.8  Concluding remarks

The chemical species concentrations of two different oscillatory CRNs, not neces-
sarily of the same dimension, can be expressed as function of the other, and vice
versa, through composition of diffeomorphic maps. These maps were constructed via
Lie derivatives of a suitable observable (a measure chemical specie) along the vec-
tor fields induced by the set of MAK-ODEs. For a set of kinetic constants and a
suitable initial condition states, was possible to map trajectories from Brusselator’s
space onto Oregonator’s space, preserving the qualitative dynamical nature displayed
by the Brusselator. The opposite case, i.e mapping Oregonator’s trajectories onto
Brusselator’s was partially achieved for z] gp, thus both chemical oscillators can be
regarded as partially dynamic equivalent for these chemical species. Conditions in
parameters space that guarantee =3 g > 0 cannot be fulfilled for typical values of
both Brusselator and Oregonator CRNs. In this sense, a broad parametric search
need to be performed.

It was shown that there exist observable functions that lead, for some region of
parameter space, to algebraic expressions where dynamical equivalence can adopt the
form of free parameter equalities. For the case of Brusselator and MMAKWLC CRN
an antisymmetric dynamical equivalence was found, resembling a chirality phenom-

ena.
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4. Dynamical Equivalence in The

Belousov-Zhabotinsky Reaction

This chapter presents the deficiency and stoichiometric network analysis of a family of
deterministic chaotic CRNs, hereafter Gyorgy-Field (GF) CRNs, for the BZ reaction
under CFSTR operation [1]. For the study of dynamical equivalence purposes, the
Oregonator is compared with a four dimensional non-MAK CRN member of the
Gyorgy-Field family of CRNs, derived from quasi-steady state assumption, which fits

very well the experimental data [1].

4.1 Deficiency and stoichiometric analysis

We present in Chapter 1 as motivational example the BZ reaction along with a family
of CRNs, dubbed as GF CRNs, that fit very well the experimental observations.
Also, it was mentioned that the Oregonator was the first low dimensional CRN that
was able to reproduce some dynamical features of the BZ reaction. Here we are
interested to study to what extent the GF p, for example, is similar to the Oregonator
CRN. In what follows, we perform a deficiency and stoichiometric analysis for the GF
CRNs, as done for the Brusselator and Oregonator in Chapter 3, seeking elements of
equivalence. Afterwards, we focus our attention for dynamical equivalence between

GFp and the Oregonator.
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Dynamical Equivalence: BZ reaction 4.1 Deficiency and stoichiometric analysis

Recalling the mathematical definition of deficiency (cf. Section 2.4):
0 =|C| — |L] — rank(N) (4.1)

where |C| is the number of complexes (including the zero complex, () and |L£| the
number of linkage classes.

For the GF CRNs under CFSTR operation, chemical species M A and Ce™? are
fed into the reactor; all chemical species are removed at the same rate. Then, we have

the following deficiencies associated to GF CRNs:
e GF4: |C| =35,|L] =9,rank(N) = 11, thus égr, = 15.
o GFp: |C| =24, |L]| =4,rank(N) =9, thus dgp, = 11.
o GFo: |C| =20, |L| =4,rank(N) =7, thus dgp, = 9.

Analysis of the CRNs [31, 28] states that taken with mass action kinetics, the network
may have the capacity for multiple steady states. The computational implementation
of the ADOT [28] was unable to construct any examples because of non-linearity; such
examples may still exist. Because GFp are not of MAK type, they are not suitable
for deficiency analysis. None of the GF CRNs share the same deficiency,i.e. is not
an invariant among GF CRNs. We also note that either the Oregonator’s deficiency
(Ooreg = 2) match with GF deficiencies under CESTR operation.

The implementation of the second approach, i.e. MCCCO, classify the Oregonator
as an oscillator 1B, which means that the current cycle defined by one (of two)
subnetworks forms a critical current cycle (CCC) [2, 3]. The CCC can produce
instability, and hence the possibility of oscillation, depending on other features of
the network. Other “parent” CRNs of the Oregonator, such as the FKN CRN also
belongs to category 1B [2]. That is, at least within the family of CRNs from which

the Oregonator results, the nature of the instability is preserved.
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Dynamical Equivalence: BZ reaction 4.2 Dynamical equivalence analysis

On the other hand, we may ask if GF CRNs also belong to 1B class chemical
oscillators. In order to answer this question is necessary to compute and analyze
all the possible subnetworks(currents) obtained from the augmented stoichiometric
networks to account for the in-and-out of chemical species under a CSTR operation. A
major drawback of SNA when used for CFSTR models is that the number of possible
subnetworks exceeds by far the dimension of the null space of the stoichiometric
matrix (cf. [4]). GF CRNs are not the exception: the SNA revealed that GF 4 has
323 subnetworks, GFg 65, and GFs 36. Again, GFp is not susceptible of being
analyzed with SNA because is not a MAK CRN.

For simplicity in the analysis, we can seek those subnetworks that might induce
instabilities within the GF- CRN with the help of CRNT. It turns out that the CCC
of the Oregonator has an infinite number of steady states. This kind of CRN has
been termed as “pathological”[30]. Using this approach, we were able to identify
at least 5 pathological subnetworks but their dynamical analysis was inconclusive
seeking chaotic regions in parameter space. Note that it may exist combination of
subnetworks and suitable parameter values for which chaos can be found. Moreover,

it might be possible that such subnetworks be ubiquitous within GF CRNs.

4.2  Dynamical equivalence analysis

At the light of the results provided by CNRT and MCCO approaches, we turn our at-
tention to an alternative approach. We have chosen to borrow from geometric control
theory a procedure for the construction of diffeomorphic maps, ®, (a differentiable
homeomorphism along with its inverse) using Lie derivatives of the output function
along the ODEs induced by the CRNs [6, 7]. This approach has been used in a syn-
chronization context [40], where an external signal (control input) steers trajectories

of a slave system into the master’s trajectories, in order to asymptotically reduce the
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error among states. We use the idea of composition of maps as in the synchronization
framework but for uncontrolled systems, i.e. ODEs induced by CRNs. Thus, if such
a composition is feasible, 7.e. mapping composed trajectories into the nonnegative
(positive) orthant RS (R%), then both CRNs will be dynamically equivalent in terms
of their trajectories along time. This approach is consistent with indistinguishability
[22, 23]. In contrast to the approaches in [20] and [21], the one proposed here is not
restricted to find the identity map as a diffeomorphism; we are not seeking for maps
that, after composition, leads to the same MAK-ODEs but constructing a generaliza-
tion exploiting the state space. We note that our proposed approach is not restricted
to MAK-ODEs either.

In this section, the concept of dynamical equivalence via Lie algebra of derivations
is applied to two CRNs standing for the BZ reaction: the Oregonator and GF p[1].

Before proceed, let us recall the definition of dynamical equivalence:

Definition 4.2.1. Two vector fields, f(x,k),x € Ry, k € R, and f(x,k),x €
R;O,k’ € RY,, for xo € R, and %o € R;O, with s, non mnecessarily equal to

s',r', induced by CRNs are dynamically equivalent if there exist x,x € R%, and

k € R,k € RY; such that x(t) = @ 1o ®(x(t), 1o d : R® — Ry, or
x(t) = 1o d(x(t), > od : R® — RS, for all t > 0, with ®, O being diffeo-

morphic maps. In addition,
e ifs=s thenf and f are completely dynamically equivalent and
o if s£ 5 thenf and f are partially dynamically equivalent.

Let us begin with the Oregonator. The Oregonator stands for the dynamical
behavior of 1 = HBrO,, x5 = Br~ and 3 = Ce'. Their associated MAK-ODEs

are:
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il = k‘ll‘g — ]{2$11’2 + ]{3$1 — 2]{341‘3
$'2 = —k'll’Q — k’Ql‘ll’Q + k’5£L‘3 (42)
$'3 = k’gl‘l — ]{55$3

In particular, we set y = h(z) = x3 to construct the diffeomorphic map 4.3. Comput-
ing the Lie derivatives of y along (4.2) we have zor = ®(xor) = (h(z), Lyh(z), Lih(z))",

where:

T3
q)(XOR) = k’gl‘l — ]{55$3 (43)
]{3((]{1 — k2$1)1’2 + (]{3 — 2]€4l’1)l‘1) — ]{5(1631’1 — k’5£L‘3)

which span the three dimensional space whenever ® takes values from the set Dog :=
{(z1, @9, x3) € R¥| 1y # %» (z2, x3) > 0}; thus ®op : Dog — Ryg x R?. The

associate inverse map reads as follows:

z2+ksz1
k3

-1 — 23—k3 (k3 —2kap) ptks(ksp—ks21)

21

where p(z) = ’“52% Note that, if z; # ],z—; = 29 + k521 # k}gfi”, which is sufficient to

avoid lost of dimension for the space spanned by (4.4).

The vector field of GFp reads:

i‘l = _i{}li‘le + ];’212‘2 - 2];’312'? + 05];'4(0615 - f3)[BT’OQ']eq — 0.5];5f1i’3
Ty = —kiZ1Tg — koFy + koFa®y + l%g@[MA-]qss
i‘g = ]254(06'[5 — i‘g)[B’I“OQ']eq — ]255,%1@3 — ]F%Gig — ]2'7,%312'4 (45)

By = 201F1Ty + kofig + ks¥? — kyBa¥y — ksTa[ M A 4ss
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where [BrOa-|eq, [MA-]yss are evaluated using the auxiliary expressions derived from

equilibrium and quasi-steady-state assumptions [1]:

k'C4[B7“03_][H+]£Z‘1
B g = 4.
[BrO2-]eq \/ ko[ H20] (4.6)
10T 210242 skei1| M A|Z
(MAY,,, = ks + /(K 101541111)C : 8keskern [M A] 73 (4.7)

As in the Oregonator, we set § = h(Z) = &3 for GFp model. Computing the Lie

derivatives of 7 along (4.5), we have:
Zor, £ ®(X) = (h(X), Lih(X), Lh(x), L3h(X))", (4.8)

where:

= I3 (4.9)
= ky(Cet — &3)[BrOy]eg — ksir s — keiis — kr¥sdy (4.10)
- (1%5:%1 + 1275:4) &3 — (q + sy + kda) Lih(3) (4.11)
= (((ks — 2k7) k1T + (K2 — 2ks(kr 4 2k5))E1 +
ks (kry + q — 0.5ks23)) %5 — ks L h(F))7, +
(ks — 2kn)k1 @y — ko (ks + k7)) Es)d2 +
((0.5k5(ka[BrOy-)eq — ks#1) + k234) %3 +
(q + ks@1 + krg)? — (ksiy + keiia))Lih(z) +
(ke (k7 (%5 + Z4) + ksiy + (ks[MA]ges +q)) —
krLgh(x))s (4.12)
with ¢ = kg + kq [BrOsy-]eq. Furthermore, the maps ®, &' span the four dimen-

sional space provided that det(d®(x)/9%) # 0, i.e. be nonsingular for some neigh-
borhood Ugr, € R* ([7]). Thus, in order to find sufficient regions of singularity of
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¢ (x) we need to solve:
dot 0P(x)\ 0% [(0%) (04 (0% (04
“N\Tox | oz, [\ox,) \ oz, iy ) \ 0y
0%, [ [ 0%\ (0% 033\ (04\]
"oz, K(?@) <3i2) - <3—f2) (3551)} - (4.13)

Tables 4.1-4.2 resumed the sets of kinetics rate constants for Equations (4.5) and

(4.6), taken from those reported in [1].

Thus, a set of conditions for the solution of (4.13) becomes:

1. (023/0%1) = 0 and (0Z2/0%4) = 0. Thus, in general, either Z; = 7, where 7 € R,
or %y = f(&s,7s), exclusively. In particular, we have that (0%,/0%) = —kss
and (0%,/0%,4) = —k7#3. Thus, because (ks, k7) € R2,, #5 = 0 is the only
possible solution. The map ®(x) preserves dimension provided that #5(to) >

0, YVt € [to, tend]-

2. (023/0%9) = (024/0%2) = 0. This implies that either Z3 = m and Z; = 79, with
(71, 7)) € R?%; or 23 = Z4 = f(&1,T3,74), exclusively. In particular, solving the

above homogeneous equations we have:

ks (1%5 + 1%7)

= —— =12719x 107" (4.14)
3 (k5 - 2k7)

i = G(&3,k, [BrOy]eq, [IM A 4ss) (4.15)

Bhokr (B - 2@7)2
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Table 4.1: Kinetic rate constants reported in [1] for GFp vector field. All kinetic
constants have M (Molar)/s (seconds) units

Parameter Value
ky 2.564 x 106
kg 0.29583
ks 3000
kg 79484
ks 7000
ke 0.95
kr 0.5
ks 2400
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Table 4.2: Parameter values for auziliary equations in GFp wvector field. M =

Molar, s = seconds.

Parameter Value
kea 33 (M?s)
s 7.63 x 1075 (M?2s)
kes 0.3 (Ms)
keto 2.4 x 10* (Ms)
ke 3 x 10° (Ms)
[BrO5] 0.09 (M)
[HY] 1.282 (M)
[HyO| 55 (M)
[MA] 0.475 (M)
Cet (total cerium) | 1.6 x 1072 (M)

72



Dynamical Equivalence: BZ reaction 4.3 Concluding remarks

provided that ks/ky # 2. Where

G(i’g)’, k, .. ) = —24];‘?]%3]%31%7 — ]%gl%%];‘;l[B’f’OQ']ein'g + 20]%?]%3]%3
—ktkoky T — A3 ksk2 + 12k2kok k25

+]25§]25%];’4 [B?“Og']eqCGt — 6%%%%%4%7[B7“02']eq06t

—{—12];’5]%%];’4];’—? [B?“OQ']eqCGt — 16%?%2%1%5%3
+6]%%]%4]%§]%7[B7“02']6qi3 — 12%5%%%4%?[37“02']6(1%3

—8];';)]25%]%4 [BTOQ-]equt + 8];';’]25%];’4 [B’I“OQ']equ (416)

From the sufficient conditions in items 1 and 2, we can define a neighborhood, f?GFD,
for which the map ® preserves dimension, f)GFD = {(Z1, T3) € R? | 1 # 7%, T3 > 0}.
Thus, ® : Dgp, — Rsg x R3.

We have shown the domains where diffeomorphic maps preserves dimension. Thus,
in principle, we have that zogr = Zgr, = P(x0r) = @(XGFD). Since &1 exists, we
can compose the maps as xor = @1 o ®(Xgp,) = @ (2gr,). Correspondingly, we
have in the opposite direction: Xgp, = d~ 1o d(xpr) = D '(zor). Given the highly
involved algebraic expressions after composition, it is difficult to derive conclusions

concerning the dynamical equivalence of both CRNs.

4.3  Concluding remarks

Perhaps the major drawback of the compositions of maps to express the states of
one CRN as function of a second CRN are the highly involved algebraic expressions.
Not to mention that such composition of maps, in general, may lead to equations
which maps to the non-positive orthant. Nevertheless, the construction of & and

its composition with another map using (not the same) observable functions along
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vector fields induced by MAK or not, it is an advantage. This fact could be useful for
those experimental situations where is not possible to measure the same observable
for two (or more) given candidate CRNs. It is an open question which kind (linear
vs non-linear) of observable function would lead to a simpler composition of maps,
clarifying the parameter space where dynamical equivalence looks more evident from

an algebraic point of view.
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5. An autocatalytic CRN for

Prion replication

The results we shall present in this chapter were possible due to the extension of
PhD programs from three to four years by CONACyT. This Chapter exploits the
CRNT formalism to study potential dynamical scenarios of a neurodegenerative dis-
ease caused by a misfolding protein: the Prion. The replication of Prions occurs in an
autocatalytic process, which is modeled within the context of CRNs for two possible
routes of Prion appearance. Both autocatalytic CRNs are deficiency one networks
and the implementation of the Deficiency One Theory (DOT) provided three sets
of kinetic constants from which bistability and sustained oscillations are supported.
Furthermore, there is a steady state for which one of the Shilnikov’s condition for
homoclinic chaos hold. This facts motivated a further numerical bifurcation analysis

in order to find a homoclinic orbit to support the existence of chaos.

5.1 Proteins might attack

Prion diseases are infectious neurodegenerative diseases occurring in humans and
animals with a lethal outcome (e.g. Creutzfeld-Jakob and Gerstmann-Strausssler-
Scheinker diseases in humans). The key issue of prion diseases is at the misfolding

of the prion cellular protein, PrP¢, into its pathogen form, PrP% [42, 43]. The
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detailed molecular process that change the structure of PrP¢ into a rich and lethal
[-sheet structure, Pr P and later replication, is not yet fully understood [44]. What
is known is that the presence of PrP¢ is absolutely required for disease progres-
sion [42, 43]. The characteristic event in prion diseases is the aggregation of PrP5¢
into large amyloid plaques and fibrous structures associated with neurodegeneration;
i.e., at sufficiently high concentration of PrP% it self-aggregates irreversibly [43].
Replication takes place by inducing the same transition in other pre-existing PrP¢
molecules through an autocatalytic reaction scheme. By autocatalysis, the protein
can self-replicate avoiding the usual process involving polynucleotides, be they RNA
or DNA. Actually, the fact that PrP% imparts its conformational information on
PrPC¢ constitutes a new dogma in molecular biology [43]. Another unique feature of
prion diseases is about their tri-modal epidemiological manifestations [44], which can

be:
1. Sporadic: spontaneous misfolding of PrP¢ into PrP?>¢.

2. Infectious: conversion of PrP® to PrP>¢ takes place by a pre-existing seed of

Prp5e.

3. Genetic: changes in the letters within the amino acid sequence that code for
the PrP¢ leads to the production of a mutant version of PrP® that acquires

the PrP>5¢ properties.

Efforts to derive a model of PrP*¢ replication can be found in literature [42, 43,
45, 46, and references therein]. Among them, an autocatalytic mechanism of four
species and five reactions that accounts for both sporadic and infectious manifes-
tation was published in [47]. The mechanism exhibits multiple steady states: one
unstable and two stable ones. In particular, for the concentration of PrP>¢, one

stable steady state does not support the prion disease progression; the second one
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evolves into the outbreak of the disease. This reaction mechanism is able to switch
between the steady states depending upon external factors such as possible changes
in metabolic processes (sporadic manifestation) or the external addition of PrP>¢
(infectious manifestation). Kinetic constants encode these external disturbances that
influence the dynamical behavior of the system. Although this mechanism mimics
the progression of prion diseases [47], some assumptions are invalid at the light of
experimental evidence probably unknown at the time of publication. For instance,
the reversibility of the autocatalytic replication of the PrP5¢. Once the PrP® change
its natural conformation by the interaction with PrP°¢ molecules, the latter holds up
because it is thermodynamically stable [48]. Furthermore, assumptions in [47] lead
to a polynomial differential equation that is not a valid MAK-ODE [49]. Thus, there
are non-negative initial conditions leading to negative concentrations, i.e. the sets
R" and R? are not forward invariant for the vector field in [47].

We present an alternative version of the autocatalytic mechanism, written within
the chemical reaction network theory (CRNT) framework [30]. The MAK-ODEs

induced by the mechanism displays multiplicity of equilibria and oscillatory behavior.

5.2 Proposed Kinetic Model

Let us consider the following kinetic mechanism (kinetic constants are omitted for

brevity but they are considered along discussion within the text):

S— Xy —P (5.1)
X, 2 X, (5.2)
X1 +2Xs — 3X, (5.3)
Xo — X3 (5.4)
Xs — P (5.5)
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where S is the (constant) concentration substrate from which the cellular (healthy)
protein X; = PrPC is produced, and ultimately transforms into products, P. A in-
corporates all the metabolic processes leading to PrP®. Reaction (5.2) accounts for
isomerization of cellular prion X; into the pathogenic prion X, = PrP5¢. Irreversible
autocatalysis (reaction (5.3)) stands for the self-replication of X, = PrP>¢ by inter-
action of more than one molecule with X; = PrP®. After replication, Xy = PrP%¢
infects healthy cells or tissue, X3 = C (reaction (5.4)), which ultimately transforms
into a metabolic product, P (reaction (5.5)). An alternative mechanism is derived by
replacing reaction (5.2) with A — Xs.

CRNT can be exploited to confirm the existence of positive steady states and
determine their stability via the deficiency of a CRN, ¢§. If multiple positive steady
states are possible, then CRNT will provide kinetic constants consistent with them.
To exploit this formalism we first need to write both modified mechanisms as CRNs.

In order to derive the CRN for both mechanisms, we stripped away species A and
P, including them in the so called zero complex, (). We consider of interest species
X, = PrP®, X, = PrP% and X5 = C, whose concentrations are denoted by z;, s
and x3, respectively. Hereafter, the CRN obtained considering reactions (5.1)-(5.5)
will be denoted as A, and N for the CRN derived by considering reaction A — X5
instead of reaction (5.2). Seeking clarity, species concentrations for A’ will be denoted
as T;, 1 = {1,2,3} along with its kinetic constants, l;:j,j ={1,...,6}. Concentrations

and kinetic constants are in arbitrary units.
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5.2.1 MAK-ODES induced by N' and N' CRNs

For N (see Figure 5.1) we obtain the following stoichiometric matrix, N € R3*:

1 -1 -1 1 -1 0 O

N=|0 0 1 -1 1 -1 0 (5.6)

and its MAK reaction rates vector:
v(z, k) = (ki, kowy, kaxy, kao, k133, kexa, kes)” (5.7)

where k; includes the constant contribution of A. Then, the MAK-ODEs induced by
N are:

1 = ki — (ko + ks)zy + kg — ksﬂfﬂg
l"g = k3$1 — (k‘4 + k‘ﬁ)l’z + k5$11’§ (58)

T3 = kexro — k73

subject to x(0) € R3.
From Figure 5.2, we derive the corresponding stoichiometric matrix and MAK

reaction rates vector for N:

1 -10 -1 0 O

N=|l0o 0 11 -1 0 |, NeR¥*¢ (5.9)
00 0 0 1 -1
(&, k) = (ky, kokey, ks, kyZ172, k5o, ke@is)” (5.10)

where k; and k5 include the constant concentration of A. Then, MAK-ODEs for A/
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ky ks
b—X17= X3
A-r.\ - K:1-'0

X3 N

Xi 49X ~38%;

Figure 5.1: N' CRN which induced the MAK-ODEs (5.8).

X, +9%, M 3%,

Figure 5.2: N' CRN which induced the MAK-ODEs (5.11).
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has the form:

Ty = ki — kofty — kadiy @2
i’z = ];'3 + %4%1&% - ];'55'2 (511)
i’3 = ];'55'2 - ];Gi':g

subject to x(0) € R3.

Now, we have the elements to compute the deficiencies associated to N and A
CRNs. The set of complexes composing A are identified from Figure 5.1 as Cnr =
{0, X1, Xo, X3, X; +2X5,3X5}; thus |Cy| = 6. The linkage class set of N consist
of two set of complexes that are internally connected by reactions, while no reactions
exist between elements of distinct sets: Ln = {{0, X1, X2, X3}, {X1 +2X5,3X5}}.
Then, |Lx| = 2. In addition, both stoichiometric matrices, (N, N), have full row
rank; i. e., no conservation relations exists. Thus, using (??), we have for A/ that
Sy = 6 —2— 3 = 1. Following the same procedure for A, it can be computed from
Figure 5.2 that 6y =6—-2-3=1.

According to the DOT [30, 31, 28], there are set of kinetic constants for which
the MAK-ODEs induced by both N and N/ admit multiple positive steady states.
Moreover, N admits a degenerate steady state whereas A/ does not. We use these
set of kinetic constants along with the cubic equation, derived by setting to zero the
left hand side of (5.8) and (5.11), to compute the full set of positive steady states for
both N and V.

For N/ we have the steady state cubic equation:

a3x§,ss + a2l§,ss + A173,ss +ag = 0 (512)
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where
as = 1
k1 7
ke(ksk koky + kok
m = ool 62523” ) S0, vk e R]
ky ks k?
a = — ]1{:5;’;?6 <0, VkeR]
Additionally,
ky — k7$3,ss k7$3,ss
T1,ss = Ta T2.ss = kﬁ

Meanwhile for N~ we have:

~ ~3 ~ ~92 ~ o~ ~
a3x3,ss + a2x3,53 + A1T3,ss + apg = 0

a3 = 1
Gy = -tk VkeRS
ke
. i
o o= sy vk eRS
kyk?
iy = hakshs 0, Vk e RS
kykd
and 3 ~ 3 3
- ki + ks — keT3ss . k63 s
T1,ss = = 5 2,88 — =
ko ks

5.8  Dynamical scenarios

5.3.1 Dynamics for N

(5.13)
(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

The DOT (30, 31, 28] provides two set of kinetic constants for N such that (5.8)

admits multiple positive steady states. The steady states for N and their stability are
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resumed in Tables 5.1 and 5.2. Figure 5.3 shows that 1 551 < 71 552 and T 551 > T2 ss2.
Furthermore, x3 s > 234s2. This means that, SS2 has the lowest concentration of
infected cells, x3 452, along with the lowest concentration of scrapie protein, z gso.
Conversely, SS1 has the highest concentration of infected cells, 3 41, along with the
highest concentration of scrapie protein, x2 s51. In addition to these facts, the (local)
stability of steady states SS2 and SS1 implies each one is attractive for any initial
condition at the attraction basin and the concentrations hold on SS2 and SS1 along
time. In other words, when a subject lies in an starting condition such that the
concentrations z,x2 and x3 are within a healthy situation (i.e., attraction basin of
SS2), then time evolution of disease converges to the SS2. On contrary, as the starting
condition of subject are within the progress situation (i.e., attraction basin of SS1)
the disease evolves towards the highest concentration of infected cells and scrapie

protein.

Table 5.1: N steady states and their stability for kinetic constants ky = 2.9872232, ko =
ks =kr =1, kg = 12.626548, k5 = 5.6433885, k¢ = 0.85914091.

Steady State T ss T2 s 3 ss Eigenvalues
S5 1 2.3130 1.9872 (-1, -0.7534, -18.8184), stable
S5, 2.7183 0.3130 0.2689 (-1, -5.4834, -0.9512), stable
SSs3 2.2562 0.8509 0.7311 (-1, 3.2646, -1.168), unstable

Table 5.2: N steady states and their stability for kinetic constants ky = 11.107337, ko =
k7 =1, k3 =0.17891084, k4 = 5.7767046, ks = 1.0096634, k¢ = 3.194528.

Steady State T1,ss T2 ss T3 ss Eigenvalues
SS1 10.1073  0.3130 1 (-1, -2.4352, -1.4249), stable
S5, 3.7183 2.3130 7.3891 (-1, 0.9076 + 2.9339 7, 0.9076 - 2.9339 i), unstable
SSs3 8.3891 0.8509 2.7183 (-1, 4.1455, -0.6119), unstable
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X4
3 :
(b)
2 L
(7]
N
[x]
X
1
O 1 L L L L

Figure 5.3: (a) Solid lines: solutions of (5.8) with different initial conditions. Set
of kinetic constants as in Table 5.1. Black circle: stable steady state. White circle:
unstable steady state. Dotted line: locus of equilibrium. (b) Equilibrium bifurcation
diagram for xs showing multiple steady states as ki vary. Solid line: stable branch.

Dotted line: unstable branch.
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Moreover, a very interesting issue concerns a threshold which has to be reached to
permit the disease progression. Actually the threshold for disease progression exists
and regards both infected and healthy cell concentrations. In order to explain this, let
us observe Figure 5.3. As discussed above, the disease evolves to SS2 or SS1 depending
on the initial conditions of z; and z5. Note that the locus of equilibrium (dotted-
line) connects to SS1, SS3 and SS2. The equilibrium SS3 plays the main role on the
determination of the threshold. In fact, there is a region below the locus of equilibrium
such that any initial condition converges to SS2 whereas a starting condition at other
region above it leads to SS1. That is, in order to illustrate our point, consider two
initial conditions (x1(0),z2(0)) = (0.5,1.0) and (x1(0),z2(0)) = (3.0,1.0), then SS2
and SS1 are attractive for the former and the latter, respectively. The interpretation
of this fact is as follows. Assume the system is at SS2 (i.e., a healthy condition). If
the concentration of x5 increases beyond x5 =~ 0.5 by means of a possible metabolic
change (related to sporadic manifestation) or the external addition of scrapie protein
(related to infectious manifestation), then the time evolution of disease converges to
SS1 with the consequent disease progression. Thus, once the threshold is surpassed
the system could not return to SS2.

Figure 5.4 shows that, if external factors changes the rate of reactions (e.g., an
immune action from the host) in such a way that x; grows faster from substrate while
the replication processes diminish (see ki, ko in Table 2) the disease does not progress

A description of the oscillatory behavior is supported by N for the set of kinetic
constants k; = 3, ko = ky = 1, k3 = 0.5, ky = ks = 6, kg = 2, with a steady
state of multiplicity of three from (5.12): xgs = (2, 0.5, 1). Eigenvalues associated
to this steady state are (—1, 1, 0), indicating a (neutral) saddle-node [27]. Using
k1 (substrate rate of production) as a bifurcation parameter, it can be seen that for
k1 = 2.89 the system has one stable steady state for which 15 > 355 > Z2ss (cf.

Figure 5.5 a,b). Furthermore, if k; increase, the system undergoes a super-critical
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Figure 5.4: (a) Solid lines: solutions of (5.8) with different initial conditions. Set
of kinetic constants as in Table 5.2. Black circle: stable steady state. White circle:
unstable steady state. Dotted line: locus of equilibrium. (b) Equilibrium bifurcation
diagram for xs showing multiple steady states as ki vary. Solid line: stable branch.

Dotted line: unstable branch.
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Hopf bifurcation close to the saddle-node as shown in Figure 5.5. Because the saddle
is unstable and steady states are multiplicity of three, solutions of (5.8) steers to the

stable limit cycle where they will remain confined.

k=2.89 (=289

SRR EA S SRS
| ol \||‘|4 ,,‘]',
X hon 000N,

0
0 (s 05ty dgg 2 28

time (a. u.) ' X

Figure 5.5: Bifurcation scenario for degenerate steady state varying ki: vector field
(5.8) goes from a stable steady state (Figs. 5.5a,b) to an unstable saddle (Figs. 5.5¢,d)
which undergoes a supercritical Hopf bifurcation (Figs. 5.5e,f). Time evolution of
species x1 (black line), x4 (dashed line) and x3 (dotted line). Black circle: stable

steady state. White circle: unstable steady state.
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5.3.2  Dynamical scenario of N

For N the DOT gives a set of kinetic constants that enable (5.11) to exhibit one stable
steady state and two unstable ones, as shown in Table 5.3 (see Figure 5.6). Despite
N foresee the formation of X, = PrP5¢ directly from the substrate at a constant
rate, the existence of such a reservoir is not sufficient for the prion disease to progress
(cf. k; in Table 5.3). Note that the autocatalytic reaction rate takes place at a lower
pace than the remaining reactions (cf. k4 in Table 5.3). Under these circumstances,

N is sufficiently robust against infection.

Table 5.3: N steady states and their stability for kinetic constants ki = 15.696713, ko =

ks = k¢ = 1, ks = 0.33799396, ks = 4.8020616.

Steady State  Z1ss T2 ss 73 55 Eigenvalues
S8, 5.5894  2.3130 11.1073 (-1, 0.5645 + 2.1042 4, 0.5645 - 2.1042 ), unstable
5SS 15.1935 0.3130 1.5032 (-1, -1.3101 + 0.1726 4, -1.3101 - 0.1726 7), stable
5SS 12.6106 0.8509  4.0862 (-1, 1.8843, -0.6774), unstable

5.4  Bifurcation analysis

The second dynamical scenario suggest the existence of a homoclinic orbit such that in
a neighborhood of the saddle focus chaos might be present in the system if Shilnikov’s
condition hold. That is, when the steady state is a saddle focus with the eigenvalues
(i, p £ wi) satisfying the Shilnikov’s condition |p/u| < 1, we know that there exists
a chaotic set of trajectories near the homoclinic orbit [27]. Recall that the second
dynamical scenario has a saddle focus with eigenvalues Ay = (—1,0.9076 4+ 2.9339 i),
for which Shilnikov condition hold.

Seeking for such a chaotic region, we performed a bifurcation analysis of every dy-

namical scenario. As bifurcation parameters we choose the pair (kg, k1) which stands
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Figure 5.6: Solid lines: solutions of (5.11) with different initial conditions. Set
of kinetic constants as in Table 5.3. Black circle: stable steady state. White circle:

unstable steady state. Dotted line: locus of equilibrium.
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for the rate of infection and the rate of production of healthy protein, respectively.

Continuation of x; equilibrium using kg from K, is showed in Figure 5.7. Three
steady states are possible within the range kg € (0.5, 1), approximately. The continu-
ation of equilibria in the (kg, k1) space leads to the following possible bifurcations (see
Figure 5.8): Bogdanov-Takens(=BT), i.e. the critical equilibrium has a zero eigen-
value of (algebraic) multiplicity two. Coordinates: (kg, k1) = (1.100256, 3.122943). At
(ke, k1) = (1.231066, 3.298550) there is a Zero Hopf(=ZH) Neutral Saddle. A Cusp
Point(=CP) is founded at (kg, k1) = (1.803793,3.945468), followed by another Zero
Hopf Neutral Saddle located at (kg, k1) = (1.641215, 3.808766). A second Bogdanov-
Takens point is located at (kg, k1) = (1.366877,3.594817).

Figure 5.9 shows a very similar bifurcation diagram in the (kg, k1) parameter space
using the set Ks. Using the same nomenclature as in the previous paragraph: BT
at (ke, k1) = (12.270874,3.359119); ZH located at (k¢, k1) = (15.593040, 5.354471);
CP in (kg, k1) = (29.297191,13.394117); second ZH at (ke, k1) = (6.2703,1.4298);
second BT at (kg, k1) = (5.616992, 1.181614). Moreover, there is an oscillatory region
(left to the CP point), which ends, due to numerical difficulties, in a Limit Point
Cycle(=LPC). Figure 5.10 shows the oscillatory behavior at the left of the CP.

Varying kg in the third dynamical scenario (degenerate steady state) we obtain
Figure 5.11. From left to right: at kg = 1.862951 we encounter a subcritical Hopf(=H)
point, followed by a Neutral Saddle at k¢ = 1.994178. A second Neutral Saddle and
a subcritical Hopf point are located at kg = 2 and kg = 2.014358, respectively.

Following the Hopf point in the (kg, k1) parameter space, Neimark-Sacker(=NS)
and Limit Point Cycles(=LPC) can be encountered. Quasi-periodic oscillations around

the NS points are possible as suggested by Figure 5.13.
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Figure 5.7: Continuation of x1 using kg from the set Ky. Solid line stable equilib-

rium. Dashed line unstable equilibrium. LP=Limit Point.

L
25 3

Figure 5.8: Bifurcation diagram in the (kg, k1) space from the set Ky. LP=Limit
Point. BT=Bogdanov-Takens. ZH=Zero Hopf(Neutral saddle). CP=Cusp Point.
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Figure 5.9: Upper panel: Bifurcation diagram in the (ke, k1) space from the set
Ky. Lower panel: augmented region to show the Limit Point Cycle (LPC).LP=Limit
Point. BT=Bogdanov-Takens. ZH=Zero Hopf (Neutral saddle). CP=Cusp Point.

Figure 5.10: Two different oscillations projected in the x1 — x9 space from the
oscillatory region at the left of the Cusp Point in Figure 5.9. Upper panel: (ke, k1) =
(8,25). Lower panel:(kg, k1) = (3.39,12.46); remaining kinetic constants as in Ks
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2r NS:Neutral Saddle

NS:Neutral Saddle

Figure 5.11: Bifurcation diagram for degenerate steady state varying ke from set

K;. H=Hopf LP=Limit Point.

45

L L L L I L L L L
15 2 25 3 35 Kk 4 45 5 55 6 6.
6

Figure 5.12: Bifurcation diagram for degenerate steady state in the (kg, k1)
space. NS=Neimark-Sacker, LPC=Limit Point of Cycles.

5.5  Concluding remarks

It was assumed that every set of kinetic constants provided by the CRNT encodes
possible changes within the metabolic process or external disturbances. In this sense,

N is able to exhibit three different dynamical scenarios for different sets of kinetic
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Figure 5.13: Quasi-periodic oscillations in the x1 — xo plane at the Neimark-Sacker

point (ke, k1) = (1.897181,3.039192).

constants. The first dynamical scenario for N is the bistability and shows that there
exists an infectious threshold in terms of PrP%¢ concentration, xo, for which the host
can develop a higher concentration of infected cells, x3, if it is surpassed by an external
addition or sporadic appearance of PrP%¢ (see Figure 5.3). On the other hand, in
the second dynamical scenario, the infectious threshold it is absent when two steady
state become unstable.

We conjecture that the host is robust in face to both sporadic and infectious
manifestations of the prion disease because is able to return to its stable steady state
(see Figure 5.4). In terms of the kinetic rates, such a robustness might be achieved
if we can managed to change the rate of reactions (e.g. an immune or inoculation
action) in such a way that x; grows faster from the substrate while the replication
processes diminish (cf. &y, ks in Table 5.2). In addition, regarding the third scenario,
N is able to exhibit sustained oscillations. In other words, oscillations in the protein
concentrations (healthy and scrapie) and infected cells might be conjectured to be

in a dormant progression state. This is suggested because of two facts: (i) prion
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diseases are characterized by long incubation time periods [42, 50] and (ii) under
oscillatory regime, high concentration of infected and healthy cells are alternately
reached. That is, increments as well as decrements in x3 can be exhibited involving
that, for instance, neural tissue regenerates at time intervals, which could be plausible
from a biological perspective since neurogenesis is now an accepted phenomena [51,
and references therein).

Regarding N, where PrP%¢ can be yielded directly from substrate, the scenario
that we found using CNRT displays no infectious threshold because there is only one
stable steady state. Note this scenario for A is equivalent to one of the scenarios (the
second one) for N.

The relation between these dynamics and a possible medical interpretation need
to be investigated further. For example, the impact on the progression of the disease if
external conditions onset (quasi)periodic oscillations in the concentration of proteins.
This is not an easy task because the peculiarities of the Prion disease progression
such as asymptomatic long incubation periods, lack of fast and reliable blood test
for a prompt detection of the pathogen form of the Prion protein or to estimate the
progression of the disease. Nevertheless, it has been reported that oscillations are
related with flare-ups, i.e. the recurrence of symptoms or an onset of more severe
symptoms [52]. It remains an open question whether or not oscillations can be tuned
to induce a recovery or to bound the progress of the disease. Furthermore, the design
of robust (non)linear state estimators to provide, with certain accuracy, the degree of
disease progression to physicians, seems challenging.

Bio-inspired problems such as Prion diseases offer a good opportunity for the
control community to develop or implement mathematical tools aimed to understand

and, possibly, give some insights that lead to the cure of this kind of diseases.
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Research

In this thesis, the concept of dynamical equivalence among chemical reaction net-
works has been addressed. The dynamical equivalence states that chemical species
concentrations of one reaction network can be expressed via a suitable change of
coordinates, as a function of a second reaction network: solutions, i.e. trajectories
of ordinary differential equations, are mapped to an equivalent system. The change
of coordinates is constructed via recursive Lie derivatives of an observable function
along the vector field induced by the reaction network, endowed with mass actions
kinetics or other kinetics, e.g Michaelis-Menten.

This definition was motivated by the fact known in the chemistry literature as the
fundamental dogma of chemical kinetics: more than one candidate chemical reaction
networks can fit the experimental data. Candidate reaction networks not necessarily
share the same number of chemical species or reactions. Moreover, their ordinary
differential equations may or may not follow the mass action kinetic law. Thus, their
associated set of dynamical equations will induce vector fields, .e the right hand
side of the ordinary differential equations, with distinct dimension among candidate
reaction networks and with different structure. These issues are particularly well

illustrated by the Belusouv-Zhabotinsky (BZ) oscillatory chemical reaction.
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The usual graph theoretical approaches such as the Chemical Reaction Network
Theory (CRNT) [30, 32|, i.e. deficiency analysis, and Stoichiometric Network Anal-
ysis [4], were implemented in order to find structural properties oscillatory reactions,
e.g Brusselator and Oregonator might share. The former being the first respectable
oscillatory reaction network that showed the same qualitative dynamics as the BZ
reaction, meanwhile the latter is considered as the minimal reaction network for the
BZ reaction. Brusselator and Oregonator networks are endowed with mass action
kinetics of different dimensions, two and three, respectively. It was shown in Section
3.1.1 they do not share the same deficiencies. Nevertheless, the 2-D Brusselator and
3-D Oregonator CRNs, represent a straight line in the reaction rate space (Section
3.1.2). The question to what extent both chemical oscillator can be equivalent, it
was shown that through a transformation, T, of the Oregonator’s jacobian is possible
to obtain the same linear combination of convex coordinates as in the Brusselator’s
Jacobian entries. Nevertheless, such a transformation is not invertible.

Seeking invertible transformations a change of coordinates was proposed, such
that chemical species concentrations of two different oscillatory CRNs, not necessarily
of the same dimension, can be expressed as function of the other, and vice versa,
through composition of diffeomorphic maps. These maps were constructed via Lie
derivatives of a suitable observable (a measure chemical specie) along the vector
fields induced by the set of MAK-ODEs. For a set of kinetic constants and a suitable
initial condition states, was possible to map trajectories from Brusselator’s space
onto Oregonator’s space, preserving the qualitative dynamical nature displayed by
the Brusselator (cf. Section 3.2). Conversely, Oregonator’s trajectories (solutions)
onto Brusselator’s was partially achieved for z] g, thus both chemical oscillators can
be regarded as partially dynamic equivalent for these chemical species. Conditions in
parameters space that guarantee =3 g > 0 cannot be fulfilled for typical values of

both Brusselator and Oregonator CRNs. In this sense, a broad parametric search need
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to be performed. This shows that there exist observable functions that lead, for some
region of parameter space, to algebraic expressions where dynamical equivalence can
adopt the form of free parameter equalities. For the case of Brusselator and Minimal-
Mass-Action-Kinetic-With-Limit-Cycle reaction network, a mirror reflection of the
dynamics was found, resembling a chirality phenomena previously reported in [40]
within a reduced order synchronization context.

Chapter 4 shown that the deficiency is not an invariant among CRNs of distinct
structure and dimension that stands for the same experimental reality, e.g. the set of
GF CRNs for the BZ reaction. Dynamical equivalence between distinct dimensional
oscillatory CRNs that stands for the BZ reaction and unrestricted to follow MAK,
was explored together with Oregonator, a three dimensional CRN for the BZ reaction.
Particularly, the case of dynamical equivalence between GFp and Oregenator CRN
lead to a highly involved algebraic relationship among states, i.e. chemical species
concentrations. Only sufficient conditions which guarantee the existence of an inverse
for the GF p were given. Thus, in principle, the composition of Oregonator and GF p is
possible. It remains to derive from such composition conditions of non-negativeness.
In this sense, perhaps the major drawback of the concept of dynamical equivalence is
that the algebra of the composed maps ®~1(®(x)) and vice versa, is not trivial except
for simple cases. Furthermore, is not clear to what extent the nonlinear mapping
® : R — R” can provide insight into the behavior of the reaction networks, even
for the case where the dimension is the same: nonlinear mapping does nor preserve,
in general, the form of the reactant complexes nor the behavior of the mass action
network. It is paramount to derive conditions so that the set Ri be invariant for the
composition of maps.

On the other hand, the CRNT is a powerful tool which theoretically enables
us to study BCRNs for which kinetic constants are not fully available, such as in

the neurodegenerative disease caused by Prions. Implementation of the CRNT on
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a Prion disease autocatalytic CRNs in Chapter 5, shown the existence of bistability
and sustained oscillations. Sustained oscillations of cellular and scrapie prion protein
concentrations were conjectured to be related with flare-ups, i.e. the recurrence of
symptoms or an onset of more severe symptoms [52]. Other tools from the control
literature, such as the design of robust (e.g against parameter uncertainty) state ob-
servers, can be fruitfully complemented with the CRNT to understand other diseases

and provide insight to physicians.
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Abstract: Fatal neurodegenerative diseases such as bovine spongiform encephalopathy in cattle, scrapie in sheep and
Creutzfeldt—Jakob disease in humans are caused by prions. Prion is a protein encoded by a normal cellular gene. The cellular
form of the prion, namely PrP€, is benign but can be converted into a disease-causing form (named scrapie), PrP*, by a
conformational change from a-helix to B-sheets. Prions replicate by this conformational change; that is, PrP> interacts with
PrP€ producing a new molecule of PrP*. This kind of replication is modelled in this contribution as an autocatalytic process.
The kinetic model accounts for two of the three epidemiological manifestations: sporadic and infectious. By assuming
irreversibility of the PrP% replication and describing a first-order reaction for the degradation of cellular tissue, the authors
explore dynamical scenarios for prion progression, such as oscillations and conditions for multiplicity of equilibria.
Feinberg’s chemical reaction network theory is exploited to identify multiple steady states and their associate kinetic constants.

1 Introduction

Prion diseases are infectious neurodegenerative diseases
occurring in humans and animals with a lethal outcome
(e.g. Creutzfeld—Jakob and Gerstmann—Strausssler—
Scheinker diseases in humans). The key issue of prion
diseases is at the misfolding of the prion cellular protein,
PrP€, into its pathogen form, PrP*° [1, 2]. The detailed
molecular process that changes the structure of PrP€ into a
rich and lethal B-sheet structure, PrP%, and later replication,
is not yet fully understood [3]. What is known is that the
presence of PrP¢ is absolutely required for disease
progression [1, 2]. The characteristic event in prion diseases
is the aggregation of PrP* into large amyloid plaques and
fibrous structures associated with neurodegeneration; that is,
at sufficiently high concentration of PrP%, it self-aggregates
irreversibly [2]. Replication takes place by inducing the
same transition in other pre-existing PrP molecules
through an autocatalytic reaction scheme. By autocatalysis,
the protein can self-replicate avoiding the usual process
involving polynucleotides, be they RNA or DNA. Actually,
the fact that PrP> imparts its conformational information on
PrP€ constitutes a new dogma in molecular biology [2].
Another unique feature of prion diseases is about their tri-
modal epidemiological manifestations [3], which can be

1. Sporadic: spontaneous misfolding of PrP< into PrP%.

2. Infectious: conversion of PrP¢ to PrP* takes place by a
pre-existing seed of PrP%.

3. Genetic: changes in the letters within the amino acid
sequence that code for the PrP€ leads to the 5production of a
mutant version of PrP that acquires the PrP™ properties.

IET Syst. Biol., 2011, Vol. 5, Iss. 6, pp. 347-352
doi: 10.1049/iet-syb.2011.0018

Efforts to derive a model of PrP*° replication can be found
in the literature [1, 2, 4, 5, and the references therein]. Among
them, an autocatalytic mechanism of four species and five
reactions that accounts for both sporadic and infectious
manifestation was published in [6]. The mechanism exhibits
multiple steady states: one unstable and two stable ones. In
particular, for the concentration of PrP*, one stable steady
state does not support the prion disease progression; the
second one evolves into the outbreak of the disease. This
reaction mechanism is able to switch between the steady
states depending upon external factors such as possible
changes in metabolic processes (sporadic manifestation) or
the external addition of PrP* (infectious manifestation).
Kinetic constants encode these external disturbances that
influence the dynamical behaviour of the system. Although
this mechanism mimics the progression of prion diseases
[6], some assumptions are invalid at the light of
experimental evidence probably unknown at the time of
publication; for instance, the reversibility of the
autocatalytic replication of the PrP%. Once the PrP¢
changes its natural conformation due to the interaction with
PrP* molecules, the latter holds up because it is
thermodynamically stable [7]. Furthermore, assumptions in
[6] lead to a polynomial differential equation that is not
a valid mass action kinetic (MAK)-ordinary differential
equation (ODE) [8]. Thus, there are non-negative initial
conditions leading to negative concentrations, that is, the
sets RZ, and RZ are not forward invariant for the vector
field in [6].

We present an alternative version of the autocatalytic
mechanism, written within the chemical reaction network
theory (CRNT) framework [9]. The MAK-ODEs induced
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equivalence.

Distinct chemical reaction networks (CRNs) may lead to the same dynamics; this fact has been termed
the fundamental dogma of chemical kinetics. We use Lie algebra of derivations to construct a tangent
space along trajectories of vector fields, induced by CRNs, such that their dynamical structure is
preserved via the construction of a diffeomorphic map @. Thus, given two CRNs, it is possible to express
the states (i.e. chemical species concentration) of one CRN as function of the other and vice versa, via
the composition of their diffeomorphic maps. We call these map compositions the dynamical

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is known in Chemical Engineering that more than one
proposed chemical reaction network (CRN) may lead to the same
dynamics (Hill, 1977). That is, two structural and parametrically
different CRNs can stand for the same experimental reality. This
lack of uniqueness has been termed the fundamental dogma of
chemical kinetics (Craciun and Pantea, 2008, and references
therein). Thus, it is natural to ask for the structural conditions
that candidate CRNs need to satisfy in order to explain the
experimental collected data.

Recently, necessary and sufficient conditions have been pro-
vided (Craciun and Pantea, 2008) such that two CRNs are capable
of inducing the same mass action kinetics (MAK) ODEs under an
appropriate selection of kinetic constants. Craciun and Pantea

* Corresponding author. Tel.: +52 444 8342000; fax: +52 444 8342010.
E-mail address: rfemat@ipicyt.edu.mx (R. Femat).

0009-2509/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ces.2012.06.056

(2008, see Theorem 4.4) named this feature “confoundability”,
where the key point is that the vector space spanned by the linear
combination of chemical species located at the left hand of the
chemical arrow in both CRNs be no empty. Other contribution in
this direction states that two structurally different CRNs are
dynamical equivalent if they can give rise to the same MAK-ODEs
(Szederkényi and Hangos, 2001). A concept, technically suitable,
is the indistinguishability (Evans et al., 2004; Schnell et al., 2006),
which is focused on the state space in the sense that two
trajectories cannot be distinguished for distinct initial conditions
lying at the domain of state vector in a ODE describing chemical
kinetics.

In this paper, we have chosen to borrow from geometric
control theory a procedure for the construction of diffeomorphic
maps, &, (a differentiable homeomorphism along with its inverse)
using Lie derivatives of the output function along the ODEs
induced by the CRNs (Isidori, 1995; Nijmeijer and van der
Schaft, 1995). We show that, if the inverse &~! exists, it is
possible to map trajectories of one of the systems into the
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