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Resumen

En tiempos recientes la busqueda de un modelo mas general de com-
putacién derivo finalmente en el concepto de la computadora cuantica, un
esquema de procesamiento de informacion basado totalmente en fené-
menos cuanticos.

Esto, a su vez, ha propiciado el estudio de nuevos recursos tales como
el Entanglement, que se define como un tipo especial de correlacion que
tiene lugar a nivel cuantico.

En el presente trabajo, se estudia la optimizacion numérica de la Con-
currencia —una medida de Entanglement— a primeros vecinos en redes
bipartitas de una y dos dimensiones, asi como no-bipartitas en algunas
redes de dos dimensiones. Los resultados muestran que la Concurrencia
de las redes optimizadas es considerablemente mas alta que en aquellas
donde no hubo optimizacion. En el caso de las cadenas unidimension-
ales, la Concurrencia incrementa de manera notable cuando el sistema
presenta el fendbmeno de dimerizacion. Mas aun, la optimizacién mas alta
de Concurrencia en redes de dos dimensiones bipartitas y no-bipartitas
se alcanza cuando las estructuras tienden a romperse en subsistemas
mas pequenos, los cuales se encuentran arreglados en configuraciones
geométricamente distinguibles.

Palabras Clave: Computacion Cuantica, Entanglement, Concurren-
cia, Algoritmos Genéticos, Amarre-fuerte.
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Abstract

In recent times the research to find a more general model of computa-
tion ultimately led to the concept of the quantum computer, an information-
processing scheme based entirely on quantum phenomena.

This, in turn, has led to the study of new resources such as Entan-
glement, which is defined as a special kind of correlation found only at
quantum scales.

In the present work, we study the numerical optimization of nearest-
neighbor Concurrence —a measurement of entanglement—, of bipartite one-
and two-dimensional lattices, as well as non-bipartite two-dimensional lat-
tices. Results show that the Concurrence of the optimized lattice structures
is considerably higher than that of non-optimized systems. In the case of
one-dimensional chains, the Concurrence increases remarkably when the
system begins to dimerize. Moreover, the optimization of Concurrence in
two-dimensional bipartite and non-bipartite lattices is achieved when the
structures break into smaller subsystems, which are arranged in geomet-
rically distinguishable configurations.

Key Words: Quantum Computation, Entanglement, Concurrence, Ge-
netic Algorithms, Tight-binding.
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Chapter 1

Context

1.1 The Classical Computer

1.1.1 A brief introduction

“We were born in a sea of information”. A phrase that could prob-
ably come from a science-fiction movie decades ago, is today a reality.
The development of the transistor in the 1950’s and many other sciences
has made it possible for the so-called “personal computer” to be ubiqui-
tous. People communicate by e-mail or SMS; chats with friends; plays
video games online; writes blogs and perform bank operations over the
web on a daily basis. They also run distributed software with scientific
purposes, mantain business databases and, sometimes, write PHD dis-
sertations. But technology has not found its way exclusively on personal
computers: it has also permeated onto society in the form of cell phones,
music players, TV’s and several daily-life objects.

The processing of this mammoth amount of data is performed by means
of binary operations for historic reasons. In 1937, Claude Shannon, con-
sidered as the father of information theory, proved in his master’s thesis
[6] that the logic used to relate numbers in their binary representation (i.e.
boolean algebra) could be used to simplify the electromechanical relays
used at that time by telephone routers. Reversely, he used the same con-
cept to prove that the relays could be employed to perform boolean alge-
bra, providing in the process an invaluable tool to forecoming engineers
interested in building “processing machines”.

The kind of data with this characteristic (that is, that can be in one
of only two distinct states) is called a bit, and while the first ancestors of
modern computation —Babbage’s Difference Engine and the ENIAC— still
worked with the decimal system, machines designed to work on binary are
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simpler and easier to build. Having only two states makes them resilient to
noise and thus more reliable when moving data.

The Z3 (built by another pioneer, Konrad Zuse), was the first computer
that used the binary system to perform calculations. In 1998, three years
after Zuse’s death, it was proved that Z3 is Turing-complete.

A year prior to the publication of Shannon’s thesis, Alan Turing had
made a serious and important contribution to computer science. He de-
fined the concept, commonly known nowadays as a Turing Machine, which
comprehends a set of ideas (an infinite tape divided in cells containing a
symbol from a finite alphabet; a head with the ability of storing and re-
trieving symbols in the tape; a table where instructions tell the machine
to perform actions like moving the head or writing a symbol, and finally
a state register which tells the state of the machine) that came to be the
base of present-day algorithms. A device classified as Turing-complete is
such that can be emulated by a general or Universal Turing machine. Nor
the Z3 —or any computer—, of course, posseses an infinite amount of
memory.

Along with Alonzo Church, Stephen Kleene and J. B. Rosse, Turing’s
theories are summed in an ongoing set of thesis which try to define what
kind of algorithmic process can be simulated by different approaches (the
Turing Machine being the prominent one). By the end of the 1960’s, the
thesis was concerned with how efficiently can an algorithmic process be
simulated with a Turing Machine.

“Efficiently” means that the time for solving a certain problem will not
grow exponentially with its size (alternatively, it may also mean that a PhD
student will finish all her simulations before the graduation date). Problems
have been categorized into many kinds, some of which are thought not to
have an efficient way to be solved.

A formidable challenge to the well-stablished Turing Machine theses
came by the mid 70’s when Robert Solovay and Volker Strassen proposed
a probabilistic method that determines whether a number is prime [8]. This
means that, eventhough this particular algorithm may fail, such probability
can be reduced arbitrarily with the number of iterations. Although these
“primality tests” have found quick (though not quicker than their probabilis-
tic counterpart) deterministic algorithms that run in polynomial times (i.e.
the Agrawal, Kayal y Saxena, AKS algorithm), the Solovay-Strassen algo-
rithm proved that more general theses were still to be found, with the result
of the inclusion of randomness in yet another thesis: “A probabilistic Turing
machine can efficiently simulate any realistic model of computation”.

Fast forward to the present day. It is know that microchips follow the
so-called “Moore’s Law”, which states that the amount of transistors in an
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integrated circuit doubles each two years. Whether Moore’s Law truthfully
predicts the industry’s developments or the industry adapts itself in order
to follow the Law is debatable. The fact is that Moore’s Law has been
followed, at least until now.

It is evident, however, that Moore’s Law is beginning to see bumps in
the road ahead. This is due to the ever smaller components found in each
new generation of CPUs. For example, when companies tried to manu-
facture microchips whose transistors featured a gate of only 45 nm, they
realized that traditional processes would not be enough to cope with the in-
evitable leak of electrons. The combination of such a small feature as well
as the material employed enabled electrons to tunnel the potential barrier
that separeted them from the channel. This was eventually accounted for
using another kind of dielectric (see [1]), but it is clear that quantum effects
are starting to play a crucial role in technology. At the time of writing, the
state-of-the-art processors have transistors with features of up to 32 nm.

1.2 The Quantum Computer

Even before the limitations of current approaches to manufacturing
small components became evident, the idea had been proposed [3] of
developing an information-processing device based entirely on quantum
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phenomena.

Motivated by these issues, David Deutsch wondered whether the laws
of physics could be used to derive an even stronger version of the Church-
Turing thesis [2]. In particular, Deutsch attempted to define a compu-
tational device that would be capable of efficiently simulate an arbitraty
physical system. Because the laws of physics are ultimately quantun me-
chanical, he was naturally led to consider computing devices based on the
principles of quantum mechanics.

Though the concept of quantum computer is relatively new, there are
already some proposals in which these concepts are applied with exciting
new results: algorithms that perform much better than their classic coun-
terparts, stronger cryptography and new phenomena such as quantum
teleportation.

Much work, however, is still needed to harness all the potential of quan-
tum computation.

1.2.1  Qubits

Just like a classic bit has a definite state —0 or 1—, a quantum bit, or
qubit, is simply a quantum system with two distinguishable states, such as
the two levels of a 1 spin particle; the ground and first excited state of an
atom, or the vertical or horizontal polarization of a photon. Dirac notation
is usually employed, and the two systems are labeled commonly |0) and
|1).

The most remarkable —and crucial— feature of qubits is that they can
be found in a superposition of the two states. This means that it is possible
to form linear combinations of states. A general state of a qubit is thus:

) = a[0) + B]1). (1.1)

When a qubit is measured, the result can be either the state |0) with
probability |a|? or the state |1) with probability |3|> —so as to make the sum
of probabilities equal to 1—. A qubit can be pictured as a unitary vector
in a two-dimensional space (although, as the state’s coefficients are, in
general, complex numbers, it can be seen rather as a sphere with radius
1).

For the case of two qubits, it is clear that four different states are pos-
sible. Such a system can be represented as:

|¥dos qubits) = ¢|00) + 5]|01) + ~|10) + 6]|11). (1.2)
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The matrix notation can be employed too, with each row indicating the
coefficient of each state, ordered:

al00) + B]01) + 4]10) + §|11) = (1.3)

2 ™R

In Dirac’s notation, the first state to the left represents the first qubit,
that is, the state |01) can be read as “the state whose first qubit is in the
state |0) while the second is in the state |1)”.

Operators

Mathematically, qubits can be manipulated using operators, which are
any unitary matrices. A unitary matrix A satisfy ATA = I, where A' is the
adjoint, Hermitian or conjugate-transpose of A.

For example, the following operator, CNOT is a two-qubit operator
which switches the second qubit’s state if the first one is in the state |1):

(1.4)

SO O
o O~ O
o O O
C = O O

It can be easily seen that (CNOT)(CNOT') =1.

Measurement

Although the evolution of a quantum system by means of unitary op-
erators implies a closed system, there must be some manner to obtain
useful information once the desired manipulations have finished. Mea-
surement is performed by means of a set of operators {M,,, }, whose index
m represents each possible state in the outcome. If a system’s state be-
fore measurement is |¢), then the probability of obtaining result m after
measurement is given by

p(m) = (| MF M. [), (1.5)
and the system’s state after measurement becomes
My |9)

(1.6)

G MEM[0)

5




To ensure that the sum of probabilities equals 1, measurement opera-
tors must satisfy the completeness equation

> MM, =1. (1.7)

The system can be measured progressively, one qubit at a time, in the
desired order. It is possible, for example, to measure a system’s first qubit
from equation (1.2). The probability that such measurement yields the
state |0) is |a|? + | 3|2, in which case the system could be described as

') :zfiﬂﬁll:tfiﬂlll (1.8)
Vial? + (62
where the denominator has been introduced for normalization (although
only two states are accessible, the sum of their probabilities must sum 1
again). If instead of measuring the first qubit the second one is measured,
the state |1) would be observed with probability |5|*> + |6]?, leaving the
system in the state
B|01) + 6|11)

¥) = :
VB[ +16]?
As a quick example, we can define two operators for one qubit: M, =
|0)(0] y M; = |1)(1]. In matrix notation these are:

(1.9)

M, = (1.10)

It can be easily seen that both operators are hermitic and satisfy the com-
pleteness equation. Note also that M M,, = M2 = M,,.

For a general qubit [¢) = «|0) + 5|1), the probability to measure the
state 0 is

(| M Mo|p) = (| Mo|)
(@™ (0] +b*(1]) [0)(0|(al0) + b|1))
a*(0[0) + b*(1]0))(a(0]0) + b(0|1))

*

a*a = |al?

p(0)

(1.11)

The state post-measurement is

M,
Molp) _ (1.12)
|al |al
It is only possible to distinguish states if these are orthonormal. If they
are not, the measurement will yield a mixture of several states and there

can be no reliable procedure to discriminate between them.
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Projective Measurement

A projective measurement is described by an observable M, defined
as

M=3"mP, (1.13)

where the possible outcomes of the measurement correspond to the eigen-
values m of the observable and P,, is a projector, a Hermitian operator.

1.2.2 Entanglement

In the quantum computation context, it is possible to describe compos-
ite quantum systems, such as those formed by more than one qubit, by
using the tensor product on component systems:

[v) = a|0) + B[1) (1.14)
0) = ~|0) + &[1) (1.15)
1) ® |0) = ay|00) + ad|01) + By|10) + Bd|11) (1.16)

Some composites systems, such as

100 + 11)
V2

cannot be written as a product of states of its component systems. That
is, there exists no pair of qubits Qa) = a|0) + b|1) and |Qp) = ¢|0) + d|1)
that can be combined to form said states.

For the case of two-qubit systems, these special states are called Bell
States:

[¥) (1.17)

Boo = % (1.18)
By = % (1.19)
Bio = w (1.20)
By = w (1.21)

On the other hand, it is possible to transform a separable state into a
Bell State by applying local operators.
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When measuring any qubit from a Bell state, it is possible to immedi-
ately know the state of the other qubit. It could be stated that the second
qubit measuremente result can be known a priori, or that both qubits are
communicated through a non-classical correlation.

For example, when measuring the first qubit of the state By, the states
|0) and |1) can be obtained with equal probability 1/2. If, after measuring,
the state |0) is obtained, we already know that the global state has col-
lapsed to |00) and therefore the state of the second qubit is known without
performing the corresponding measurement.

This special correlation is called Entanglement. This resource cannot
be accounted for in classical terms, and is the subject of ongoing research
in order to understand it and take advantage of its potential.

1.2.3 Quantum Cryptography

Assymetric cryptography or public key cryptography is a scheme used
to cipher information. In it, two keys are generated: one used to encrypt
the message’s information and which can be made public. This is so be-
cause the public key is hard to compromise by nature. Another key is used
to decode the message. Suppose that Alice and Bob try to communicate.
Bob generates a pair of keys, and sends Alice the public key, keeping the
other to himself. Alice can use the public key to cypher a message which
only Bob can read. A widely employed assymetric or public-key cryptog-
raphy scheme is the RSA Algorithm (after Rivest, Shamir and Adleman),
whose strength is based on the problem of finding the prime factors of
a very large integer. No polynomial-time method for factoring large inte-
gers on a classical computer has been found yet, although it has not been
proven that none exists. The RSA algorithm is used in several day-to-day
activities such as e-commerce, and even a computer virus uses it in order
to encrypt the victim’s data, for whose decrypt key the author asks for a
fee (an activity dubbed “ramsomware”).

Most notably, quantum computation gained widespread attention when,
in 1994, Peter Shor showed [7] that the problem of finding the prime fac-
tors in an integer number could be solved efficiently —that is, in polynomial
time— using a quantum algorithm. Suddenly, one of the most utilized cryp-
tography algorithms turned out to be jeopardized by these new theories.

There exists another kind of cryptography method called symmetrical
cryptography or secret-key cryptography, in which said key can be used to
cipher the message as well as to decode it. The problem being, obviously,
how to ensure a safe delivery of the key.

Recently, a discipline called quantum cryptography has emerged which
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makes use of the fact that observation disturbs quantum systems in order
to base its reliance. Thusly, it is possible to build a quantum channel for
safe key distribution (Quantum Key Distribution). Already, commercial so-
lutions exist, and recently, the SECOQC project (founded by the European
community through the FP6) demonstrated in October of 2008 a fully func-
tional Quantum Key Distribution network based in Vienna. Remarkably,
this form of cryptography makes use of entanglement [5].

1.2.4 Quantum Algorithms

Quantum computers posses the remarkable characteristic that they
obey particular laws of probability. The amplitudes of qubits —which relate
to the probability of obtaining a particular state after measurement— can
be manipulated in such a way that destructive interference cancels out the
undesired states, leaving the states of interest with a high probability of
measurement.

Grover’s algorithm

A class of quantum algorithms is represented by Lov Grover’s search
algorithm [4]. In this scheme, there is an unsorted database containing
N = 2" items out of which only one meets a given condition. The nature of
the condition is such that exact information about it is unknown, preventing
the algorithm to directly find a solution, but instead any given item can be
tested for the conditions quickly. There is no sorting of the database that
could aid its selection. A classical algorithm would examine the different
items one by one and would take an average of N/2 steps.

Grover's algorithm takes on the order of /N steps to find the desired
item. It does so by amplificating the amplitude of the target item.

The algorithm could be used, theoretically, to crack the Data Encryption
Standard, an algorithm for performing encryption/decryption based on a
symmetric-key which enjoyed certain popularity in the 1970’s but has since
considered insecure for many applications.

Shor’s algorithm

Shor’s algorithm for factoring integers into their primer components at-
tracted widespread attention towards Quantum Computation and has been
since a powerful motivator for the design and building of quantum com-
puters. It is exponentially faster that the fastest classical known factoring
algorithm (the general number field sieve. It has also inspired a new field
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of research (“post-quantum cryptography”) which attempts to find better
alternatives to the RSA algorithm that are resilient to both quantum and
classical computers’ attacks.

The algorithm as the following considerations:

* The number to factorise is V.
* A random number z is chosen.
* z is raised to consecutive powers

It turns out that dividing the resulting number by N gives a repeating
sequence. The period of the sequence is a factor of the product (p—1)(¢—
1), with p and ¢ prime factors of N. This means that obtaining periods for
different values of = would effectively bring us closer to finding p and q.

Eventhough analyzing the sequence would eventually reveal the pe-
riod, the number of steps before it repeats could be almost as large as N,
which might have hundreds or thousands of digits.

On the other hand, by operating over the enormous quantum superpo-
sition of all the numbers of the sequence, it is possible to derive the period
because it is a global property of the system, which can be evolved with
the quantum equivalent of a Fourier transform.

1.3 Entanglement

1.3.1 How to measure entanglement

By definition, Bell states exemplify the maximum entanglement possi-
ble. Is the case of systems comprised by several qubits, there exists vari-
ous measurements which estimate the amount of entanglement present in
the system. Any measurement of entanglement is a non-negative function
on a quantum state that cannot increase its entanglement by means of
local operations, additionally, it is zero for totally separable states.

One commonly used measurement is the so-called Entropy of En-
tanglement, where the quantum state of the system is considered to be
writable as the composite state from subsystems A and B, that is, |V) =
S an|?) ®|¢B). Using the von Neumann formulation, the entanglement
E of a pure system is defined as the von Neumann entropy of one of the
subsystems A and B,

E(|V)) = —tr(palogy pa) = —tr(pglog, ps), (1.22)
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with tr the frace matrix operation and pa and pg defined as the density
matrix of systems Ay B, respectively.

In the present work, an alternative method first proposed by Wootters
[9] called concurrence, another measurement of entanglement between
two qubits in a given quantum system. Concurrence can be calculated
using the formula:

C(pA) = maX{O, )\1 — )\2 — )\3 — )\4}, (1 23)

where the coefficients A, are the square roots of the eigenvalues of the
non-hermitic matrix papa in descending order. As with the von Neumann
entropy, pa is the density matrix of the subsystem formed by the two qubits
of interest and is therefore necessary to isolate it from the rest of the sys-
tem (i.e. the subsystem B. See Fig. 1.2): pa = trg(p).

A
o000 00
B

Figure 1.2: The system is divided into two subsystems for the calculation of Concurrence between qubits : and
7.

Matrix p is obtained making use of the transformation defined as

pa = (0y ® 0y) pa(oy ® o) (1.24)

( ‘2 BZ' > (1.25)

with o, the Pauly operator Y,

Y
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Chapter 2

Maximizing Entanglement

Our efforts have focused on the maximization of Entanglement in differ-
ent periodical systems through the measurement known as Concurrence.

These ideas of optimization are rooted in the work of O’Connor and
Wootters [4] where a maximum in Concurrence is found between first
neighbors in translationally invariant chains. Two restrictions are imposed
on the wave-function over which the process of optimization is carried on.
Specifically, it is required that the | ') state of the chain be an eigenstate of
the total spin component, and that the neighbor particles cannot have the
same | 1) state.

Working with these restrictions, O’Connor and Wootters show that the
concurrence can be written as

N-—-p

C="5"C (2.1)

where (' is defined as a pseudo-Concurrence,

0 =~ (5= ) ol 2.2)

N is the number of sites and p is the number of particles with spin up. H
is the operator defined as

N-p
H=-) (daj+al,a) (2.3)
j=1
with a;f (a;) a creation (destruction) operator. This means that a |¢) state

maximizes C if it minimizes the spectation value of the H operator, which is
a Hamiltonian for the XY ferromagnetic, one-dimensional model with N —p
sites. This optimization problem can be therefore solved by finding the
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lowest energy level. The solution of the problem begins by noting that the
operators a' and a are not fermionic operators because [a!, a] = [a!, ax] =
[aj,ar] = 0 when j # k while true fermionic operators anti-commute. That
is why it is necessary to define true fermionic operators ¢’ and ¢ through

the Jordan-Wigner transform

j—1
cj = exp [mZalak] a;

k=1
j—1
c; = a;f. exp [—MZ azak] .
k=1
In terms of these operators, H can be written as
N-p
H=— (C;Cj+1 + C}—Flcj) (24)
j=1
for odd p, and
N—p—1
== Z (C;CJ'H + C}HCJ‘) + (ij_pcl .1 CICN—p) (2.5)
j=1

when p even.
Note that this is a tight-binding Hamiltonian for a system with N — p
sites with hopping integral ¢;; = —1 between first neighbors.

2.1 Genetic Algorithms

As optimization method, we employed the genetic algorithm (GA) tech-
nique, first developed by John Henry Holland and his students in the Uni-
versity of Michigan in the 1960’s and 70’s. Holland’s goal was not to de-
velop an algorithm for a specific problem, but rather to formally study the
phenomena of adaptation as it happens in nature and mimick the different
processes involved in order to apply them into a general-purpose optimiza-
tion algorith.

In this technique, a set of characters that represent a potential solution
to the problem are stored in a chain called “chromosome”. The encod-
ing of the solution is often a crucial step in the success of the algorithm.
The final encoding depends strongly on the problem, and can involve fixed
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or variable chromosome length, and could work with regular real-valued
numbers, or directly at binary level.

The algorithm starts creating a collection of such chromosomes (“popu-
lation”). Crossover and mutation operators, inspired in nature, are applied
on the population’s individuals in order to create new chromosomes. In the
present work, two varians of the crossover operator were used: each pair
of chromosomes where crossed either at a randomly chosen single point,
or two points, equally spaced.

Each individual is subsequently tested with an evaluating function which
assigns them a score (the fitness function). Depending on the goal of the
problem, the evaluating function can effectively lead the algorithm to min-
imizing or maximizing a certain quantity, or could tune a combination of
several outputs (in which case the research is focused rather on the form
of the answer)

A new population is formed by choosing individuals with a probability
dependent of their score. The selection method can be enhanced with
some kind of scaling for preventing early high-scoring individuals to satu-
rate the population early on and drive the solutions to a confined portion
of the solution space. To address such issue, we have employed Sigma
Scaling [2]:

1+ f(i)—z(f(t» if J(t) £0

loa

1.0 if o(t) = 0 (26)

Expected value = {

with f(i) being the individual’s current scored fitness, (f(t)) the popula-
tion’s average fitness at time (generation) ¢, and o being the standard de-
viation of the population’s fitness, /(f2(t)) — (f(¢))2. At the beginning of
a run, when the standard deviation of fitnesses is typically high, the fittest
individuals are to be scaled down, preventing them to overrrun the next
population. Later in the run, when the population is typically more con-
verged and the standard deviation is lower, the fittest individuals will stand
out more.

The process is repeated until a terminating condition is met. Usually
running time, desired fitness, relative change between generations and
number of generations are the most common. In this work we have em-
ployed the latter.

Using this approach, it is possible to obtain a good solution without hav-
ing to explore the entire solution-space, which, depending on the problem,
could be impractical. On the other hand, the efficiency or the process de-
pends greatly on several variables: the crossover and mutation probability,
the number of generations, the population size and the selection criterion.
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Although, in general, genetic algorithms allow the finding of very good so-
lutions with ease, the process is, depending on the problem, subject to
get stuck in local minima (or maxima) without possibility of exploring other
regions of the solution-space.

2.2 Our model

The system on which we have performed our simulations is a periodic
network modelled with a Tight-Binding Hamiltonian, that is, a Hamiltonian
similar to the one in Eq. 2.4. The main difference is that, for our case,
it goes to the IV site, and the hopping integrals ¢;; will be optimized. The
Tight-Binding Hamiltonian in our work is

i (#3)

where, for simplicity, we work with the same kind of atoms and take ¢; = 0.
Spinless electrons are also considered.

The state |0) is modelled by an empty site, and the state |1) by an
electron-occupied site. In each case we vary the number of electrons in
the system. For the optimization procedure, the “chromosomes” of the
genetic algorithm are nothing more than the hopping elements ¢;; between
sites. The allowed range for their values are —5 > t,; > 0.

2.2.1 The density matrix

In this particular model, in order to obtain an analytic expression for
the Concurrence between two qubits, it is necessary to obtain the corre-
sponding density matrix p, of the subsystem comprised of the qubits of
interest.

For any particular number N; of occupied sites and N — N; unoccupied
sites, the two-qubit subsystem has naturally four possible states, and the
general state function describing the system, namely

[Yas) =) anlta)|¢s), (2.8)
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can be separated in the following manner:

YaB) Z ao|00) ® [¢55) + ZOCO1|01 [vp) + Za1o|10> ® [¢5)
P

+ Za11|11 ® [¢E)-

(2.9)

The sums over m, o, p and ¢ run over all the possible combinations of the
states comprising the rest of the system such that the number of occupied
sites is preserved.

To obtain the reduced density matrix is is necessary to perform the
trace over subsystem B, that is,

oN—-2

pa = Z (<I| ® W%DWAB)(@DABKH) ® |¢J’§>) (2.10)

k=1

(notice that the summation runs over N — 2, accounting for the two qubits
left out for the subsystem A). As an example, consider the case with
N = 4, N; = 1 and the subsystem A being the two rightmost qubits. The
possible states are

01]0001) 4 2|0010) 4 cr4|0100) 4 ars|1000) (2.11)
and the density matrix for the whole system is

lhaB) (Yap| = afa1]0001)(0001| 4+ a}az|0001)(0010]

+ | 0001)(0100] + atar|0001) (1000

+ a301]0010)(0001] + aja2[0010)(0010|

+ a0r4)0010)(0100] + aZar|0010) (1000 212)
+ a31[0100)(0001| 4 ar2|0100)(0010]
+ a4)0100)(0100] + aarg|0100) (1000
+ g [1000)(0001] 4 aas|1000)(0010)
+ a0y 1000)(0100] + azas|1000)(1000|

The reduced density matrix operator is thus
pa = (00zz|Yap)(Yap|00zz) + (0lzz|ap) (Yap|0lzx)
+ (10zz|Yap) (Yap|10zz) + (11zz|ap) (Yap|11lzz)

This operation will eliminate by orthogonality all but those states whose
elements in the B subsystem have the same number of occupied sites.
For example, the first term of p, is:

(2.13)

(00zz|Yap)(Yap|00zz) = ajoy + afas + 5o + ajas. (2.14)
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That, in turn, means that also subsystem A has to preserve the number of
occupied states, leaving only certain elements in the p, matrix:

P11 0 0 0

0 p2 p23 O

. 2.15
0 p32 p3z O ( )
0 0 0 pgy

pa=

For p4 to be a valid density matrix, it has to be Hermitic (04 = p';) and
its trace be equal to 1. This means that p3; = p3; and p11+pae+p33+pa = 1
so it is necessary to calculate only four elements of the matrix.

2.2.2 The density matrix elements

Each element of the reduced density matrix can be calculated using
the second quantization approach.
The first element of the matrix, p;; can be realized as follows

P11 = <¢AB|(1 - ﬁz) (1 - flj)W)AB) (2-16)

where the operator n; finds all the elements of the type |z1) ® |¢5) and
after applying (1 — n;) we end up with all the elements that do not occupy
the site j (i.e. |z0) ® |[¢¥p)). A similar approach follows (1 — n;) and after
applying the bra operation we are left only with the coefficients of all the
|00) ® |¢p) states.

Likely, the other elements are obtained with the following operators:

In the last equation, ¢! leaves only those states with the form [0z) ® |¢5)
and transforms them into |1z) ® |¢5). Out of this set of states, c; deletes a
particle at site j from all states of the type |z1) ® |5) and we end up with
states [10) ® |¢B).

It is very easy to show that the p4 elements can be calculated as aver-
age quantities of the complete ground-state wave function. For example,

p11 =(Vap|¥ap) — (Yas|fi|Yas) — (Ya|nj|as)
+ (Yap|in;|ap) (2.21)
=1 — () — (Ry) + (ity).
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The other elements are obtained similarly:

pr = (i) — (i) pas = (i) — (i) (2.22)
pas = (AN

3

i) P23 = <CjCzT>

2.2.3 Concurrence

In order to use the Concurrence formula (1.23), the non-Hermitian ma-
trix papa must be calculated. The matrix p4 is constructed using (1.24):

0 00 —1 Py 00 0 0 00 —1
[ o010 0 piy pis O 0 01 0
Pa=1 0 10 0 0 pi pis O 0 10 0
100 0 0 0 0 pi 100 0
(2.23)
0 0 0 —pi 0 00 -1
| 0 pmopss O 0 01 0
| 0 s o 0 0010 0 (2.24)
o 00 0 100 0
pag 0 0 0
0 p33 p3 0
= - Y 2.25
0 po3 P 0 ( )
0 0 0 py
Now we are able to construct the non-Hermitian matrix papa:
pu 0 0 0 pi, 00 0
» 0 pa2 pas O 0 p33 p3 0
- 33 3 2.26
papd 0 ps2 p33 O 0 py p3 0 (2.26)
0 0 0 pu 0 0 0 pn
P11P44 0 0 0
_ 0 poopaz+ paspas P22P3e + P23pra 0 (2.27)
0 p3ap3s + p3spss P32p3e + p3zpe O

0 0 0 P11P44

but p4 is indeed Hermitian so the following relationships are taken into
account: piy = piy, P22 = Paos P32 = Pa3s P33 = P33 Y Pas = Paa- The matrix
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papa Now has the form

P11P44 0 0 0
~ 0 P22p33 + P23Pa3  P22p23 + P23p22 0
— : 2.28
Frps 0 P33P33 + P33P33  P22P33 + P23P323 0 ( )
0 0 0 P11P44
P11P44 0 0 0
_ 0 P22pP33 + P23 P53 2p22023 0 (2.29)
0 2033053 P22pP33 + P23 P53 0
0 0 0 P11P44
P11P44 0 0 0
0 P22pP33 + |P23|2 2p22p23 0
_ 2.30
0 2p33053 pa2pss + |pasl® 0 (2:30)
0 0 0 P11P44

In a block diagonal matrix, eigenvalues are simply the eigenvalues of
individual blocks so two eigenvalues are readily available. The other two
are obtained calculating the determinant of:

P22033 + \P23|2 - A 2p22p23 ) 2 31
( 2p33053 p22pss + [pasl> — A ) (2:31)
which simply is
(p22pss + pas|® — A)? — 4paspss|pas|® = 0. (2.32)
And now we simply find the value of A
(pa2p3s + |p2sl® — A)? = 4paopss|pas|? (2.33)
p22p3s + |pas|” — X = £24/paapss| pas| (2.34)
A = paspss + |pas|” F 24/P22p33|pa2s] (2.35)
which yields the values for the A coefficients:
Ao = P22p33 — 2v/Paapaslpas| + |pasl” = (V/P22p33 — |p2s])? (2.36)
Ao = p22ps3 + 21/ pazpas|pas| + |pz3|2 = (\/p2zp3s + |P23|)2 (2.37)
Ae = P11Pas (2.38)
Ad = p11P4a- (2.39)

Finally, to be able to use equation (1.23) we use the square roots of the
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lambda coefficients:

VAa = v/pmapss — |pas| (2.40)
Vs = /Pzpss + |pas (2.41)
Ve = Vpiipu (2.42)
V= /piipu (2.43)

Notice that )\, is the largest eigenvalue. The final formula becomes

C = max{0, \/p22p33 + |p2s| — v/P22P33 + |p2s| — v/P11Pas — /P11pas}

(2.44)
C' = max{0, 2|pa3| — 2y/p11paa} (2.45)
C = Qmax{(), |p23| — \/p11p44} (246)

Thus, for this particular model, it is possible to obtain an analytic ex-
pression for the Concurrence:

C = QmaX{O, |p23| = \/p11p44} (247)
with

P23 = (cjc,j),
p11 =1 — () — () + (Rit;) (2.48)

paa = (i)

2.3 First resulis

We previously employed genetic algorithms in order to optimize the
total Concurrence C;.; in 1-dimensional and 2-dimensional lattices de-
scribed by a Tight-Binding Hamiltonian with periodic and open boundary
conditions. C,,; was calculated as the average Concurrence between
each site i with the remaining N — 1. This is

Ctotal _ 1 Z Z Cz] (249)

i=1 j#i

Our numerical results ([3]) show a accordance with the theorethical
formula proposed by Koashi et al. [1] (see Fig. 2.1), who give an upper
limit to Concurrence of 2/N for this setup, which is when only one qubit is
found in the state |1) (|0)) and the other N — 1 qubits are in the state |0)
(]1)). In our case, this corresponds to the start and end of electron-filling.
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Unidimensional periodic chain
gen. = 3,000; pop. = 1,500

Y4 R A
0.06 ” / i
G~ 0.05F .« N=30  / | -
0.04 / |
0035 'ol.s' e

x =n/N

Figure 2.1: Concurrence between all sites for a 1-dimensional periodic lattice as function of electronic filling.
Koashi et al. show an upper limit of 2/N for this case
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Chapter 3

Designing lattice structures with
maximal nearest neighbor
Concurrence

The ideas of optimization can be further explored in two manners.

On one hand, it is known that two qubits fully entangled cannot en-
tangle with a third qubit. This property is known as monogamy [1], and
imposes restrictions over quantum correlations. How does monogamy af-
fects maximum entanglement on a number of N qubits?

On the other hand, Quantum Phase Transitions (QPTs) occur at zero
temperature. It is common that several kinds of interactions exist near a
quantum critical point between phases, so little changes in control param-
eters (e.g. pressure, stress in a particular direction, chemical substitution,
magnetic field etc.) can favor one kind over the others. These fluctuations
are quantum in nature, and have great influence in the phase diagram,
compared with thermal fluctuations.

The existance of these kinds of exotic states is hard to predict. Due to
the difficulty to solve a few-particle system exactly, it is impossible to deal
with a life-like problem using a first principles approach.

Our studies on Concurrence can be an interesting tool that can help
to understand the relationship between the wave functions corresponding
to a maximum in average Concurrence and Quantum Phase Transitions.
For example, Gu et al. [3] found that the behavior of Entanglement for a
chain modelled after an extended Hubbard Hamiltonian is related with the
quantum phase diagram of such system.
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We have, therefore, focused on first neighbor Concurrence:

1 N 2
Oy = W;;oj (3.1)

where z is the number of first neighbors.

Note that, in contrast with our case, a system with translational invari-
ance is equivalent to having all the ¢;; elements of the Hamiltonian 2.7 with
the same value, for example t,; = —1. That particular configuration yields
the same value of Concurrence for each pair of neighbors [5, 8].

In order to tune each ¢;; element in our system, we employ the following
pseudo-algorithm:

1. We consider each t;; element from the Hamiltonian matrix as a gene,
and the array of all genes that correspond to a pair of first neighbors
as a chromosome.

2. Space in memory is reserved for arrays of chromosomes: “generation0”
and “generationl”.

3. Memory space is reserved for a “best” chromosome with fitness value
0.0,

4. For a given band filling x = n/N (with N the total number of sites and
n the number of electrons in the system), repeat

* Initialize generation0. Each of its chromosomes’ values are set
to a random number in the range (-5, 0).

» For a number of generations, repeat

— Each chromosome in generation0 is decoded into a Hamil-
tonian matrix, which is diagonalized. The average Concur-
rence between first neighbors is calculated using Eq. 3.1.
Cxn becomes, thusly, the value of fitness for each individual
in generationO.

— Compare each individual in generation0 with the chromo-
some best. If the former’s fithess value is greater than the
latter, substitute.

— Choose chromosomes with a probability proportional to their
fitness, and copy them to generationl.

— Crossover and mutation operators are applied on each in-
dividual of generationl with certain probability (0.6 and 0.02,
respectively).
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— generationl becomes generation0.
* Print best in an output file.

At the end of the run, the program yields the best average value of
Concurrence found, as well as the corresponding configuration for each
electron number.

Said configuration is a vector made from all the non-zero elements of
the hopping elements from the Hamiltonian matrix packed in columns.

In the following sections, we present our results of nearest-neighbor
Concurrence optimization using genetic algorithms. The effect of bipartite
and non-bipartite systems with periodic boundary conditions is addressed.
Biparticity or non-biparticity has important consequeneces in the physical
properties of a lattice. For example, the Concurrence of a bipartite lattice
is symmetric around half band filling while non-biparticity is responsible for
magnetic frustration in spin systems, that is, the impossibility of minimizing
energy for each pair of spins in the lattice.

3.0.1 One dimensional lattice

The first case analyzed was the one dimensional chain with periodical
boundary conditions. It is a bipartite lattice, a property related with the
symmetry of the system. A bipartite lattice is such that can be separated
into two sub-lattices in such way that each neighbor from the first lattice
belongs to the the second, and the other way around.

In the case of the ring, the behavior of average Concurrence (from now
on, understood as limited between first neighbors) can be seen in Figure
3.1. The “ordered” case, with all elements ¢;; = —1.0 is also shown in the
figure. The optimized system was comprised of 50 sites, and the algorithm
was run with 4000 generations and a population size of 500.

From the figure, it can immediately be seen that there is symmetry
around half filling which is due to its biparticity. It is also possible to observe
that the optimized case is capable of finding a much better solution. In both
cases, there is only one maximum.

After noticing a pattern in the values of the ¢;; elements found in the
best chromosome, we wrote a program to visually inspect it. Figure 3.2
shows the one dimensional chain.

The visualizing tool shows strong values (|¢;;| > 3) in black, relatively
weak values (3 > [t;;| > 1) in dark-gray and weak values (1 > |t;;| > 0)
in light-gray. Note how strong hopping elements alternate with weak ones.
This indicates that the conditions imposed by the algorithm (i.e. finding
a high average Concurrence between first neighbors) pushed the system
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One Dimensional Ring
N = 50; gen. = 4000; pop. = 500
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Figure 3.1: Average Concurrence between first neighbors for a periodic one dimensional lattice as a function of
electronic filling. The ordered and optimized case are shown.

OO OO OO OO OO OO OO OO OO OO OO OmO OO OO OO OO OnO OO OO

Figure 3.2: One dimensional chain at half electronic filling. This particular configuration corresponds to the
maximum shown in Fig. 3.1

into a Peierls-like transition with alternating interaction values. This is a
metal-insulator transition occurring in one-dimensional metals, where the
doubling of the unit cell leads to a decrease in the kinetic energy of the
system.

“Anillo 50 sitios alternante’ ——

o 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.3 1
0.326733, 0.245304

Figure 3.3: Average Concurrence for a ring with alternating values of interaction.

To explain this behavior, we can analyze a subsystem of three qubits
where the middle qubit is labeld b. This site has a strong interaction with
one if its neighbor, say, ¢, but a very weak one with the other, a. This means
that, at half filling —when there is one electron for each pair of sites—, site
b is sharing an electron with site ¢ whereas is sharing none with site a. We
modelled our system with a |0) state represented by an empty site and a
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|1) state by an occupied one, so the subsystem a — b is in the state |00).
On the other hand, the subsystem b — ¢ has one electron, but it is unknown
which site is occupying. This means that the b — ¢ subsystem is in the
state |01) + |10) —one of the Bell States. By definition, each Bell State has
a Concurrence of 1 (i.e. maximum inseparability) whereas the |00) can
be separated completely and has a Concurrence of 0. When taking the
average between the two, the average is simply 0.5. This is repeated for a
many-sites system. This explains why the maximum is found at half filling
and corresponds to a configuration as the one in Fig. 3.2.

It is important to note that the weak interactions are only close to zero,
but the ring has not fully broken into isolated subsystems. This is important
as completely dimerized chains consisting of isolated dimers would show
highly localized entanglement, which cannot be fully exploited as a system
property. Fortunately, it is not necessary to reach the fully dimerized lat-
tice in order to achieve high entanglement, as can be seeen in Figure 3.4,
where the nearest-neighbor Concurrence almost saturates to the maxi-
mal value when the ratio between successive hopping elements becomes
equal to 10, which means that the system is far from being fully dimerized
but exhibits almost the maximal entanglement.

0 5 1 T LI III T T rrrnn
; onoo
K“’xx
’(/ ti,i+1=1 0
045~ -
*
1
z /
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M
/
7
/
0.35* —
1 1 L1 llll 1 1 11 1.1
0'31 10 100
ti,i+1/’[i+1,i+2

Figure 3.4: Nearest neighbor Concurrence of a tight-binding dimerized chain as a function of its dimerization
ti,i+1/ti+1,i+2 with ti,H—l =1.0.

We also calculate the average Concurrence fixing the hopping values
for this particular alternating setup, for each filling. In contrast with the
optimized case which presented a quasi-parabolic curve, the alternating
setup is completely linear (see Figure 3.3).

This behavior can be explained if we remember that each electron
added to the system represents an additional |11) state, which decreases
the average Concurrence. The same occurs if we move to the left of Fig.
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3.3, as we are adding |00) states to the setup. Each electron added or
taken represents an added 0 to the average Concurrence, hence the lin-
ear behavior.

3.0.2 Square lattice

Now we analyze the simplest two-dimensional case: the square lattice.
The sites in this kind of lattices have four first neighbors. The behavior
of Concurrence under the optimization procedure can be seen in Figure
3.5. The lattice size was 36 sites and the algorithm was run with 10000
generations and 700 individuals.

Square lattice
N = 36; gen. = 10,000; pop. = 700
T R P - T

02

-- Ordered case (N=1600)
— Optimized case

0 0.2 0.4 0.6 0.8 1
x=n/N

Figure 3.5: Average Concurrence for a square lattice. Ordered and optimized case.

There are several noteworthy facts. Once again, it is possible to note
that the optimization algorithm yields a better curve than the ordered case.
Secondly, this curve has three maxima, each peaking at an average Con-
currence of 0.25. It is also important to mention that there is symmetry
around half filling, due to the square lattice also being a bipartite lattice.

What happens when we study the chromosomes corresponding to the
maxima? We employed our visualization tool has in the case of the one
dimensional lattice. Results are shown in Figure 3.6.

As in the one dimensional chain, it is possible to identify certain pat-
terns or special configurations in the system. In the case = = 0.25, for
example, the system tries to form electronic islands, while the case 0.5 is
more similar to the one dimensional case: As each site shares one elec-
tron with one of its four neighbors (Bell state Byg, C' = 1) and none with the
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Figure 3.6: Graphic representation of a square lattice of 36 sites whose average concurrence has been opti-
mized to a) A quarter of filling and b) Half filling

other three (separable state |00), C' = 0). Thus, the average Concurrence
for each site is 1/4.

For band fillings x = 0.25 and = = 0.75, each four-site electronic island
in the system is in the state |0001) + |0010) + |0100) + [1000) and |1110) +
|1101) + [1011) + |0111), respectively.
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Figure 3.7: Behavior of average Concurrence for a square lattice configured as shown in fig. 3.7a. Three
different sizes are shown: N = 36, N = 100 and N = 900.

To study in detail the system at electronic filling x = 0.25, we plotted
the calculated average Concurrence for a fixed configuration similar to the
one obtained in Fig. 3.6a. The two maxima are present at z = 0.25 and
x = 0.75 but the system behaves differently elsewhere as the lattice size is
incremented. This can be seen in Figure 3.7.
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3.0.3 Triangular lattice

The triangular lattice is the first of the studied systems without bipartic-
ity. How does these kind of system behaves under optimization?

The studied triangular lattice had 36 sites, and the effects of optimiza-
tion under 3000 generations and a population size of 1500 can be seen
in Figure 3.8. The higher number in population size is important in these
kind of scenarios where finding an optimum solution is complicated by the
lattice nature. A large population ensures enough diversity in solutions,
which is key to prevent the algorithm to get stuck in local maxima.

Triangular lattice
N = 36; gen. = 3,000; pop. = 1,500
T Jrrryrrrroeme

- - Ordered case N=441
Optimized case

b 4 1
0 0.2 04 0.6 08 1

x=n/N

Figure 3.8: Behavior of Concurrence for a triangular lattice. Ordered and optmized cases.

Once again, it is possible to see the advantage of using an optimization
technique. There is only one maximum at x = 1/3 although one would
intuitively expect another at x = 2/3.

Is there any evidence that hint a possible transitions to a patterned
configuration? In Figure 3.9 we show two interesting configurations cor-
responding to local maxima at z = 0.33 (C = 0.2142) and =z = 0.69
(C = 0.1960).

Figure 3.9a definitely shows a pattern. In the case of Fig. 3.9b, the
presence of a diamond pattern is only hinted at. We wondered what Con-
currence could be obtained by testing lattices with fixed configurations
based on these patterns. Three different designs were proposed, which
can be seen in Figure 3.10.

We investigated which pattern the system preferred by running the opti-
mization procedure but this time, when starting for each value of electronic
filling, a hundred individuals where initialized to 0, a hundred to —5.0 and
the rest with one of the proposed patterns. Results are shown in Fig. 3.11
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Figure 3.9: Configurations for the triangular lattice corresponding to local maxima obtained by the optimization
procedure.

RRERH Sraririvaliveecetvielss
S 5 5 <§£
T St {hdpdt
B PR %%%

(a) “Triangle 1” (b) Trlangle 2’ “Diamond”

Figure 3.10: Lattice configurations based on Figs. 3.9a and 3.9b

(designs “Triangle 1” and “Triangle 2” yield identical results, and only the
Concurrence for the “Triangle 2” design is included).

The best curve is a combination of several cases. Most points corre-
spond to the case where the system was initialized with the design labeled
“Triangle 2” (Fig. 3.10b); interestingly, that designs does not dominate the
entire curve, as some poins are contributed by the case initialized with the
“Diamond” setup. The values of average Concurrence are almost equal
for the start and end of the curve, but some of them are contributed by the
initial optimized case.

3.0.4 Betts lattice

The so-called Maple Leaf, or Betts lattice is also non-bipartite, and has
less average triangular links than the triangular lattice.

With the experience of the triangular lattice, a first run was held for a
lattice of N = 54 sites with 3000 generations and a population size of 1200
individuals. Then, taking the chromosome representing the best Concur-
rence a proposed lattice configuration is proposed (See Figs. 3.12).

With a setup as that of Fig. 3.12b, the optimizing procedure was run
in a similar fashion as with the triangular lattice: a hundred individuals
initialized to 0.0, a hundred to —5.0 and the others with the proposed setup.
The final result is better than the randomly initialized case. This can be
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Figure 3.11: Triangular lattice combining results from different cases. The “best” curve represents the highest
Concurrence for each filling.

seen on Figure 3.12c.

3.0.5 Kagome lattice

The last studied non-bipartite lattice is also the one with lesser number
of neighbors.

As in the previous cases, a general optimization run was performed.
The lattice had N = 48 sites and the algorithm was run using 3000 gener-
ations and 1200 individuals. The first results for this lattice comparing with
the ordered case can be seen in Figure 3.13a.

Once again, a setup is based on the best individual from the simple
optimization run (see Fig. 3.14a).

As previously, we have noted that this double procedure (using the al-
gorithm once for finding possible setup patterns, running again initializing
with the proposed setup) yields good results. Both curves are compared
in Fig.3.14b.

3.0.6 Summary of non-bipartite lattices

For non-bipartite lattices it is possible to note that successful system
configurations involve the formation of islands in form of triangles. The
three lattices analyzed present a global maximum when electronic filling
represents one electron for each three sites. In such cases, each three-
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Betts lattice
N = 54; gen. = 3,000; pop. = 1,200
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the Betts lattice using 3.12a concurrence for the Betts lattice.
genetic algorithms (z = Some individuals are now initial-
0.33). ized as in Fig. 3.12b.

Figure 3.12: Graphic representation of a Betts lattice for 54 sites.

site (or qubit) subsystem share an electron and is in the state
1
|W) = 5 (|001) 4 ]010) + |100)) . (3.2)

This tendency numerically supports the studies of Dir et al. [2], which
propose that any three-qubit state |¢/) can be taken, using local operations,
to one of only three different kind of state: a completely separable one, one
in which only two qubits are entangled and another in which entanglement
is maximum. The last class can be further classified in two states, the |IV)
and the |GHZ) (|GHZ) = 1/+/2(|000) + |111))) states. The |W) states is
the best of the two because it better preserves entanglement (i.e. is more
“resilient”) to qubit loss.

The number of nearest neighbors clearly impacts Concurrence. Figure
3.15 sums the results for the three non-bipartite lattices. It can be seen
that systems with less nearest neighbors can be optimized to reach higher
Concurrence values.

3.0.7 Quantum phase transitions

The quantum phase transition that the one dimensional system un-
dergoes can be seen as a Peierls inestability (e.g. [6]), which occurs in
metalic, one-dimensional systems where a change in structure in the unit
cell leads to a decrease in kinetic energy. To study this phenomenon, the
hopping elements ¢;; were rewritten as ¢y, 9,41 = 1+aand ty,_12, = 1 — 0,
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Kagome lattice
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Ordered and optimized cases de- which was found at =z =
picted. 0.33

Figure 3.13: First run optimizing the Kagome lattice.

where 0 < o < 1is the dimerization parameter. In this manner it is possible
to study the relationship between Concurrence and quantum phase tran-
sitions, for it is known [7] that a discontinuity (or singularity) in the ground
state Concurrence (or its derivative) can be associated with a first (or sec-
ond) phase transition, as long as artificial and accidental occurrences of
non-analyticities in the ground-state are excluded.

The Concurrences for successive pairs of sites, Cy, 2,41 aNd Cay—1 2,
are shown in Figure 3.16, as well as their derivatives with respect to the
dimerization parameter a.. Cap, 2,11 = 2.0max{0, yan 2n+1 + 7§n,2n+1 — 0.25}
and Cy, 120 = 2.0Max{0,Yan-12n + V3, 12, — 0.25} [4], where 7y, 0,11 =
(e} Cony1) @Nd Yop_1 2, = (ch, co,) are the one-particle density-matrix ele-
ments or bond orders between nearest neighbors and can be calculated
analytically [6]. These bond orders are continuous functions of «, the first
one ranging from 72,2,+1 = 0.318310 (@« = 0) to 0.5 (« = 1.0) and the
second one from 7,12, = 0.318310 (o = 0) to 0.0 (o« = 1.0). Therefore,
the discontinuity is artificial and comes from the particular definition of the
Concurrence in equation 2.47.

On the other hand, the derivatives for Cs,, 2,,+1 and Cs,,—1 2, both present
singularities at a — 0 (at the point of transition into a Peierls-like system).
These can be associated with a second order Quantum Phase Transition.
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Kagome lattice
N = 48; gen. = 3,000; pop. = 1,200
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Figure 3.14: Using the proposed setup (Fig. 3.13b), a higher value of Concurrence can be achieved in the
optimization procedure.
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Figure 3.15: Comparacion entre diferentes redes: Triangular (N = 36), Betts (IV = 54) y Kagome (N = 48).

3.1 Conclusions

In the present work, the genetic algorithm technique was used to max-
imize the nearest-neighbor average Concurrence of several periodic sys-
tems by tuning the nearest-neighbor hopping integrals of a tight-binding
Hamiltonian. The optimization of entanglement has been performed for
one- and two-dimensional bipartite systems as well as for two-dimensional
non-bipartite systems. The results show that the Concurrence of the op-
timized systems is very large in comparison with the ordered structures.
This increase in the Concurrence is understood and interpreted by analyz-
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Figure 3.16: Concurrence Ca2n 2n+1, C2n—1,2n, and their derivatives.

ing the optimized nearest-neighbor hopping integrals. In general, we found
certain tendencies of periodical systems to break into smaller subsystems.
This is achieved in a natural manner by the system by making the hopping
integrals evolve in such a way that the absolute value of some integrals is
high in some cases (|t;;| ~ 5) and very small in others (|¢;;| < 1).

Using the results from the optimization procedure, new values for the
hopping integrals are proposed, and each case is run for a second time,
obtaining even higher values of Concurrence.

These results are related to the fact that quantum entanglement, in
contrast with classical correlations, cannot be freely shared between many
objects. This property —monogamy— is clearly noticeable in the case of the
periodic ring at = 0.5, where the nth site can be completely entangled
with the next (Ca, 2,41 =~ 1) while on the other hand it is almost unentan-
gled with the preceding site (Cs,—12, ~ 0.1). However, it is not necessary
for the system to undergo a complete decoupling into isolated subsystems
to have a large enhancement of entanglement with respect to the undis-
torted chain. A slight structural distortion brings already a considerable
increase of the NN Concurrence, which continues growing and almost sat-
urates when the ratio between the hopping integrals is about 10. Moreover,
results at x = 0.5 show that, in order to maximize Concurrence, the system
undergoes a structural transition.
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Chapter 4

Entanglement in the Heisenberg
Hamiltonian

4.1 Diagonalization of the Heisenberg Hamilto-
nian
As a natural step forward, our efforts have shifted towards using the

techniques of concurrence optimization for the case of systems modeled
by a general Heisenberg Hamiltonian of the form:

H=Y Ji;8:-8;= Ji; [S25% + S8 + 5753

i#] i#
1 [ (ng — ngy) (njr — nyy)
_ + Q- - Q+ o i gt Ji
i -
1 [ Nyt — Mgy — Ny M + My N
_ TR a1 iyt — iy, — Ny Ny + Ny Ny
i#] -
1 [ (napnjr +ning)  (ngngy + ngngg)
_ + Q- — Qo+ IRAA I (A oprogd A
i#] -

(4.1)

with ;" = S8 +iSY = ¢lé;), S; = 8% —iSY = él\ei, SF = (Rup — 7)) /2,
g = éjgéw, the indices i, j representing each site in the system. J;; is the
exchange interaction between two spins in different sites and, depending
if it is positive or negative, account for ferromagnetic or antiferromagnetic
interactions, respectively.

In this Hamiltonian, one electron is localized on each site and can be
found in any of the states | 1),| |). These states are represented as a
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binary 1 or 0.

It is well known that this Hamiltonian conmutes with the total spin-
projection operator, S, = >, (74 — 7)) /2, and the S? = . (S SF 4+ SYSY +
S7S7) operator as well (i.e., [H,S.] = 0 and [H,S?] = 0). Therefore, it is
possible to show, using the ladder operators S*™ =3, S;"and S~ =3, S,
that for each defined |S| there exist 2|S| + 1 degenerated eigenfunctions
with degenerated eigenvalues S, = —|S|,—|S|+1...|S|—1,|S|. To reduce
the search space, we can make use of base functions which include these
symmetries. For example, it is possible to use basis states with a fixed to-
tal spin S, in order to diagonalize sector-by-sector. It is easy to see that all
eigenfunctions with a defined S have an eigenfunction with an eigenvalue
S, = 0, and once calculated, the other 2|S| eigenfunctions can be obtained
by using ladder operators. For this reason, to choose base states with a
total spin S, = 0 ensures that the ground state obtained after finishing the
diagonalization process is truly the lowest-energy state.

4.1.1 The basis

For a system of N sites, the total number of possible states is simply
2N, In order to generate all the base states, we can realize that states
represented by a binary number lesser than [(0 x N/2) @ (1 x N/2)) and

greater than |(1 x N/2) ® (0 x N/2)) do not satisfy the S, = 0 restriction
and can thus be discarded.

For example, for a N = 4 system, the basis states are

1) = |0011)
12) = |0101)
13) = |0110)
|4) = |1001) 4-2)
|5) = 1010)
16) = [1100).

where states represented with a binary number lower than 3 (0011) or
higher than 12 (1100) are forbidden because of the restriction.

The total number of permitted states (/Ng) can be found to be W('Nm)'
(the permutation of N numbers, N!, discarding all the possible permuta-

tions of repeated numbers, in this case, all permutations of 0’s and 1’s).
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4.1.2 The Hamiltonian Matrix

The matrix representation of the Hamiltonian grows very quickly. Al-
though the matrix is Hermitian and it is only necessary to store the infor-
mation of one triangular (N%/2 + Ng), the size of said triangular for the
case N = 16 (Ng = 12,870) is 82,824,885 which takes aproximately 631
Megabytes using 8-byte real numbers. For N = 18 the number goes up
to 9 Gigabytes which is already prohibitive for most day-to-day computers.
This sets limits as to what is the maximum number of allowed sites in order
for the system to be studied with this approach.

On the other hand, it is possible to use methods such as the Lanczos
Algorithm where the memory requirements decrease considerably and is
still possible to have meaningful results.

In the next sections, we will revise the characteristics of an efficiently-
packed Hamiltonian, the calculation of its elements, and methods used to
solve it.

The interaction matrix

Firstly, we define an interaction matrix J;; which describes the degree
of overlap between the wave functions of two sites. Because the overlap
between sites i — j is the same as the overlap between j — i, we need only
to store the triangular of the matrix (we use the upper-triangular):

1 2 3 4 .. N1 N
1 A ENEY o A
5 3|9, 304
3 34 Jinadan
4 Joma[dan

N-1 i
N

Thus, in order to use the value of a particular interaction element, we
may instead reference the index that points to the data stored in J;; (e.g.
Ji;[5] = Jas). This allows us to employ 2-byte integers instead of 8-byte
real numbers.
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4.1.3 The non-diagonal elements

Each element in the upper triangular can be obtained by calculating
(Y| H|2by) with [20,), |1,) pairs of states from the basis. The Hamiltonian in
Eq. (4.1) can be treated as the sum of two components:

H = H, + H, (4.3)
1
H = 3 Z Jij (Si+Sj- + Si- Sj+) (4.4)
i#J
1
Hy =7 > i [(aamgr + nigngy) = (nigngy + nange)] (4.5)

i#j

We will focus now on those elements off the main diagonal (y > ).

The second part, Eq. (4.5) is composed of number operators which do
not modify the states they are operating on. Remember that n;,, = élTTéZ-T
so n;; actually represents whether a particle is found in the state 1 at the ¢
site.

If the states remain unchanged they will vanish due to orthogonality (re-
member that non-diagonal elements are obtained by using different bra’s
and ket’s). This means that, for the non-diagonal elements, we need only
focus on the first part, Eq. (4.4), of the Hamiltonian.

Equation (4.4),

> i (SFS; +5787), (4.6)

i#j
basically switches the state between sites 7 and j if (and only if) they are
different (remember that S} = ¢l.¢é;, and S;” = ¢é[¢;;). This means that the
Hamiltonian takes the ket at the right and mixes it in as many states as
elements are in the summatory. Nevertheless, when carefully analyzed, it
becomes clear that every one of the states from this combination except
one, vanish due to orthogonality. In other words, there exists at most one
and only one permutation between two different states.

In our early example of N = 4 the element H, is:

(1|H|2) (4.7)
=(1|H, + Hy|2). (4.8)

As discussed before, the second part of H does not change the ket and all
those cases are discarded due to orthogonality. Therefore

Hip =(1[H,|2) (4.9)
=(0011] Y~ J;; (SS; + 875, ) [o101) (4.10)
i#j
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Suppose that the summation orderis (1, 2), (1,3),(2,3),(1,4), (2,4), (3,4)
(without repetitions). Then

(0011|H,|0101) =
(0011].J12 (ST Sy + STST) + Jis (S7 S5 + S1S7)
+ Jo3 (S5 S5 + S555) + Jua (ST Sy + S7SH)
+ Joa (S5 Sy + S55F) + J34 (S5 S1 + S5.5F) |0101)

(4.11)

=(0011[ 19SSy + J12S7 S5 + J13S1 S5 + J1351 S5
+ J23S5 S5 + Jo3 Sy S5 + JuaST Sy + JuaSy Sf (4.12)
+ J2S5 Sy + J2Sy S{ + J34Sy Sy + J34S5 S{70101).
Each operator acts on the ket, yielding:

— 0

— J1257]0111) — J12|0110)
— J1357710001) — 0

— 0

— Jo3557|0001) — J53]0011)
— 0

—0

— J14S7|1101) — J14]1100)
— 0

— J2455 |1101) — 0

J12S7 S5 10101
J12S7 S5 10101
J1357 5510101
J13S7 850101
Jo3S5 55710101
Jo3S55 S5 10101
J14S; S, 10101
J14S7 S, 10101
J24S57S; 710101
Jo4S5 510101
J34S49,10101) — 0

J34S7 S5(0101) — J3455 [1101) — J34|1001)

And thusly, (0011|H,|0101) becomes

=(0011|(J12]0110) + J53/0011) + J14|1100)
+ J54/1001))
=(1] (J12|3) + J23|1) + J14|6) + J34]4)) (4.14)
=J12(1]3) + Jog(1|1) + J14(1]6) + J34(1|4)
=Ja3
Where we are considering that the first site is at the right side of its repre-
sentation (we have changed from the traditional left-hand side in multiple-

qubit systems because when manipulating the representations with tradi-
tional bitwise operations, the least significant bit is at the right). In this

(4.13)

~ ~— ~— ~— ~— " ~— ~— ~— ~— ~ ~~—
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example, we can see that the only meaningful permutation connecting the
states is the one associated with Jo3. This characteristic can be exploited
for calculating all the other non-zero elements stored in the auxiliary matrix
1lenar. As mentioned before, we store not the actual value of the table J;;
but rather the index pointing to the value in the table.

Calculating the non-diagonal elements

We make use of the fact that only one J;; is needed in each non-
diagonal element. If a particular .J;; is non-zero, it means that the spin-flip
between the sites i, j will connect two different basis states. Consider the
following simple example with N = 4:

1) 2) 3) |4) 5) 6)
|0011) |0101) |0110) |1001) |1010) |1100)

|]_> |0011> D1 J23 J13 J24 J14 -
|2> |0101> D2 J12 J34 = J14
13) |0110) Ds - Ly
14) |1001) Dy Js s
5) |1010) Ds  J
6) |1100) Dg

As we move to larger systems, the Hamiltonian matrix becomes sparser.
Here is the case for N = 6:

(1) 12) [3) [4) [5) [6) [7) [8) [9) [10) [11) |12) [13) |14) [15) [16) |17) |18) [19) |20)

|000 (001 001 |001 [010 010 [010 |011 |011 [011 [100 [100 100 [101 [101 |101 110 [110 |110 |111

111) 011) 101) 110) 011) 101) 110) 001) 010) 100) 011) 101) 110) 001) 010) 100) 001) 010) 100) 000)
[1)[000111)| D1 J34 Joa Jia Jas Jo2s Jis - - - Jas J2s Jie = = = 2 8 &
|2)]001011) Dy Jo3 J1i3 Jus - - Jos Jis - Jas - - J26 Jie -
|3)|001101) Ds Jiz - Jaus - Jzs - Jis - Juws - Jze - Jis
|4)]001110) Dy - - Jss - Jss Jas - - Jas - Jze J26 - -
|5>|010011> D5 Joz Jis Jog Jia - Jse - = - - - Jog Jig -
|6)]010101) D¢ Ji2 Jza - Jia - Js¢ - - - - Jze - Jie
|7)]010110), Dy - J3q Joa - - Jsg - - - - Jsg Jas -
|8)[011001) Dg Jiz2 Jiz - - - Js¢ - - Jas - - Jie
[9)]011010), Dy J2z - = - - Jse - - Jae - J26
|10)|011100) Dy - - - - - Js¢ - - Jsus J36
|11)|100011) Dy J23 Jiz J2a Jia - J2s Jis - -
[12)|100101) D1 Jiz Jsa - Jia J3ss - Jis
[13)]100110) Di3 - Ja4 J2a - J3s Jas -
[14)|101001) Dig Jiz Jiz Jaus - - Jis
[15)[101010) Dis Jag - Jas - J2s
[16)|101100) D - - Jas Jss
|17)|110001) Di7 Jiz Jis Jia
[18)]110010) Dig J23 Jo2a
|19)110100) D1y J34
20)|111000) Dago

A first approach would be to, for each entry in the Hamiltonian, ap-
ply a bit-by-bit XOR operation between the row- and column-states binary
representation. If there are exactly two bits set to 1, then both states are
connected by the Hamiltonian and the entry is non-zero.
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Although this is a very straight forward method, it does not scale well
with systems of considerable size, and we have yet to consider further
restrictions such as allowing only certain interactions to be non-zero, which
ultimately represent additional slow-downs.

We may now take another approach developed in this work, which, to
the best of our knowledge, has not been employed previously. If a par-
ticular J;; represents a pair of basis states connected through a spin-flip
operation, then it is possible to form a set of connected states permutating
the remaining spins from the bra and ket in the same manner. For ex-
ample, if J3 represents a spin flip between fixed sites 1,3 connecting two
states, then:

Ji3 = (rxxlz0| — |xxx021) (4.15)

where all the x are fixed spin-site states. These should be equal among
the bra and ket, and be represented by all the possible permutations of
spins (computationally, 0’s and 1’s). Said permutations are nothing more
than the basis of the N — 2 system:

Jiz :
0011 — (001[1]1[0]| — |001[0]1[1])
0101 — (010[1]1[0]| — |010[0]1[1])
0110 — (011[1]0[0]| — |011[0]O[1]) (4.16)
1001 — (100[1]1[0]| — |100][0]1[1])
1010 — (101[1]0[0]| — |101][0]O[1])
1100 — (110[1]0[0]| — |110][0]O[1])

In order to construct every non-zero, non-diagonal element of the Hamil-
tonian, we pair the basis states of the N — 2 system with fixed spin values
representing the spin-flip performed by the Hamiltonian, and assemble a
special number with the representations. Continuing with our example,

Jig :
0011 — (001[1]1[0]| — [001[0]1[1]) — 001110001011 — 907
0101 — (010[1]1[0]| — [010[0]1[1]) — 010110010011 — 1427
0110 — (011[1]0[0]| — |011[0]O[1]) — 011100011001 — 1817 (4.17)
1001 — (100[1]1[0]| — |100[0]1[1]) — 100110100011 — 2467
1010 — (101[1]0[0]| — |101[0]O[1]) — 101100101001 — 2857
1100 — (110[1]0[0]| — |110[0]O[1]) — 110100110001 — 3377.

The 1 — 0 configuration is chosen for the right side such that that state
has the greater decimal representation.

47



We then create the family of each non-zero element with its corre-
sponding decimal representation as its label. See table 4.1 for an example
supposing Ji3, Jas, Jug # 0.

Ji3 Label Jos Label
001[1]1[0] [ 001[0]1[1] | — 907 0[1]01[0]1 [ O[0]JOL[1]1 | — 1351
010[1]1[0] | 010[0]1[1] | — 1427 0[1]10[0]1 | O[0]10[1]1 | — 1611
011[1]0[0] | 011[0]0[1] | — 1817 0[1]11[0]0 | O[0]11[1]0 | — 1806
100[1]1[0] | 100[0]1[1] | — 2467 1[1J00[0]1 | 1[0J00[1]1 | — 3171
101[1]0[0] | 101[0]0[1] | — 2857 1[1]01[0]0 | 1[0]01[1]0 | — 3366
110[1]0[0] | 110[0]0[1] | — 3377 1[1]10[0]0 | 1[0]10[1]0 | — 3626

Jug Label
[1]0[0]011 [ [0]O[1]011 | — 2251
[1]0[0]101 | [0]0[1]101 | — 2381
[1]0[0]110 | [0]0[1]110 | — 2446
[1]1[0]001 | [0]1[1]001 | — 3161
[1]1[0]010 | [0]1[1]010 | — 3226
[1]1[0]100 | [0]1[1]100 | — 3356

Table 4.1: “Families” of valid Hamiltonian elements represented with the same overlapping coefficient J;;

The order in which each family element is taken from the tree and in-
serted into the storage array is given by the element’s labels. The lowest
label is the first element to be inserted in the array and so on (in the ex-
amples, the label is a simple number formed by two 6-bit numbers. In our
working code, the label is an 8-byte integer). As we store the complete in-
formation of the Hamiltonian, we also have to consider the matrix elements
corresponding to the main diagonal(see 4.2).

Now we need only to choose the lesser value from each family, and
record the corresponding J;; index. If a member of the diagonal family of
elements is chosen, a dummy index is chosen (for example, 0) that will
serve to indicate that a column has reached its end. We also keep track
of which row corresponds to the particular value of the Hamiltonian. It can
be easily obtained by masking the left-hand part of each family member:

J13 .
(001[1]1[0]| —|001[0]1[1]). (4.18)
(4

Storing this information will reveal its usefulness when matrix-vector multi-
plications appear for solving the Hamiltonian.
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Diagonal Label
000111 | 000111 | — 455
001011 | 001011 | — 715
001101 | 001101 | — 845
001110 | 001110 | — 910
010011 | 010011 | — 1235
010101 | 010101 | — 1365
010110 | 010110 | — 1430
011001 | 011001 | — 1625
011010 | 011010 | — 1690
011100 | 011100 | — 1820
100011 | 100011 | — 2275
100101 | 100101 | — 2405
100110 | 100110 | — 2470
101001 | 101001 | — 2665
101010 | 101010 | — 2730
101100 | 101100 | — 2860
110001 | 110001 | — 3185
110010 | 110010 | — 3250
110100 | 110100 | — 3380
111000 | 111000 | — 3640

Table 4.2: The diagonal elements for a N = 6 system.

As a sidenote, using this method also gives the exact formula to calcu-
late the number of elements in the Hamiltonian:

Ny = (Ns(N — 2))(Jnz) + N

)
- <(é\[)'—(3)'> Wlael (%) (4.19)

=(5) o+ ()

with J,,., the number of non-zero elements to be considered from the over-
lapping matrix. This number will depend upon the geometry of the system.

4.1.4 Main diagonal elements

When considering elements in the main diagonal, that is, (z|H|z), it can
be inferred from the previous section that the first part of the Hamiltonian,
H,, will mix the ket into many different orthogonal states and the resulting
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states will vanish due to orthogonality. Thusly, we turn our attention to the
second part of the Hamiltonian.
The second part of the Hamiltonian is stated in equation (4.5), namely

Hi=) _ Jij [(nang + naynyy) — (nipng, + nyng)l,
i#j
where the number operator n can be rewritten in terms of the creation and
annihilation operators (e.g. n,; = cLTcIT). Itis clear that, when H,, operates
over the ket-states, it probes them in search of coincidence or difference
in the spin of a pair ¢, j of sites, summing a J;; term in the former case or

substracting it in the latter. As an example, for an N = 4 system the first
element (1|H|1) is:

(1| H|1) = (1|Hy|1) = (0011|Hy|0011) (4.20)

=(0011|J1g [(n1ym9p + naynay) — (n1gngy + naynay)]

+ J13 [(natnsy + nuynsy) — (nagnsy + nuynat)

+ Jog [(napnar + ngyna)) — (napnay + nz nat)] 4.21)
+ Jia [(napnag + nuynay) — (Ragnay + naynag)] '

+ Joa [(notnar + naynay) — (Ropnay + naynat)]

+ Ja4 [(nsynar + ngynay) — (nsrnay + nsynay)] |0011)
—(0011(J12|0011) — J15[0011) — Jo30011) — J1|0011) _—
— J54]0011) + J34]0011)) '

— J15(0011]0011) — J;5(0011]0011) — Jo3(0011|0011) o
— J1{0011]0011) — Joq (0011]0011) + J4(0011]0011)
=Jig — Ji13 — Jaz — J1a — Jog + J3. (4.24)

As can be seen, the elements of the main diagonal are calculated as
a summation over all pairs of valid J;; elements, ZK]( 1)*J;;, with an
additional coefficient a representing the different signs which depend upon
the particular basis state the H, Hamiltonian is operating on. Fora N =6
system, the sign table can be seen in table 4.3.

A first approach to calculating the diagonal elements consists in precal-
culating the signs for each element J;;. Every time the actual value of the
elements needs to be recalculated —say, if a different set of values for the
Ji; elements is chosen at runtime—, a simple dot-product between the sign
table and the J;; would suffice. Due to the size of the resulting sign-matrix
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(Ns x J,.), we chose a different approach wich sacrifices a bit of speed in
favor of memory efficiency.

The second approach consists in initializing the diagonal vector with a
single value equal to — >, J;;. Now, for each state and pair i, j of sites,
we need only compensate summing 2.J;; should the 7 and j sites are equal.
This is accomplished by making a bit-by-bit xor operation over the basis
state shifted i and j places to the right. If those bits are equal, the least
significant bit is 0, so a modulo 2 operation is sufficient to tell whether it is
necessary to sum 2.J;;.

Whichever technique is employed, a twofold improvement in perfor-
mance can be made if one notices that the sign-matrix is symmetric with
respect to the mid-states (that is, the first and last states have the same
signs).

=
N

000111
001011
001101
001110
010011
010101
010110
011001
011010
011100
100011
100101
100110
101001
101010
101100
110001
110010
110100
111000
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Table 4.3: H) applied over a general N = 6 system. Every square represents whether the corresponding J; ;
element is added or substracted. Filled square: +, empty square: —
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41.5 Lanczos

The diagonalization step was carried on using the Lanczos method,
which is a specially suitable approach when dealing with very sparse ma-
trices.

The Lanczos method is an iterative algorithm that generates a tridiag-
onal, symmetrical matrix 7" with the property that its extremal eigenvalues
are progressively better estimates of the original matrix’ extremal eigen-
values.

4.2 Concurrence of systems described by the
Heisenberg Hamiltonian

The necessary formulas to calculate Concurrence C;; are similar to
those described in detail in the second chapter. We will briefly address and
adapt them in order to use them in systems described by the Heisenberg
Hamiltonian.

Generally, the ground state obtained after the diagonalization of the
Hamiltonian can be written as:

|gs) = t0an) Zam| Wa® ) +Zb | 41)a ® [93)

(4.25)
+Zcp| 1)a ® [¢5) +Zd [ 11)4 ® [1).

where naturally subsystem A, comprised by the localized spins in the sites
of interest i and j, has four possible states.

To obtain the reduced density matrix of the subsystem A it is necessary
to perform the trace over system B. Using the same arguments explained
previously, the only non-zero elements in the reduced density matrix are

pu 0 0 0

0 pa2 p23 O

4.26
0 p32 p3z O ( )
0 0 0 pu

pa =

The first element of the matrix, p;;, can be calculated in the following
way
p11 = (Ygs|i frjy|[1hgs) (4.27)
where the operator product 7, 7;, finds all the elements of the type | ||
)4 ® |¢g). The other elements are obtained with the following operators:
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=(Vgs| i Tjt[Ygs) (4.28)
=<¢ s|Piriy |1gs) (4.29)
11 =(Ygs|Rirfijt|1gs) (4.30)
23 =(Vgsl Si S [1gs) (4.31)
32 =(Vgs| S S5 [¥gs) (4.32)

where, due to the hermiticity of p4, ps3 = p%,. Note from the mathematical
expression of the elements in p, that the Concurrence between two sites
is related with its ground state spin correlation, i.e.

(VgslSi - Sj|tgs) =(1ysl (S7 S + S SY + S7S5)|hgs)
(1gs| (ST S5 + 57 8F) /24 575F|1hgs) (4.33)
=(p23 + p32)/2 + (p11 + paa) /4 — (paz + p33) /4

Finally, to be able to use the Concurrence equation (Eqg. (1.23)), we use
the square roots of the lambda coefficients:

VA = v/pmapss — |pas| (4.34)
Vs = /Pzpss + |pas (4.35)
Ve = Vpiipu (4.36)
VAa = puipn (4.37)

Notice that )\, is the largest eigenvalue. Thus, the final formula be-
comes

C = max{0, \/p22ps3 + |p23| — \/p22p33 + |p2s| — /P11p1a — /p11paa}

(4.38)
C = max{0, 2|pa3| — 21/p11paa} (4.39)
C = 2max{0, |p23| — v/p11pas} (4.40)

Remarkably, the mathematical expression for the Concurrence is com-
pletely different from the spin correlation function. This implies that Con-
currence is a kind of quantum correlation distinct from traditional corre-
lation functions used in solid state physics used, for example, to study
quantum phase transitions.
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4.3 First results and perspectives

4.3.1 Concurrence in small Heisenberg systems

We first calculated the effect of boundary conditions and dimerization
over Concurrence and the spin correlation function (.5;;) of the ground state
in small four-site Heisenberg systems. A ring and a chain were studied,
noting that the difference in number of neighbors has important conse-
guences in the values of Concurrence and spin correlation.

J
12

2
1 I I3 13 hia TJB

4 —
— I3
(a) Four site chain (b) Four site ring

Figure 4.1: First studies on small Heisenberg systems

In order to study the effects of dimerization, it is convenient to take into
account that in the case of the four-site chain, the two strong and the two
milder exchange interactions can be chosen arbitrarily, as long as they
are intercalated. On the other hand, in the case of the four-site chain only
three exchange interactions can be considered. In the following, the milder
interaction is chosen as J,;.

In Fig. 4.2a, nearest-neighbor Concurrence (C12, Co3) as a function of
the dimerization factor is compared against spin correlation between the
same neighbors in the ring system. The dimerization of the exchange
interactions is as follows: J, = J3; = 1 were kept constant while Jy; =
Ju1 = 1 — a decreases as a function of a.

From the figure, we can see that while the system is kept undimerized,
Concurrence between distinct pairs of sites remains equal (Ci; = Cy3 =
0.5), as well as their spin correlations. When the dimerization parameter
is increased, C1» whose interaction exchange remained constant, starts
increasing monotonously while Cs; decreases until « reaches 0.5. Note
that a possible discontinuity in the first derivative of Cy3 cannot be related to
a quantum phase transition as it is due to the definition of Concurrence. On
the other hand, both spin correlation functions show a continuous smooth
behavior. Remarkably, C15(a) > Sia(a).

A notable effect on the loss of symmetry can be observed for the spin
correlation functions in the four-site chain, which show different values
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Figure 4.2: Spin correlation and Concurrence for sites 1 — 2,2 — 3 in the four-site Heisenberg system

even in the undimerized case. Note also that C;, almost saturates for
a = 0.866. Naturally, the maximum is reached when the system is broken
into two completely separated systems.

4.3.2 Heisenberg quantum switch

By tuning certain system’s parameters, it could be possible, at least
theoretically , to build a quantum switch that could move the quantum en-
tanglement between two qubits from one state to the other. For example,
Gao and Wang [4] propose a three-site Hubbard Hamiltonian with N, = 2.
They find two free parameters, U/t and U/t, which can be used as a
tuning and control parameter, respectively. Depending on the sign and
magnitude, the control parameter U/t can act as a barrier forbidding the
double occupancy or act as an attractor freezing the two electrons on one
site. When U/t is strongly posive Entanglement can be tuned between
two saturation values using U, /t. Although a physical implementation that
could modify such system’s parameters is unlikely, the idea inspired us to
study the posibility of building a quantum switch in the Heisenberg model.

In Fig. 4.3a we show a possible scheme of quantum switch formed by a
six-site ring. All exchange interactions are kept equal except for J,3 = 1—q,
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Heisenberg Quantum Switch
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Figure 4.3: Turning off an on as a function of the dimerization parameter.

which will vary with the dimerization parameter «. This parameter will be
responsible for turning off or on Concurrence Cy4. Generally, the quantum
switch can be realized using rings from different sizes, as can be seen in
Fig. 4.3b. As in the six-site case, all exchange interactions of the twelve-
site case are kept constant except for J;_15. From the figure, we observe
that the critical turning-on dimerization value a,, depends on the size of
the system.

As for the viability of a practical physical realization, one possible ap-
proach could be to use coupled quantum dots after the ideas of Loss and
DiVincenzo [5]. In their studies, the qubit is the spin of an excess elec-
tron in a quantum dot. They show that, for a pair of coupled quantum
dots, the spin interactions between qubits can be manipulated by tuning
the electrical tunneling barrier. If the potential barrier is high, tunneling is
forbidden between dots; if it is lowered, spins can interact with a transient
Heisenberg coupling

H(t) = J(t)S;-S; (4.41)

where J(t) = 4t3(t)/u dependes on the tunneling matrix parameter ¢(t)
and the charging energy u. ty(¢) depends on the confinement voltage and,
by modifying it, it is also possible to tune the value of J(t).

Another possible alternative for the construction of a quantum switch
is to employ optical lattices using ultra-cold atoms [3]. In this scheme,
when atoms are confined in an optical lattice, the spin interaction can be
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controlled adjusting the intensity, frequency and polarization of the laser
being used. By tunning these parameters, a virtual tunneling control de-
pendant of spin can be achieved, which in turn translates into a controlable
Heisenberg exchange interaction.

4.3.3 Engineering of Concurrence

In order to realize some of the main quantum information tasks, it is
necessary that a certain level of Entanglement exists between two qubits.
For example, to use Entanglement as a quantum channel in order to ex-
change information, it is desirable that the particles which share Entangle-
ment be apart from each other.

T T T T J78U
3 — 28 (3 ,-*-74 ——S, — ~8-

1237d 45716771 J127d347)567025=1-

w—

6 —
g Noamr

Figure 4.4: Eight-site Heisenberg chain.

Recently it has been shown [1] that in some spin models in the ground
state, a couple of distant sites a« and b can be highly entangled, even when
those sites are separated by an infinite distance between them. This prop-
erty is known as Long Distance Entanglement. Particularly, there is the
spin 1/2 Heisenberg chain where, even for mild dimerizations, non-local
interactions can arise, that is, the outermost sites are entangled (see Fig.
4.4). This effect is due to the high symmetry of the ground state, which
has to comply with the restriction S, = 0. The effect can be understood as
follows: as the dimerization increases, spins in sites 2 — 3,4 —5and 6 — 7
tend to form singlet states (S9™ = 0, S9M = (), which is the ground state
for a Heisenberg dimer. To preserve S, = 0, the outer spins 1 and 8 are
forced into the singlet state, which shows maximum Concurrence.

The full behavior of the Heisenberg chain under alternating dimeriza-
tion can be seen in Fig. 4.5, where chains of two sizes where studied.
It can be seen that only a mild dimerization is necessary for the system
to present high Concurence between its extremes. These are very inter-
esting results for they show that an almost perfect entanglement between
extremes does not depend on size, but rather on symmetry. This property
could be exploited to its use in quantum teleportation.
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Figure 4.5: Effect of alternating dimerization on Heisenberg chains.

Unfortunately, the energy gap between the ground state and the first
excited state in these kind of chains dissappears exponentially as the chain
size increases. This means that even at low temperatures, the strong cor-
relations between the spins at the extremes would loose their quantum
coherence.

Due to these difficulties, new models have been studied where the gap
decreases only algebraically. For example, Campos-Venuti et al. [2] stud-
ied two kinds of models: an open, dimerized XX chain, and an open XX
chain with small end bonds. They find that the first model supports true
long-distance Entanglement at zero temperature, while the second model
supports “quasi-long-distance” Entanglement that slowly falls off with the
size of the chain. The latter model is also better suited for quantum tele-
portation, as the energetic gap decreases only algebraically at moderately
low temperatures.

4.3.4 Final thoughts and perspectives

Schemes such as quantum teleportation, which use a quantum chan-
nel to send information, can be realized in systems modeled with the
Heisenberg model as the ones studied in the present chapter.

As future work, is it possible to keep investigating the possibility of
finding system parameters which favor high end-to-end Entanglement as
well as an energetic gap that does not decay exponentially. This could
be worked on using the same methodology as the one employed in the
previous chapters, namely, to use an optimization method such as genetic
algorithms.
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Appendix A
Code details

A.1 Data arrays

In our program for solving a Heisenberg Hamiltonian, there exist sev-
eral data-storing arrays and variables, whose type needs to be carefully
chosen. Bracketed variables stand for an array.

- N: The size of the system.

- imin, imax: The lower- and upper-limit of the first and last states in
the basis, in their binary representation.

estados_base: The number of states in the basis, N,. Calculated as
N
0

[da_representacion]: Gives the binary representation of a basis
state. For example, for N = 6, da representacion(1)=000111=7
(the first state for the V = 6 case has the first three sites in the state
|1) while the last three are in the state |0), this is represented in dec-
imal notation as a 7, etc.).

- [da_estado_vec]: Given a binary representation of a system, the
function da_estado returns the corresponding number of basis state.
The actual mapping is done using an ancilliary matrix, [da_estado_vec],
which, to avoid wasting the first indices with representations lower
than imin (discarded by the S, = 0 restriction), stores the first basis
state as its first element. The function simply shifts accordingly:

function da_estado(representacion)
use data
implicit none
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integer(4) :: da_estado, representacion
da_estado = da_estado_vec(representacion—imin+1)

end function da_estado

Special care is to be taken with representations outside the valid
range of states, as no validation is made in order to speed calcula-
tions up.

- [J_ij]: Matrix storing the actual overlapping parameters. We only
need store the elements corresponding to the upper triangular.

- [1lenar]: Matrix storing information about the non-zero elements of
the Hamiltonian. Each element is of type

TYPE :: hamiltoniano_empacado_elemento
integer(2) :: J._ij
integer(4) :: renglon

END TYPE

Where J_ij corresponds to an entry in [J_ij] and renglon is the cor-
responding row of this element in the Hamiltonian. Information about
the column can be obtained indirectly by means of the [diagonall
matrix.

- [diagonall: Matrix storing the values of the diagonal elements. Each
element is of type

TYPE :: diagonal_elemento
integer(4) :: posicion
real (8) :: valor

END TYPE

with posicion representing its position in the [1lenar] matrix and
valor the actual, pre-calculated value of the element.

A representation of the Hamiltonian for the case N = 4 using the data
structure just described is depicted in figure A.1.

A.2 Memory considerations

When coding a simulation that manipulates large amounts of data, it is
important to take memory considerations into the code design in order to
be as frugal as possible.
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(3] idx Jij ren
h bk L (1) |0 1 } Column 1
Jl l:|1 “J13[* 14
— 1 (2) Sl o
1 23| )24 Column 2
, (3) [0] 2
J; T
. @ |2]1 o
4 5 11 2 Col 3 [Hamiltonian]
(5 Qlumn 1 2 3 4 5 6
(6) |0 3 0011 0101 0110 1001 1010 1100
(7) 5 1 1 0011 'p, s Pl o P |k PP s 19
[diagonal] 8 | 6] 2 Column 4 2 0101 Dy (531 | 143, 4%
IdX Val pos (9) 0 4 3 0110 D 13,6 [153,,5
(1) [ ] 1 (0)[ a1 A B [hell i
5 18D, 173,43
(2) | D] 3 (11)| 6| 3 :
& Column 5 6 1100 P
(3) | Ds| 6 (12)| 1| 4
(4) | Ds| 9 (13)| 0| 5
(5) | Ds | 13 (14)| 4| 2
(6) | Ds | 18 (15)| 5| 3
(16)| 2| 4 Column 6
(17)| 3| 5
(18)| 0| 6

Figure A.1: The different arrays storing the information for the Hamiltonian.

A.2.1 The basis-storing arrays

Note that, for the case N = 36, the highest-valued representation corre-
sponding to the last state in the basis is 11 11111111 11111110 00000000
00000000 (5 bytes), and would need an 8-byte integer in order to be ad-
dresseable (or a custom non-native 5-byte integer). In the case with N =
34, the numbers still fit in a 4-byte integer, but the most-significant bit is
used for the sign and the roof value (the state represented as |2, 333, 606, 220))
cannot be addressed in an array made from 4-byte integers (i.e. we cannot
address a value stored in a negative-valued index). This makes the N = 32
the largest case provisioned in our program. The imin and imax values,
as well as the auxiliary arrays [da representacion] and [estados base]
can thusly be declared of kind int (4).
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N | S[Jy] Sa[Ji;] | SelJij] Ny bin | bytes
2 1 1 1 2 10 1
4 6 110 1 6 110 1
6 15 1111 1 20 10100 1
8 28 11100 1 70 1000110 1
10 45 101101 1 252 11111100 1
12 66 1000010 1 924 1110011100 2
14 91 1011011 1 3,432 1101 01101000 2
16 120 1111000 1 12,870 110010 01000110 2
18 153 10011001 1 48,620 10111101 11101100 2
20 190 10111110 1 184,756 10 11010001 10110100 3
22 231 11100111 1 705,432 1010 11000011 10011000 3
24 276 100010100 2 2,704,156 101001 01000011 00011100 3
26 325 101000101 2 10,400,600 10011110 10110011 01011000 3
28 378 101111010 2 40,116,600 10 01100100 00100001 01111000 4
30 435 110110011 2 155,117,520 1001 00111110 11100111 11010000 4
32 496 111110000 2 601,080,390 100011 11010011 11000010 01000110 4
34 561 | 10 00110001 2 2,333,606,220 10001011 00011000 00000001 01001100 4~
36 630 | 1001110110 2 9,075,135,300 10 00011100 11101011 10010011 01000100 5
38 703 | 1010111111 2 35,345,263,800 1000 00111010 10111101 11101100 10111000 5
40 780 | 11 00001100 2 | 137,846,528,820 | 100000 00011000 01001011 00011011 00110100 5

Table A.1: S[J;;] the number of elements in the ovelapping matrix, [J;;]. S2[J;;] is the binary representation of

S[Ji;1, SglJi;] are the minimum bytes necessary to store Sa[J;;]. N is the number of states.

A.2.2

With N = 32 the largest tractable system, the size of the array storing

the values of the overlapping wavefunctions, [J;;], has a maximum of

for the upper triangular. A 1-byte integer is too small to address such a

N? - N
2

= 496

number and thus we need an array declared with int (2)-type numbers.

A.2.3 The Hamiltonian upper triangular

(A1)
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N | size([da_estado]) bytes Megabytes
2 1 4
4 9 36
6 49 196
8 225 900
10 961 3844
12 3969 15876
14 16129 64516
16 65025 260100
18 261121 1044484 | 0.996097565
20 1046529 4186116 | 3.99219131
22 4190209 16760836 | 15.9843788
24 16769025 67076100 | 63.9687538
26 67092481 268369924 | 255.937504
28 268402689 | 1073610756 1,023.875*
30 1073676289 | 4294705156 4,095.75
32 4294836225 | 17179344900 16,383.5
N Hiotal Hiotal binary bytes
; 3 11
4 21 10101
6 210 11010010
8 2,485 1001 10110101
10 31,878 1111100 10000110
12 427,350 110 10000101 01010110
14 5,897,028 1011001 11111011 01000100
16 82,824,885 100 11101111 11001110 10110101
18 1,181,976,510 1000110 01110011 10000111 10111110
20 17,067,482,146 1111111001 01001101 00011100 00100010
22 248,817,506,028 111001 11101110 10101101 11010110 11101100

24 3,656,231,188,246
26  54,086,245,380,300
28 804,670,817,838,300

11 01010011 01001000 01011100 01110111 00010110
110001 00110000 11101111 01110001 01110000 11001100
1011011011 11011000 00000110 01000010 00100100 11011100

Table A.2: Size of the Hamiltonian’s upper triangular. All elements.
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N Elements in [llenar] binary bytes
2 3 11 1
4 18 10010 1
6 110 1101110 1
8 630 1001110110 2
10 3,402 1101 01001010 2
12 17,556 1000100 10010100 2
14 87,516 101010101 11011100 3
16 424,710 11001111011 00000110 3
18 2,017,730 11110 11001001 11000010 3
20 9,422,556 10001111 11000110 11011100 3
22 43,384,068 10 10010101 11111101 00000100 4
24 197,403,388 1011 11000100 00100010 11111100 4
26 889,251,300 110101 00000000 11100101 11100100 4
28 3,971,543,400 11101100 10111000 11110001 01101000 4
30 17,605,838,520 100 00011001 01100011 11000110 10111000 5
32 77,539,370,310 10010 00001101 10110100 11100101 01000110 5

Table A.3: Size of [11enar] (all non-zero elements). The case for N = 28 cannot be indexed using four-byte
integers because of the sign-bit
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Appendix B

Quantum Gates

B.1 Quantum gates

In classical computation, manipulation of information is carried on logi-
cal gates, electronic devices made of transistors that allow the implemen-
tation of boolean algebra.

In quantum computation there exist also logic gates. From the math-
ematical point of view, the only condition needed is that the operators be
unitary matrices (that is, [A][A]" = I). We will briefly address some rele-
vant quantum gates.

B.1.1 The NOT gate

The NOT gate is the basic one-bit gate, and its function is to change
the present state for the other available state. In quantum computation,
the equivalent gate interchanges the states’ amplitudes. In matrix form,

this gate is represented as
(01
X = ( 10 > (B.1)

such that, using the matrix representation of a qubit,

) =alo)+5m) = (), ®2)

we have



B.1.2 Z Gate

This gate has the very simple task of changing the sign of the amplitude
of the second state:
g1 B
L0 -1

This gate mixes the state |0) into (|0) + |1))/v/2 and the state |1) into

(10) —[1))/v2: L
(0 )

B.1.4 Combining gates

(B.4)

B.1.3 Hadamard gate

(B.5)

For a two-qubit system, it is possible to combine one-qubit gates. For
example, if we wish to use the NOT gate on the second qubit, we employ
the ® operation in order to combine the identity gate with the NOT gate:

I® X (a]00) 4+ 5]|01) + v|10) 4+ 6|11)) =  (B.6)
(0%
10 01 g |
<o 1)®<1 0) v | = (B.7)
)
01 01 «
(Vo) ofv )
10 10 6]
o0 1Y) {(01 v (8.8)
10 10 )
and the operation is then
0100 « B
1000 Bl _ | «
0001 o B (B.9)
0010 b) ~y

which means that the amplitude of the states |00) and |01) has been inter-
changed, as well as for the states |10) and |11).

Note that the order in which the operators appear affect the final result.
To put first the NOT gate and then the identity gate would have negated

the first qubit.
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B.1.5 The controlled NOT gate

This is a very useful two-qubit gate that cannot be factorized and nev-
ertheless meets the requierement of unicity.

The funcion of the controlled NOT (CNOT) gate is very simple: if the
control qubit is in the state |1), the second qubit will be negated. For
example, if the system is in the state |00) + |10) and the control qubit is
the first one, the system would be changed into |00) + |11). In matrix
representation, this is:

CNOT, = (B.10)

o O O
o O = O
o O O
o= O O

The control qubit could also be the second one:

CNOT, = (B.11)

o O O
_— o O O
o = O O
o O = O

The CNOT gate is very important because it can be used along with
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the Hadamard gate to prepare an entangled states from the |00) state.

(CNOT,)(I® H)(|00)) (B.12)
1000 1
000 1|1 10 11 0
0010 ﬁ((o 1>®(1—1>) 0 (B.13)
0100 0
1000 f1 L of 11 1/v/2
0001 1 -1 1 -1 0 (B.14)
0010 of 11 of L 1 0 '
0100 1 -1 1 -1 \ 0
1000 1 1 0 0 1/v2
0001 1 =10 0 0
0010 0 0 1 1 0 (B.15)
0100 0 0 1 —1 0
1000 1/v/2
0001 1/V/2
0010 0 =18
0100 0
1/v2
0
0 :BOO
1/v2
(B.17)
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Appendix C

Aplication: Quantum
Teleportation

In this scheme, it is possible to transmit quantum information using
a quantum channel, specifically, the Entanglement shared between two
qubits. This algorithm has no classical equivalent.

Suppose that Bobt has to copy certain secret information, for example,
the coefficients of a qubit’s state. Retrieving the coefficients would be im-
possible because he would have to repeatedly make a measurement in
order to relate the outcome probability with the state’s amplitude. Using
quantum teleportation, Bob could send the quantum state to Alice using
Entanglement and a classical transmition of information.

As input, Bob and Alice share a Bell state (specifically, Boy), and the
qubit of interest is in the generic state |¢)) = a|0) + 8|1). The initial state is
a combination of the three qubits:

[%0) = [¥)Boo = %[a|0>(|00> +[11)) + B[1)(]00) + [11))] (C.1)

where the first two qubits are Bob’s, and the third is Alice’s. Bob applies a
CNOQOT gate to his two qubits and now has

1
Y1) = %[al())(IUO) +[11)) + A1) (110) +[01))] (C.2)

then, he applies a Hadamard gate over the first qubit:

|1b2) = %[a(l0> + [1))(100) + [11)) + B(|0) — [1))([10) +[01))].  (C.3)
This last state can be rewritten as
|1h2) = 1/2[a(]0) + [1))(|00) + [11)) + B(|0) — [1))(|10) + [01))]  (C.4)
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:%[a(|000> +1011) + [100) + [111)) + B(]010) + |001) — [110) — [101))]

(C.5)
:%[a|000> + B|001) + @|011) + B|010) + a|100) — B|101) + a|111) — B|110)]

(C.6)
=%[|00>(0z|0> + B[1)) +101)(a|1) + B|0)) + [10)(«|0) — B[1)) + [11)(a|1) — B]0))]

(C.7)

The last expression can be seen as four different states. Notably, the last
qubit has already the information of the target qubit. The last thing that
Bob has to do es measure his two qubits. If the result is the state |00),
Alice has nothing to do, but if the state is one of the other three, Bob has
to tell Alice (classically) what is the result state so she can apply an extra
operation in order for her to finally retrieve the coefficients of |¢)). From
Bob’s measurements:

00 — [13(00)) = [a]0) + A1)

01 = [3(01)) = [a]1) + BJ0)] c8)
10 = [15(10)) = []0) — BI1)] |
11 [i5(11)) = [of1) - 5l0)]

If Bob obtains the state |¢5(01)), Alice has to apply the X gate; if the
|15(10)) state is measured, Alice has to apply the Z gate and finally, if Bob
measures the state [¢3(11)) then it is necessary to use first Z and then X.

C.1 Quantum teleportation with matrices

As an exercise, we can repeat the quantum teleportation example in
matrix form. The input is

1 «Q

0 0

“1o 0

1 1 1 «

[%0) = [¥) ® |Boo) = NG 1 =% s (C.9)

0 0

B 0 0

1 B
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Now we need a three qubit gate, with CNOT; acting on the first two,

(C.10)

VRS
o
L

—
(@]

N—
X
Y
S O — O
S O O -

o - O O

— o OO
(\

CNOT; ®1

(C.11)

N N N N
OCH O O - O —

— O — O — O —A O

p . W . W W
) ) — (@)
))))
S O - O — O
— O - O — O — O
] ] (@] —

N N N N
S —H O - O - O

—N O 4 O — O - O

A Y N e
o | (@] (@]
N N N N
SO —H O = O - O
— O - - O - O
A e A e
— =) ) =]

(C.12)

1 00000O0O0O
01 00O0O0O0O0
001 0O0O0O0O0
0001O0O0O0O0

000O0O0O0T1@O0

000O0O0O0¢ 071

000O0T1O0O0O0

000O0O0OT1TO0® O

Applying the gate:

P

(4p}

b et

@)

N
oo I oo

I
T oo oo

S

—
oo oOoOHOO
cocoocoo—HO OO
OO OO H
coo o oS
cooO—H oo oo
oo H o o0 oo
OHO OO O OO
=l =N el ool o)

Now, another three-qubit gate is needed with the Hadamard gate acting
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(C.14)
(C.15)
(C.16)

bl

o

—1

1
0
0
0
-1
0
0
0

1 000
0100
0010
0 001
1 000
0100
0010
0001

1

0

0

0

-1

1 000
0100

0010

Finally, applying the gate,

on the first qubit:

(C.17)
(C.18)

—1
74

0
0
0

000
001
010
011
100
101
110
111

0001
1 000
0100
0010
0001

1

This last vector is equivalent to eq. (C.6).



Appendix D

Application: Dense coding

In this scheme, it is possible to use the transmission of one qubit in
order to obtain two classical bits. The concept is simple, two qubits are
had in the Bell state By, with the first qubit the one to be transmitted.
This qubit can be manipulated in such a way that the two qubit system
changes into any of the other Bell states (or remains unchanged). Bell
states are orthogonal between them, so it is possible, in principle, to build
measurment operators that can distinguish them. Each of the four Bell

states correspond to a two classical bit string.
The operations are:

The set of gates I, X, Y and Z are called Pauli matrices.
The operator for measuring the state By is simply

Mg, = <Ioo>j§|11>> ((00|\4/r§<11|)

1
=z (]00)(00] 4 |00)(11] 4 |11)(00[ + |11)(11])
1001
_1{o000
—2l0000
1001

Fi
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Abstract

In this paper, we study the numerical optimization of nearest-neighbor
concurrence of bipartite one- and two-dimensional lattices, as well as
non-bipartite two-dimensional lattices. These systems are described in
the framework of a tight-binding Hamiltonian while the optimization of
concurrence was performed using genetic algorithms. Our results show that
the concurrence of the optimized lattice structures is considerably higher than
that of non-optimized systems. In the case of one-dimensional chains, the
concurrence increases dramatically when the system begins to dimerize, i.e.,
it undergoes a structural phase transition (Peierls distortion). This result is
consistent with the idea that entanglement is maximal or shows a singularity
near quantum phase transitions. Moreover, the optimization of concurrence
in two-dimensional bipartite and non-bipartite lattices is achieved when the
structures break into smaller subsystems, which are arranged in geometrically
distinguishable configurations.

PACS numbers: 03.67.—a, 03.65.Ud, 73.43.Nq, 71.10.Fd

1. Introduction

Quantum entanglement is one of the most distinctive features in quantum mechanics, yet
its properties are still not fully understood. This quantum resource is considered a key
element of several quantum information and quantum computation proposals such as quantum
teleportation [1], superdense coding [2], certain kinds of quantum key distribution schemes
and quantum secret-sharing protocols [3, 4].

Recently, much research has been focused on a better understanding of quantum
correlations in multiparticle systems [5-8]. A characteristic property that sets apart quantum
correlations (or entanglement) from the classical ones is that entanglement cannot be freely

1751-8113/09/315302+14$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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