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Abstract

This work contains the results from the simulations performed according to two

computational models. The first one referrs to a chemical system within a Continu-

osly Stirred Tank Reactor (CSTR), while the second deals with a physico-chemical

system of self-assembling pieces under different conditions. In addition, two mathe-

matical analyses are also included. One is for waves along microtubules at the brain

scale and the other is a wavelet processing of data from time series of Elementary

Cellular Automata (ECA). The results of this thesis are mainly based on cellular

automata as a tool for modeling and producing complex spatio-temporal dynamics.
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Summary

In this work, the results from the simulations according to two computational models

are presented. The first one referrs to a chemical system within a continuosly stirred

tank reactor (CSTR) while the second deals with a physical system of self-assembling

pieces under different conditions. In addition, two mathematical analyses are pre-

sented, for waves along microtubules at the brain scale, and a wavelet processing

of data from time series of elementary cellular automata (ECA). The results of the

work are mainly based on cellular automata as a tool for modeling and producing

complex spatio-temporal dynamics.

A cellular automata approach for the CSTR with a cooling jacket is presented in

Chapter 3. It could reproduce the CSTR dynamical behavior calculated by ODE’s

with a good approximation and in an easy way. The presented stochastic model

allows us to study what could be the behavior of the variables of the tank when the

reaction probability depends on the local temperature. It also gives us an approach

to study systems of reduced content, such as micro and nanoreactors or reactor and

jacket geometries different from the common ones.

In Chapter 4, the mathematical technique of factorization of differential opera-

tors is applied to two different problems. After a brief overview on microtubules,

previous results are reviewed related to the supersymmetry of the Montroll kinks

moving onto the microtubule walls as well as mentioning the sine-Gordon model for

the microtubule nonlinear excitations. Next, new analytic formulas are presented

for a class of one-parameter solutions of a sort of diffusion equation of Bessel type

that is obtained by supersymmetry from the homogeneous form of a simple damped

2



Summary 3

wave equations derived from previous work in the literature of the corticothalamic

system. A possible interpretation of the diffusion equation in the brain context is

presented.

In Chapter 5, the discussion is focused on a model for the aggregation of pieces

(or molecules), dynamically interacting according to LGCA methods. In addition

to traditional models, we considered that particles are not just point-like, but they

have a cross shape. This implies the consideration of rotations and orientation of

pieces and gives us the possibility of considering a huge spectra of different pieces by

defining different kinds of extremes and interactions between them. It it shown that

selection of pieces and densities have a major effect on the morphology of the aggre-

gates at different scales. In addition, three appropriate measures for characterizing

the aggregates are proposed. The results suggest that it is possible to create ex-

perimental aggregated structures at the micro- and nano-scales with partial control

on their local and global structural properties. This would allow to produce small

structures with enhanced properties for physical or chemical absorption, or special

microlocal surface properties.

Chapter 6 focuses on the analysis of the time series of the so-called row sum (or

total activity) ECA signals, i.e., the sum of ones in sequences of rows, employing

Daubechies (Db) wavelets. An algorithmic implementation that embeds the discrete

wavelet transform in the Multifractal Detrended Fluctuation (MF-DFA) technique is

proposed. With it, we get similar results to the other methods but computationally

faster because we employ a lesser number of windows. Our results represent a

confirmation of the fact that ECA patterns (rules 90, 105 and 150) of different

magnitudes follow different scaling laws, i.e., the ECA have intrinsic multifractality

that does not depend on the set of initial data that we used.



Abbreviations in this work

CA Cellular Automata
CSTR Continuosly Stirred Tank Reactor
ECA Elementary Cellular Automata

FHP model Frisch, Hasslacher and Pomeau model
FWT Fast Wavelet Transform

HPP model Hardy, Pomeau and de Pazzis model
LGCA Lattice Gas Cellular Automata

MF-DFA Multifractal Detrended Fluctuation Analysis
MRA Multi-Resolution Analysis
MT Microtubule

ODE Ordinary Differential Ecuation
QCA Quantum Cellular Automata

WMF-DFA Wavelet Multifractal Detrended Fluctuation Analysis
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Chapter 1

Introduction

1.1 Brief history

The elaboration of the cellular automata method is due to John von Neumann, who

at the end of the 1940s was involved in the design of the first digital computers.

Von Neumann wanted to know how to imitate the power of human brain for solv-

ing very complex problems. Even more, he wished to found how to reproduce the

organic properties of self-control and self-repair. Those thoughts led him to the also

very complicated problem of designing a self-replicating machine, capable of build-

ing itself out of some available material in its environment. He found a theoretical

procedure to solve this problem: a cellular automaton.

Following the suggestions of S. Ulam, Neumann developed a model using a dis-

crete two-dimensional universe made up of cells, each one being in a defined internal

state. Neumann suggested a system evolution performed in discrete time steps,

where the cells only know a simple recipe, the same for all of them, to compute

their new internal state. Such recipe, or rule, is defined as a function of the states

of the neighbor cells and is applied synchronously on all cells. These fully discrete

dynamical systems are now referred as cellular automata.

Neumann succeeded in designing a structure of cells, with given initial states

and a defined rule, able to generate new identical structures. They contained in

1



1.1. Brief history 2

themselves the information and the algorithm that gave them the capacity of self-

reproduction. This artificial life model was based on a two-dimensional square lat-

tice, a set of 29 possible states, a rule applied to each cell that is function of the

four closest neighbors and the cell itself, and, finally, an initial structure of several

thousand elementary cells. A new tool was born, although Neumann’s replicator

needed to wait further development of computers in order to be simulated.

Cellular automata was almost forgotten until 1970, when M. Gardner presented

the Conway’s “Game of Life” [1]. This was intended to simulate an ecological model,

by means of a two-dimensional square lattice as space and two possible states: alive

or dead. The rule is defined as follows (see figure 1.1):

• a dead cell surrounded by exactly three living cells comes back to life,

• a living cell surrounded by less than two living neighbors dies of isolation,

• a living cell surrounded by more than three neighbors dies of overcrowdness,

• in any other case the cell does not change

Here, the surrounding cells correspond to the neighborhood composed of the four

nearest cells (north, south, east and west) plus the four second nearest neighbors,

along the diagonals. This simple model is capable of unexpected rich and complex

behavior. Complex structures can emerge from the initial system state, and some of

them evolve in a way that produce the sensation of seeing interacting living things,

colliding, evolving, traveling through the grid. Such richness of behavior brought

the concept of cellular automata to the attention of a wide audience.

In the 1980’s Stephen Wolfram performed detailed studies on one-dimensional

cellular automata [3]. He was interested in cellular automata not only as a mod-

eling tool but also as systems that deserve being studied. He showed that cellular

automata can exhibit many of the behaviors found in continuous systems, such as

complexity, but in simpler framework and without truncation errors, due to their

discrete nature. Wolfram numbered the rules for one-dimensional cellular automata
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Figure 1.1: Glider, self-sustainable structure in the Game of Life. Black cells repre-
sent alive cells, white cells represent dead cells. Figure from [2]

with two states and rules defined as function of the two nearest neighbors and the

evolving cell itself. He found complex behaviors in the evolution of some of those

256 rules and proved that they are important objects to consider for statistical me-

chanics studies. In figure 1.2 it is shown a fractal structure that is obtained from

the evolution of Wolfram’s rule 90. Nowadays, Wolfram’s rules, as well as other

cellular automata schemes, are still the topic of much active research. Some issues

related with cellular automata and typically studied using them are: chaos synchro-

nization [4], as an alternative to differential equations in modeling physics [5], as

models of complexity [3], damage spreading [7], self-organization [8], etc.

Von Neumann’s automaton, Conway’s Game of Life and Wolfram’s 110 rule have

the special property of being universal computers. This means that they can perform

any possible algorithmic procedure if proper initial conditions and data coding are

set. This motivated Toffoli and Margolus to built the first general purpose cellular

automata machines (called CAM-6) in the 1980’s. The distributed nature of such

computers gave them the capability of a supercomputer of that time.
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Figure 1.2: Sierpinski triangle made by Wolfram’s rule 90

In the 1970 Hardy, Pomeau and de Pazzis developed the HPP lattice gas model

[4]. However, in the 1980’s it was recognized that this model was in fact a cellular

automata, being termed Lattice Gas Automata (LGA). The main idea was to rep-

resent particles in a gas, colliding and moving in a squared lattice, in such a way

that momentum and particle number were conserved. Therewith, fundamental sta-

tistical properties can be calculated from the model. Since then, cellular automata

rules have been viewed as an alternative form of microscopic reality which bears the

expected macroscopic behavior. In 1986, U. Frisch, B. Hasslacher and Y. Pomeau

developed a similar model, now called FHP, but in an hexagonal grid [16]. Due to

the improve of the symmetry, this model reproduce, in some appropriate limits, the

behavior prescribed by the Navier-Stokes equation of hydrodynamics. More about

these models will be discussed in the following chapters.

In 2002, Wolfram published his famous book “A New Kind of Science” [2]. In

this book, he claims that complex behavior could come from computation in a sys-
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tem that is following simple rules. The main issues discussed are computability and

complexity in nature. However, the principal tools and system paradigm used in the

book are cellular automata. He gives an impressive number of examples of cellular

automata simulations that resembles the behavior of several physical and biological

systems. He even discusses about the possibility that the physical world could be

a very large cellular automaton. Although many of the ideas presented are contro-

versial [12], this book is still considered the most important exposition of cellular

automata systems to the scientific community.

When looking for technical applications, one of the most interesting applica-

tions of cellular automata is their use in quantum computation. Here are imple-

mented quantum-dot cellular automata, that conform a transistorless computational

paradigm. In denser and denser arrangements with smaller devices, quantum-dot

could allow to built devices able to take advantage of quantum phenomena, instead

of reducing performance as would happen with transistor systems. Using a cellular

automata paradigm addresses also the interconnection problem due to the fact that

it is local and dependent of the state of neighbors.

The quantum-dot cellular automata was proposed by Lent and coworkers [13].

Each cell is made of by four quantum-dots in a square, and the state is given by

the position of two extra electrons. Because of coulombic repulsion they are in op-

posite sides in diagonal direction, giving two possible states (see figure 1.3). The

spatial arrangement and the coulombic repulsion allow the creation of logic gates

AND, OR and NOT, making general purpose computing possible. Until now, only

small arrangements have been made experimentally, using aluminum islands and

aluminum-oxide tunnel junctions, fabricated on an oxidized silicon wafer [14]. There

is also theoretical work on quantum computation with quantum cellular automata.

Several schemes have been proposed in order to obtain universal computability, re-

liable implementation at room temperature as well as local and unitary evolution

(see, for instance, [15]).
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Figure 1.3: (a) QCA cells showing the two possible polarizations. (b) QCA line. (c)
Inverter. (d) Majority gate. Figure from [14]

Nowadays, the efficiency of cellular automata as a modeling tool is manifest.

They have been used for the study and simulation of a broad range of physical,

biological, chemical, and sociological phenomena. Some examples are: excitable

media [17,38], evolutionary game theory [18], self-replicating structures [19], migra-

tion of glioma cells [20], stock market dynamics [21], dynamics of HIV infection [22],

formation of patterns in chemical systems [3], recrystallization [24], ecological pat-

terns [25,26], freeway traffic [27], and so on. More applications can be found in the

works of Chopard and Droz [20], Deutsch and Norman [19], and Kier, Seybold and

Cheng [18].

Such broad range of applications and schemes represents only a little part of

what can be found in the literature. Today it is not clear which will be the im-

portance of cellular automata in the future. Will them give some clue about the

nature of space and time as Wolfram claims? Is out there something that can be

not modeled with any cellular automaton approach? Will they help to unravel the

secrets of complexity? Are quantum-dots cellular automata the computers of the

future? However, there are no doubts that this modeling paradigm will be used for

a long time.
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1.2 Motivation

1.2.1 Molecular systems

The reasons for using cellular automata as a modeling tool for molecular systems can

be condensed in one phrase: cellular automata allow to simulate, in a straight and

physically meaningful way, discrete entities that interact locally in a parallel fashion.

Cellular automata are an idealization of a physical, chemical or biological system,

where the interactions between constituents are coded or embedded in the rule that

determines the evolution of the system. For instance, a great variety of chemical

processes can be modeled by means of encoding the most important states of the

elements of the systems as the states of the cell, and their local interactions by the

cellular automaton rule. One simple example: if two cells have the values (1,2) and

they are updated to (0,3) in a cellular automata model of a chemical system, it can

be the representation of the interaction between a molecule A (1) and a molecule

B (2), that react in order to produce a molecule C (2) and leaving a free space (0)

where molecule A has been present. As simple as this approach can be, it is capable

of reproducing some expected behaviors of simple chemical systems in a qualitative

and quantitative way [18]. Of course, more complicated models can be applied to

more complicated systems and/or in order to study specific phenomena.

The developing and implementation of parallel software programs is a natural

extension of cellular automata models due to their parallel nature. This allows the

study of the interaction between a huge number of entities, increase the speed of

a particular run or perform a large number of simulations in order to obtain the

statistical behavior of the simulated system. The parallel update of the systems

also means that the simulated entities evolve at the same time. Although it can

appear unnatural or tricky, generally it is not a real problem if the proper rule is

implemented and the timestep of the model represents a sufficiently small time in-

terval in the scale of interest of the simulated system.
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The spatially discrete nature of cellular automata also helps to represent individ-

ual entities in evolutionary models with spatial structure. This is important because

real systems are discrete; they are composed of individual atoms, molecules, virus,

cells, sand grains, trees, animals, humans and so on, whose interactions depend on

their relative position. Local interaction and discrete nature are some of the greatest

important features of cellular automata, because these characteristics make them,

as Toffoli said, “dynamical systems that play in discrete mathematics a role compa-

rable to that of partial differential equations in the mathematics of the continuum.”

It is possible to take advantage of this capability over partial differential equations

in two different ways: the first by reproducing the behavior described by partial

differential equations by simulating them; and the second, by means of the direct

insight and simulation of the system when the solution of the equations is extremely

difficult or does not represent the behavior of the system in a feasible fashion. The

last feature is the most important because, usually, partial differential equations are

based on local mean field approximations, meaning well local mixing of constituents

of the systems, neglecting correlation terms from local interactions and their discrete

nature. In fact, it is possible that there is a lack of schemes in regard of discrete

interactions, probabilistic fluctuations and spatial inhomogeneities.

All the features presented above make cellular automata a valuable modeling

paradigm for molecular systems; where the dynamical systems can be composed by

large numbers of components interacting in a local (or not so local) fashion. Such

components in simulations of materials science systems can be atoms, clusters of

atoms, little molecules, proteins or abstract objects representing a family of them.

Important fields where microstructure-based cellular automata have been success-

fully used in the materials sciences are primary static recrystallization and recovery,

formation of dendritic grain structures in solidification processes and related nucle-

ation and coarsening phenomena [31]. Some other examples of cellular automata

applied to materials science are: excitable media [17, 38], formation of patterns in

chemical systems [3], laser dynamics [32], gravity-driven granular flows [33], first-

order chemical reactions [2] and more.
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Maybe Raabe has expressed one of the most positive and expert-based opinions

about the future and importance of cellular automata and related techniques in ma-

terials science: “Although the Navier-Stokes framework serves as a long-established

basis for predicting fluid behavior, it has still not been possible to resolve some

basic questions on the fields of modern materials science and engineering with it...

Prominent examples where such limitations occur are the simulation of nano- and

microflows in filters, foams, microreactors or otherwise confined geometries;... liq-

uid crystal processing; nanoscale process technology;... liquid phase separation...

to name only a few... Lattice gas cellular automata and their more mature (non-

Boolean) successors, the Lattice Boltzmann automaton techniques,... seem to be

predestined to tackle some of these challenges on the domain of materials-related

computational fluid dynamics in a more efficient way than the conventional Navier-

Stokes approach” [35].

In this work, several applications of cellular automata to the simulation of molec-

ular systems will be presented. Between the broad range of possibilities, we have

selected systems where diffusion of reactive elements or signals are important charac-

teristics. Modeling of diffusion of reactive elements could help to study and explain

chemical processes where spatial structure and inhomogeneities are important. As a

special case of these systems, it is presented a model of self-assembly. Understand-

ing self-assembly is a fundamental step in order to raise Nanotechnology to the level

that is needed for really being the technological revolution that all of us are waiting.

1.2.2 Reaction and diffusion in Micro-Scale Systems

Chemical surface reactions produce a large number of different spatio-temporal

structures such as oscillations, traveling waves, spiral Turing patterns, etc. It is

usual to study the behavior of such structures using a set of s coupled reaction-
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diffusion partial differential equations, that have the general structure:

∂xi(r, t)

∂t
= Di∇

2xi(r, t) + fi(x1,x2,x3, · · · ,xs) , (1.1)

where s is the number of different chemical species, the first part of the right hand

side represents the diffusion and the last part represents the interaction between the

components. In his seminal paper of 1952 [4], A. Turing showed how the sponta-

neous formation of spatial patterns is possible from almost homogeneous structures

where the behavior is dictated by this type of equation and some conditions are

satisfied.

Reaction-diffusion equations have been successfully applied to pattern formation

and chemical reactions on surfaces. Besides, the majority of physical, chemical, bio-

logical and sociological processes can be described in terms of propagating fronts and

the most types of propagating fronts can be analyzed in terms of reaction-diffusion

systems [37]. However, as has been pointed out above, partial differential equations

usually neglect correlation terms from local interactions and discrete nature of the

constituents of the system. Therefore, it is a good idea to use cellular automata as a

complementary tool, in order to study the effect that discreteness and probabilistic

fluctuations have on the behavior of the systems.

However, how good are cellular automata models for this kind of systems? They

are good, Adamantzky has stated: “There is little doubt that the most useful way

to simulate many excitable media is to use a cellular automata approach” [38]; and

“Cellular automata models of reaction-diffusion media exhibit the same spectrum of

coherent patterns as numerical simulations of reaction-diffusion equations: traveling

waves, spiral waves, stable spots, strips and labyrinths.” [37]. Interesting work on

cellular automata and reactive and diffusive systems has been made by Weimar [2].

Thus, it has been shown that reaction and diffusion are fundamental for model-

ing a broad range of chemical and biological systems and that cellular automata are



1.2. Motivation 11

a useful and reliable complementary method. Mainly, when spatio-temporal struc-

tures, probabilistic fluctuations and spatial inhomogeneities are important.

One of the most important issues in current science where spatio-temporal struc-

tures, probabilistic fluctuations and spatial inhomogeneities are important is molec-

ular self-assembly. Molecular self-assembly is defined as a process in which molecules

(or parts of molecules) spontaneously form ordered aggregates without direct human

intervention; the interactions are usually noncovalent [40]. Self-assembly is recurrent

in many fields of science such as Chemistry, Biology and Materials Sciences. The

formation of crystals, monolayers, micelles and the replication of DNA helix are only

a few examples.

The main characteristics of self-assembly are:

• Components: Entities complementary in shape and physico-chemical proper-

ties. They go from a disordered state to another of larger order.

• Interactions: Generally weak and noncovalent as van der Waals and Coulomb

interactions. Attractive and repulsive interactions are almost in balance.

• Reversibility (or Adjustability): Balance between attractive and repulsive

forces allow to correct errors through the formation of ordered structures.

• Environment: Diffusion of components requires a proper medium.

• Mass transport and agitation: Energy required in order to make components

travel and meet.

Understanding self-assembly is a fundamental goal in current science for several

reasons. The first of them is that it is one of the main tools used by living organ-

isms in order to be alive. We can see self-assembly in the formation of micelles,

virus capsides, cellular walls, DNA copying, etc. The second is that controlling

self-assembly could be the only way to develop and produce new nano-devices and

nano-materials in a cheap way and industrial quantities [41]. It is specially impor-

tant for the computer industry because there the focus is on getting smaller devices
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in a denser fashion.

Components in self-assembly can be described as discrete entities that interact

in a local fashion, as reactive agents that respond to their environment, as dictated

by their physical composition and properties [42]. This response can consist in ag-

gregating to other components or in changing their internal state in response to the

state of the neighboring components (conformational switching) [15]. These prop-

erties make self-assembly systems good candidates for being studied and modeled

through cellular automata methods.

1.3 Aims of the work

• To study, model, and simulate chemical and biological systems where spatio-

temporal structures, probabilistic fluctuations and/or spatial inhomogeneities

can be important for their behavior.

• To study, model, and simulate self-assembly systems, trying to find archetyp-

ical self-assembly systems, by means of the abstract representation of compo-

nents and their internal states and interactions.

• To reinforce the use of cellular automata by performing multidisciplinary stud-

ies and modeling of the systems presented above, with cross-over of Biology,

Physics, Chemistry and Mathematics.
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Chapter 2

Cellular automata modeling

2.1 Definitions and considerations

2.1.1 Cellular automata

The main properties that define a cellular automaton have been already briefly de-

scribed in the first chapter. Now, we present a formal definition of cellular automata,

taken from [20]:

In general, a cellular automaton requires:

• a regular lattice of cells covering a portion of a d-dimensional space;

• a set Φ(~r, t) = {Φ1(~r, t),Φ2(~r, t), ...,Φm(~r, t)} of Boolean variables at-

tached to each site ~r of the lattice and giving the local state of each cell at

the time t = 0, 1, 2, ...;

• a rule R = {R1, R2, ...Rm} which specifies the time evolution of the states

Φ(~r, t) in the following way

Φj(~r, t+1) = Rj(Φ(~r, t),Φ(~r+~δ1, t),Φ(~r+~δ2, t), ...,Φ(~r+~δq, t)) (2.1)

where ~r + ~δk, k = 1, 2, ..., q designates the cells belonging to a given neigh-

borhood of cell ~r.

16
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The regular lattice can be made up of squares or hexagons, as shown in figure 2.1

for a two dimensional grid; or any other geometric form able to cover the selected

d-dimensional space, such as cubes, or any other Wigner-Seitz kind of cells resulting

from a regular lattice of points. In figure 2.1 it is also shown how different number

of states can be used. The type of the grid is selected in order to get the best rep-

resentation of the system; for instance, a squared grid would be used for magnetic

simulations, and a hexagonal grid for simulating rounded cells on a surface. How-

ever, it is important preventing, as well as avoiding, to introduce undesirable side

effects due to the specific grid selection.

Figure 2.1: Cellular automata grids and cell’s states. (a) 1-dimensional grid, 2
states, square cells. (b) 2-dimensional grid, 3 states, square cells. (c) 2-dimensional
grid, hexagonal cells, 4 states.

The definition given above, implies that the rule R is applied in the same way

and at the same time to all cells in the grid. In figure 2.2 it is shown Wolfram’s

rule number 90 and how it is applied. However, if any kind of inhomogeneities are
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desired in the application of the rule, it is possible to obtain them by increasing the

number of states and using them as markers. Also in the definition, the new state

at time t+ 1 is only a function of the previous state at time t. It is possible and in

some cases convenient to consider further past states. It is again possible without

affecting the definition given above by modifying the set of possible states that a

cell can have and coding in them the past states of the cell. The initial conditions at

time t = 0 should be determined by the specific purposes of particular simulations.

Figure 2.2: Cellular automata rule application. The rule is defined by the action
that will be taken in each of the eight possible states of the neighborhood. Four
time-steps and three applications of the rule are shown.

2.1.2 Neighborhood and boundary conditions

The neighborhood is the set of neighboring cells, considered by the rule, which state

will affect the update of a cell. The neighborhood is the same for all cells. One of

the most important considerations when designing a cellular automaton model is
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to choose the neighborhood that will be regarded by the application of the rule. If

the size of the neighborhood is too large, the complexity of the rule could become

extreme. If the size is too small, it is possible that some properties will be not ob-

tained from the model. The size is determined by the kind and nature of the system

modeled but usually it is enough to consider only the first and/or second neighbors.

For 2-dimensional cellular automata and square grids, two neighborhoods are fre-

quently considered: the von Neumann neighborhood, which consists of the central

cell (the one which is to be updated) and its four closest neighbors; and the Moore

neighborhood, that contains, in addition, the second nearest neighbors (the diagonal

neighbors). Both are depicted in figure 2.3. The selection of neighborhood can be

made also in order to reduce computational effort (as the Margolous neighborhood,

see [20]) or to increase symmetry.

Figure 2.3: (a) Von Neumann neighborhood. (b) Moore neighborhood.
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The cellular automata are defined as infinite lattices. Nevertheless, in computer

models it is only possible to simulate finite portions of them. Therefore, it is im-

portant to select the most proper boundary conditions for the specific system that

is being simulated in order to minimize and obtain appropriate finite size effects.

One option is to define periodic boundaries, that is to connect the extremes of the

grid; for instance, in a square grid it would be to connect the borders, right with left

and top with bottom. Another option is to have fixed boundaries, that means that

boundary cells have a fixed value, a value that does not change. It can represent

walls in a container. The same method can be used if it is desired to simulate walls

or restrictions inside the container. One last option is to use reflective boundaries,

that means that the values in the boundary cells are copied by their “neighboring

cells” outside the simulated range (virtual cells), and apply the rule to the boundary

cells considering these values.

It is also possible to assign active properties to boundary cells in order to favor

joining, breaking, and reacting between simulated ingredients [18]. Or to code the

information directly in the state of the site in order to obtain a different behavior or

applying a different rule. As expected, the nature of the simulation will determine

the type of boundary conditions that should be used in each case.

2.1.3 The rule: options for cellular automata modeling

Cellular automata that follow the definition given at the beginning of the chapter

are called deterministic, because their behavior is completely determined by the

rule, the boundary conditions and the initial conditions. Their evolution is as de-

terministic as the most of models in nature, such as those described by coupled sets

of ordinary partial differential equations. However, there are systems where a prob-

abilistic approach can be more appropriated: chemical reactants and their rates of

conversion, bacterial growth, brownian motion, etc.

In order to insert an amount of randomness in cellular automata models, the
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outcome of the rule is selected stochastically between several options. For each con-

figuration of the neighborhood there are several outcomes, and to each of them it is

assigned a probability of being selected. This kind of cellular automata are called

probabilistic (cellular automata). They are a useful generalization because they al-

low to adjust some parameters in a continuous fashion despite the discrete nature

of cellular automata. Besides, using such stochastic scheme gives as a result that

each run is an independent “experiment” and statistical analysis can be performed.

Probabilistic cellular automata can be the most important extension of cellular au-

tomata. However, it is possible to think of other kinds of cellular automata, as the

asynchronous update of the cells, which can be achieved by the stochastic selection

of the cell that would be updated.

It is a mistake to think that any numerical scheme with discrete space and time is

a cellular automaton. Coupled maps are not cellular automata, for instance. Most

important, part of the richness of cellular automata comes from the microscopic

and direct description of the cell interactions that can be achieved with the rule.

This is not possible by the simple discretization of partial differential equations.

Nevertheless, it is important to underline that cellular automata approach is not a

rigid framework, and it is more important to obtain an effective numerical model

that conserve limitations. “It is rather a philosophy of modeling which should be

considered with some pragmatism” [20].

2.2 A simple model: Directed percolation

Directed percolation is a well studied problem and can be described as follows: imag-

ine a square lattice as shown in figure 2.4, any node can be present with a probability

p or absent with probability (1−p). Similarly, any bond may be present with prob-

ability q or absent with probability (1−q). It is assumed that only one site is “wet”

at time t = 0. The conduction of water is made from one wet node to another ex-

isting node below it if they are connected by an existing bond. Then, each level can
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be related with one timestep. Given the values of p and q (between 0 and 1), it

is interesting to ask for the probability of finding wet sites at (time) level t and for

the typical size of the wet cluster. It is found that there are critical values (pc, qc),

called the percolation thresholds, where a “geometrical phase transition” occurs and

the wet cluster spans the whole system.

Figure 2.4: Directed percolation problem in two dimensions and square lattice.
The dots represent the nodes and the lines represent the bonds. The vertical axis
corresponds to lattice level (or time). Figure from [20]

This problem can be studied by means of a probabilistic cellular automaton. Con-

sider a 1-dimensional cellular automata with periodic boundary conditions. Each

site is associated with a variable ψi(t) = 0 or 1. At odd (even) times, odd (even)

indexed sites change their state according to a probabilistic rule, and even (odd)

indexed sites stay in the same state. The evolution of the automata can be repre-

sented by a diagram as figure 2.4. The rule is defined by conditional probabilities of

the kind P (ψi(t+ 1)|ψi−1(t)ψi+1(t)), that is, the new state of a cell depends on
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the state of its two neighbors, but it is independent of the self state. Such equations

are:

P (1|00) = 0, y ≡ P (1|11) = pq, z ≡ P (1|01) = P (1|10) = pq(2−q),
(2.2)

where it is considered that for the new time step it is the same if a neighboring node

“does not exist” in the last step or if it does not has water. The parameter space

is presented in figure 2.5. This simple cellular automaton leads to a behavior with

complex structure and reproduces the behavior expected for directed percolation

and the geometrical phase transition.

Figure 2.5: Parameter space y = pq; z = pq(2−q) defining the cellular automata
rule for generalized directed percolation. The dashed and dotted lines correspond
to the bond and site percolation, respectively. The system percolates to the right of
the (solid) transition line. Figure from [20]
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2.3 Lattice gas CA Models

2.3.1 The HPP rule

In the 1970’s Hardy, Pomeau and de Pazzis developed the HPP lattice gas model [4].

It was recognized that this model was in fact a cellular automata, and was termed

Lattice Gas Automata (LGA). The purpose of this model is to simulate a gas of

particles moving and colliding in a 2-dimensional square lattice, in such a way that

momentum and particle number are conserved locally, giving real microscopic fea-

tures to the model. The HPP rule is the first of an important class of cellular

automata models, that are used for the study of hydrodynamic systems.

Since the HPP model relies on a 2-dimensional square lattice, particles can move

along the main four symmetry directions of the grid, as shown in figure 2.6. How-

ever, at most one particle can be in a given direction with a given velocity in a cell,

resulting in an exclusion principle. The position (or the absence) of a particle in a

cell is represented by the state of that cell. It is done using four bits; for instance,

if at iteration t site ~r has the following state s(~r, t) = (1011), it means that three

particles are entering the site along direction 1, 3 and 4, respectively.

The evolution of this model usually is split in two stages: collision and prop-

agation. The rule of collision specify the way the particles entering in the same

node interact. The collision between particles must conserve particle number and

momentum. This can be achieved by setting the following rule (using the bit repre-

sentation):

(1010) → (0101) (0101) → (1010) (2.3)

all other possible configurations being unchanged (see figure 2.7). This rule pro-

motes the equal distribution of energy in all the degrees of freedom, at the same

time the total momentum is conserved. The other phase is called propagation, and

consists in the simple motion of all particles towards the next node according to

their individual direction of motion. The exclusion principle will be conserved by
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Figure 2.6: Illustration of the HPP model. Arrows represent the presence and
direction of movement of the particles. Nodes in the grid are the points of interaction.
Figure from [3].

these steps once it was provided at t = 0.

Another property of real microscopic nature that is obtained by the HPP model

is invariance under time reversal. Each configuration comes from exactly one config-

uration and therefore each configuration goes to exactly one specific configuration.

Then, the past history of one configuration of the automaton can be completely

determined. Besides, no numerical errors are introduced due to the discrete nature

of the model.

2.3.2 The FHP model

In 1986, U. Frisch, B. Hasslacher and Y. Pomeau developed a similar model, now

called FHP [16]. The main difference is that, for isotropy reasons, an hexagonal grid

is used. This leads to six directions and at most six particles per node. Due to the

improve of the symmetry, this model reproduces, in some appropriate limits, the

behavior prescribed by the Navier-Stokes equation of hydrodynamics.
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Figure 2.7: Collision in the HPP Model. Momentum and particle number are con-
served by collision in the nodes. Figure from [20].

It is known that the Navier-Stokes equations of hydrodynamics are a result of

the local conservation of mass and momentum in a fluid. In addition, there is also

implicitly considered some (spherical) symmetries. Therefore, the FHP model in-

cludes all the ingredients needed in order to reproduce the behavior predicted by

the Navier-Stokes equation. An interesting point is that the HPP model can not

reproduce this behavior and the seemingly slight difference between four and six

directions is enough to achieve it.

In order to conserve the particle number and momentum in collisions in the FHP

model one has to determine the result for the collision of some configurations of two

or three particles. When exactly two particles enter the same site with opposite

velocities, both of them are deflected by 60 degrees as seen in figure 2.8. As two

outputs are possible, a random number can be generated in order to choose the
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deflection. It is also possible to assign an extra bit to the site, in such a way that

a clockwise change is made when the bit has the value 0, and a counter clockwise

change is made in the other case. This bit can change each time step in order to

have the same rate for each possibility. In addition, this last choice has the ad-

vantage of being time-reversible, which is a fundamental symmetry of microscopic

physics. When exactly three particles collide with an angle of 120 degrees between

each other, then the particles are bounced back as seen in figure 2.8. In all other

cases, the particles are considered as transparent to each other (no collision) in order

to conserve momentum. The propagation step is as in the HPP model, each particle

moves in the direction of its movement towards the next node.

Figure 2.8: Types of collisions in the FHP model. Figure from [18]

Although LGAs show difficulties in simulating high Reynolds number flows, they

have been successfully applied in complex situations where traditional computer

techniques are not already applicable, such as [20]: Flows in porous media, immisci-

ble flows and instabilities, spreading of a liquid droplet and wetting phenomena, mi-

croemulsion erosion and transport problems. They also have been successfully used

in the simulations of pattern formation and biological systems as shown by Deutsch

and Dormann [19]. In addition, LGA methods can be a proper tool for studying

physical systems which are not described by appropriate macroscopic equations, e.
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g.: granular media, some types of rheological media, complex flows and microscopic

flows, and so on [18].

2.4 Why CA and LGCA Simulations?

2.4.1 Modeling Nature

“It is the role, and the privilege, of a scientist to study Nature and to seek to unlock

her secrets.” [18]

When scientists try to understand, explain or simply see how nature works, they

divide what they are studying in systems, identifiable sections of the world with

form and/or function recognizable through time. These systems can be also made

up by parts, with their own form and function, but interacting between them in

such a way that they look integrated in a whole.

In order to describe and understand what is happening in the system, scientists

create hypotheses, theories and models. Hypotheses are guessings about what is

happening in the system; theories are formal theoretical explanations of what is

happening in the system and are constructed, improved or wiped out from the test-

ing of hypotheses and analysis of models derived from them. Finally, models are

general constructions in which the parts and interactions of the system are described

and identified.

A model is a simplification of the system itself. It must contain the most impor-

tant features of the system in order to reproduce the behavior that is being studied,

but trying to avoid the features that are not important. The models must capture

the essence of the system behavior without becoming too complicated. If the model

does not reproduce the behavior of the real system, it means that some hypothe-

ses are wrong, that some important feature was not included, or that the theory

that supports the model must be corrected (assuming that the model was conceived
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without errors).

The scientific importance of models resides in giving us a tool for testing our

knowledge and ideas. Besides, if the model has been successful in reproducing re-

sults consistently with reality, they can be used for studying related systems, and

even to found and/or predict new phenomena in nature. This makes a virtuous

cycle between hypotheses, theories and models.

Most models of physical systems take the form of mathematical relationships,

coupled equations that describe rates of change, interactions between components,

forces, fields, etc. Such mathematical approach has been extremely successful in

representing nature in all fields of knowledge, becoming the most popular and pow-

erful method for formalizing science. However, sometimes the exact solutions of

the equations that describe a system are too difficult to obtain in an exact analytic

way. In such cases, the value of the set of equations is diminished because they are

not anymore useful. Nevertheless, approximations of such equations are possible,

and the study of the evolution of a system can be made by means of computational

algorithms and models.

Over the past two decades there has been a really huge growth in the creation

and use of computer models for natural phenomena. Molecular dynamics, Monte-

Carlo methods and magnetic Ising type systems are only several examples of the

techniques and systems that are typically studied by means of computer simulations.

Such approach allows the study of systems under conditions that would be extremely

difficult in real experiments: controlled parameters, special forms or structures, ho-

mogeneity of components, and so on. Computer simulations also permits to easily

study the effect of changing only one parameter, adding or deleting only one feature

of the model or to observe how the model could behave at scales that are not possi-

ble for real experiments as can be femtoseconds, nanometers, or individual behavior

of atoms.
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2.4.2 Cellular automata as a modeling tool

Cellular automata are an idealization of a physical, chemical or biological system,

where the interactions between constituents are coded or embedded in the rule that

determines the evolution of the system. As mentioned and shown in chapter one:

“cellular automata allow to simulate, in a straight and physically meaningful way,

discrete entities that interact locally in a parallel fashion”, making them a proper

method for simulating molecular systems. However, they have properties that make

them an efficient tool for simulating many other kinds of systems.

All models are simplifications, and cellular automata are simple tools that have

all the elements for representing almost any kind of systems with spatial structure.

There are only cells in a grid, states of the cells and a local rule for changing the

states. Cells can represent any scale of space depending on the rule. States can rep-

resent any kind of things: ants, cars, flowers, people, atoms, molecules, grains, etc.

The rule can represent a myriad of different interactions between the components.

Then, cellular automata have the properties of simplicity of concept and flexibil-

ity, although specific implementations can be as complex as in any other modeling

paradigm.

The parallel scheme of cellular automata leads in a natural way to the develop-

ment of parallel software, resulting in comparatively fast run-time implementations.

Even if high performance computing is not used, the implementations can be faster

than other approaches due to the use of states represented by integer numbers. This

opens the option of performing larger computational experiments, a large number

of them, using a large number of interacting components, scan how change in pa-

rameters affect behavior or performing studies using rather modest computational

resources. Then, statistical analysis are allowed and favored as well as the search

and study of particular cases.

In addition, cellular automata are spatially extended systems. Such kind of

tools are very important for studying and understanding systems where non-trivial



2.4. Why CA and LGCA Simulations? 31

collective behavior arises. The latter effect can be understood as an unexpected

behavior of some macroscopic quantities. A typical example is the periodic or quasi-

periodic behavior of the total density (total sum of state over the whole grid), in

complete disagreement with equilibrium statistical mechanics or mean-field calcula-

tions. Besides, as mentioned previously, the spatial nature of cellular automata is

an important feature for simulating systems where discrete interactions, probabilis-

tic fluctuations and spatial inhomogeneities are fundamental, even when collective

behavior is “trivial”.

On the other hand, sometimes the collective behavior depends in a non significant

way on particular configurations of local behavior or specific kind of interactions.

Navier-Stokes equations are the result of conservation of momentum and mass, with-

out considering the specific potential or interaction between particles. The particular

form of interactions affect the coefficients, but not the algebraic structure. This leads

us to consider several levels or scales of reality in physical systems. In those cases,

cellular automata also provide a useful framework, by means of the representation of

the microscopic interactions, that results in the correct physics where macroscopic

phenomena are being observed. This capability of cellular automata and its use are

very close in spirit to Ising models, where the fundamental features are retained in

the model in the simplified form of the effective spin interaction, which is of quan-

tum nature but is represented by a simple numerical interaction. However, this is

enough to produce magnetic domains and phase transitions, that are macroscopic

features.

In fact, the cellular automata approach is especially appropriate when the specific

nature of interactions at the microscopic level are not relevant at the macroscopic

scale of observation and the simplification of real interactions is a great advantage.

This is a common case, due to the fact that the complexity usually comes from

collective behavior rather than the specific form of microscopic interactions. How-

ever, the physical interpretation of the simplified interactions must be still clear and

intuitive without being oversimplified, as Einstein said:
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“Everything should be made as simple as possible but not simpler”

There are more properties that make cellular automata appropriate for model-

ing, as the capacity to implement different geometries, simulate walls, or the exact

evolution due to their Boolean nature (so no truncation occurs!). Nevertheless, the

important point is that the simulated system must be faithfully represented, without

forgetting that models are for being used and not for being blindly believed. With

this warning, cellular automata models provide a very powerful tool in fundamental

research, real problems, and pedagogical applications.
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Chapter 3

Continuous Stirred Tank Reactor

CA model

3.1 Models in Chemistry

Molecular Dynamics and Monte Carlo methods are among the most wide spread

computational approaches that have been developed for chemical investigations. In

most cases these techniques rely on the classical view of atoms and molecules inter-

acting via “force fields”, that are represented by a set of mathematical equations that

describe the attractions or repulsions between atomic species or groups of atoms,

due to their charges, relative distances, and specific geometrical configurations [1].

More features can be added and the molecular and atomic interactions can be made

more complex in order to achieve better accuracy representing the studied system.

However, these improvements usually imply greater computational effort, so that a

compromise between sophistication and practicality is required.

The molecular dynamics approach is normally based on the numerical solution

of classical equations of motion (Newton, Lagrange or Hamilton), although quan-

tum effects can be taken into account. In the beginning of simulation it is set an

initial configuration of atoms in the space and then it evolves according to the force

fields equations, solved in discrete time steps, usually in the scale of femtoseconds

(10−15s) in order to work on the scale of studied phenomena and keep numerical and

34
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energetic stability. The evolution is followed over a very large number of time steps.

However, the calculations demand a large computational effort, so that the time

spent performing the simulation is orders of magnitude larger than the simulated

time, that is usually on the scale of few tens of nanoseconds due this computational

restriction. Therefore, Molecular Dynamics is an appropriate method for studying

many phenomena of chemical and biochemical interest, but it is not convenient for

larger time scales.

The Monte Carlo methods for molecular simulations consider a large number

of possible configurations of the system, that result from moving the chemical con-

stituents by random (but limited) amounts in each step. The configurations are

evaluated according to their energies: those lowering the system’s energy are ac-

cepted, and those raising the energy are “weighted” and proportionately accepted,

according to their potential energies. The weighting is normally proportional to

e−δV/kT , where δV is the potential energy change, k is the Boltzmann constant,

and T is the absolute temperature. In order to calculate thermodynamical and

structural features of the system it is made a statistical analysis from a large and

weighted sample (“ensemble”) of such configurations.

Both, Molecular Dynamics and Monte Carlo approaches, have demonstrated to

be very worthy for the study of chemical systems, giving insight on the behavior

and properties. However, their elaborate models for representing and calculating

interactions, made them excessively demanding on computational effort for many

interesting research level calculations, making necessary the use of supercomputers

or powerful clusters.

An option is the use of different schemes with simplified representations of atomic

and molecular interactions. The option we are interested in is cellular automata

methods. Each cell state can be interpreted as a completely different chemical

species, or perhaps as chemical reactants that only differ in minimal features as

orientation or distance to a catalytic surface. The states and the evolution rule are
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intended as to represent in the most basic way the most important features of the

chemical system that is under study. This simplified kind of schemes can be able of

reproduce the behaviors and phenomena of interest.

The relative simplicity of CA methods allow to play with the basic features of

constituents in such a way that it could be easier to identify which of them are fun-

damental for the studied phenomena. Besides, CA usually need less computational

effort than Molecular Dynamics methods, although rules can be made as complex

as required and so they could be as complex as Molecular Dynamics equations. If

large number of constituents are needed, the CA schemes can be adapted in order

to fit to high performance computation.

Nowadays, there is a significant amount of scientific work on CA as a means to

simulate chemical systems. These schemes are not unified but they apply and create

different approaches in order to better represent the studied system. There are sim-

ulations of simple first order chemical reactions [2], generation of Liesegang patterns

considering moving reactants and nucleated products [3], approaches to chemical

signaling and morphogenesis [19], and studies on reaction-diffusion systems [2], just

to mention a few but significant examples. Therefore, the CA methods are well fit-

ted for the research and representation of many interesting and important chemical

systems.

3.2 The CA model for CSTR

In this chapter, the classical dynamical systems model of continuous stirred tank re-

actors (CSTR) in which a first order chemical reaction takes place is reformulated in

terms of the stochastic cellular automata procedure developed in the works of Sey-

borg [2] and Neuforth [6], which is extended by including the feed flow of chemical

reactants. We show that this cellular automata model is able to simulate the dilution

rate and the mixing process in the CSTR, as well as the details of the heat removal
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due to the jacket. It is discussed its reliability as a model, its advantages over ordi-

nary differential equation for performing studies when spatial inhomogeneities are

present and its use as a discrete method for modeling nanoreactors. The cellular

automata approach is expected to be of considerable applicability at any industrial

scales and especially for any type of microchemical systems.

The work in this section has been published in the Korean Journal of Chemi-

cal Engineering, under the title “Cellular Automata Modeling of Continuous Stirred

Tank Reactors”. This work was developed in collaboration with Ph.D. Vrani Ibarra-

Junquera and Ph.D Haret Rosu [7].

3.2.1 Introduction

A chemical reactor could be any vessel containing chemical reactions. In general, a

reactor is designed such as to maximize the yield of some particular products while

requiring the least amount of money to purchase and operate. Normal operating ex-

penses include energy input, energy removal, raw material costs, labor, etc. Energy

changes can occur in the form of heating or cooling, or agitation. The latter is quite

important because an appropriate mixing has a large influence on the yield. There-

fore, the design and operation of mixing devices often determines the profitability

of the whole plant.

In particular, in the widely developed continuous stirred tank reactors (CSTR)

one or more fluid reagents are introduced into a tank equipped with an impeller

while the reactor effluent is removed [8]. The impeller stirs the reagents to ensure

proper mixing. Classical CSTR dynamical models, based on coupled deterministic

ordinary differential equations (ODEs), are the usual approach to chemical systems

at the macroscopic scale. It has been demonstrated to have considerable usefulness

but it should be mentioned that they are based on the common assumption that

spatial inhomogeneities may be neglected. Thus ODEs are a mean field approach

and the analytical solutions of the ordinary differential equations (ODEs) provide
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an accurate model only in this case. When the system is not homogeneous, ap-

plication of the above assumption often yields a model that does not accurately

represent the system. This is the case, for example, of CSTRs with a highly viscous

medium where spatial heterogeneities exist in species concentrations, temperature,

etc. Of course, the application of partial differential equations (PDEs) to model spa-

tial inhomogeneities such as diffusion and hydrodynamic turbulence may produce

accurate models. However, their solution requires advanced numerical techniques

such as finite element methods. Moreover, the numerical techniques for solving the

PDEs could be computationally expensive and do not account for localized stochas-

tic phenomena. In particular, chemical systems are discrete from the microstructure

till the molecular level and statistical fluctuations in concentration and temperature

occur at these local scales. Cellular automata are an attractive alternative to PDEs

to model complex systems with inhomogeneities of this type. A cellular automata

lattice is comprised of discrete cells whose states are functions of the previous state

of the cell and its neighbors. Rules are used to update each cell by scanning the

value of the cells in the neighborhood. Seyborg [2] and Neuforth [6] have shown that

stochastic cellular automata models can be successfully applied to simulate first or-

der chemical reactions. In their papers, they worked on a squared lattice of cells,

each of them having a chemical reactant. The reactions are performed by considering

a probability of change, from reactant A to product B, proportional to the kinetics

constant that defines the chemical equation. However, this type of calculation does

not apply directly to the CSTR case, where a chemical feed flow is present. In this

chapter, it is extended the stochastic cellular automata (CA) model to CSTRs by

simulating the feed flow flux by means of a random selection of a subset of cells to

which the flux conditions with respect to chemical concentration and temperature

are imposed. We would like to remark that mixing in a stirred tank is complicated

and not well described despite the extensive usage of dimensionless numbers and

models based on ODEs [9]. Therefore, more accurate models are essential for devel-

oping and testing control strategies or even to explore new reactor geometries.
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3.2.2 The ODE-based model of jacketed CSTR

As already mentioned, we consider an ideal jacketed CSTR where the following

exothermic and irreversible first-order reaction is taking place:

A −→ B ,

The CSTR modeling equations in dimensionless form are the following [10]

dX1

d τ
= −φX1 k(X2) + q (X1f

−X1) (3.1)

dX2

d τ
= β φX1 k(X2) − (q + δ)X2 + δ X3 + q X2f

(3.2)

dX2

d τ
=

qc

δ1

(
X3f

−X3

)
+

δ

δ1 δ2
(X2 −X3) , (3.3)

where X1, X2, and X3 are the dimensionless concentration of reactant A, tem-

perature, and cooling jacket temperature, respectively. We note that it is possible

to use the dimensionless coolant flow rate, qc, to manipulate X2.

The relationships between the dimensionless parameters and variables and the

physical variables are the following:

k(X2) = exp

(
X2

1 +X2 γ−1

)

, γ =
E

RTf0

, X3 =
Tc − Tf0

Tf0

γ, X2 =
T − Tf0

Tf0

γ

β =
(−∆H) Cf

ρCptf0

, δ =
U A

ρ Cp Q0

, φ =
V

Q0

k0 e
−r, X1 =

C

Cf0

, X1f
=
Cf

Cf0

,

X2f
=
Tf − Tf0

Tf0

γ, δ1 =
Vc

C
, τ =

Q0

V
t, X3f

=
Tcf

− Tf0

Tf0

γ, δ2 =
ρc Cpc

ρ Cp

where the meaning and the nominal values of these parameters are given in Table

1. In the rest of the chapter we shall use the solution of this ODE model as the

theoretical case with which the CA simulations will be compared.
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Figure 3.1: Schematic representation of the jacketed CSTR.

3.2.3 Stochastic CA model for Jacketed CSTR

The process simulated in this work is the exothermic reaction that converts a chemi-

cal A into a product B in a jacketed CSTR. Our model is composed of three squared

lattices of cells, all of the same size. The first lattice that we call the chemical lattice

is for chemicals A and B and provides the chemical distribution in the tank reactor.

This distribution is given as follows: in each cell there is only one unit of reactant

A or one unit of product B (not necessary representing a single molecule), under

the condition that all cells are occupied. The second lattice is the tank temperature

lattice. It contains the temperatures Tij in real-numbered values. The chemical

lattice and the temperature lattice are of the same dimension and their cells are in

one-to-one correspondence. The third lattice represents the coolant system. This

lattice is of the same dimension as the previous ones and therefore each temperature

tank cell is in “contact” with a coolant jacket cell.

In our model the first process in each time step is the irreversible conversion of
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Table 3.1: Parameters of the model
Symbol Meaning Value

(arb. units)

C Reactor composition 0.001
Cf Feed composition 1.0
q Dimensionless reactor feed flow rate 1.0
qc Dimensionless coolant flow rate 1.65
qcs Steady-state value of Q 1.0
T Reactor temperature 1.0
Tc Coolant temperature 1.0
UA Heat transfer coefficient times the heat transfer area 1.0
V Reactor volume 1.0
Vc Cooling jacket volume 1.0
X1f Dimensionless feed concentration 1.0
X2f Dimensionless feed temperature 0.0
X3f Dimensionless coolant feed temperature 1.0
β Dimensionless heat of reaction 8.0
δ1 Dimensionless volume ratio 0.1
δ2 Dimensionless density multiplied by the heat capacity of coolant 1.0
φ Hill’s threshold parameter 0.072
γ Dimensionless activation energy 20.0
ρcCpc Density multiplied by the heat capacity of coolant 1.0
τ Dimensionless time −−

chemical A into product B. The conversion rate is determined by φk(X2) as in [10],

where X2 is the average temperature of the tank temperature lattice. This first or-

der kinetics “constant” is multiplied by the time step in order to get the proportion

of the reactant A that is expected to be converted into product B in each evolution

step. If the time step is small enough this number could be also considered as the

probability that a molecule of chemical A is converted in product B. Such proportion

is compared with a randomly generated number, one different random number for

each cell in the lattice containing reactant A. If the random number is less than the

proportion, the reactant A is changed for product B in the cell. Since the reaction

is exothermic, the temperature value in the temperature array is increased by β

(according to Eq. (2)) in the corresponding cell.

The second simulated process is the tank temperature diffusion that can be con-
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sidered as an energy diffusion. It can be performed by means of finite differences,

but in order to obtain an almost ODE-independent model we have implemented a

moving average method, where the value of the temperature in a cell at the next

time step is the average temperature of its neighborhood. This procedure gives sim-

ilar results to those of finite differences, as shown by Weimar for reaction-diffusion

systems simulated by cellular automata [11] (see Appendix A). We used a square

neighborhood formed by (2R+ 1)2 cells, where R is the number of steps that we

have to walk from the center of the cell in order to reach the most far horizontal

(vertical) cell in the neighborhood.

The third simulated process is the tank feed flow. We have simulated the feed

flow rate q in a stochastic way. In order to get an approximation to the proportion

of the tank that must be replaced by the incoming flow, q is multiplied by the time

step and by the total number of cells in the lattice. This gives us a real number

x. Then, following Weimar [11], we used a probabilistic minimal noise rule, i.e., we

define the probability p = x− [x] (where [x] is the maximal integer number x) in

order to decide if [x] or [x] + 1 cells will be replaced by the flow. We choose [x]

with probability 1 − p and [x] + 1 with probability p. This method conserves the

proportion x in a statistical way. Subsequently, a cell is selected in a random way,

by means of two random numbers which are used to select a row and a column, in

such a way that all cells has the same probability of being selected. If the cell has

been selected in the same time step, a new selection is made. This is repeated until

we have reached the number of cells that must be replaced. Finally, the selected

cells are changed in the temperature lattice by the feed flow temperature X2f , and

in the reactive lattice it is put a unit of reactant A with probability X1f , that rep-

resent the concentration of chemical A in the feed flow. In the simulations presented

in this work we used X1f = 1. This method of flow simulation could be improved

in several ways, in order to simulate different tank geometries or for showing the

flow direction. However, in this work we want only to show that the CA method

could fit the CSTR behavior in a very good approximation, with the advantage of

spatial analysis.
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The fourth simulated process is the energy interchange between the tank and

the jacket. This has been done by directly calculating the energy/temperature inter-

change between each tank temperature cell and its corresponding jacket temperature

cell. This interchange is dictated by the difference between the two temperatures

and it is weighted by δ, δ1, and δ2 as in Eqs. (1) and (2).

The fifth and the sixth simulated processes are the coolant flow and the coolant

temperature diffusion, respectively. Both of them are performed in a similar way as

for the concentration and temperature tank.

3.2.4 Simulations

In this section we first present the comparison between the curves obtained by differ-

ential equations and those obtained from the implemented cellular automata model

(see 3.2). It is clear that cellular automata simulations resemble with excellent

agreement the values for the concentration of chemical A, the tank temperature and

the jacket temperature at all times. Using a time step of 0.001 it is shown that

the curves coincide at the initial time, transient time and for stable state. We have

found that we can maintain this remarkable fitness by properly adjusting the time

step to a sufficiently small value.

When a kinetic constant based on the average temperature is used, it is implic-

itly assumed that the mixing in the CSTR is perfect, vanishing any temperature

inhomogeneities. One could ask what could be the change in the tank behavior if

the mixing is almost perfect. It could be studied by using a model that consider

the spatial distribution of temperature. We studied this effect by calculating the

kinetic constant in a local manner by taking the temperature from each cell in the

temperature lattice. The effect for a 1000 x 1000 cells array and a time step of 0.001

is shown in Fig. 3.3. It could be observed that the tank temperature curve for the

perfect mixing and the one for the locally calculated kinetic constant are the same
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Figure 3.2: Comparison between the curves from the differential equations and the
curves obtained from simulations with the CA approach. Initial values are: X1=0.1,
X2=0.1, X3=0.1. For the six curves: 37 points separated by a dimensionless time
of 0.4 were taken from 20000-point simulations with a dimensionless time step of
0.001.

for almost all times. However, they separate during the transient period, leading

to a reduction in the magnitude of the peak and a little delay in its appearance.

The curve was calculated with a tank temperature diffusion process per time step

with a R = 1 neighborhood. If more diffusion steps are used per time step the

curves obtained tend to the theoretical one as is expected. Besides, it could be

also interpreted as the effect of a perfect mixed tank, but with material where each

component tends to maintain its energy.

The ODEs generally represent the characteristics of the global system, where it

has enough number of elements such that the statistical fluctuations are of small

amplitude. However, when the system size and the quantity of elements are dimin-
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Figure 3.3: Comparison between the tank temperature evolution curves for a kinetic
constant based on average temperature and for kinetics constant calculated on the
base of the local temperature. Initial values are: X1=0.1, X2=0.1, X3=0.1.
The array is of 1000 x 1000 cells and the dimensionless time step is of 0.001; one
temperature diffusion step per time step.

ished, the statistical fluctuations could be of increasing importance. In this way,

another advantages of the cellular automata method proposed here is its flexibility

with respect to the reactor size, and its stochastic nature, that allows to study how

much the system could be affected by the initial conditions and by the stochastic

features of the process. We have performed several simulations applying the param-

eters presented above in lattices of very small dimensions, NxN with N less than 20,

in which case we can think of the CA stochastic model as a good description of a

catalytic surface dividing two regions, one carrying the chemical A and the other as a

temperature reservoir. Our model is a simple approach, useful as a first approxima-

tion, in the analysis and study of microreactors or even nanoreactors. We recall that
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the usage of microreactors for in situ and on-demand chemical production is gaining

increasing importance as the field of microreaction engineering has already demon-

strated potential to impact a wide spectrum of chemical, biological, and process

system applications [12]. There are already many successfully developed microre-

actors for chemical applications such as partial oxidation reactions [13], phosgene

synthesis [14], multiphase processing [15], and (bio)chemical detection [16]. Figure

3.4 displays the variability that could be found in CSTR systems at small scales. It

is clear evidence that the statistical fluctuations are a primordial issue at this scale.

In addition, one could notice that the dynamical behavior could be totally different

to the expected behavior of a larger system e.g., 1000 x 1000 cells lattice.

Finally, the study of small systems by direct simulation using stochastic simu-

lations could give us insight in how an open CSTR system could behave when the

statistical fluctuations and the initial configuration are important. In Fig. 3.5 one

can see that the possible behaviors of a system of size 20 x 20 have large deviations

from the average and the theoretical values.

This kind of variability is not provided by pure ODEs (without a stochastic

term). Moreover, the discreteness of the CA procedure adds an important contri-

bution to these differences. Both the stochastic part and the discreteness part are

intrinsic features of small scales. We think that this stochastic CA approach could

be an important simulating tool for this small scale variability and for testing con-

trol strategies in reduced environments. This is due to the fact that CA approaches

could be seen as an intermediate step between the ODEs models and the specific

experimental situation.

3.2.5 Concluding Remarks

A cellular automata approach for the CSTR with cooling jacket has been presented.

It is able to reproduce the CSTR dynamical behavior calculated by ODE’s with a

good approximation and in an easy way. The presented stochastic model allow us
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Figure 3.4: Behaviors that could be found in systems with small number of elements
(cells for the CAs and clusters of molecules in the real case). These behaviors are
different from the expected one for systems with a large number of elements. The
initial values are X1=0.1, X2=0.1, X3=0.1. The employed time step is 0.001.
One hundred points separated by a time lag of 0.2 were taken from 20000-point
simulations with a time step of 0.001; one temperature diffusion step per time step.

to study what could be the behavior of the variables of the tank when the reaction

probability depends on the local temperature. It also give us an approach to study

systems with few elements, such as micro and nanoreactors, for example catalytic

membranes separating two phases. The main advantages of the CA approach pre-

sented here are its stochastic nature and the direct involvement of a spatial structure.

This also represents a tool for studying the role of initial configuration and stochas-

tic fluctuations in systems with few elements. Additionally, the CA approach is a

clear improvement of the CSTR modeling and moreover can be applied to different

reactor and jacket geometries, as well as for considering in more detail the real mass

flow in the tank reactor-geometry.
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Figure 3.5: Different concentration behaviors of chemical A for systems of the same
size (20 x 20) that are treated by the same method and could be the underlying
dynamic characteristic of microreactors. Two individual simulations corresponding
to two different initial distributions of the chemical A over the cells are displayed
together with the average curve of 400 individual simulations as well as the theoreti-
cal curve corresponding to the ODE-based model. The initial configuration and the
stochasticity and discreteness introduced in the model lead to a time-distributed
behavior. The initial values are: X1=0.1, X2=0.1, X3=0.1. The time step is
0.001; one temperature diffusion step per time step.

We have found that in our CA implementation at lattice dimensions beyond

400x400 and below time steps of 0.001 the ODE-based solutions (curves) are very

well reproduced thus indicating that for those values the stochastic noise is very

small. On the other hand, at small lattice dimensions the CA procedure gives

strong fluctuations which are due to the CA discretization that sometimes could

match the discretization of Nature at those scales.
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Finally, we mention that CA-type models can be used to analyze local microor-

ganism densities which are directly related to the production yields of important

fermentation products, such as bacterial cellulose obtained in generalized stirring

reactors [17].
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Chapter 4

A Biological System

In this chapter it is presented a mathematical analysis for diffusion of excitations

at the brain scale (corticothalamic system) and on microtubule walls (after poly-

merization occurs). This work was developed in collaboration between PH.D. O.

Cornejo Pérez, Ph.D Haret Rosu and M.Sc. Jaime Pérez Terrazas, and was pub-

lished as a chapter of the book “Physics of Emergence and Organization”, with the

title “Supersymmetric Methods in the Traveling Variable: Inside Neurons and at

the Brain Scale” [1].

4.1 Supersymmetric methods in the traveling vari-

able: inside neurons and at the brain scale

We apply the mathematical technique of factorization of differential operators to

two different problems. After a brief overview on microtubules, we review previous

results related to the supersymmetry of the Montroll kinks moving onto the micro-

tubule walls as well as mentioning the sine-Gordon model for the microtubule non-

linear excitations. Second, we find analytic expressions for a class of one-parameter

solutions of a sort of diffusion equation of Bessel type that is obtained by supersym-

metry from the homogeneous form of a simple damped wave equations derived in

the works of P.A. Robinson and collaborators for the corticothalamic system. We

also present a possible interpretation of the diffusion equation in the brain context.

52
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4.1.1 Microtubule structure and dynamics, brief overview

The following information comes from references [2–4].

Microtubule are cytoskeletal polymers that perform a variety of essential func-

tions for the survival of all eukaryotes at the cellular level as the transport of some

substances and organelles, cell motility, cell division and morphogenesis, etc. Micro-

tubules are flexible polymers whose mechanical properties are an important factor

in the determination of cell architecture and are the main components of some cell

regions as the axonemal structures found in cilia and flagella. It have been even sug-

gested that MTs are also implicated in higher neuronal functions, including memory

and the emergence of “consciousness” [9]. Microtubule are made of repeating α, β-

tubulin heterodimers with a molecular weight of 110 kDa. These heterodimers bind

head to tail to form linear protofilaments, and about 13 protofilaments associate

in parallel to make the microtubule wall. The heterodimers have a defined polarity

and so the protofilaments and the resulting polymer has also a defined polarity, with

two ends that are structurally and functionally distinct. In the cell, the minus end

(α-tubulin side) is often attached at microtubule organizing centers (MTOCs) such

as the centrosome, whereas the plus end (β-tubulin side) is free in the cytoplasm or

attached to a specific target such as kinetochore.

Essential to the function of microtubules is their dynamic character. Micro-

tubules can “move” on an unidirectional flux in a steady state by means of the

polymerization on the plus end and depolymerization on the minus end. If the

net rates are closely the same, the effect is that the structure is moving in one

direction, although the tubulin dimers that compose it have not the same prefer-

ential direction of movement. This property is known as treadmilling and recent

studies have shown its importance in the cell, both for interface and mitosis. A

more general property of microtubules is known as “dynamical instability ” and

consists on switching stochastically between growing and shrinking phases. These

dynamic properties of microtubules have their origin on the binding and hydrolysis

of guanosine 5́-triphosphate (GTP) by tubulin. There is a molecule of GTP at each
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Figure 4.1: Microtubule structure and assembly. A) Schematic representation of
microtubule structure. B) Various phases of microtubule assembly. Figure from [4].

monomer in the tubulin heterodimer. Exactly after polymerization of a tubulin

dimer, the GTP molecule attached to the β-tubulin directly involved in the union is

hydrolyzed. Then microtubule is made of dimers with GTP molecules attached to

the α-tubulin monomers and guanosine 5́-diphosphate (GDP) molecules attached

to the β-tubulin monomers; excepting maybe those on the plus end where next

polymerization steps will occur. This cap of GTP-tubulin stabilizes the microtubule

but, if the GTPs at the plus end are hydrolyzed the microtubule rapidly depoly-

merizes, resulting on the shrinking phase. Most of the energy that is released by

GTP hydrolysis is stored in the microtubule lattice, where it is suggested that have

important functions on microtubule dynamics and interactions with other molecules.

The regulation of the microtubule system includes the interaction with numer-

ous microtubule-associated proteins (MAPs) that are themselves regulated. This

regulatory system produces precise temporal and spatial patterns of microtubules

throughout all the cell cycle. It is also an important factor that tubulin sequence and

structure contain the information required for the self-assembly of protofilaments

onto dynamic microtubules. Some computational approaches for understanding the

dynamic of microtubules systems include Montecarlo simulations [6, 7], nonequilib-
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Figure 4.2: Schematic diagram of microtubule behavior at steady state. A) Tread-
milling. The length is constant by the exchange of dimers between microtubule and
free tubulin in the environment. B) Dynamical Instability. Individual polymers
show length fluctuations due to phases of catastrophe, rescue and regrowth. Figure
from [4].

rium system self-organization theory [8] and reaction-diffusion schemes [9, 10], and

stochastic CA models [11]

4.1.2 Nonlinear biological excitations

The possibility of soliton excitations in biological structures has been first pointed

out by Englander et al [12] in 1980 who speculated that the so-called ‘open states’

units made of approximately ten adjacent open pairs in long polynucleotide double

helices could be thermally induced solitons of the double helix due to a coherence

of the twist deformation energy. Since then a substantial amount of literature has

been accumulating on the biological significance of DNA nonlinear excitations (for

a recent paper, see [13]). On the other hand, the idea of nonlinear excitations has

emerged in 1993 in the context of the microtubules (MTs) [14], the dimeric tubular

polymers that contribute the main part of the eukaryotic cytoskeleton. In the case

of neurons, MTs are critical for the growth and maintenance of axons. It is known
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Figure 4.3: Stochastic Cellular Automata Model of Microtubule Assem-
bly/Disassembly. GTP polimerized dimers are in green, GTP dimers are in dark
blue and GDP dimers are in light blue. Microtubule is shown as a flat structure for
better visualization. Simulation at a) beggining, b)20 timesteps, c) 40 timesteps,
d) 60 timesteps, e) 80 timesteps and f) 100 timesteps. Simulation for disassembly
based on the model presented in [11]

that axonal MTs are spatially organized but are not under the influence of a MT-

organizing center as in other cells. We also remind that in 1995 Das and Schwarz

have used a two-dimensional smectic liquid crystal model to show the possibility of

electrical solitary wave propagation in cell membranes [15]. Nevertheless, there is

no clear experimental evidence at the moment of any of these biological solitons and

kinks.
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4.1.3 Supersymmetric MT Kinks

Based on well-established results of Collins, Blumen, Currie and Ross [16] regarding

the dynamics of domain walls in ferrodistortive materials, Tuszyński and collabora-

tors [14,17] considered MTs to be ferrodistortive and studied kinks of the Montroll

type [18] as excitations responsible for the energy transfer within this highly inter-

esting biological context.

The Euler-Lagrange dimensionless equation of motion of ferrodistortive domain

walls as derived in [16] from a Ginzburg-Landau free energy with driven field and

dissipation included is of the travelling reaction-diffusion type

ψ
′′

+ ρψ
′ − ψ3 + ψ + σ = 0 , (4.1)

where the primes are derivatives with respect to a travelling coordinate ξ = x−vt,

ρ is a friction coefficient and σ is related to the driven field [16].

There may be ferrodistortive domain walls that can be identified with the Mon-

troll kink solution of Eq. (4.1)

M(ξ) = α1 +

√
2β

1 + exp(βξ)
, (4.2)

where β = (α2−α1)/
√

2 and the parametersα1 andα2 are two nonequal solutions

of the cubic equation

(ψ − α1)(ψ − α2)(ψ − α3) = ψ3 − ψ − σ . (4.3)

Rosu has noted that Montroll’s kink can be written as a typical tanh kink [19]

M(ξ) = γ − tanh

(
βξ

2

)

, (4.4)

where γ ≡ α1 +α2 = 1+ α1
√

2
β

. The latter relationship allows one to use a simple

construction method of exactly soluble double-well potentials in the Schrödinger

equation proposed by Caticha [20]. The scheme is a non-standard application of

Witten’s supersymmetric quantum mechanics [21] having as the essential assumption
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the idea of considering theM kink as the switching function between the two lowest

eigenstates of the Schrödinger equation with a double-well potential. Thus

φ1 = Mφ0 , (4.5)

where φ0,1 are solutions of φ
′′

0,1 + [ǫ0,1 − u(ξ)]φ0,1(ξ) = 0, and u(ξ) is the

double-well potential to be found.

  u( )

ξξ

ξ

0 ξ

ξ
L

M

R
M

|0                  |1

Figure 4.4: Single electron within the traveling double-well potential u(ξ) as a
qubit. The electron can switch from one wall to another by tunneling and the
relation between the wavefunctions in the two wells is given by Eq. (4.5).

Substituting Eq. (4.5) into the Schrödinger equation for the subscript 1 and

substracting the same equation multiplied by the switching function for the subscript

0, one obtains

φ
′

0 +RMφ0 = 0 , (4.6)

where RM is given by

RM =
M

′′
+ ǫM

2M ′
, (4.7)

and ǫ = ǫ1 − ǫ0 is the lowest energy splitting in the double-well Schrödinger

equation. In addition, notice that Eq. (4.6) is the basic equation introducing the

superpotential R in Witten’s supersymmetric quantum mechanics, i.e., the Riccati
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solution. For Montroll’s kink the corresponding Riccati solution reads

RM(ξ) = −β
2
tanh

(
β

2
ξ

)

+
ǫ

2β

[

sinh(βξ) + 2γ cosh2

(
β

2
ξ

)]

(4.8)

and the ground-state Schrödinger function is found by means of Eq. (4.6)

φ0,M(ξ) = φ0(0) cosh

(
β

2
ξ

)

exp

(
ǫ

2β2

)

exp

(

− ǫ

2β2

[

cosh(β ξ)

−γβξ − γ sinh(βξ)
])

, (4.9)

while φ1 is obtained by switching the ground-state wave function by means of M .

This ground-state wave function is of supersymmetric type

φ0,M(ξ) = φ0,M(0) exp

[

−
∫ ξ

0

RM(y)dy

]

, (4.10)

where φ0,M(0) is a normalization constant.

The Montroll double well potential is determined up to the additive constant ǫ0

by the ‘bosonic’ Riccati equation

uM(ξ) = R2
M −R

′

M + ǫ0 =
β2

4
+

(γ2 − 1)ǫ2

4β2
+
ǫ

2
+ ǫ0

+
ǫ

8β2

[ (
4γ2ǫ+ 2(γ2 + 1)ǫcosh(βξ) − 8β2

)
cosh(βξ)

−4γ
(
ǫ+ ǫcosh(βξ) − 2β2

)
sinh(βξ)

]

. (4.11)

If, as suggested by Caticha, one chooses the ground state energy to be

ǫ0 = −β
2

4
− ǫ

2
+

ǫ2

4β2

(
1 − γ2

)
, (4.12)

then uM(ξ) turns into a travelling, asymmetric Morse double-well potential of

depths depending on the Montroll parameters β and γ and the splitting ǫ

UL,R
0,m = β2

[

1 ± 2ǫγ

(2β)2

]

, (4.13)
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where the subscript m stands for Morse and the superscripts L and R for left and

right well, respectively. The difference in depth, the bias, is ∆m ≡ UL
0 −UR

0 = 2ǫγ,

while the location of the potential minima on the traveling axis is at

ξL,R
m = ∓ 1

β
ln

[

(2β)2 ± 2ǫγ

ǫ(γ ∓ 1)

]

, (4.14)

that shows that γ 6= ±1.

An extension of the previous results is possible if one notices thatRM in Eq. (4.8)

is only the particular solution of Eq. (4.11). The general solution is a one-parameter

function of the form

RM(ξ;λ) = RM(ξ) +
d

dξ

[

ln(IM(ξ) + λ)
]

(4.15)

and the corresponding one-parameter Montroll potential is given by

uM(ξ;λ) = uM(ξ) − 2
d2

dξ2

[

ln(IM(ξ) + λ)
]

. (4.16)

In these formulas, IM(ξ) =
∫ ξ
φ2

0,M(ξ)dξ and λ is an integration constant that is

used as a deforming parameter of the potential and is related to the irregular zero

mode. The one-parameter Darboux-deformed ground state wave function can be

shown to be

φ0,M(ξ;λ) =
√

λ(λ+ 1)
φ0,M

IM(ξ) + λ
, (4.17)

where
√

λ(λ+ 1) is the normalization factor implying that λ /∈ [0,−1]. More-

over, the one-parameter potentials and wave functions display singularities at λs =

−IM(ξs). For large values of ±λ the singularity moves towards ∓∞ and the po-

tential and ground state wave function recover the shapes of the non-parametric

potential and wave function. The one-parameter Morse case corresponds formally

to the change of subscript M → m in Eqs. (4.15) and (4.16). For the single well

Morse potential the one-parameter procedure has been studied by Filho [23] and

Bentaiba et al [24].

The one-parameter extension leads to singularities in the double-well potential
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and the corresponding wave functions. If the parameter λ is positive the singularity

is to be found on the negative ξ axis, while for negative λ it is on the positive side.

Potentials and wave functions with singularities are not so strange as it seems [25]

and could be quite relevant even in nanotechnology where quantum singular interac-

tions of the contact type are appropriate for describing nanoscale quantum devices.

We interpret the singularity as representing the effect of an impurity moving along

the MT in one direction or the other depending on the sign of the parameter λ. The

impurity may represent a protein attached to the MT or a structural discontinuity

in the arrangement of the tubulin molecules. This interpretation of impurities has

been given by Trpǐsová and Tuszyński in non-supersymmetric models of nonlinear

MT excitations [26].

4.1.4 The sine-Gordon MT solitons

Almost simultaneously with Sataric, Tuszynski and Zakula, there was another group,

Chou, Zhang and Maggiora [27], who published a paper on the possibility of kinklike

excitations of sine-Gordon type in MTs but in a biological journal. Even more, they

assumed that the kink is excited by the energy released in the hydrolysis of GTP →
GDP in microtubular solutions. As the kink moves forward, the individual tubulin

molecules involved in the kink undergo motion that can be likened to the dislocation

of atoms within the crystal lattice.

They performed an energy estimation showing that a kink in the system possesses

about 0.36 - 0.44 eV, which is quite close to the 0.49 eV of energy released from the

hydrolysis of GTP.

Moreover, they assumed that the interaction energy U(r) between two neigh-

boring tubulin molecules along a protofilament is harmonic:

U(r) ≈ 1

2
k(r − a0)

2 , (4.18)

where k = d2U(a0)

dr2 and r = xi −xi−1. In addition to this kind of nearest neighbor

interaction, a tubulin molecule is also subjected to interactions with the remaining

tubulin molecules of the MT, i.e., those in the same protofilament but not nearest
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neighbor to it.

Chou et al cite pages 425-427 in the book of R.K. Dodd et al (Solitons and Non-

linear Wave Equations, Academic Press 1982) for the claiming that this interaction

for the ith tubulin molecule of a protofilament can be approximated by the following

periodic effective potential

Ui = U0

(

1 − cos
2πξi

a0

)

, (4.19)

where U0 is the half-height of the potential energy barrier and ξi is the displace-

ment of the ith tubulin molecule from the equilibrium position within a particular

protofilament.

Introducing the new variable φi = 2π
a0
ξi the following sine-Gordon equation is

obtained

m
∂2φ

∂t2
= ka2

0

∂2φ

∂x2
−
(

2π

a0

)2

U0 sinφ (4.20)

that can be reduced to the standard form of the sine-Gordon equation

∂2φ

∂x2
− 1

c2
∂2φ

∂t2
=

1

l2
sinφ (4.21)

if one sets c2 =
ka2

0

m
and l−2 = 4π2U0

ka4
0

. Now, it is well known that the sine-Gordon

equation has the famous inverse tangent kink solution

φ = tan−1

(

exp[±γ
l
(x− vt)]

)

, (4.22)

where γ = 1
q

1−v2

c2

is an acoustic Lorentz factor and w = γ
l

is the kink width.

Most interestingly, the momentum of a tubulin dimer is strongly localized:

p =
d(mξ)

dt
=
ma0

π

γv

l
sech

[

− γ

l
(x− vt)

]

. (4.23)

This momentum function possesses a very high and narrow peak at the center of the

kink width implying that the corresponding tubulin molecule will have maximum

momentum when it is at the top of the periodic potential. According to Chou et al

this remarkable feature occurs only in nonlinear wave mechanics.
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Interestingly, for purposes of illustration, these authors have assumed the width

of a kink w ≈ 3a0. Therefore, with the kink moving forward, the affected region

always involves three tubulin molecules. For a general case, however, the width w

of a kink can be calculated from

w =
a0

2π

√

ka2
0

U0

, (4.24)

if the force constant k between two neighboring tubulin molecules along a protofil-

ament, the distance a0 of their centers, and the energy barrier 2U0 of the periodic,

effective potential are known. Then the number of tubulin molecules involved in a

kink is given by
w

a0

= (2π)−1
√

ka2
0/U0 . (4.25)

It is further known that the tubulin molecules in a MT are held by noncovalent

bonds, therefore the interaction among them might involve hydrogen bonds, van der

Waals contact, salt bridges, and hydrophobic interactions.

It was found by Israelachvili and Pashley [28] that the hydrophobic force law

over the distance range 0-10 nm at 21oC is well described by

FH

R
= Ce−D/D0 N/m , (4.26)

where D is the distance between tubulin molecules, D0 is a decay length, and

R = R1R2

R1+R2
is a harmonic mean radius for two hydrophobic solute molecules, all in

nm. R is 4 nm in the case of tubulin.

4.1.5 More on the hydrolysis and solitary waves in MTs

Inside the cell, the MTs exist in an unstable dynamic state characterized by a

continuous addition and dissociation of the molecules of tubulin. The polypeptides

α and β tubulin each bind one molecule of guanine nucleotide with high affinity. The

nucleotide binding site on α tubulin binds GTP nonexchangeably and is referred to

as the N site. The binding site on β tubulin exchanges rapidly with free nucleotide

in the tubulin heterodimer and is referred to as the E site.
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Thus, the addition of each tubulin is accompanied by the hydrolysis of GTP 5’

bound to the β monomer. In this reaction an amount of energy of 6.25 × 10−21 J

is freed that can travel along MTs as a kinklike solitary wave.

The exchangeable GTP hydrolyses very soon after the tubulin binds to the MT.

At pH = 7 this reaction takes place according to the formula:

GTP 4− +H2O → GDP 3− +HPO2−
4 +H+ + ∆HE . (4.27)

The last mathematical formulation of the manner in which the energy ∆HE is

turned into a kink excitation claims that the hydrolysis causes a dynamical transition

in the structure of tubulin [29].

4.2 Quantum information in the MT walls

Biological information processing, storage, and transduction occurring by computer-

like transfer and resonance among the dimer units of MTs have been first suggested

by Hamerrof and Watt [30] and enjoys much speculative activity [31].

For the case of sine-Gordon solitons, the information transport has been inves-

tigated by Abdalla et al [32].

Recently Shi and collaborators [33] worked out a processing scheme of quan-

tum information along the MT walls by using previous hints of Lloyd for two-level

pseudospin systems [34]. The MT wall is treated as a chain of three types of two

pseudospin-state dimers. A set of appropriate resonant frequencies has been given.

They conclude that specific frequencies of laser pulse excitations can be applied in

order to generate quantum information processing.

Lloyd’s scheme uses the driving of a quantum computer by means of a sequence

of laser pulses. He assumes a 1-dimensional arrangement of atoms of two types (A

and B) that could be each of them in one of two states and are affected only by

nearest neighbors. Then, information processing could be performed by laser pulses

of specific frequencies ωKα,β
, that change the state of the atom of the K kind (A or

B type) if in a pair of atoms AB, A is in α state and B is in state β.
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4.2.1 Supersymmetry at the Brain Scale

Neuronal activity is the result of the propagation of impulses generated at the neu-

ron cell body and transmitted along axons to other neurons. Recently, Robinson

and collaborators [36] obtained simple damped wave equations for the axonal pulse

fields propagating at speed va between two populations, a and b, of neurons in the

thalamocortical region of the brain. The explicit form of their equation is

ÔRφa(t) = S[Va(t)] , (4.28)

where

ÔR =

(
1

ν2
a

d2

dt2
+

2

νa

d

dt
+ 1 − r2

a∇2

)

, (4.29)

where νa = va/ra, ra is the mean range of axons a, and Va =
∑

bVab is a so-called

cell body potential which results from the filtered dendritic tree inputs. Robinson

has used the experimental parameters in this equation for the processing of the

experimental data. In the following we concentrate on a particular mathematical

aspect of this equation and refer the reader to the works of Robinson’s group for

more details concerning this equation.

The homogeneous equation

We treat first the homogeneous case, i.e., S = 0 and we discard the subindexes

as being related to the phenomenology not to the mathematics. Let us employ

the change of variable z = ax + by − ct (see, e.g., [37]), which is a traveling

coordinate in 2+1 dimensions. This is justified because it was noticed by Wilson and

Cowan [35] that distinct anatomical regions of cerebral cortex and of thalamic nuclei

are functionally two-dimensional although extending to three spatial coordinates is

trivial. We have the following rescalings of functions: φt = −cφz, φtt = v2φzz,

φxx = a2φzz, φyy = b2φzz. Then, we get the ordinary differential equation

corresponding to the damped wave equation in the following form

ÔR,zφ ≡
(
d2

dz2
− 2µ

d

dz
+ µ2

)

φ = α2φ , (4.30)
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where

µ =
νc

c2 − ν2r2(a2 + b2)
, α2 =

ν4r2(a2 + b2)

[c2 − ν2r2(a2 + b2)]2
. (4.31)

The simple damped oscillator equation (4.30) can be easily factorized

L2
µφ ≡

(
d

dz
− µ

)(
d

dz
− µ

)

φ = α2φ . (4.32)

The case c2 < ν2r2(a2 + b2) implies µ < 0 and the general solution of (4.30) can

be written

φ(z) = eµz(Aeαz +Be−αz) . (4.33)

The opposite case c2 > ν2r2(a2+b2) will lead to only a change of sign in front of µ

in all formulas henceforth, whereas the case c2 = ν2r2(a2 + b2) will be considered

as nonphysical. The non-uniqueness of the factorization of second-order differential

operators has been exploited in a previous paper [38] on the example of the Newton

classical damped oscillator, i.e.,

N̂y ≡
(
d2

dt2
+ 2β

d

dt
+ ω2

0

)

y = 0 , (4.34)

which is similar to the equation (4.30), unless the coefficient 2β is the friction

constant per unit mass, ω0 is the natural frequency of the oscillator, and the inde-

pendent variable is just time not the traveling variable. Proceeding along the lines

of [38], one can search for the most general isospectral factorization

(Dz + f(z))(Dz + g(z))φ = α2φ . (4.35)

After simple algebraic manipulations one finds the conditions f + g = −2µ and

dg/dz + fg = µ2 having as general solution fλ = λ
λz+1

− µ, whereas f0 = −µ
is only a particular solution. Using the general solution fλ we get

Â+λÂ−λφ ≡
(

Dz +
λ

λz + 1
− µ

)(

Dz − λ

λz + 1
− µ

)

φ = α2φ . (4.36)
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This equation does not provide anything new since it is just equation (4.31). How-

ever, a different operator, which is a supersymmetric partner of (4.36) is obtained

by applying the factorizing λ-dependent operators in reversed order

Â−λÂ+λφ̃ ≡
(

Dz − λ

λz + 1
− µ

)(

Dz +
λ

λz + 1
− µ

)

φ̃ = α2φ̃ . (4.37)

The latter equation can be written as follows

ˆ̃Oλφ̃ ≡
(
d2

dz2
− 2µ

d

dz
+ µ2 − α2 − λ2

(λz + 1)2

)

φ̃ = 0 , (4.38)

or
(
d2

dz2
− 2µ

d

dz
+ ω2(z)

)

φ̃ = 0 , (4.39)

where

ω2(z) = µ2 − α2 − λ2

(λz + 1)2
(4.40)

is a sort of parametric angular frequency with respect to the traveling coordinate.

This new second-order linear damping equation contains the additional last term

with respect to its initial partner, which may be thought of as the Darboux transform

part of the frequency [39]. Zλ = 1/λ occurs as a new traveling scale in the damped

wave problem and acts as a modulation scale. If this traveling scale is infinite, the

ordinary damped wave problem is recovered. The φ̃ modes can be obtained from

the φ modes by operatorial means [38].

Eliminating the first derivative term in the parametric damped oscillator equa-

tion (4.39) one can get the following Bessel equation

d2u

dx2
−
(

n2 − 1
4

x2
+ β2

)

u = 0 , (4.41)

where x = z+1/λ, n2 = 5/4, and β = iα. Using the latter equation, the general

solution of equation (4.39) can be written in terms of the modified Bessel functions

φ̃ = (z+1/λ)1/2[C1I√
5/2(α(z+1/λ))+C2I−

√
5/2(α(z+1/λ))]eµz . (4.42)
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What could be a right interpretation of the supersymmetric partner equation (4.37)

? Since the solutions are modified Bessel functions, we consider this equation as a

diffusion equation with a diffusion coefficient depending on the traveling coordinate.

Noticing that the velocity in the traveling variable of this diffusion is the same as the

velocity of the neuronal pulses we identify it with the diffusion of various molecules,

mostly hormones, in the extracellular space (ECS) of the brain, which is known to

be necessary for chemical signaling and for neurons and glia to access nutrients and

therapeutics occupying as much as 20 % of total brain volume in vivo [40].

The nonhomogeneous equation

The source term S in Robinson’s equation (4.28) is a sigmoidal firing function, which

despite corresponding to a realistic case led him to work out extensive numerical

analyses. Analytic results have been obtained recently by Troy and Shusterman

[41] by using a source term comprising a combination of discontinuous exponential

coupling rate functions and Heaviside firing rate functions. In addition, Brackley

and Turner [42] incorporated fluctuating firing thresholds about a mean value as a

source of noisy behavior [42].

The procedure of Troy and Shusterman can be applied for the parametric damped

oscillator equation as well as for the Bessel diffusion equation obtained herein in the

realm of Robinson’s brain wave equation with the difference that the method of

variation of parameters should be employed. The detailed mathematical analysis is

left for a future work.
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Theor. Biol. 174, 371 (1995).

18. E.W. Montroll, in Statistical Mechanics, ed. by S.A. Rice, K.F. Freed, and

J.C. Light (Univ. of Chicago, Chicago, 1972).

19. H.C. Rosu, Phys. Rev. E 55, 2038 (1997).

20. A. Caticha, Phys. Rev. A 51, 4264 (1995).

21. E. Witten, Nucl. Phys. B 185, 513 (1981).

22. B. Mielnik, J. Math. Phys. 25, 3387 (1984); D.J. Fernandez, Lett. Math.

Phys. 8, 337 (1984); M.M. Nieto, Phys. Lett. B 145, 208 (1984). For review

see H.C. Rosu, Symmetries in Quantum Mechanics and Quantum Optics, eds.

A. Ballesteros et al (Serv. de Publ. Univ. Burgos, Burgos, Spain, 1999) pp.

301-315, quant-ph/9809056.

23. E.D. Filho, J. Phys. A 21, L1025 (1988).

24. M. Bentaiba, L. Chetouni, T.F. Hammann, Phys. Lett. A 189, 433 (1994).

25. T. Cheon and T. Shigehara, Phys. Lett. A 243, 111 (1998).
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Chapter 5

A CA model for Self-Assembling

5.1 Self-assembly: an overview

5.1.1 What is self-assembly?

Molecular self-assembly is the spontaneous association of molecules, under equi-

librium conditions, in structurally well defined aggregates that are bound by non-

covalent bonds [1]: hydrogen bonds, ionic bonds (electrostatic interactions), hy-

drophobic interactions, van der Waals interactions and hydrogen bonds mediated

by water [2].

Self-assembly can be classified in the following way [3]:

• Static self-assembly: Systems that are in a global or local minimum energy

state and does not have energy dissipation, as molecular crystals and folded

globular proteins.

• Dynamic self-assembly: Structures and patterns occurs if the system is dissi-

pating energy, as Belousov-Zhabotinsky chemical systems for instance.

• Self-assembly using templates: Interactions between components and the en-

vironment determine the final structure. Crystallization on surfaces is an

example.

• Biological self-assembly: This is a superset that contains all previous classes.

72
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These systems are characterized by the variety and complexity of the functions

of the produced structures.

Self-assembly is ubiquitous in biological and chemical systems as can be as-

sessed in crystallization, micelles, viruses, functional protein complexes, etc. Un-

derstanding self-assembly and discovering how to take advantage from it is one of

the most important issues in Nanotechnology and biologically inspired technolo-

gies (Biomimetics), because this knowledge could lead to industrial production of

all kinds of nanodevices and new materials, with high reliability at remarkable low

costs [3].

Figure 5.1: Self-assembly: biological examples. a) Protein folding. b) Tobacco virus
assembling. c) Piruvata dehydrogenase complex formation. Figure from [3]

The main characteristics of self-assembly are [4]:

• Components. They are the pieces or elements that go from a disordered state

to a state with some degree of order (system level).

• Interactions. Interactions are normally non-covalent, as hydrogen bridges,

induced dipoles, coordination bonds, etc. For self-assembling, it is required a

balance between attractive and repulsion forces in the formation stage.



5.1. Self-assembly: an overview 74

• Adjustment capability. Components must have some degree of freedom in order

to be able to find the minimal energy state.

• Environment. It is always required an environment that allows the diffusion

of the components.

• Mass transport and agitation. Energy is needed to promote the diffusion mo-

tion of each component.

Figure 5.2: Ordered structure made up by components that are complementary in
form and molecular interactions. Figure from [5]

Therefore, self-assembly is the formation of an ordered structure from a disor-

dered system of components. The components must be complementary in physical

and chemical interactions such as form, surface properties, magnetic dipoles, electro-

static characteristics, etc. Besides, it must occur without direct human intervention

in the assembling of pieces. The ordered structure is reached by local corrections

and is dictated by the information embedded in the components, for instance their

form and electrostatic interactions. However, it is also possible to have conforma-

tional changes, i.e., the state or properties of components can change in response to

the conditions of its near environment (density, pH, etc.).
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Learning how to design components and environments for self-assembling of well

defined structures with desired functions is the main key for turning into reality

many nanotechnology dreams.

5.1.2 Self-assembly research revisited

There have been a growing interest in self-assembling in the last twenty years due

to the impact of several works. Bowden reported the assembling of systems made

up of designed hexagons with hydrophobic and hydrophilic sides [6]. The hexagonal

pieces are immersed in a mixture of water and perfluorodecaine (PDF). The attrac-

tion and repulsion interaction between the pieces are capable of producing crystalline

patterns. This kind of approach became later more popular in the self-assembly re-

search, and several works began to use capilar forces (see [7] for instance). These

kind of structures are manly achieved at the microscopic and mesoscopic scale and

usually there is lack of control in the global form of the system, although the local

structure is well assembled.

Figure 5.3: Crystalline aggregates made by self-assembly of (A) crosses, (B)
hexagons in a open lattice and (C) closed packed hexagons. Figure from [6].

In the area of self-assembling at the molecular level particularly interesting is the

work of Padilla et. al. [8], where one can find ideas for nanomaterials fabrication

by combining naturally symmetric protein components. As a first step, a database

search is performed looking for proteins that polymerize in their native form, con-

forming structures with 2-fold, 3-fold, ... n-fold symmetry. Once two of such proteins
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are identified a genetic manipulation is applied in order to create a protein that is

the union of those two proteins. In this way, it is obtained (sometimes) a piece which

extremes tries to polymerize in a given n-fold symmetry. Fig. 5.4 depicts these ideas

in a clearer way, and show how two proteins that polymerize with different n-fold

symmetry can be used for producing different structures if angles are manipulated.

In this work initial experimental trials are reported using influenza virus protein,

carboxylesterase and trimeric bromoperoxidase.

Figure 5.4: General molecular method for producing self-assembling pieces with
symmetry. a) Green circle represents a dimeric molecule and the red triangle repre-
sents a trimeric molecule. b) By genetic manipulation it is created a molecule that
join both molecules. c) Schematic representation of the real structure. d) and e)
Possible self-assembled structures. Figure from [8]

An impressive work has been done by the group of Paul Rothermund [9], where

a general method is developed for the folding of a long DNA strand in any given

2-dimensional array. As a first step the 2-dimensional array is decomposed in an

even number of parallel lines. Then, a long single line is created such that all par-

allel lines are included. The thickness of this long line represents the thickness of

a double chain helix of DNA (approximately 2 nanometers). With the help of a

computational algorithm, union points and crossing areas for better resistance are
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identified. Finally, the design is divided in a long strand that follows all the structure

and several complementary and short strands. In the experiment the long strand

folds slowly in the desired structure in a coordinated way with the assembly of short

DNA strands. Some of the structures that were successfully assembled are displayed

in Fig. 5.5

Figure 5.5: Structures assembled with DNA strands. Figure from [9]

In order to understand self-assembling it is important to simulate it and use

different computational approaches: molecular dynamics, multiagent systems and

cellular automata. Rapaport simulated the self-assembly of the capsides of some

viruses by molecular dynamics simulations [11]. He designed molecular structures

and appropriate atomic interaction potentials for keeping molecular aggregates of

atoms as pieces with defined forms. Such pieces had complementary form and the

resulting interaction potential between pieces was attractive. In his model, Rapa-

port found a high formation rate with a very low rate of assembly errors.

Troisi et. al. modeled self-assembly by a multiagents approach [12]. Trans-

lational and rotational movement was determined by energy considerations and a

random numbers generator. They made comparisons between the energy of several

structures of n pieces and decided if the new structure was conserved or disaggrega-
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Figure 5.6: Formation of virus capsides in a molecular dynamics model. Figure
from [11].

tion of some pieces occurs. They studied systems that would produce closed packed

structures (by design) and made comparisons employing the Monte Carlo method.

Their method was superior in speed for reaching optimal structures.

Figure 5.7: Comparison between a multiagent model for self-assembly and Monte
Carlo method. a) Energy decrement: red line for Monte Carlo and blue line for
Multi-agent system. b) Final result after 15000 Monte Carlo iterations. c) Final
result after 15000 iterations with Multiagents. Figure from [12].

There are more works on self-assembly simulations: Nilsson and Rasmussen

used Lattice Gas Cellular Automata (LGCA) for mycelle formation in aqueous sys-

tem [13], Schulman and Winfree [14] studied the relationship between energy gains

and losses when an aggregate grows, and Thompson and Goel [15] studied how to

take advantage of conformational changes in order to create a well defined structure

with function.
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5.2 Description of the proposed LGCA model

In this work results from the simulation of self-assembly by Lattice Gas Cellular

Automata (LGCA) method are presented. This method has been chosen over tradi-

tional Cellular Automata procedures because it has been proven that LGCA meth-

ods are useful and reliable for fluid simulation, taking into account elastic collisions

and momentum and mass conservation.

The model presented in this work is a LGCA system in a square lattice with

periodic boundary conditions. Each node has four channels, and each channel can

have at most one particle at a time, resulting in a exclusion principle. A main

difference with other LGCA models is that particles are not only points, they cor-

respond to pieces with the form of a cross. The ends of different crosses can be

attached between them, representing, in a first approach, covalent bonding in real

self-assembly systems. Each piece has a set of indicators that define the type of

piece and contain information about its current state. The first four indicators gives

information about what kind of ends has the cross. By means of a general interac-

tion matrix one can define the types ends that are able to attach to each other. The

following four indicators are attaching permissions for the respective extreme, and

can be used for conformational changes. Other indicators are used for defining the

current orientation of the piece and the direction of its momentum.

The collision step is implemented mainly as in a traditional LGCA: the trans-

lational momentum is conserved and the energy is distributed after some time in

all the degrees of freedom. However, in the model presented here, when collisions

occur a probability is asigned for a change in orientation (rotation) of the involved

pieces. Propagation step is implemented as usually in a LGCA system unless the

propagation can not happen in a node where a clustered piece is found.
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Figure 5.8: Pieces assembled in a ordered structure, square lattice. Extreme A kind
can attach with extreme kind C, in the same way extremes B and D are able to stick
between them.

As initial conditions all pieces are put in the channels of the nodes of the lat-

tice in a random way, but following the restriction of the exclusion principle. Only

one piece is put as a seed in the central node and is the trigger for the aggregate

formation. This piece has permission for being stuck with other pieces. All other

pieces have permission for attaching to any clustered piece and become themselves

clustered pieces. So, if sticky ends are correspondent, free pieces can only attach

with pieces already clustered.

The conditions for a free piece to be attached with a clustered piece are:

• it must be the only piece in the node.

• there must be a clustered piece in the neighboring node, in the direction of

movement of the free piece.

• the extremes between the free piece and the clustered piece must be able to

stick according to the interaction matrix.
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The results presented here are based on this set of conditions. The first condition

imposes a restriction on the maximum number of pieces that can be present in a

node when a piece will become clustered. It is typically used in Diffusion Limited

Aggregation (DLA) models [20]. The second one represents a need for some kinetic

energy, or more interaction time, in order to allow the attachment between pieces.

The third is a characteristic of the model proposed here that specify the interactions

between pieces. It allows the construction of very specific structures by creating very

specific pieces, although a small increase in the size or complexity of the modeled

structure could require a major increase in the number of defined interactions. Of

course these restrictions can be modified and tuned for creating an enhanced set of

conditions for specific systems. It is part of the richness of LGCA models. However,

the results presented here are based on this basic set of conditions and the discussion

is made under these assumptions.

5.3 Self-assembly model in action

5.3.1 Tests

The following results were made in order to verify the algorithm functionality as

well as to analyze self-assembly in a square lattice.

The evolution of a cluster or aggregate is depicted in Fig. 5.9. All pieces have

their four extremes belonging to the same extreme kind, so the expected structure

is a closed packed arrangement of pieces in a square fashion. It is observed that the

resulting structure is not perfect but it has multiple structural defects, which are

due to the fact that the local correction probability is zero in this test and holes are

easily formed in the structure.

The rate of conversion is shown for different systems in Fig. 5.10. The first

system is composed by pieces that can attach any of their four extremes with any

extreme of a piece already in the cluster. It is observed that at the beginning the
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Figure 5.9: Evolution of an aggregate: test try. a) 100 time steps, b) 150 time steps,
c) 200 time steps, d) 400 time steps (detail). Density used: 0.7 pieces per node.

conversion is slow because the surface of the aggregate is still small. As this surface

grows the conversion speed also grows until the number of free pieces is enough

depleted and the conversion is therefore reduced. This behavior is observed for the

three systems, although for different time.

In addition, the data for a system that is intended to assemble in a compact

arrangement of pieces but that is formed by two different kind of pieces that will

arrange in a chess-like fashion: any of the extremes of a “black” piece can only

attach with extremes of a “white” piece. The formation speed of the last structure

is slower than the former, because in the latter case there is the possibility that a

free piece can not attach with a neighboring clustered piece. This occurs where two

“black” or two “white” pieces hold together.

Finally, the evolution for a third system, where all pieces are identical but the

rules of attachment of extremes are defined as: “The north attach with the south,

and the east attach with the west”. This means that the pieces have four different

kinds of extremes and each of them has a complementary extreme. This promotes

a crystal structure with all their pieces oriented in a particular direction. Such re-

striction makes even slower the transformation from free pieces to clustered pieces

due to the fact that there are more “wrong” relative positions between pieces.

The maximum in the first system is reached at 831 time steps, at 1947 time

steps in the second and close to 3000 time steps in the third. Although the relation
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between the first two could at first sight be expected to be close to 1:2, there is not

a direct relation because the system is not lineal. In all cases the accumulation of

clustered pieces is sigmoid-like. The plotted results are averages after 20 different

simulations for each one of the three different systems, using a grid of 400 x 400

nodes, a density of 0.1 pieces per node and counting new clustered pieces each 40

time steps.
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Figure 5.10: Conversion speed for the three systems under discussion. Black is for
the one piece system, red is for the system with two pieces, and green is for a system
with oriented pieces.

5.3.2 Density effects

Some tests for studying the effect of changes of density were performed using the

same kind of simple pieces. For the compact designed crystal structure it is observed

that the largest conversion rate (clustered pieces / total pieces), just after the peak

of conversion, is obtained when a density of 0.7 pieces per node is used. If the density
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is reduced the probability for free pieces for getting in contact with the clustered

pieces is also reduced. If the density increases, the probability for a piece to be alone

in a node (condition for attachment) is disminished. Thus, 0.7 pieces per node is

the density value where these two phenomena allow a maximum conversion rate, at

least at short times. For longer times, the conversion rates for higher densities are

severely affected by the restriction that only one piece can be clustered if it is alone

in the node. For low densities, the final conversion rate depends not only on the

density value but also on stochasticity, because the last free pieces can finish in a

situation where they can not collide with other pieces and besides without a chance

of touching the central cluster.

But, which density value could be appropriate for modeling self-assembly? With

a high density, the pieces would be practically confined inside a certain zone, prop-

agating and colliding with a notable stochastic but still physical nature until they

got stuck in the cluster. Several tests indicated that, when the density is relatively

high (over 0.2 pieces per node) the resulting clusters are quite dense, instead of the

expected dendritic arrangement. For densities close to 0.2 pieces per node a two

stage process growth develops (see figure 5.11). The first is a fast increase of the

cluster in a compact way, where there are several holes inside the structure that can

be considered as defects in a crystalline lattice. The second stage shows a slower

growth, with a gradual development of branches in the cluster in a dendritic fashion.

This two-stage growth suggests that manipulation on the growth process can be

performed in order to create clusters at the nanoscale and at the microscale with

a controlled proportion (in areas) between a central dense section and an external

branched section with lower density. What is needed is to maintain the density over

a threshold value by adding pieces or by having a reservoir big enough to maintain

the density value high for a desired time. After that, it is possible to add pieces

at a density low enough for maintaining a constant growing of the branches. It is

important to stress that the value of 0.2 pieces per node is a value that corresponds

to the model presented here, where the entire system is composed of pieces that can
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Figure 5.11: Cluster formed at an initial density of 0.2 pieces per node after 8000
time steps. A dense little center is noticed toghether with a gradual development of
branches at the outsides. (Horizontal and vertical lines in the picture are an artifact
from the program used for visualization).

clusterize. However, in a real system this value could be severely affected by the

fact that the pieces are immersed in an environment made by non-sticky molecules

that would slow the growth process. So, higher densities would be required in real

systems in order to obtain the same dense structures.

In figure 5.12 we display the conversion rate from free pieces to clustered pieces

for five different densities under 0.1 pieces per node. The growth of the contour of

the cluster is self-promoted: more perimeter favors the attachment of new pieces,

and new pieces means (almost always) more perimeter. This explains why the peak

of conversion is displaced to the right as the density is reduced as a consequence
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Figure 5.12: Conversion speed for five different densities, all of them below 0.1 pieces
per node, in a grid of 400 x 400 nodes.

of the slower growth of the contour of the cluster. Of course, the right side of the

graphics corresponds to the depletion of the number of free pieces. For a density of

0.02 pieces per node the peak of conversion has practically disappeared, indicating

that the velocity of conversion is comparatively constant for this combination of

density and grid size. However, this behavior indicates that this system is close to

the lower cluster density that can be reached for this model. A measure for this is

discussed in the following.

We can use several quantities for characterizing the clusters that results from

simulations. In this work we have used two. The first of them is to calculate the

rate between the perimeter of the cluster to the total number of pieces in the clus-

ter. This is a direct analog of the surface to volume rate that is so important at

nanoscales. It is clear that its maximum value in two dimension is four, where all

sides of all pieces are exposed so they are the perimeter, although it is also obvious
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Figure 5.13: Relation between perimeter and area for five different densities.

that this value is not possible for a cluster with more that one piece. An estimate

of the minimum value is also easy to calculate. For a completely dense and squared

arrangement of N ×N pieces the area is N2 and the perimeter is 4N , so the rate

contour vs area is 4/N . This number could be as close to zero as desired if N

can be as large as needed if a perfect squared arrange without holes is formed. In

our simulations the values for this measure were between 0.56 and 0.40 for densities

between 0.2 and 0.7 pieces per node. In figure 5.13 the behavior for this measure

for densities under 0.1 pieces per node is plotted. The measures are between 0.6

and 0.75, with the higher value corresponding to the lower density. This is less that

one side exposed per clustered piece. This is in agreement with the formation of a

clustered structure with a lower density and more perimeter that is related with the

branched nature of the final structure. However, for lower densities this value has

a limiting value related with structure, determined by the nature of DLA systems,

and the specific value depends on the conditions imposed to the model presented.
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The second measure that we have considered is related to the “counting box

method”. The dimension D calculated by this method sometimes coincide with the

Hausdorff exponent, a measure used for systems with fractal properties, such as

DLA structures and the Sierpinski triangle. This is expressed as:

D = limǫ→0

ln(N)

ln(1/ǫ)
, (5.1)

where N is the minimum number of squared boxes of side ǫ needed to cover the

structure. This measure assumes that the side of the smallest square box that

covers the whole structure has a length of one unit. For the clusters that result from

our simulations we propose a measure F (from “false fractality measure”), that is

defined as:

F =
ln(N)

ln(1/SideLength)
, (5.2)

where N is the number of clustered pieces, and “SideLength” is the length of the

side of the smallest square box that covers completely the cluster. The measure F

assumes that the length of a node (or a piece) is the unity.

It is worth noting that no finite algorithm can perform the computation of the

Hausdorff exponent in its formal mathematical definition. On the other hand, the

dimension D calculated from the counting box method can be identified in some

systems as a numerical approximation to the value expected if self-similarities would

exist at all length scales. From this point of view, our measure F can be considered

as the real measure of the structure obtained by the simulation, in the sense that

it does not discard its finite number of pieces and scales involved. However, it is

expected that the value of F would be as close as desired to an “ideal” dimension

D for a given set of parameters if the grid size is as large as needed and the initial

density of pieces is inside a window of appropriated values.

In figure 5.14 the evolution of measure F for several densities is displayed. For

densities over 0.1 pieces per node, the measure F , for a same initial density, shows
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Figure 5.14: Time evolution of the measure F for different initial densities.

differences between the minimum and the maximum values of less than 0.03, with

a reduction in the difference related with an increase in density. For lower densities

the difference is higher, with a value of 0.08 for a density of 0.02 pieces per node

(20 simulations, a grid of 400 x 400 nodes). For simulations using larger grids, such

differences are reduced. The behavior of the measure F is in agreement with the

presence of branches in the structure substituting the dense core of the cluster.

5.3.3 Systems with pieces with induced defects

We studied several systems that have “normal” pieces as well as “mutant” pieces.

Normal pieces are defined as having all their extremes of the same kind, all of them

being sticky. Mutant pieces are simila to the normal pieces but with defects: some

of their extremes are not capable of forming a bond with any other extreme. This

can be the result of a loss of the sticking ability due to chemical or physical changes.

However, we consider in our simulations that such defects have been introduced
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intentionally, with the purpose of inducing changes in the growth of the cluster

structure. A normal piece can be considered as a piece without defects.

The mutant pieces considered are the following:

• One defective extreme (M1)

• Two defective extremes (North and East) (M2L)

• Two defective extremes (North and South) (M2I)

• Three defective extremes (M3)

• Four defective extremes (M4)

In order to study systems where defective pieces are introduced several simula-

tions were performed using grids of 400 x 400 nodes, with a mixture of 50 percent

of normal pieces and 50 percent of mutant pieces of only one kind. In addition, we

have made simulations with a 100 percent of normal pieces as a control test, useful

for comparisons. The total initial density considering both kinds of pieces was 0.1

pieces per node.

When all the pieces are normal the aggregate has the general appearance of a

“traditional” DLA system, with a branched growth, although with a higher density

at the core. This is the expected result, since this kind of pieces have no practical

difference with pieces that were point-like instead of crosses.

When there are a half of normal pieces and a half of mutant M1 pieces the

formed structures have a more defined branching growth, related with a lower struc-

ture density. The clusters appear to have a major global tendency to be rounded

with respect to those in systems without mutant pieces. It could be that a more

homogeneous distribution of pieces is promoted by the lower chance for attaching

between pieces because of defects.
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Figure 5.15: Cluster formed by pieces without defects. The initial density isf 0.1
pieces per node and the grid is 400 x 400 nodes, 4000 time steps.

Figure 5.16: Cluster formed by normal pieces and M1 mutant pieces. The initial
density is 0.1 pieces per node for a grid of 400 x 400 nodes, 8000 time steps.

Systems made up from an initial soup with half of M2L mutant pieces show

even less denser structures, with branches with more internal curves. In some way,

they make one to think about some branched systems in nature as some desertic or

marine plants. The growth in the number of curves in the structure is obviously pro-

moted by the kind of mutant pieces, that have their bonding extremes in a L fashion.
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Figure 5.17: Cluster formed by normal pieces and M2L mutant pieces. The initial
density is 0.1 pieces per node for a grid of 400 x 400 nodes, 8000 time steps.

When M2I mutant pieces are involved the aggregates show characteristics at dif-

ferent scales. At the smallest scale, the growth of vertical and horizontal stripes is

promoted, as expected for the distribution of defects in the mutant pieces that favor

the growth only along a line. However, at small scale the presence of normal pieces

allows the formation of little orthogonal branches. This generates structures that

resemble the smallest branches in a snowflake. At the global scale one can notice big

branches but they are not well defined, instead they look diffuse due to the linear

branches at the small scale. Those branches can grow in a radial fashion from the

core or they can grow in a spiral fashion. The latter characteristic of the structure

is global.

Structures made up from the mixing of normal and M3 pieces show two different

densities at different scales. At small scale, the density of the branches is high, while

at the global scale the density is lower. The mutant pieces M3 are strong inhibitors

of growth because they have only one extreme able to establish bonding. Once they

are attached to the cluster they close a direction of growth at the small scale. On

the other hand normal pieces promote growth. So the structure is formed under a
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Figure 5.18: Cluster formed by normal pieces and M2I mutant pieces. The initial
density of 0.1 pieces per node, same size and time steps as previous figures.

struggle between growth promoter (normal) pieces and growth inhibitor (M3) pieces.

In this way, the structure is formed of dense but isolated branches.

Figure 5.19: Cluster formed by normal pieces and M3 mutant pieces. Same condi-
tions as in previous figures.

Combining normal pieces with M4 pieces is comparable to adding a molecular
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environment rather than having pieces with defects. The global effect is a reduction

in the rate of growth of the structure. This environment has an effect on the struc-

ture similar to reducing the initial density and therefore the resulting aggregates

are closer to typical DLA systems. The structures are smaller that in the systems

discussed above because the number of pieces that can be part of the cluster has

been reduced to one half.

Figure 5.20: Cluster formed by normal pieces and M4 mutant pieces. The initial
density is 0.1 pieces per node for a grid of 400 x 400 nodes, 8000 time steps.

In figure 5.21 the conversion rates for the systems discussed above are displayed.

The initial total density is 0.1 pieces per node and a mixture of 50 percent of normal

pieces and 50 percent of mutant pieces was used, The simulation with only normal

pieces is also shown for reference. One notices that the conversion rate has a peak

that is displaced to larger times and lower values as the attachment between pieces

becomes more difficult. It is directly related with the number of non sticky extremes

of the mutant pieces. However, the difference between the systems with the M2L

and M2I mutant pieces is provoked not by the number of non sticky extremes per

mutant piece but by the distribution of these non sticky ends all over the contour

of the aggregate. The M2L pieces close the directions of growth locally and turn

up the direction of growth by 90 degrees. The M2I pieces also close directions of
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growth locally but they promote linear growth in a preferential direction.

0 2000 4000 6000 8000
Time step

0

200

400

600

800

1000

C
lu

st
er

ed
 p

ie
ce

s

Mutant M1
Mutant M2L
Mutant M2I
Mutant M3
Mutant M4
Normal Pieces

Figure 5.21: Conversion speed for systems with mutant pieces. Initial total density
was 0.1 pieces per node in a grid of 400 x 400 nodes. Averages from 20 simulations
of each kind of system.

The perimeter/area rate is a measure related to the size of compact struc-

tures, as the surface/volume rate for nanostructures. However, for non com-

pact structures it is rather a measure of structural density at the local level. In

our branched structures the perimeter/area rate is a way to express how com-

pactly the closest neighbors inside branches are distributed and how much thick such

branches are. Branches with the same density but different thickness have different

perimeter/area rate. It is worthy to remark that how much separated or close

the branches are between them does not change perimeter/area rate. Thus, for

analyzing locally our structures this measure is better than calculating the function

g(r) because our measure isolates the branch structure from global structure.

In figure 5.22 the evolution of perimeter/area rate for all the different simu-
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lated systems is plotted. There is a valley for all systems on the first 1000 time steps

that is related with the initial growth of a denser core when the density of free pieces

is still high. After that, the branch structure takes more importance and there is a

slight increase with a tendency to go to a stable value. Systems with M2I pieces goes

to 1.04, the highest value for all the systems shown, because M2I pieces promote

the growth of long and thin branches at the smallest scales. The systems with M2I,

M1, M2L and M3 pieces follow a descendant tendency on their perimeter/area

rates. Such a behavior corresponds to the ability of each kind of mutant piece for

inhibiting the growth of branches at the smallest scale. If perimeter/area rate

is lower then more pieces are inside the main branches and there are lesser “hairs”.

This measure provides a way to analyze systems as the one with M4 mutant pieces

where it is difficult to evaluate in a visual way the characteristics of branches at

different scales. The M4 structure is in some way less branched that all the other

systems unless the M3 system, and its branches are thicker. However, it is important

to remember that the growth of M4 system is inhibited in two ways: the first is that

it has the half of pieces able to attach compared with the other systems, and the

second is that M4 pieces act as an environment.

The perimeter of the aggregates are formed by the extremes of the pieces, some

of them are able to attach to extremes of free pieces and other are defective extremes

of mutant pieces that are not able to establish a connection. If these extremes have

different chemical or magnetics properties useful for a next step in an industrial pro-

duction process it would be interesting to know which is the proportion of these two

kinds of extremes. Figure 5.23 shows the proportion between non sticky extremes

that are in the perimeter of the aggregate and the total of extremes forming the

perimeter. The lowest value is for the system with M4 mutant pieces. It is just zero

because M4 pieces can not attach to the cluster and therefore there is not any sticky

extreme in the aggregate. For the other mutant pieces it is important to observe

that the conditions for adding a new piece to the cluster inhibit the attachment of

a piece with a given non sticky extreme, but that does not forbid the existence of a

clustered piece aside this non sticky extreme if such piece is aggregated by attaching
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Figure 5.22: Perimeter vs area evolution for systems with mutant pieces. The initial
total density is 0.1 pieces per node in a grid of 400 x 400 nodes. Averages from 20
simulations of each kind of system.

to a sticky end of other clustered piece. Non sticky extremes considered here do not

have repulsive properties. Therefore, some non sticky extremes can be inside the

cluster (not contributing to the perimeter) if the growth of the cluster covers them.

All systems follow an order correspondent with the number of non sticky ends in

the mutant pieces but their particular values and dynamics are interesting by them-

selves. With M1 pieces the value goes to 0.2, that is close to 1/5 of the perimeter.

The proportion at the beginning of simulation is 1/8 but sticky extremes are more

prone to get inside the cluster where new pieces are attached to the aggregate. The

following value of 0.345 correspond to systems with M2L pieces. This value is higher

than that for M1 systems as expected but it is lower than 0.51, the value for M2I

system. M2L pieces change the local direction of growth by 90 degrees but, at the

same time, it promotes the feature that addition of new pieces to the cluster results

in the covering of non sticky extremes, transforming them from perimeter-like to
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inner-like. This is not the case for M2I pieces that promotes the growth in a linear

fashion and therefore the growth of the perimeter. Finally, M3 pieces make slower

the growth of the aggregate, but with enough time these systems reach the highest

value.
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Figure 5.23: The non sticky perimeter vs total perimeter for systems with mutant
pieces. The initial total density is 0.1 pieces per node in a grid of 400 x 400 nodes.
Averages from 20 simulations of each kind of system

In figure 5.24 it is shown the time evolution of the measure F . This measure

can be considered as a measure of the global density, in an independent way of the

local structure or particular characteristics of the branches. The plot shows that the

growth of branches at the smallest scale allows to have higher global densities and

structures with principal branches more defined reach larger diameters and there-

fore lower densities. Systems with M2L pieces show a slightly different behavior,

although they have branches that are mainly at the medium scale and they have a

comparatively low global density.
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Figure 5.24: Time evolution of the measure F for systems with mutant pieces. The
initial total density was 0.1 pieces per node in a grid of 400 x 400 nodes. Averages
from 20 simulations of each kind of system

5.4 Conclusions and perspectives

A model for the aggregation of pieces (or molecules), interacting by dynamics rules

based on LGCA methods has been described. In addition to traditional models, we

have considered that particles are not just point-like, but they have a cross shape.

This implies the consideration of rotations and orientation of pieces and gives us

the possibility of considering a huge spectra of different pieces by defining different

kinds of extremes and interactions between them. This is what makes our model

different from previous ones. We have explored only the simplest possibilities as

having all extremes of the same kind, complementary extremes in the same piece,

two complementary extremes in two different pieces, and combination of pieces that

have some extremes that lost their ability to establish a connection.

The conversion rates have been studied as well. All of them showed a main peak
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related with the auto-catalytic nature of the growth of the perimeter of the cluster

and the posterior scarcity of free pieces. The time step when this peak is located

and its height are determined by the initial density of pieces and by the probability

of having pieces with complementary sticky extremes in the right orientation and

place. Therefore, the definition of interactions between extremes and the kind of

pieces are fundamental factors for the conversion rates.

The employed model shows us that the selection of pieces and densities has a ma-

jor effect on the morphology of the aggregates. For high initial densities, aggregates

have a dense core and a less dense outer section. For lower initial densities one can

see the effect of pieces with defects on the morphology of aggregates at the smaller

and global scale. Different pieces promote different patterns of growth as follows:

promotion or inhibition of branches at the smaller scale, changes in the thickness of

branches at the medium and global scales, changes in global density, growth on ra-

dial or spiral branches. Working with combinations of different densities and pieces

would give us an even broader variety of structures.

Three measures have been proposed and involved for the study of the formed

structures. The measure F gives us an idea of how dense is the structure at the global

scale at the same time disregarding local properties. This measure was inspired by

the calculation of fractal dimensions through the box counting method. The second

measure is the perimeter/area rate that is inspired in the surface/volume

rate for systems at the nanometric scale. This measure gives us an idea about the

structure and density of the branches of the aggregates, with the additional property

of disregarding global properties of the cluster. The combination of these two mea-

sures provides us with a better understanding of the formed structures than would

be possible with the well known g(r) calculation. The last measure was simply the

proportion between the number of non sticky extremes that are part of the perimeter

and the total number of extremes forming the perimeter. With this quantity we can

have an idea of the size of an “armored against growth” frontier in the aggregates.
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All these results suggest that it is possible to create experimental aggregated

structures at the micro and nano scales with partial control on their local and

global properties. It would be possible to produce aggregates made of alternated

sections of different morphologies and densities, going, of course, from higher densi-

ties at the core to lower densities at the outersides. The control on local and global

densities as well as the kind of branching would allow to produce small structures

with enhanced properties for physical absorption of preferred sizes of particles. The

control of the proportion of different kind of extremes at the perimeter (and also in

the bulk) would do the same from the chemical point of view. It is also possible to

consider magnetic and non magnetic extremes for similar purposes. The controlled

attachment of several particles over these designed aggregates could be the initial

step for industrial production of materials with special surface properties at very

low costs due to the easy implementation of the self-assembly process. Some experi-

mental research can be related with the results presented here. We refer to the work

presented by Grill et. al. [22], where the assembling of crosses has been performed

(see figure 5.25).

Figure 5.25: Formation of covalently connected networks (CNN). a) Formation of
CNN: concept. b) Chemical structure of tetra(4-bromophenyl)porphyrin. c) Struc-
ture before activation. d) Formed structures with activation previous to deposition.
e) Final formed structures. Figure from [22]
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It is noteworthy to observe that the model presented in this chapter is capable

of important extensions such as the inclusion of energy considerations for the at-

tachment and detachment of molecules, conformational changes of the pieces, and

the implementation of pieces with different geometries (triangles, hexagons). More

complex and specifically designed structures can be studied in order to explore how

much information is needed for a specific structure and how much information could

be structurally carried by pieces under certain restrictions. Hierarchical structures

could be also implemented in a far more advanced version of the model presented

here.
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Chapter 6

Wavelet Analysis of Elementary

Cellular Automata Signals

6.1 Overview

6.1.1 Elementary Cellular Automata

General cellular automata have been defined in chapter two, they can be n-dimensional

and have a set of q states for cell states (n and q ∈ N). There are multiple neigh-

borhood options and the rules can be defined in several ways. However, the simplest

cellular automata are defined in an infinite 1-D arrangement of cells, each of them

being in one of only two states (black or white, 0 or 1) and the rules are explic-

itly defined using a neighborhood composed by the central cell and its closest two

neighboring cells. These class of cellular automata are called Elementary Cellular

Automata (ECA) [1].

ECA’s can be formally defined as follows: Each cell (labeled i) has, at a given

time, two possible states si = 0 or 1. The state si at time t + 1 depends only on

the triplet (si−1, si, si+1) at time t:

si(t+ 1) = Φ(si−1(t), si(t), si+1(t)) . (6.1)

To each of the eight possible configurations of a triplet of sites it is associated a

105



6.1. Overview 106

value αk = 0 or 1 according to the following list:

111
︸︷︷︸

α7

110
︸︷︷︸

α6

101
︸︷︷︸

α5

100
︸︷︷︸

α4

011
︸︷︷︸

α3

010
︸︷︷︸

α2

001
︸︷︷︸

α1

000
︸︷︷︸

α0

. (6.2)

Each possible cellular automata rule R is characterized by the values α0, α1,

α2, α3, α4, α5, α6, α7. There are clearly 256 possible choices. Each rule can be

identified by an index NR computed as follows

NR =
7∑

i=0

2iαi , (6.3)

which corresponds to the binary representation α7, α6, α5, α4, α3, α2, α1, α0.

An example is presented in Fig. 6.2 for rule 90 for a initial condition where

only one cell is in the state “1” and all others are in the “0” state. In the top it is

shown the neighborhood, made up by the central cell and its two closest neighbor-

ing cells. Then, the eight possibilities for the triplet configuration are presented in

binary order, with the future state for the central cell correspondent to rule number

90 (01011010 in binary). Finally, it is shown the evolution of the system by the

successive application of the rule.

Figure 6.1: ECA number 90 evolution. It is depicted the neighborhood, the
schematic representation of rule number 90, and the evolution of the system by
applying three times the rule.
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Despite its simplicity, these systems have presented interesting properties; for

instance, rule 30 can be used as a random number generator, rule 90 is able to

generate a Sierpinski triangle and rule 110 is capable of universal computation [2].

Given a rule and an initial state (random or not), one can study the time evolu-

tion of ECA’s. Some results can be deduced analytically using algebraic techniques,

but most of the conclusions follow from numerical iterations of the rules. A system-

atic study of these rules was undertaken by S. Wolfram in 1983 [1]. According to

their behavior, he grouped the different rules in four different classes [2, 3]:

Class 1 Evolve after a finite number of time steps from almost all initial states of the

system to a unique homogeneous state (simple limit point).

Class 2 A pattern consisting of separated periodic regions (limit cycles) is produced

from almost all initial states.

Class 3 These cellular automata evolve from almost all initial states to chaotic, aperi-

odic patterns (strange attractors).

Class 4 Persistent complex structures are formed for a large class of initial states (de-

termined only by explicit simulation of their time evolution).

Although this classifications suffers of some drawbacks it shows that these simple

systems are capable of generating quite complex behaviors and are worth of research.

6.1.2 Wavelet Method

The Fourier transform is the most popular method for signal analysis. It is a suitable

technique for stationary signals because it is based on sinusoidal-like waves for de-

composing signals. However, it has problems with providing the proper information
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where non-stationary signals are studied. Therefore other methods of analysis, such

as the Wavelet transform, have been developed in order to deal with non-stationary

signals.

A wavelet is defined as a function Ψ(t) with finite energy that oscillates in a

small time interval. This function satisfy that

∫ ∞

−∞
Ψ(t)dt = 0 , (6.4)

i.e. the mean value is zero.

From this wavelet (called mother wavelet), it is built an entire family of “daughter

wavelets”, defined as:

Ψa,b(t) =
1√
a
Ψ

(
t− b

a

)

, (6.5)

where a > 0 is the scale parameter, and b ∈ R is the translation parameter.

If the parameters a and b are varied in a continuous way it is possible to ana-

lyze a signal by calculating the convolutions between the signal and the daughter

wavelets. As occurs in the Continuous Fourier Transform, the original signal can

be reconstructed from these convolution values although there is a great amount of

redundant information.

Besides the Continuous Wavelet Transform (CWT) presented in more detail in

Appendix B, there is also a discrete version, called Discrete Wavelet Transform

(DWT), that decomposes a signal in an orthonormal basis without redundant infor-

mation. This approach is specially appropriate for our work given that elementary

cellular automata are discrete by definition.

If the scale and translation parameters are defined as:

a = 2−j and b = k2−j, (6.6)
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Figure 6.2: Four wavelets. a) Gaussian wave (first derivative of a Gaussian). b)
Mexican hat (second derivative of a Gaussian). c) Haar. d) Morlet (real part).
Figure from [4]

where j, k ∈ Z, a Fast Wavelet Transform algorithm can be applied. Therefore,

the family of wavelets can be represented by:

Ψj,k(t) = 2j/2Ψ(2jt− k). (6.7)

Then, dj,k coefficients are defined in the following way:

dj,k = WΨf(2−k, k2−j) =

∫ ∞

−∞
f(t)Ψj,k(t)dt, (6.8)

where f(t) is the signal to analyze. Therefore, the signal reconstruction corresponds

to:

f(t) =
∞∑

j=−∞

∞∑

k=−∞

dj,kΨj,k(t), (6.9)

However, decomposition of the signal requires the use of Multi-Resolution Analy-

sis (MRA) method; that consists in decomposing the signal level by level, performing

convolution from the more localized wavelets to the less localized. The information
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that can be represented by the wavelets at a given level is understood as “details”

information, In each level, the MRA procedure works on the information that re-

mains after subtracting the “details” information that can be represented by the

previous level. So the information is separated at each level in “details” information

and an “average” information that is passed to be decomposed in the next level.

Reconstruction can be achieved by following this process in reversed order. In Ap-

pendix B the Wavelet formalism is presented in further detail.

6.2 Multifractal properties of elementary cellular

automata in a discrete wavelet approach of

MF-DFA

In this section we analyze the behavior of the time signals produced by ECAs. As a

main objective we are interested in detecting monofractal, multifractal and 1/fα-

like behavior. The work described here resulted from the collaboration between Ph.

D. José Salomé Murgúıa, M. Sc. Jaime E. Pérez Terrazas and Ph. D. Haret Codra-

tian Rosu; the results have been published in Europhysics Letters 87, 28003 (2009).

6.2.1 Introduction

In 2005 Nagler and Claussen [16] investigated the time series of the elementary cellu-

lar automata (ECA) for possible (multi)fractal behavior. They eliminated the poly-

nomial background atb through the direct fitting of the polynomial coefficients a and

b. We here reconsider their work eliminating the polynomial trend by means of the

multifractal-based detrended fluctuation analysis (MF-DFA) in which the wavelet

multiresolution property is employed to filter out the trend in a more speedy way

than the direct polynomial fitting and also with respect to the wavelet transform

modulus maxima (WTMM) procedure. In the algorithm, the discrete fast wavelet

transform is used to calculate the trend as a local feature that enters the so-called



6.2. Multifractal properties of elementary cellular automata in a
discrete wavelet approach of MF-DFA 111

details signal. We illustrate our result for three representative cellular automata

rules: 90, 105, and 150. We confirm their multifractal behavior and provide our

results for the scaling parameters.

At the present time, a number of different algorithms are well established to

analyze the singular behavior that may be hidden in time series data, such as the

structure function method [5], the wavelet transform modulus maxima (WTMM)

method [1, 5, 7, 8], the detrended fluctuation analysis (DFA) [9] and its variants

[10–12]. DFA is a method used to analyze the behavior of the average fluctuations

of the data at different scales after removing the local trends. In 2002, Kantelhardt

et. al. [10] provided a generalization of DFA to the case of multifractal time series.

Subsequently, the latter method started to be widely employed in the literature un-

der the name of MF-DFA. Kantelhardt wrote a recent review of the techniques used

in processing the fractal and multifractal time series [11]. On the other hand, a lot

of research has been done on fractal signals and objects with wavelet transforms

(WTs) because the multiscale decompositions implied by the WTs are well adapted

to evaluate typical self-similarity properties. The efficiency of WTs as “mathemat-

ical microscopes” for capturing the local scaling properties of fractals have been

noticed since more than two decades [13].

It is thus no wonder that there are current efforts towards merging the WTs

with DFA procedures [14] as a natural union of powerful methods for quantifying

the scaling properties of the fluctuations. In this short note, based on this unifying

standpoint, which we call WMF-DFA, we focus on the MF properties of elementary

CA with periodic boundary conditions. At the best of our knowledge, there is only

one previous work dedicated to the MF features of CA [15] but there the analysis

is performed on the time series of random walk processes generated by some of the

evolution rules of cellular automata and not directly as we do here. In addition,

Nagler and Clausen [16] mention in the final part of their work the possibility of

considering their spectral analysis for multifractal signals instead of monofractal

ones. We recall that many important applications of CA are in biology, chemistry,
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and soft materials, where multifractal properties are to be expected. For example,

an interpretation of CA rules 90 and 150 can be made in the context of catalytic

processes [16], also rule 126 can be used as a conceptual model of biological cell

growth [17]. On the other hand, rule 110 is interesting because it has been proven

that any mathematical algorithm can be mapped to a CA having this rule and rule

30 can be considered as an intrinsic generator of randomness [2].

6.2.2 DFA with wavelets

An important advantage of the vanishing moment property of wavelets (see the

Appendix) is that it helps detrending the data. We are interested in revealing the

(multi)fractal properties [18] of elementary cellular automata. To separate the trend

from fluctuations in the CA time series, we follow the discrete wavelet method pro-

posed by Manimaran et al [14]. This method exploits the fact that the low-pass

version resembles the original data in an “averaged” manner in different resolutions.

Instead of a polynomial fit, we consider the different versions of the low-pass coeffi-

cients to calculate the “local” trend. Let x(tk) be a time series type of data, where

tk = k∆t and k = 1, 2, . . . , N . Then the algorithm that we employ contains the

following steps:

1. Determine the profile Y (k) of the time series, which is the cumulative sum of

the series from which the series mean value is subtracted:

Y (k) =
k∑

i=1

(x(ti) − 〈x〉) (6.10)

2. Compute the FWT, i.e., the multilevel wavelet decomposition of the profile.

For each level m, we get the fluctuations of the Y (k) by subtracting the

“local” trend of the Y data, i.e.,

∆Y (k;m) = Y (k) − Ỹ (k;m), (6.11)

where Ỹ (k;m) is the reconstructed profile after removal of successive details
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coefficients at each level m. These fluctuations at level m are subdivided into

windows, i.e., into Ms = int(N/s) non-overlapping segments of length s.

This division is performed starting from both the beginning and the end of

the fluctuations series (i.e., one has 2Ms segments). Next, one calculates the

local variances associated to each window ν

F 2(ν, s;m) = var∆Y ((ν − 1)s+ j;m) , (6.12)

where j = 1, ..., s , ν = 1, ..., 2Ms , Ms = int(N/s) .

3. Calculate a qth order fluctuation function defined as

Fq(s;m) =

{

1

2Ms

2Ms∑

ν=1

|F 2(ν, s;m)|q/2

}1/q

(6.13)

where q ∈ Z with q 6= 0. Because of the diverging exponent when q → 0 we

employed in this limit a logarithmic averaging

F0(s;m) = exp

{

1

2Ms

2Ms∑

ν=1

ln |F 2(ν, s;m)|
}

, (6.14)

as in [10, 19].

In order to determine if time series, under analysis, have a fractal scaling behav-

ior, the fluctuation function Fq(s;m) should reveal a power law scaling

Fq(s;m) ∼ sh(q), (6.15)

where h(q) is called the generalized Hurst exponent [19] since it can depend on q,

while the original Hurst exponent is h(2). If h is constant for all q then the time

series is monofractal, otherwise it has a multifractal behavior. In the latter case,

one can calculate various other multifractal scaling exponents, such as τ (q) and

f(α) [18].
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6.2.3 Application to one-dimensional CAs

We apply the previous algorithm to the time series of three illustrative one-dimensional

elementary cellular automata (ECA) as classified by Wolfram in 1984 [20]. The cho-

sen rules are the following: 90, 105, and 150. For the first and the last rules the

updates are given by

xt+1
n = [xt

n−1 + rxt
n + xt

n+1]mod 2 , (6.16)

where r = 0 and r = 1, respectively. It is well known that rule 90 has the appear-

ance of a Sierpinski triangle when responding to an impulse (first row is all 0s with a

1 in the center). Nagler and Claussen [16] found that the ECA with rule 150 displays

a Sierpinski-like self-similar structure of fractal dimension dF = 1.69 (golden mean)

instead of the standard one of 1.58. In a subsequent paper [21], Claussen showed that

its time behavior can be solved as a two-step vectorial, or string, iteration, which

can be viewed as a generalization of Fibonacci iteration generating the time series

from a sequence of vectors of increasing length. This could explain the difference in

the fractal dimension. Finally, it is known that rule 105 is complementary to the

rule 150, i.e. f105 = 1−f150, where f is the neighborhood-depending updating rule.

Data for rules 90 and 150 are valid for periodic conditions as well as for infinite

CA because CA size has been chosen large enough (cells in CA are more that twice

the number of time steps) and the few cells with a “1” in the initial setup (three

or less) were put at the center so data generated is the same for both cases. It is

possible due to these rules are pair and a strip of zeros produces a strip of zeros in

the next iteration. Then, it can be considered that “information” or “effect” due to

initial conditions does not cross the boundaries. It is not the case for rule 105, where

a strip of zeros produces a strip of ones in the next iteration; and a strip of ones

produces a strip of zeroes. For rule 105 we isolated the effect of the initial conditions

(ones in the setup) by substrating the data from the total number of cells when the

data is generated after a number odd of iterations. It is at least as significant as the

detrending made by Nagler and Claussen [16] but with the advantage that the data
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used for analysis is independent of the number of cells selected for the CA simulation.
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Figure 6.3: Rule 90: (a) Time series of the CA row signal. Only the first 27 points
are shown of the whole set of 217 data points. (b) Profile Y of the row signal. (c)
Generalized Hurst exponent h(q). (d) The τ exponent, τ (q) = qh(q)−1. (e) The

singularity spectrum f(α) = q dτ(q)

dq
− τ (q). The calculations of the multifractal

quantities h, τ , and f(α) are performed both with MF-DFA and the wavelet-based
MF-DFA.

6.2.4 Conclusions

We have analyzed the time series of the so-called row sum (or total activity) of the

ECA signals, i.e., the sum of ones in sequences of rows, employing Daubechies (Db)

wavelets. Various types of Db wavelets have been used but we have found that a

better matching of the results given by the wavelet-based MF-DFA method with

those of other methods is provided by the Db-4 wavelets with four filter coefficients.

Our results are illustrated in Figs. (6.3)-(6.5). The fact that the generalized Hurst
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Figure 6.4: Rule 150: (a) Time series of the CA row signal. Only the first 27 points
are shown of the whole set of 217 data points. (b) Profile Y of the row signal. (c)
Generalized Hurst exponent h(q). (d) The τ exponent, τ (q) = qh(q)−1. (e) The

singularity spectrum f(α) = q dτ(q)

dq
− τ (q). The calculations of the multifractal

quantities h, τ , and f(α) are performed both with MF-DFA and the wavelet-based
MF-DFA.

Table 6.1: The Hurst exponent h(2) for the three CA rules examined in this paper
as obtained by means of the MF-DFA method and in each of the cases for four
different initial setup (first row) as indicated.

MF-DFA

I II III IV

(· · · 010 · · · ) (· · · 0110 · · · ) (· · · 01010 · · · ) (· · · 01110 · · · )

R90 0.8972 0.8972 0.8898 0.9451

R150 0.9427 0.9413 0.9541 0.9296

R105 0.9427 0.9413 0.9542 0.9296

exponent is not a constant horizontal line is indicative of a multifractal behavior in

all three cases. In addition, the fact that the τ index is not of a single slope is an-
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Figure 6.5: Rule 105: (a) Time series of the CA row signal. Only the first 27 points
are shown of the whole set of 217 data points. (b) Profile Y of the row signal. (c)
Generalized Hurst exponent h(q). (d) The τ exponent, τ (q) = qh(q)−1. (e) The

singularity spectrum f(α) = q dτ(q)

dq
− τ (q). The calculations of the multifractal

quantities h, τ , and f(α) are performed both with MF-DFA and the wavelet-based
MF-DFA.

Table 6.2: The Hurst exponent h(2) for the three CA rules examined in this paper
as obtained by means of the WMF-DFA method and in each of the cases for four
different initial setup (first row) as indicated.

WMF-DFA

I II III IV

(· · · 010 · · · ) (· · · 0110 · · · ) (· · · 01010 · · · ) (· · · 01110 · · · )

R90 0.8961 0.8961 0.9229 0.9787

R150 0.9293 0.9529 0.9513 0.9407

R105 0.9294 0.9529 0.9514 0.9407

other clear feature of multifractality. The values of the Hurst exponent h(2) for four

types of initial conditions are given in Table 1. We also present the corresponding

fluctuation function F2 in Fig. (6.6) for the impulsive initial condition. The strength

of the multifractality is roughly measured with the width ∆α = αmax − αmin of

the parabolic singularity spectrum f(α) on the α axis. For example, for the im-

pulsive initial condition, ∆α90 = 0.9998(1.0132), ∆α150 = 1.011(1.0075), and
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Figure 6.6: Log-log plot of the fluctuation function F2 versus scale for: (a) rule 90,
(b) rule 150, and (c) rule 105.

∆α105 = 1.0083(1.0325) when the MF-DFA (WMF-DFA) are employed. We

notice that the most “frequent” singularity for all the analyzed time series occurs

at α = 0.568, where the width ∆α of rule 90 is shifted to the right with respect

to those of 105 and 150. According to our results, the strongest singularity αmin,

of all time series corresponds to the rule 90 and the weakest singularity, αmax, to

the rule 150.

In conclusion, in general terms, our algorithm implementation shows that em-

bedding the discrete wavelet transform in the MF-DFA technique is a well-suited
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procedure to analyze the multifractal properties of the ECA. Indeed, we get similar

results to the other methods but computationally faster because we employ a lesser

number of windows. Our results represent a confirmation of the fact that ECA

patterns of different magnitudes follow different scaling laws, i.e., the ECA have

intrinsic multifractality that does not depend on the set of initial data that we used.

Therefore, when processes thought to be multifractal are simulated with (E)CA,

their intrinsic multifractal behavior should be taken into account as a feature of

the simulation procedure rather than of the multifractal behavior of the simulated

processes.
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Chapter 7

Concluding remarks and future

work

7.1 Contributions

In this work we have presented results from simulations according to two compu-

tational models. The first one referred to a chemical system within a Continuosly

Stirred Tank Reactor (CSTR) while the second dealt with a physical system of

self-assembling pieces under different conditions. In addition, were presented math-

ematical analysis, for waves along microtubules at the brain scale, and of wavelet

processing of data from time series of Elementary Cellular Automata (ECA). The

main results of this thesis work are briefly recalled in the following.

A cellular automata approach for the CSTR with a cooling jacket has been pre-

sented in Chapter 3. It could reproduce the CSTR dynamical behavior calculated

by ODE’s with a good approximation and in an easy way. The presented stochastic

model allow us to study what could be the behavior of the variables of the tank

when the reaction probability depends on the local temperature. It also gives us

an approach to study systems of reduced content, such as micro and nanoreactors,

or catalytic membranes separating two phases. The main advantages of the em-

ployed CA approach are its stochastic nature and the direct involvement of a spatial

structure. This also represents a tool for studying the role of initial configuration
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and stochastic fluctuations in systems of reduded content. Additionally, the CA ap-

proach is a clear improvement of the CSTR modeling and moreover can be applied

to different reactor and jacket geometries, as well as for considering in greater detail

the real mass flow for different geometries of the tank reactors.

We have found that in our CA-CSTR implementation at lattice dimensions be-

yond 400x400 and below time steps of 0.001 the ODE-based solutions (curves) are

very well reproduced thus indicating that for those values the stochastic noise is very

small. On the other hand, at small lattice dimensions the CA procedure gives strong

fluctuations which are due to the CA discretization that sometimes could match the

discretization of Nature at those scales. Besides, CA-type models can be used to

analyze local microorganism densities which are directly related to the production

yields of important fermentation products, such as bacterial cellulose obtained in

generalized stirring reactors.

In Chapter 4 the mathematical technique of factorization of differential operators

has been applied to two different problems. After a brief overview on microtubules,

there were reviewed previous results related to the supersymmetry of the Montroll

kinks moving onto the microtubule walls as well as mentioning the sine-Gordon

model for the microtubule nonlinear excitations. Next, analytic formulas have been

found for a class of one-parameter solutions of a sort of diffusion equation of Bessel

type that is obtained by supersymmetry from the homogeneous form of a simple

damped wave equations derived from previous work in the literature for the corti-

cothalamic system. A possible interpretation of the diffusion equation in the brain

context was presented.

In Chapter 5 the discussion focused on a model for the aggregation of pieces

(or molecules), dynamically interacting according to LGCA methods. In addition

to traditional models we considered that particles are not just point-like, but they

have a cross shape. This implies the consideration of rotations and orientation of

pieces and gives us the possibility of considering a huge spectra of different pieces
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by defining different kinds of extremes and interactions between them. This is what

makes our model different. We explored only the simplest possibilities of having all

extremes of the same kind, complementary extremes in the same piece, two comple-

mentary extremes in two different pieces, and combination of pieces that have some

extremes that lost their ability to establish a connection.

It was noticed that selection of pieces and densities have a major effect on the

morphology of the aggregates at different scales. Different pieces promote differ-

ent patterns of growth: promotion or inhibition of branches at the smaller scale,

changes in the thickness of branches at the medium and global scales, changes in

global density, growth on radial or spiral branches. Working with combinations of

different densities and pieces certainly will provide a broader variety of structures.

Three measures were proposed for the study of the formed structures. The mea-

sure F gives us an idea of how dense is the structure at the global scale at the same

time that neglect local properties. The second measure is the perimeter/area

rate that gives us an idea about the structure and density of the branches of the ag-

gregates, with the additional property of discarding global properties of the cluster.

The combination of these two measures provides us with a better understanding of

the formed structures than would be possible with the well known g(r) calculation.

The last measure was simply the proportion between the number of non sticky ex-

tremes that are part of the perimeter and the total number of extremes forming the

perimeter.

The results suggest that it is possible to create experimental aggregated struc-

tures at the micro- and nano-scales with partial control on their local and global

structural properties. This would allow to produce small structures with enhanced

properties for physical or chemical absorption of preferred sizes of particles. The

controlled attachment of several particles over these designed aggregates could be

the initial step for industrial production of materials with special microlocal surface

properties at very low costs due to the easy implementation of the self-assembly
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process.

Chapter 6 focuses on the analysis of the time series of the so-called row sum (or

total activity) ECA signals, i.e., the sum of ones in sequences of rows, employing

Daubechies (Db) wavelets. Various types of Db wavelets were used but the better

matching of the results given by the wavelet-based MF-DFA method with those of

other methods were provided by the Db-4 wavelets with four filter coefficients. The

fact that the generalized Hurst exponent is not a constant horizontal line is indica-

tive of a multifractal behavior in all analyzed cases. In addition, the fact that the τ

index is not of a single slope is another clear feature of multifractality. The strength

of the multifractality is roughly measured with the width ∆α = αmax − αmin of

the parabolic singularity spectrum f(α) on the α axis. We noticed that the most

“frequent” singularity for all the analyzed time series occurs at α = 0.568, where

the width ∆α of rule 90 is shifted to the right with respect to those of rules 105

and 150. According to our results, the strongest singularity αmin, of all time series

corresponds to the rule 90 and the weakest singularity, αmax, to the rule 150.

In conclusion, in general terms, the algorithmic implementation shows that em-

bedding the discrete wavelet transform in the MF-DFA technique is a well-suited

procedure to analyze the multifractal properties of the ECA. Indeed, we get similar

results to the other methods but computationally faster because we employ a lesser

number of windows. Our results represent a confirmation of the fact that ECA

patterns of different magnitudes follow different scaling laws, i.e., the ECA have

intrinsic multifractality that does not depend on the set of initial data that we used.

Therefore, when processes thought to be multifractal are simulated with (E)CA,

their intrinsic multifractal behavior should be taken into account as a feature of

the simulation procedure rather than of the multifractal behavior of the simulated

processes.

Therefore, it is possible to say that the aims of this work have been acomplished

at a great extent. They were
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• To study, model, and simulate chemical and biological systems where spatio-

temporal structures, probabilistic fluctuations and/or spatial inhomogeneities

can be important for their behavior.

• To study, model, and simulate self-assembly systems, trying to find archetyp-

ical self-assembly systems, by means of the abstract representation of compo-

nents and their internal states and interactions.

• To reinforce the use of cellular automata by performing multidisciplinary stud-

ies and modeling of the systems presented above, with cross-over of Biology,

Physics, Chemistry and Mathematics.

7.2 Future research

Each of the studies presented here can be expanded and enhanced with further work.

And I hope to be so, because am decided to continue my investigations along these

research lines.

Some of the main points that I have in mind are:

• To implement different tank geometries to CA-CSRT model

• To analyze, under more specific conditions, the dynamic activity of nanoreac-

tors

• To study wave propagation on computational models of microtubules

• To include energy considerations for the attachment and detachment of molecules

in self-assembled systems

• To include conformational changes of the pieces as well as different piece ge-

ometries

• To study more complex and specifically designed structures in order to explore

how much information is needed for a specific structure and how much infor-

mation could be structurally carried by the pieces under certain restrictions.
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It is also desired to implement self-assembled systems with a molecular dynamics

approach, in order to overcome geometrical restrictions inherent to lattice methods.



Appendix A

Cellular Automata Model for

Reaction-Diffusion Systems

In this appendix it is presented in a brief way the Moving Average Cellular Au-

tomata that was developed by Weimar [1], [2]. This model was reproduced by us

(a working code written in Fortran for 2D) and several key ideas were implemented

as part of the Cellular Automata Model for Continuous Stirred Tank Reactor [3]

presented in chapter 3. We also improved our code in order to manage systems

with any number of chemical species (under computational restrictions), that can

be used in future work on pattern generation on reaction-diffusion systems as those

proposed by Turing in his seminal paper [4].

The summary of the method is depicted in Fig. A.1 for a 2-dimensional squared

array and two reactants. Each cell has two values, one representing the concentra-

tion of chemical A in that point and the other for the concentration of reactant B

at the same point. The concentration is represented by an integer that is inside a

range from zero toN . The greater theN , the smoother the evolution of the system.

The first step in the iterations is the simulation of diffusion. It is made by per-

forming the sum of concentrations of reactant A (B) from the neighboring cells in

the vertical way that are closer than a distance R from a given cell. This is made

for all cells in the grid. This procedure allows to calculate the value for a cell i from
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Figure A.1: Summary of moving average cellular automaton. Figure from [1].

the previously calculated value for the cell j above this one by subtracting the value

of one cell (that one neighbor of j but not of i) and adding the value of another

cell (that one neighbor of i but not of j). The process is repeated in the horizontal

way with the values obtained in the vertical way. This process is equivalent to the

diffusion of chemical A (B), as shown by Weimar (second order approximation) [2],

with a magnitude that is related with the value R. The relation between diffusion

of species A and species B can be controlled by giving them different R values. The

calculation is made for all chemical species.

Instead of dividing the obtained value between the number of neighbors ((2R+
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1)2) in order to assure matter conservation, it is used a look-up table. This table is

made before the iterations are performed, and represents the results from the chem-

ical reaction between reactants A and B on all possible concentration combinations.

The table can be seen as having five columns, and the first of them is composed

by all possible results for the calculation explained above. The explanation for the

other four columns will be done using the look-up table in Fig. A.1. The line where

is written (65,56) represents a cell where the concentration of reactant A corre-

sponds to 65/9 = 7.222 and 56/9 = 6.222. The factor 9 comes from the fact that

neighborhoods for diffusion in both cases was a square with 9 cells in the example

of Fig. A.1 example. As can be seen in the table this values has been decomposed

in four values: 7 and 0.222 from 7.222 and 6 and 0.222 from 6.222. These numbers

are for a system where there is only diffusion and chemical species A and B do

not react. If reaction were considered the values resulting after the reaction would

have been calculated using the equations describing the reaction. The results from

reaction would have been decomposed in integers and decimal parts in the same way.

The look-up table was calculated for all options according with the mathematical

description of the system. Therefore, when the evolution of the system is calculated,

the values are taken directly from the table and almost all calculations are made

with integers, yielding a higher calculation speed of the system.

The last part of the method is related with how to use the numbers obtained

from the look-up table. The integer α form the table is the possible result for con-

centration of species A (B) in the cell in the beginning of the next interation. The

fractional part p is the probability of using α+ 1 as the value in the next iteration

and comes from the fact that α+ p is the value expected. The selection is done by

comparison with a randomly generated number. This technique allows to maintain,

in a statistical way, the real value that should be obtained from reaction, i.e., the

average between values used (x times α and y times α + 1) goes to the expected

value α+ p.
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Therefore, as a whole, this method is a flexible algorithm for simulating chemical

systems with reduced noise, discrete nature and for fast computation.
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Appendix B

Multi-Resolution Analysis

This appendix gives the basic concepts about the wavelet formalim used in order to

produce the results presented in Chapter 6.

WT: continuous and discrete. - The WT of a function or distribution function

x(t) is given by

Wx(a, b) =
1

a

∫ ∞

−∞
x(t)ψ̄

(
t− b

a

)

dt, (B.1)

where ψ is the analyzing wavelet, b ∈ R is a translation parameter, whereas a ∈
R

+ (a 6= 0) is a dilation or scale parameter, and the bar symbol denotes complex

conjugation. One fundamental property that we require in order to analyze the

singular behavior of a signal is that ψ(t) has enough vanishing moments [1, 2]. A

wavelet has n vanishing moments if and only if it satisfies

∫ ∞

−∞
tkψ(t)dt = 0, for k = 0, 1, . . . , n−1,

∫ ∞

−∞
tkψ(t)dt 6= 0, for k = n .

(B.2)

This means that a wavelet with n vanishing moments is orthogonal to all poly-

nomials up to order n − 1. Thus, the WT of x(t) performed with a wavelet ψ(t)

with n vanishing moments is nothing else but a “smoothed version” of the n–th

derivative of x(t) on various scales.

However, the cellular automata data are notoriously discrete, so it is important

to consider a discrete version of the CWT (B.1). Generally, the orthogonal (dis-
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crete) wavelet transform (DWT) is employed. This is one of the different forms of

the wavelet transform [3], and this method associates the wavelets to orthonormal

bases of L2(R). In this case, the wavelet transform is performed only on a discrete

grid of the parameters of dilation and translation, i.e., a and b take on only integral

values, as will be seen. In fact, for the numerical implementation of the DWT the

multiresolution analysis (MRA) have been introduced.

The representation of a function or process x(t) with the DWT is given in terms

of shifted and dilated versions of the wavelet functionψ(t), and its associated scaling

function ϕ(t) [3, 4]. Within this framework and considering that the scaling and

wavelet functions

ϕm,n(t) = 2m/2ϕ(2mt− n), ψm,n(t) = 2m/2ψ(2mt− n), m, n ∈ Z

(B.3)

form an orthonormal basis, then one can write the expansion of x(t) as follows

x(t) =
∑

n

(

cm0,nϕm0,n(t) +

M−1∑

m=m0

dm,nψm,n(t)

)

, (B.4)

where the scaling or approximation coefficients cm,n, and the wavelet coefficients

dm,n are defined as

cm,n =

∫

x(t)ϕm,n(t)dt, dm,n =

∫

x(t)ψm,n(t)dt, (B.5)

with m and n denoting the dilation and translation indices, respectively.

Fast wavelet transform. - To calculate cm,n and dm,n, Mallat [3] developed the

fast wavelet transform (FWT) in which the MRA approach is involved. The FWT

algorithm connects, in an elegant way, wavelets and filter banks, where the mul-

tiresolution signal decomposition of a signal X, based on successive decomposition,

is composed by a series of approximations and details which become increasingly

coarse. At the beginning, the signal is split into an approximation and a detail part
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that together yield the original one. The subdivision is such that the approximation

signal contains the low frequencies, while the detail signal collects the remaining high

frequencies. By repeated application of this subdivision rule on the approximation,

details of increasingly coarse resolution are separated out, while the approximation

itself grows coarser and coarser.

The FWT calculates the scaling and wavelet coefficients at scale m from the

scaling coefficients at the next finer scale m+ 1 using the following formulas

cm,n =
∑

k

h[k − 2n]cm+1,k, (B.6)

dm,n =
∑

k

g[k − 2n]cm+1,k, (B.7)

where h[n] and g[n] are typically called low pass and high pass filters in the asso-

ciated analysis filter bank. In fact, the signals cm,n and dm,n are the convolutions

of cm+1,n with the filters h[n] and g[n] followed by a downsampling of factor 2,

respectively [3].

Conversely, a reconstruction of the original scaling coefficients cm+1,n can be

made from the following combination of the scaling and wavelet coefficients at a

coarse scale

cm+1,n =
∑

k

(h[2k − n]cm,k + g[2k − n]dm,k) . (B.8)

It corresponds to the synthesis filter bank, and this part can be viewed as the discrete

convolutions between the upsampled signal am
l and the filters h[n] and g[n], that

is, following an “upsampling” of factor 2 calculate the convolutions between the

upsampled signal and the filters h[n] and g[n]. The number of levels depends

on the length of the signal, i.e., a signal with 2L values can be decomposed into

(L + 1) levels. To initialize the FWT, we consider a discrete time signal X =

{x[1], x[2], . . . , x[N ]} of lengthN = 2L. The first application of (B.6) and (B.7),
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beginning with am+1
n = x[n], define the first level of the FWT of X. The process

goes on, always adopting the “m+1” scaling coefficients to calculate the “m” scaling

and wavelet coefficients. Iterating (B.6) and (B.7) M times, the transformed signal

consists of M sets of wavelet coefficients at scales m = 1, . . . ,M , and a signal

set of scaling coefficients at scale M . There are exactly 2(L−m) wavelet coefficients

dm
n at each scale m, and 2(L−M) scaling coefficients aM

n . The maximum number of

iterations Mmax = L. A three-level decomposition process of the FWT is shown in

Figure B.1.

am+1

am dm

am-1 dm-1

am-2 dm-2

FWT

Figure B.1: The structure of a three-level FWT.
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