

INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.

POSGRADO EN CIENCIAS EN BIOLOGIA MOLECULAR

"El papel de los factores de tipo GATA Gat1 y Gln3 de *Candida glabrata* en la asimilación del nitrógeno"

Tesis que presenta Francisco Javier Pérez de los Santos

Para obtener el grado de

Doctor en Ciencias en Biología Molecular

Director de la Tesis: Dra. Lina Raquel Riego Ruiz

San Luis Potosí, S.L.P., junio de 2016

CONSTANCIA DE APROBACIÓN DE LA TESIS

La tesis **"El papel de los factores de tipo GATA Gat1 y Gln3 de Candida** *glabrata* en la asimilación del nitrógeno" presentada para obtener el Grado de Doctor en Ciencias en Biología Molecular fue elaborada por Francisco Javier Pérez de los Santos y aprobada el 24 del 06 del 2016 por los suscritos, designados por el Colegio de Profesores de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Dra. agila Riego Ruiz (Director Dra. Irene Beatriz Castaño Navarro (Miembro del Comité Tutoral) Dra. Alicia Gonz**a**lez Manjarrez (Miembreo del Comité Tutoral) Dr. Samuel (Miembro del Comité Tutoral) -/// Dr. Héctor Manuel Mora Montes

(Miembro del Comité Tutoral)

iii

Créditos Institucionales

Esta tesis fue elaborada en el Laboratorio de Genómica Funcional y Comparativa de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección de la Dra. Lina R. Riego Ruiz.

Este trabajo fue llevado a cabo como parte de los proyectos SEP-CONACYT CB_2005-1_49039 y CB_2009_132377. Durante la realización del trabajo, el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (223330) y del Instituto Potosino de Investigación Científica y Tecnológica, A. C.

0		200 200			
hit. in as		 al de la composición de la composición La composición de la c			
I	Ρ		Y	Т	

Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Acta de Examen de Grado

El Secretario Académico del Instituto Potosino de Investigación Científica y Tecnológica, A.C., certifica que en el Acta 086 del Libro Primero de Actas de Exámenes de Grado del Programa de Doctorado en Ciencias en Biología Molecular está asentado lo siguiente:

En la ciudad de San Luis Potosí a los 1 días del mes de julio del año 2016, se reunió a las 12:05 horas en las instalaciones del Instituto Potosino de Investigación Científica y Tecnológica, A.C., el Jurado integrado por:

Dra. María Alicia González Manjarrez Presidenta	UNAM
Dra. Irene Beatriz Castaño Navarro Secretaria	IPICYT
Dra. Lina Raquel Riego Ruiz	IPICYT
Dr. Samuel Lara González Sinodal	IPICYT
a fin de efectuar el examen, que para obtener el Grado de:	
DOCTOR EN CIENCIAS EN BIOLOGÍA MOLECULAR	
sustentó el C	
👘 💭 Francisco Javier Pérez de los Santos	

sobre la Tesis intitulada:

El papel de los factores de tipo GATA Gat1 y Gln3 de Candida glabrata en la asimilación del nitrógeno

que se desarrolló bajo la dirección de

Dra. Lina Raquel Riego Ruiz

El Jurado, después de deliberar, determinó

APROBARLO

Dándose por terminado el acto a las 14:00 horas, procediendo a la firma del Acta los integrantes del Jurado. Dando fe el Secretario Académico del Instituto.

A petición del interesado y para los fines que al mismo convengan presente documento en la ciudad de San Luis Potosí, S.L.P., México, a los 1 días de de 2016.

Sécretario Académico Mtra. Ivonne Lizette Cure vas Véle Jefa del Departamento del Posgrado

Dedicatorias

Quiero dedicar este trabajo:

A mis padres, quienes siempre fueron un ejemplo de fortaleza y dedicación, y que sobretodo me han apoyado incondicionalmente a lo largo de este viaje.

A mis hermanos, con quienes he compartido tantos momentos y que siempre han estado ahí listos para apoyarme cuando lo he necesitado.

Y no por ser la última persona en esta lista es la menos importante sino, todo lo contrario, a Cris, de quien he aprendido tanto cosas y con quien he compartido tanto momentos increíbles.

Muchas gracias.

Agradecimientos

A:

Dra. Lina Raquel Riego Ruiz por creer en mi y darme la oportunidad de realizar este trabajo en su laboratorio. Además, de por sus valiosas sugerencias e infinita paciencia.

Todos mis compañeros del Laboratorio de Genómica Funcional y Comparativa del IPICyT.

Los doctores, Irene Beatriz Castaño Navarro, Alicia González Manjarrez, Samuel Lara González y Héctor Manuel Mora Montes, por sus valiosas aportaciones a este trabajo.

M. en C. Juan Pablo Rodas Ortíz, por su ayuda en el ensayo del amonio residual.

Dr. Nicolás Gómez Hernández, por sus valiosas sugerencias a los experimentos realizados en este trabajo.

IPICyT, por las facilidades otorgadas en este trabajo.

Conacyt, por la beca otorgada para hacer posible este trabajo.

Contenido

Constancia de aprobación de la tesis	ii
Créditos Institucionales	iii
Acta de examen	iv
Dedicatorias	v
Agradecimientos	vi
Lista de tablas	ix
Lista de figuras	x
Anexos	xi
Resumen	xiii
Abstract	xiv
I. Introducción	1
1 El género <i>Candida</i> y <i>Candida glabrata</i>	1
2 Metabolismo del nitrógeno	3
2.1 Metabolismo central del nitrógeno	3
2.2 Fuentes de nitrógeno	4
3 Regulación de la asimilación del nitrógeno: Represión	Catabólica
Nitrogenada	5
II. Materiales y Métodos	7
Cepas generadas	7
Oligonucleótidos empleados	8
Medios de cultivo	10
Medio rico (YPD)	10
Medio mínimo con casaminoácidos	10
Medio mínimo sin casaminoácidos	11
Condiciones de crecimiento	11
Ensayos en medio sólido	11
Ensayos en medio líquido	12
Ensayo del amonio residual	12

Cultivos para la extracción de RNA	12
Construcción de cepas mutantes	13
Generación de los casetes de deleción	13
Transformación de <i>C. glabrata</i>	14
Análisis de secuencias	15
Prueba del amonio residual	15
Cuantificación de la expresión de los genes por PCR en tiempo real (qRT-P	CR)
	17
III. Resultados	19
Candida glabrata puede crecer en diversos compuestos como fuentes	de
nitrógeno	19
Los factores de tipo GATA y Ure2 están involucrados en la asimilación	del
nitrógeno en <i>C. glabrata</i>	21
GIn3 como regulador maestro del transporte de amonio extracelular	24
Los genes de C. glabrata MEP2, GAP1 y GLN1 son regulados por la fuente	e de
nitrógeno de forma GIn3 dependiente	25
Expresión de los genes PUT4 y GDH3 en amonio y prolina	30
IV. Discusión	34
V. Conclusiones y perspectivas	41
VI. Referencias	43
VI. Anexos	48

Lista de tablas

Tabla 1 Cepas generadas en el presente estudio.	7
Tabla 2 Oligonucleótidos empleados.	8
Tabla 3 Curva de calibración para la prueba de amonio residual.	17
Tabla 4 Tiempo de duplicación de la cepa parental y las mutantes en Ga	at1, Gln3
y Ure2 de <i>C. glabrata</i> crecidas en distintas fuentes de nitrógeno.	23

Lista de figuras

Figura 1 Cladograma de las especies que pertenecen al género Nakaseomyces y
otras levaduras con las que se encuentran relacionadas. 2
Figura 2 Metabolismo central del nitrógeno. 4
Figura 3 La cepa parental de C. glabrata, presenta distintos fenotipos de
crecimiento dependiendo de la fuente de nitrógeno disponible. 20
Figura 4 Ensayo de amonio residual de las cepas parental y mutantes de C.
glabrata. 25
Figura 5 La expresión de MEP2, GAP1 y GLN1 está regulada por la calidad de la
fuente de nitrógeno. 27
Figura 6 Gln3 es un regulador maestro de la expresión de MEP2, GAP1 y GLN1.
29
Figura 7 Efecto de la fuente de nitrógeno sobre la expresión de PUT4 y GDH3.31
Figura 8 Efecto de la deleción de Gat1, Gln3 y Ure2 en la expresión de PUT4 y
GDH3. 33
Figura 9 Modelo de la represión catabólica nitrogenada en S. cerevisiae y C.
glabrata. 39

Anexos

Tabla suplementaria 1 Comparación mediante alineamientos pareados de las
proteínas del metabolismo central del nitrógeno en S. cerevisae y C. glabrata 48
Tabla suplementaria 2 Comparación mediante alineamientos pareados de los
transportadores de diversos compuestos nitrogenados entre S. cerevisiae y C.
glabrata
Tabla suplementaria 3 Comparación mediante alineamientos pareados de las
enzimas involucradas en el metabolismo de diversas fuentes de nitrógeno entre S.
cerevisiae y C. glabrata51
Tabla suplementaria 4 Comparación mediante alineamientos pareados entre las
proteínas involucradas en NCR entre S. cerevisiae y C. glabrata

Figura suplementaria 1 Metabolismo de la arginina y la prolina
Figura suplementaria 2 Alineamiento entre las proteínas ortólogas Gat1 de S.
cerevisiae y C. glabrata56
Figura suplementaria 3 Alineamiento entre las proteínas ortólogas Gln3 de S.
cerevisiae y C. glabrata58
Figura suplementaria 4 Alineamiento entre las proteínas ortólogas Ure2 de S.
cerevisiae y C. glabrata59
Figura suplementaria 5 Cuantificación del amonio residual entre las cepas
parental y <i>gln3</i> ∆60
Figura suplementaria 6 Alineamiento entre las proteínas ortólogas Mep2 de S.
cerevisiae y C. glabrata61
Figura suplementaria 7 Alineamiento entre las proteínas ortólogas Gap1 de S.
cerevisiae y C. glabrata62
Figura suplementaria 8 Alineamiento entre las proteínas ortólogas Gln1 de S.
cerevisiae y C. glabrata

Figura suplementaria 9 Diferencias en el crecimiento de distintas especies	; de
levaduras en diversas fuentes de nitrógeno	. 64
Figura suplementaria 10 Relación de productos terminados	. 65

Resumen

El papel de los factores de tipo GATA Gat1 y Gln3 de Candida glabrata en la asimilación del nitrógeno

Después de Candida albicans, Candida glabrata es uno de los principales agentes causales de candidemia. El análisis transcriptómico en C. albicans y C. glabrata ha demostrado que cuando éstas levaduras son fagocitadas por los macrófagos, sobre-expresan genes involucrados en la asimilación de fuentes de nitrógeno. La asimilación del nitrógeno ha sido muy estudiada en los hongos Aspergillus nidulans, Neurospora crassa y Saccharomyces cerevisiae. En éstos, los factores de tipo GATA Gat1 v/o GIn3, son componentes esenciales de dos mecanismos encargados de la regulación de la expresión de los genes necesarios para la asimilación de las fuentes nitrógeno, Nitrogen Catabolite Repression (NCR)en S. cerevisiae y Nitrogen Metabolite Repression (NMR) en A. Nidulans y N. crassa. En este trabajo reportamos que C. glabrata es capaz de crecer en diversas fuentes de nitrógeno, y que además posee genes ortólogos a GAT1, GLN3 y URE2 de S. cerevisiae. También mostramos que la ausencia de GIn3 afecta el crecimiento de C. glabrata en glutamina, amonio o prolina, mientras que la ausencia de Ure2 solo afecta el crecimiento en amonio y glutamina. Además, Gln3 regula la expresión de varios genes relacionados al metabolismo del nitrógeno como MEP2, GAP1, GLN1 y *PUT4*. Finalmente, esta es la primera vez que se reporta el mecanismo de NCR en la levadura patógena C. glabrata, en donde los papeles de Gln3 y Ure2, pero no el de Gat1, parecen estar conservados con sus proteínas ortólogas de la NCR de S. cerevisiae.

Palabras clave: Represión catabólica nitrogenada; Factores GATA; Gat1; Gln3; Ure2; *Candida glabrata*

Abstract

The role of *Candida glabrata* GATA factors Gat1 and Gln3 in nitrogen assimilation

After Candida albicans, Candida glabrata is the principal cause of candidemia. Transcriptome analysis in C. albicans and C. glabrata have shown that, when engulfed by macrophages, genes involved in nitrogen assimilation are overexpressed. The nitrogen assimilation has been thoroughly studied in Aspergillus nidulans, Neurospora crassa and Saccharomyces cerevisiae. In these fungi, the GATA type factors Gat1 and/or Gln3, are essential components of two mechanisms involved in nitrogen assimilation, the Nitrogen Catabolite Repression (NCR) in S. cerevisiae and Nitrogen Metabolite Repression (NMR) in A. nidulans and N. crassa. In this work, we report that C. glabrata is able to grow in different nitrogen sources and possesses ortologous genes to S. cerevisiae GAT1, GLN3 and URE2. We also showed that in C. glabrata, loss of Gln3 affects cell growth in a medium containing glutamine, ammonium and proline. In addition, absence of Ure2 only affects cells growing in ammonium and glutamine. C. glabrata Gln3 regulates the expression of genes involved in nitrogen assimilation, such as MEP2, GAP1, GLN1 and PUT4. To our knowledge, this is the first report of a NCR mechanism in the pathogenic fungus C. glabrata, where Gln3 and Ure2, but not Gat1, have conserved and similar roles to those reported in the *S. cerevisiae* orthologs.

KEY WORDS: Nitrogen catabolite repression; GATA Factors; Gat1; Gln3; Ure2; *Candida glabrata*

I. Introducción

1.- El género Candida y Candida glabrata

Actualmente, las infecciones por hongos se encuentran entre las enfermedades más difíciles de combatir en humanos. Se ha calculado que existen aproximadamente 1.5 a 5.0 millones de especies de hongos en el planeta Tierra (O'Brien *et al.*, 2005); de éstos, solo unos pocos cientos causan infecciones en humanos (Köhler *et al.*, 2015). Dentro de las especies de hongos que causan enfermedades se encuentran algunas que pertencen al género *Candida*, los cuales afectan principalmente a individuos inmunocomprometidos. Este género está compuesto por un grupo polifilético de levaduras del orden *Saccharomycotina* que comúnmente viven como comensales en la piel y en las membranas de las mucosas de los mamíferos (Wrobel *et al.*, 2008). Algunas especies del género *Candida* parapsilosis, Candida tropicalis, Candida lusitaniae y Candida krusei (Köhler *et al.*, 2015). De éstas, *C. albicans, C. glabrata* y *C. tropicalis* son las especies que comúnmente se encuentran en pacientes con candiduria (Behzadi *et al.*, 2015).

Filogenéticamente, *C. glabrata* es una levadura que se encuentra más relacionada con *Saccharomyces cerevisiae* que con las especies del género *Candida* (Dujon *et al.*, 2004). Además, pertenece a un grupo de levaduras cuyo ancestro se cree pasó por un evento de duplicación completa del genoma (**W**hole **G**enome **D**uplication; WGD). En el año 2003, se clasificó a *C. glabrata* junto con las especies *Candida castelli y Kluyveromyces bacillisporus* en un nuevo género conocido como *Nakaseomyces* (Kurtzman, 2003). Más recientemente, se agregaron dos nuevas especies a este género, *Candida nivariensis y Candida bracarensis* (Alcoba-Flórez *et al.*, 2005; Correia *et al.*, 2006; Sharma *et al.*, 2013). El género *Nakaseomyces* está dividido en dos subgrupos, el primero (grupo glabrata) está compuesto por los patógenos *C. glabrata*, *C. bracarensis y C. nivariensis*, además de la levadura no patógena *Nakaseomyces delphensis*. El

segundo grupo está compuesto por *C. castelli y Nakaseomyces bacillisporus* (Figura 1) (Ahmad *et al.*, 2014). *C. glabrata* posee un genoma de 12.3 Mb, distribuído en 13 cromosomas que contienen aproximadamente 5283 secuencias codificantes, con un promedio de 493 codones cada una (Dujon *et al.*, 2004).

Figura 1.- Cladograma de las especies que pertenecen al género *Nakaseomyces* y otras levaduras con las que se encuentran relacionadas.

Representación esquemática de la filogenia de las especies que pertenecen al género *Nakaseomyces* y algunas otras levaduras. Las levaduras patógenas se encuentran señaladas con un asterisco. El evento de duplicación completa del genoma (WGD) se señala con una flecha. El árbol fue construido basado en el análisis del alineamiento concatenado de 603 genes distribuidos en los genomas (Gabaldón *et al.*, 2013). La figura fue modificada de (Ahmad *et al.*, 2014).

2.- Metabolismo del nitrógeno

El nitrógeno es un elemento necesario en casi todos los procesos biosintéticos de las células y este debe ser asimilado en grandes cantidades. Los hongos tienen la capacidad de utilizar una gran variedad de compuestos nitrogenados como fuentes de nitrógeno. Estos compuestos al ser metabolizados por las levaduras pueden tener tres destinos (Large, 1986):

- Pueden ser tomados por las células, e incorporados en componentes celulares sin tener modificación alguna; por ejemplo, la incorporación de los aminoácidos en las proteínas.
- II. Éstos pueden ser degradados por las células y el nitrógeno que contienen liberado usualmente en amonio, glutamina o glutamato, que después es utilizado para la síntesis de componentes celulares como los aminoácidos o las proteínas. En este caso, el compuesto nitrogenado está funcionando como fuente de nitrógeno.
- III. El carbono de las fuentes de nitrógeno puede ser utilizado por la célula con propósitos biosintéticos. En este caso, el compuesto nitrogenado es utilizado como fuente de carbono.

2.1.- Metabolismo central del nitrógeno

En *S. cerevisiae*, el metabolismo central del nitrógeno se caracteriza por la interconversión entre amonio, glutamato y glutamina (Figura 2):

- Conversión de amonio a glutamato, catalizado por la enzima glutamato deshidrogenasa, codificada por los genes *GDH1* y *GDH3* (Avendano *et al.*, 1997; DeLuna *et al.*, 2001).
- II. Conversión de glutamato a amonio, catalizado por la enzima glutamato deshidrogenasa, codificada por el gen *GDH2* (Miller & Magasanik, 1990).
- III. Conversión de glutamato a glutamina, catalizado por la enzima glutamina sintetasa, codificada por el gen GLN1 (Benjamin et al., 1989).

IV. Condensación de α-cetoglutarato y glutamina para formar glutamato, catalizada por la enzima glutamato sintasa codificada por el gen *GLT1* (Valenzuela *et al.*, 1998).

Figura 2.- Metabolismo central del nitrógeno.

Esquema del metabolismo central del nitrógeno, se muestran los nombres de las enzimas involucradas y en itálicas está indicado el gen que codifica para dicha enzima en *S. cerevisiae*. En número romano se señala la reacción que catalizan de acuerdo al texto. Modificada de (Messenguy *et al.*, 2006).

2.2.- Fuentes de nitrógeno

Las levaduras son capaces de utilizar una amplia variedad de compuestos como fuentes de nitrógeno (Large, 1986). Estas fuentes pueden clasificarse en buenas fuentes (por ejemplo, glutamina o amonio) o malas fuentes (por ejemplo, prolina o ácido gamma amino butírico GABA). Para tratar de clasificar a las fuentes de nitrógeno se han usado dos criterios: el primero es la tasa de crecimiento a la cual los organismos crecen. Aunque este criterio parece ser el más sencillo, puede presentar dificultades, ya que en ocasiones las diferencias en el crecimiento entre una fuente y otra son muy pequeñas, por lo que en la práctica es complicado utilizar este criterio como un indicador de la calidad de las fuentes de nitrógeno. El segundo criterio es el grado de represión que puede ejercer una fuente de nitrógeno dada sobre los genes encargados del transporte y catabolismo de otras

fuentes de nitrógeno. Por ejemplo, fuentes de nitrógeno represoras como glutamina o amonio, son consideradas buenas fuentes ya que reprimen genes encargados del transporte y catabolismo de malas fuentes como prolina o GABA (Magasanik & Kaiser, 2002).

Para que una fuente de nitrógeno pueda ser asimilada, ésta debe ser primero transportada hacia el interior de la célula. En S. cerevisiae, se han estudiado diversos transportadores como: la permeasa general de aminoácidos (Gap1), la permeasa de alta afinidad de glutamina (Agp1) o los transportadores de amonio (Mep1, Mep2 y Mep3) (Grenson et al., 1970; Jauniaux & Grenson, 1990; Marini et al., 1997; Regenberg et al., 1998; 1999; Schreve et al., 1998; Zhu et al., 1996). Una vez que los compuestos nitrogenados son transportados al interior de la célula, estos son blanco de enzimas encargadas de transformarlos en glutamina o glutamato. Ambos son compuestos clave para las células ya que, el grupo amino del glutamato y el grupo amido de la glutamina sirven como las principales fuentes de nitrógeno para las reacciones biosintéticas en las células (Magasanik & Kaiser, 2002). Por ejemplo, en el catabolismo de la prolina que se lleva a cabo en la mitocondria, la prolina es oxidada por la prolina deshidrogenasa (Put1) en Δ^{\Box} pirrolina-5-carboxilato y glutamato- γ -semialdehído. Éstos compuestos después son oxidados mediante la pirrolina 5-carboxilato mitocondrial (Put2) en glutamato (Brandriss & Magasanik, 1980) (Figura suplementaria 1).

3.- Regulación de la asimilación del nitrógeno: Represión Catabólica Nitrogenada

En *S. cerevisiae*, la asimilación de las diversas fuentes de nitrógeno está regulada por cuatro factores de transcripción, dos activadores (Gat1 y Gln3) y dos represores (Gzf3 y Dal80). Estos cuatro factores pertenecen a una familia de proteínas de tipo GATA que se unen a secuencias consenso 5'-GATAAG-3' en el promotor de sus genes blanco y, regulan la transcripción de los genes involucrados en el transporte y catabolismo de malas fuentes de nitrógeno, cuando buenas fuentes están disponibles en el medio. A este mecanismo se le conoce como **R**epresión **C**atabólica **N**itrogenada (NCR, por sus siglas en inglés **N**itrogen

Catabolite **R**epression) (Cooper, 2002; Magasanik & Kaiser, 2002). El mecanismo de la NCR (Figura 9), funciona de la siguiente manera: cuando la levadura se encuentra en un medio que contiene una buena fuente de nitrógeno como amonio, existe una baja expresión de genes sensibles a NCR (por ejemplo, *MEP2*, *GAP1* y *GLN1*), esto es debido a que los activadores Gat1 y Gln3 se encuentran principalmente retenidos en el citoplasma por el represor Ure2. Por el contrario, cuando la buena fuente de nitrógeno comienza a escasear o solo hay disponible una mala fuente como prolina, Gat1 y Gln3 son liberados de Ure2 y entran al núcleo donde activan la transcripción de sus genes blanco (por ejemplo, *MEP2*, *GAP1* y *GAP1* y *GAP1* y *GLN1*).

Los factores de tipo GATA se encuentran conservados entre diversas especies de hongos en donde regulan, entre otras cosas, la expresión de genes que codifican para enzimas y permeasas necesarias para asimilación de las fuentes nitrógeno disponibles (Marzluf, 1997). La asimilación del nitrógeno se ha estudiado en otros hongos como *A. nidulans* y *N. crassa* (Wong *et al.*, 2008). En estos organismos existe un mecanismo similar al de NCR conocido como **R**epresión por **M**etabolito **N**itrogenado (NMR, por sus siglas en inglés **N**itrogen **M**etabolite **R**epression) (Marzluf, 1997).

En este trabajo nosotros estudiamos el papel de los factores de tipo GATA, Gat1 y Gln3, y del represor Ure2, en la asimilación de diversas fuentes de nitrógeno. Encontramos que Gln3 está involucrado en la asimilación de glutamina, amonio y prolina. Mientras que Ure2 parece solo tener un papel en amonio y glutamina. Por otro lado, Gat1 tiene un papel que solo es visible en ausencia de Gln3 y Ure2. Cuando evaluamos la expresión de los genes relacionados al metabolismo del nitrógeno, *MEP2*, *GAP1*, *GLN1* y *PUT4*, encontramos que Gln3 es necesario para la regulación de la expresión éstos. Mientras que Gat1 solo está relacionado con la regulación de *GAP1*. Por último, nuestros resultados nos permiten decir que hay un mecanismo de NCR en la levadura *C. glabrata*.

6

II. Materiales y Métodos

Cepas generadas

Todas las cepas generadas en el presente estudio fueron hechas en el fondo genético de la cepa BG14 (Cormack & Falkow, 1999) y están descritas en la Tabla 1.

Сера	Parental	Genotipo pertinente	Referencia
WT S. cerevisiae	(W303-1A X	Matα ura3-1 leu2-3	(Avendano
(CLA1)	p49)		<i>et al.</i> , 1997)
WT S. kluyveri	GRY1175	Matα ura3 ⁻	(Weinstock &
(Y156)			Strathern,
			1993)
WT C. glabrata	BG2	<i>ura3∆::</i> Tn903 G418 ^R	(Cormack &
(BG14)			Falkow,
	5044		1999)
gat1Δ::URA3	BG14	<i>ura3</i> ∆::1n903 G418 ^ĸ ,	Este trabajo
	5011	gat1∆::URA3	
gln3∆::URA3	BG14	<i>ura3</i> ∆ <i>::</i> Tn903 G418 ^ĸ ,	Este trabajo
		gln3∆::URA3	
gat1∆	gat1∆::URA3	<i>ura3∆::</i> Tn903 G418 ^R , <i>gat1∆::</i> FRT	Este trabajo
gln3∆	gln3∆::URA3	<i>ura3∆::</i> Tn903 G418 ^R , <i>gln3∆::</i> FRT	Este trabajo
ure2∆	ure2∆::hph	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	(Gutiérrez-
			Escobedo,
			2013)
ure2	ure2∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo
gat1Δ::URA3		gat1∆::URA3	
ure2	ure2∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo
gln3∆::URA3		gln3∆::URA3	
gat1∆	gat1∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>gat1∆::</i> FRT	Este trabajo
gln3∆::URA3		gln3∆::URA3	
ure2∆ gat1∆	ure2∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo
	gat1∆::URA3	<i>gat1∆::</i> FRT	
ure2∆ gln3∆	ure2∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo
	gln3∆::URA3	<i>gln3</i> ∆ <i>::</i> FRT	
gat1∆ gln3∆	gat1∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>gat1∆::</i> FRT	Este trabajo
	gln3∆::URA3	<i>gln3∆::</i> FRT	
ure2∆ gat1∆	ure2∆ gat1∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo
gln3∆::URA3		gat1∆::FRT gln3∆::URA3	
ure2∆ gat1∆	ure2∆ gat1∆	<i>ura3∆::</i> Tn903 G418 ^R , <i>ure2∆::</i> FRT	Este trabajo

Tabla 1 Cep	as generadas	en el pre	sente estudio.
-------------	--------------	-----------	----------------

	gln3∆	gln3∆::URA3	<i>gat1∆::</i> FRT <i>gln3</i> ∆::FRT	
--	-------	-------------	---------------------------------------	--

Oligonucleótidos empleados

Todos los oligonucleótidos empleados en el presente trabajo se encuentran descritos en la Tabla 2.

Tabla 2.- Oligonucleótidos empleados.

Preparación del	Utilizado para amplificar la región 5'-río arriba del ORF de							
casete de	GAT1							
deleción y	Cg_Fw_5'_GAT1_34	5'-CATTTGAGTCGTAATCAAACCCC-3'						
verificación de la	Cg_Rv_5'_GAT1_33	5'-cgaattcaggaacttgatattttt						
recombinación		ATAGCTAGGAGAGTGGACTAATTA-3'						
homóloga en el	Utilizado para amplificar la región 3'-río abajo del ORF de GAT1							
locus de GAT1	Cg_Fw_3'_ <i>GAT1</i> _38	5'-cacggctaccacatcgtctttg						
		CTGGGTAATGGTAATCGCATTAG-3'						
	Cg_Rv_3'_ <i>GAT1</i> _39	5'-GCAATTTTCACTGAGGTGTGCCG-3'						
	Utilizado para confirmar la correcta inserción del marcador							
	URA3 en el locus de GAT1 de C. glabrata							
	Cg_Fw_5'_ <i>GAT1</i> _35	5'-CTAGGAACTTTCTCCCTTCCGGC-3'						
	Cg_Rv_3'_ <i>GAT1</i> _40	5'-GAATCTCTTTCTATTGATGACCC-3'						
	Utilizado para verificar la ausencia del gen <i>GAT1</i> , debido a la incapacidad de amplificar un fragmento interno en el ORF de							
	GAT1							
	Cg_Fw_ <i>GAT1</i> _36	5'-TAGGATTCTGGCTATGCTGG-3'						
	Cg_Rv_GAT1_37	5'-CGACCGGTGTTGTGACATCG-3'						
Preparación del	Utilizado para ampl	ificar la región 5'-río arriba del ORF de						
casete de	GLN3							
deleción y	Cg_Fw_5'_ <i>GLN</i> 3_42	5'-GGTACAGATGTGAAAGTGCCCGC-3'						
verificación de	Cg_Rv_5'_ <i>GLN3</i> _43	5'-cgaattcaggaacttgatattttt						
recombinación		CTGTAATGGAATGTCTCGCCC-3'						
homóloga en el	Utilizado para amplificar la región 3'-río abajo del ORF de GLN3							

locus de GLN3	Cg_Fw_3'_ <i>GLN3</i> _46	5'-cacggctaccacatcgtctttg							
		TTCAATGGCTTTTAGCTTTCCC-3'							
	Cg_Rv_3'_ <i>GLN3</i> _47	5'-ACGTATCTACATCAGCCGTTCC-3'							
	Utilizado para confirmar la correcta inserción del marcador								
	URA3 en el locus de GLN3 de C. glabrata								
	Cg_Fw_5'_ <i>GLN3</i> _41	Fw_5'_ <i>GLN3</i> _41 5'-GTCTGCCGAGTTGCCGACACC-3'							
	Cg_Rv_3'_ <i>GLN</i> 3_48	5'-CAGGTCTCTCTGTTTGGAACG-3'							
	Utilizado para verificar la ausencia del gen GLN3, debido a la								
	incapacidad de amplificar un fragmento interno en el ORF de								
	GLN3								
	Cg_Fw_GLN3_44	5'-TTCAGGATGATCTCGATGGG-3'							
	Cg_Rv_ <i>GLN</i> 3_45	5'-ACAGGGATGTGAAGTCAAGG-3'							
Preparación del	Utilizado para amplificar el marcador de selección URA3 del								
marcador de	plásmido pGE80								
selección URA3 y	Fw_604_51	5'-AAAAATATCAAGTTCCTGAATTCG-3'							
verificación de la	Rv_605_52	5'-CAAAGACGATGTGGTAGCCGTG-3'							
recombinación	Utilizado para confirmar la correcta inserción de URA3 en el								
en el genoma de	genoma de <i>C. glabrata</i>								
C. glabrata	Sc_Rv_5'_ <i>URA3</i> _49	5'-TGGGACCTAATGCTTCAACTAAC-3'							
	Sc_Fw_3'_ <i>URA3</i> _5	5'-CTAAGGTAGAGGGTGAACGTTACAG-3'							
	0								
Oligonucleótidos	Cg_Fw_ <i>MEP2</i> _23	5'-TCGTCTTTGCCATCTTCCAAG-3'							
empleados en la	Cg_Rv_ <i>MEP</i> 2_24	5'-TCCAGAGCACCCAGTTTAGC-3'							
cuantificación	Cg_Fw_ <i>GAP1</i> _29	5'-CACTACCTATGCCACGAGATTC-3'							
por qRT-PCR	Cg_Rv_ <i>GAP1</i> _30	5'-TCACCGTAACCTTTCACACC-3'							
	Cg_Fw_GLN1_101	5'-CCAATTGTGGATGGCCAGATA-3'							
	Cg_Rv_ <i>GLN1</i> _102	5'-GGCACTCTCATGTCCTTTGTAG-3'							
	Cg_Fw_ <i>ACT1</i> _31	5'-CGCCGGTGACGATGCTCC-3'							
	Cg_Rv_ACT1_32	5'-CTTGGATTGAGCTTCGTC-3'							
	Cg_Fw_GDH3_21	5'-AGAGAACTACACAGACACATTGG-3'							

Cg_Rv_GDH3_22	5'-CTAGACCGTAACCAGTAGCTTC-3'
Cg_Fw_ <i>PUT4</i> _88	5'-TGGACGTGTTTTCTCTGTCG-3'
Cg_Rv_ <i>PUT4_</i> 89	5'-GAACAGACCAGTACCGATAGC-3'

*Las letras minúsculas indican la secuencia que es complementaria a los oligonucleótidos Fw_604_51 and Rv_605_52 usados en la construcción de los casetes de deleción.

Medios de cultivo

Medio rico (YPD)

El medio YPD contiene 10 g/L de extracto de levadura (BD Bioxon), 20 g/L de peptona de caseína (BD Bioxon) y glucosa al 2% (m/v) (J. T. Baker). Para preparar este medio se adicionó el extracto de levadura y la peptona de caseína en un volumen adecuado de agua miliQ y se esterilizó en autoclave. A continuación se agregó la glucosa, a partir de un stock que estaba a una concentración al 40% (m/v) el cual fue esterilizado por separado en autoclave. Cuando fue necesario, se agregaron 100 µg/mL de nourseotricina (Werner BioAgents). Para preparar medio sólido se agregó agar 20 g/L (Sigma-Aldrich).

Medio mínimo con casaminoácidos

El medio mínimo con casaminoácidos contiene 1.7 g/L de base nitrogenada de levadura (YNB) sin aminoácidos (BD Difco), 5 g/L de sulfato de amonio (NH₄)₂SO₄ (J. T. Baker), glucosa al 2% (m/v) (J. T. Baker) y casaminoácidos al 0.6% (Fisher Scientific). Para preparar este medio se adicionó el YNB, el sulfato de amonio y los casaminoácidos en un volumen adecuado de agua miliQ y se esterilizó en autoclave. A continuación se agregó la glucosa, a partir de un stock que estaba a una concentración al 40% (m/v) el cual fue esterilizado por separado en autoclave. Para preparar medio sólido se agregó agar 20 g/L (Sigma-Aldrich).

Medio mínimo sin casaminoácidos

El medio mínimo sin casaminoácidos contiene 1.7 g/L de base nitrogenada de levadura (YNB) sin aminoácidos (BD Difco), 5 g/L de sulfato de amonio $(NH_4)_2SO_4$ (J. T. Baker) y glucosa al 2 % (m/v) (J. T. Baker). Para preparar este medio se adicionó el YNB y el sulfato de amonio en un volumen adecuado de agua miliQ y se esterilizó en autoclave. A continuación, se agregó la glucosa, a partir de un stock que estaba a una concentración al 40% (m/v) el cual fue esterilizado por separado en autoclave. Se agregó uracilo (Sigma-Aldrich) a una concentración de 30 µg/mL para complementar las auxotrofías de las cepas utilizadas. Para preparar medio sólido se agregó agar 20 g/L (Sigma-Aldrich).

El medio mínimo que se utilizó para evaluar el crecimiento de la levaduras en distintas fuentes de nitrógeno, para la prueba del amonio intercambiable y para evaluar la expresión de genes sensibles a NCR, se preparó de igual forma que el medio sin casaminoácidos solo que las fuentes de nitrógeno fueron adicionadas a una concentración de 1 mg/mL. Las diversas fuentes de nitrógeno fueron adicionadas a partir de una solución stock a 10 mg/mL y fueron esterilizadas por filtración, para esto se usó un filtro de 0.45 µm (Millex HA).

Condiciones de crecimiento

Ensayos en medio sólido

Para este ensayo la cepa parental se creció toda la noche (~ 16h) en medio líquido YPD, a una temperatura de 30 °C con agitación constante en "roller drum". Posteriormente, las células fueron recolectadas y lavadas dos veces con agua milliQ estéril, se ajustó la D.O._{(600nm}) a 0.6 y a partir de ahí, se realizaron diluciones seriadas hasta 10⁻⁴. Estas diluciones fueron goteadas volúmenes de 5 μ L en medio mínimo sin casaminoácidos con las distintas fuentes de nitrógeno. Las cajas fueron incubadas a 30 °C y fotografiadas a las 48h.

Ensayos en medio líquido

Para este ensayo, la cepa parental de *C. glabrata* BG14 (WT) o las mutantes $gat1\Delta$, $gln3\Delta$, $ure2\Delta$, $ure2\Delta$ $gat1\Delta$, $ure2\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$, crecieron toda la noche (~ 16h) en medio líquido YPD, a una temperatura de 30 °C con agitación constante en "roller drum". Las células fueron posteriormente recolectadas y lavadas dos veces con agua milliQ estéril y se ajustó la D.O._(600nm) a 2. Posteriormente, fueron adicionados 5 µL de las suspensiones celulares a 1 mL del medio en el que se evalúo su crecimiento, para obtener así una D.O._(600nm) de 0.01. Después, se depositaron 300 µL de cultivo en cajas de Bioscreen C MBR. Se realizaron curvas de crecimiento en Bioscreen C MBR con los parámetros ajustados en 30 °C de incubación, con la velocidad de agitación en máximo y lecturas de D.O._{(600nm}) cada 30 minutos.

El tiempo de duplicación fue calculado usando la pendiente que se genera en la fase de crecimiento exponencial de cada curva de crecimiento.

Ensayo del amonio residual

Para este ensayo la cepa parental de *C. glabrata* y las mutantes $gat1\Delta$, $gln3\Delta$, $ure2\Delta$, $ure2\Delta$ $gat1\Delta$, $ure2\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$, crecieron toda la noche (\approx 16h) en medio líquido YPD, a una temperatura de 30 °C con agitación constante en "roller drum". Las células fueron posteriormente recolectadas y lavadas dos veces con agua milliQ estéril y se ajustó la D.O._(600nm) a 0.05 en tubos con 10 mL de medio mínimo con sulfato de amonio como fuente de nitrógeno (1 mg/mL). Posteriormente, los tubos fueron incubados a 30 °C con agitación constante en un "roller drum". Diferentes muestras fueron tomadas a las 0, 12, 24 y 36h de cultivo, centrifugadas y el sobrenadante fue utilizado para realizar la prueba del amonio residual.

Cultivos para la extracción de RNA

Para este ensayo, la cepa parental de *C. glabrata* y las mutantes $gat1\Delta$, $gln3\Delta$, $ure2\Delta$, $ure2\Delta$ $gat1\Delta$, $ure2\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$ crecieron toda la noche (≈ 16h) en medio líquido YPD, a una temperatura de 30 °C con agitación constante en "roller drum". Las células fueron recolectadas y lavadas dos veces con agua milliQ estéril y resuspendidas en 1 mL de agua milliQ estéril, se ajustó la D.O._(600nm) a 0.1 en 50 mL de medio mínimo con sulfato de amonio (1 g/L). Estos matraces fueron incubados a 30 °C con agitación constante (220 rpm), una vez que los cultivos alcazaron una D.O._(600nm) de 0.8, las células fueron recolectadas y se llevó a cabo la extracción del RNA. La extracción del RNA se llevó a cabo de acuerdo a lo descrito previamente (Schmitt *et al.*, 1990). Para medir la expresión de los genes en prolina, se crecieron las células de igual forma que cuando se midió la expresión de los genes en amonio pero, cuando los cultivos alcanzaron una D.O._(600nm) de 0.8, las células y transferidas a un medio que contenía prolina (1 g/L) y cultivadas por 60 minutos a 30 °C con agitación constante (220 rpm) finalmente, se recolectaron para llevar a cabo la extracción del RNA.

Construcción de cepas mutantes

Para la construcción de las cepas mutantes, se generaron productos de PCR (*GAT1*-deletion y *GLN3*-deletion) que después fueron utilizados para reemplazar los marcos de lectura abierta mediante doble recombinación homóloga, utilizando el gen *URA3* de *S. cerevisiae* como marcador de selección. Todas las cepas generadas en el presente estudio están descritas en la Tabla 1.

Generación de los casetes de deleción

Para cada deleción se generaron tres productos independientes de PCR: 1) el gen marcador *URA3*, que se encuentra flanqueado por los sitios FRT de reconocimiento de la flipasa (Flp1), fue amplificado del plásmido pGE80 (Gutiérrez-Escobedo, 2013) con el par de oligonucleótidos Fw_604_51 y Rv_605_52. 2); se amplificaron las regiones 5' río arriba correspondientes a los marcos de lectura abierta (ORF) de Gat1 (oligonucleótidos Cg_Fw_5'_*GAT1_*34 y Cg_Rv_5'_*GAT1_*33) y de Gln3 (oligonucleótidos, Cg_Fw_5'_*GLN3_*42/Cg_Rv_5'_*GLN3_*43). 3). De igual forma, se amplificaron las

regiones 3' río abajo correspondientes a los marcos de lectura abierta de Gat1 (oligonucleótidos, Cg_Fw_3'_*GAT1_38* y Cg_Rv_3'_*GAT1_39*) y Gln3 (Cg_Fw_3'_*GLN3_46* y Cg_Rv_3'_*GLN3_47*). Todas las reacciones de PCR mediante las cuales se generaron los productos antes mencionados fueron hechas como se indica a continuación: desnaturalización inicial 98 °C – 30", 30 ciclos de reacción (98 °C – 8", 60 °C – 30", 72 °C – 46") y extensión final 72 °C – 5'.

Posteriormente, se construyeron los casetes de deleción. Para esto, los productos de PCR generados fueron fusionados mediante dos reacciones de PCR: 1) se realizó una reacción de PCR libre de oligonucleótidos con el siguiente programa: desnaturalización inicial 98 °C – 30", 15 ciclos de reacción (98 °C – 8", 60 °C – 30", 72 °C – 46") y desnaturalización final 72 °C – 5'. En esta reacción se agregaron 60 ng de *URA3* y 20 ng de los extremos 5' y 3' correspondientes. 2) se realizó una segunda reacción de PCR con el siguiente programa: desnaturalización inicial 98 °C – 30", 30 ciclos de reacción (98 °C – 8", 60 °C – 30", 72 °C – 90") y extensión final de 72 °C – 5', en donde se agregaron 4 μ L de la reacción previa como molde y se utilizaron los oligonucleótidos específicos para los extremos 5' río arriba y 3' río abajo de *GAT1* (Cg_Fw_5'_*GAT1_*34 y Cg_Rv_3'_*GAT1_*39) y *GLN3* (Cg_Fw_5'_*GLN3_*42 y Cg_Rv_3'_*GLN3_*47). Los productos de fusión fueron purificados usando el kit "Wizard SV Gel and PCR Clean-Up System" (Promega). Todos los oligonucleótidos empleados se encuentran descritos en la Tabla 2.

Transformación de C. glabrata

La cepa silvestre de *C. glabrata* BG14 y la mutante *ure2*::FRT (*ure2* Δ) fueron transformadas de acuerdo a los descrito previamente (Castaño *et al.*, 2003) con los casetes de deleción "*GAT1*-deletion" y "*GLN3*-deletion" para obtener las cepas *gat1* Δ ::*URA3*, *gln3* Δ ::*URA3*, *ure2* Δ ::FRT *gat1* Δ ::*URA3* y *ure2* Δ ::FRT *gln3* Δ ::*URA3*. Posteriormente, para generar las cepas *gat1* Δ ::FRT (*gat1* Δ), *gln3* Δ ::FRT (*gln3* Δ), *ure2* Δ ::FRT *gat1* Δ ::FRT (*ure2* Δ *gat1* Δ) y *ure2* Δ ::FRT (*ure2* Δ *gln3* Δ), se escindió el casete de selección *URA3*, *ure2* Δ ::FRT *gat1* Δ ::*URA3* y *ure2* Δ ::FRT. Para esto, las cepas *gat1* Δ ::*URA3*, *gln3* Δ ::*URA3*, *ure2* Δ ::FRT *gat1* Δ ::*URA3* y *ure2* Δ ::FRT

*gln3*Δ::*URA3* fueron transformadas con el plásmido pLS9 de acuerdo a lo descrito previamente (Juarez-Reyes *et al.*, 2012).

Para generar la cepa doble mutante $gat1\Delta gln3\Delta$ y la triple $ure2\Delta gat1\Delta$ $gln3\Delta$, las cepas $gat1\Delta$::FRT ($gat1\Delta$) y $ure2\Delta$::FRT $gat1\Delta$::FRT ($ure2\Delta gat1\Delta$) fueron transformadas con el casete de deleción "GLN3-deletion". Así, las cepas $gat1\Delta$::FRT $gln3\Delta$::URA3 y $ure2\Delta$::FRT $gat1\Delta$::FRT $gln3\Delta$::URA3 generadas, fueron después transformadas con el plásmido pLS9 y se obtuvieron las cepas $gat1\Delta$::FRT $gln3\Delta$::FRT ($gat1\Delta gln3\Delta$) y $ure2\Delta$::FRT $gat1\Delta$::FRT $gln3\Delta$::FRT ($ure2\Delta$ $gat1\Delta gln3\Delta$).

En todas las cepas se realizaron reacciones de PCR para verificar la correcta inserción del marcador de selección (*URA3*). Para el caso de la inserción del marcador *URA3* en el locus de *GAT1*, los pares de oligonucleótidos usados fueron Cg_Fw_5'_*GAT1_35* / Sc_Rv_5'_*URA3_49* y Sc_Fw_3'_*URA3_50* / Cg_Rv_3'_*GAT1_40*. Para la correcta inserción del marcador *URA3* en el locus de *GLN3* los pares de oligonucleótidos fueron Cg_Fw_5'_*GLN3_41* / Sc_Rv_5'_*URA3_49* y Sc_Fw_3'_*URA3_50* / Cg_Rv_5'_*URA3_49* y Sc_Fw_3'_*URA3_50* / Cg_Rv_5'_*URA3_49* y Sc_Fw_3'_*URA3_50* / Sc_Rv_5'_*URA3_49* y Sc_Fw_3'_*URA3_50* / Cg_Rv_5'_*URA3_49* y Sc_Fw_5'_*GLN3_41* /

Análisis de secuencias

Los genes ortólogos a *GAT1*, *GLN3*, *URE2*, *GAP1*, *MEP2* y *GLN1* de *S. cerevisiae* fueron identificados en *C. glabrata*. Para esto, se usó la base de datos "Yeast Gene Order Browser" (ygob.ucd.ie) (Byrne & Wolfe, 2005). La secuencias de las proteínas de *S. cerevisiae* fueron descargadas de la base de datos "*Saccharomyces* Genome Database" (yeastgenome.org) (Cherry *et al.*, 2012) y las secuencias de las proteínas de *C. glabrata* fueron descargadas de la base de datos "*Candida* Genome Database" (candidagenome.org) (Inglis *et al.*, 2012). Los alineamientos pareados realizados se llevaron a cabo utilizando el programa Needle de la "European Molecular Biology Open Software Suite (EMBOSS)" (Rice *et al.*, 2000).

Determinación del amonio residual

La prueba del amonio residual fue realizada con el sobrenadante obtenido de

cultivos de las cepas parental, $gat1\Delta$, $gln3\Delta$, $ure2\Delta$, $ure2\Delta$ $gat1\Delta$, $ure2\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$. Esta prueba es una adaptación del protocolo publicado previamente por Keeney y Nelson (Keeney & Nelson, 1982). Preparación de soluciones:

- Se recomienda el uso de agua di-destilada (ddH₂O) pero funciona correctamente con agua milliQ estéril.
- Solución de nitroprusiato-salicilato (debe de ser preparada al momento de usarse). Disolver 0.12 g de nitroprusiato de sodio (C₅N₆OFe) y 7.813 g de salicilato de sodio (C₇H₅NaO₃) en 100 mL de agua ddH₂O. Mantener protegida de la luz.
- Solución de ácido etilendiaminotetraacético (EDTA). Disolver 0.6 g de EDTA en 100 mL de ddH₂O.
- Solución amortiguadora de hipoclorito de sodio (NaCIO) (se usa cualquier solución comercial *e. g.* Cloralex). Disolver lentamente 2.96 g de hidróxido de sodio (NaOH) en 80 mL de ddH₂O, dejar que se enfríe y agregar lentamente 9.96 g de fosfato de sodio dibásico (Na₂HPO₄). Por último, agregar 10 mL de NaCIO y aforar a 100 mL.
- Solución patrón de amonio (NH₄) (100 mg/mL). Disolver 0.367 g de sulfato de amonio ((NH₄)₂SO₄) seco en 1 L de ddH₂O.

Procedimiento:

- Siempre preparar una muestra extra (muestra negativa).
- El medio mínimo que se usó en este estudio contiene 1 g/L de (NH₄)₂SO₄ lo que aproximadamente contiene 272 μg/mL de NH₄. Esta concentración es muy alta para el límite de detección de este método por lo que los sobrenadantes deben de ser diluídos 50 veces (1:50) en un volumen de 50 mL de ddH₂0.
- Se recomienda mezclar la muestra después de agregar cada solución.
- Se debe realizar una curva de calibración en el espectrofotómetro usando el método cuantitativo y las unidades establecidas en μg/mL (
- 2. Tabla 3).

- 3. A partir de la solución patrón, preparar una solución stock a 2 µg/mL.
- 4. Tomar 5 mL de los sobrenadantes diluídos (1:50) y depositar en un tubo de ensayo. Agregar los siguientes reactivos en el orden indicado.
- 5. 1.5 mL de ddH_2O .
- 6. 0.5 mL de solución de EDTA.
- 7. 2 mL de solución de nitroprusiato de sodio.
- 8. 1 mL de solución amortiguadora de hipoclorito de sodio.
- 9. Incubar las muestras a 40 °C durante 30 minutos.
- 10. Dejar enfriar durante 10 minutos y medir la D.O. (660nm).

Tabla 3.- Curva de calibración para la prueba de amonio residual.

	Volumen mL*						
Solución patrón a 2 µg/mL		0.5	1	1.5	2.5	4	5
ddH ₂ O		6	5.5	5	4	2.5	1.5
Solución de EDTA		0.5	0.5	0.5	0.5	0.5	0.5
Solución de nitroprusiato-salicilato		2	2	2	2	2	2
Solución amortiguadora de hipoclorito		1	1	1	1	1	1
de sodio							
Concentración final de NH4		1	2	3	5	8	10

* El volumen final debe ser de 10 mL.

Cuantificación de la expresión de los genes por PCR en tiempo real (qRT-PCR)

La expresión relativa de los genes *MEP2*, *GAP1*, *GLN1*, *PUT4* y *GDH3* fue determinada en las cepas parental, $gat1\Delta$, $gln3\Delta$, $ure2\Delta$, $ure2\Delta$ $gat1\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$ crecidas en amonio como fuente de nitrógeno y después de haber sido transferidas a un medio que contiene prolina.

La extracción del RNA total se llevó a cabo de acuerdo a lo descrito previamente (Schmitt *et al.*, 1990). El RNA extraído fue tratado con "Turbo DNAse" (Ambion) y la síntesis de cDNA se llevó a cabo con el kit de la transcriptasa

reversa "Superscript II" (Invitrogen) usando oligonucleótidos de tipo oligo(dT)₁₈ siguiendo las recomendaciones del fabricante.

Las reacciones de PCR cuantitativas fueron realizadas en un equipo "7500 Fast Real-Time PCR System" (Applied Biosystems) y se usó la enzima "Fast SYBR Green Master Mix" (Applied Biosystems). Se utilizó la expresión del gen *ACT1* para la normalización de la expresión de los genes, de acuerdo a como se ha usado por otros (Brunke *et al.*, 2014). Todos los oligonucleótidos empleados están descritos en la Tabla 2.

III. Resultados

Candida glabrata puede crecer en diversos compuestos como fuentes de nitrógeno

Para elucidar si C. glabrata posee un mecanismo similar al de NCR, primero analizamos el crecimiento de la cepa parental (BG14) de esta levadura, en diversas fuentes de nitrógeno tanto en medio sólido como en medio líquido. Como se puede observar en la Figura 3a, a las 48h de incubación la levadura fue capaz crecer hasta la última dilución en casi todas las fuentes de nitrógeno que analizamos. Cabe destacar que, comparado con amonio, su crecimiento fue mucho menor en adenina. Por otro lado, observamos solo un crecimiento residual en los medios que contienen lisina o uracilo. Este crecimiento es comparable con el que se observó en el medio que no contiene fuente de nitrógeno (YNB). Estos resultados muestran que C. glabrata no puede utilizar lisina y uracilo como fuentes de nitrógeno y que, además, utiliza pobremente la adenina. Dado que el crecimiento en medio sólido no nos permitió establecer diferencias significativas entre las diversas fuentes de nitrógeno, a continuación, crecimos a la levadura en medios líquidos y calculamos su tiempo de duplicación. Como puede observarse en la Figura 3b, amonio y glutamina son las fuentes de nitrógeno en las que esta levadura creció con mayor rapidez (1.1 y 1.4h, respectivamente), seguido de prolina (1.8h), glicina (1.8h), asparagina (1.9h), leucina (1.9h), valina (2.0h) e isoleucina (3.0h). Por otro lado, el crecimiento en adenina fue muy pobre y nulo en el caso de lisina y uracilo. Estos resultados confirman que C. glabrata no puede utilizar lisina y uracilo como fuentes de nitrógeno, y que, además, utiliza pobremente la adenina. Con base en estas observaciones agrupamos a las fuentes de nitrógeno en cuatro categorías: i) categoría de rápido crecimiento (amonio y glutamina), ii) de mediano crecimiento (prolina, glicina, asparagina, leucina, valina e isoleucina), iii) de lento crecimiento (adenina) y, iv) de nocrecimiento (lisina y uracilo).

Figura 3.- Crecimiento de la cepa parental de *C. glabrata* en diversas fuentes de nitrógeno.

La cepa parental creció en medio mínimo con las fuentes de nitrógeno indicadas (1 mg/mL). Las cajas de petri y los cultivos fueron crecidos a 30 °C. Se usó medio mínimo sin ninguna fuente de nitrógeno (YNB) como control negativo de crecimiento. (a) Ensayos en medio sólido. Alícuotas conteniendo 5 µL de la dilución logarítmica de la cepa parental fueron goteados, incubados y fotografiados a las 48h. (b) Ensayos en medio líquido. Cultivos de la cepa parental fueron crecidos en el equipo Bioscreen C MBR. Se calculó el tiempo de duplicación durante la fase media del crecimiento exponencial. Amo, amonio; Gln, glutamina; Pro, prolina; Gly, glicina; Asn, asparagina; Leu, leucina; Val, valina; Ile, isoleucina; Ade, adenina; Lys, lisina; Ura, uracilo; YNB; base nitrogenada sin aminoácidos. NC: no-crecimiento. Los tiempos de duplicación reportados (barras grises)

representan el promedio de tres experimentos independientes ± desviación estándar. La imagen fue modificada de (Pérez-delosSantos & Riego-Ruiz, 2016).

Los factores de tipo GATA y Ure2 están involucrados en la asimilación del nitrógeno en *C. glabrata*

A continuación, decidimos investigar el papel de los factores de tipo GATA Gat1 y Gln3, así como el del represor Ure2, de C. glabrata en la asimilación de diversas fuentes de nitrógeno. Para esto, primero identificamos en C. glabrata los genes sinténicos a GAT1, GLN3, y URE2 de S. cerevisiae, mediante la base de datos "Yeast Gene Order Browser" (http://ygob.ucd.ie) (Byrne & Wolfe, 2005). Después, las secuencias de las proteínas ortólogas de S. cerevisiae y C. glabrata se descargaron de las bases de datos "Saccharomyces Genome" (http://www.yeastgenome.org) "Candida Genome" y (http://www.candidagenome.org), respectivamente (Byrne & Wolfe, 2005; Cherry et al., 2012; Inglis et al., 2012). Por último, realizamos los alineamientos pareados utilizando el programa "Needle" de la EMBOSS (Rice et al., 2000). Encontramos que el gen GAT1 (CAGL0K07634g) de C. glabrata, codifica para una proteína de 460 aminoácidos y muestra una similitud del 37% con su ortólogo de S. cerevisiae (511 aminoácidos). Además, la proteína Gln3 de C. glabrata (CAGL0C02277g; 824 aminoácidos) posee un 46% de similitud con su ortólogo de S. cerevisiae (731 aminoácidos). Por otro lado, el probable represor Ure2 (CAGL0J07392g; 356 aminoácidos) posee un 86% de similitud con Ure2 de S. cerevisiae (355 aminoácidos). Una vez identificados los probables genes que codifican para Gat1, Gln3 y Ure2 en C. glabrata, generamos las cepas mutantes gat1 Δ , gln3 Δ , ure2 Δ , $ure2\Delta$ $gat1\Delta$, $ure2\Delta$ $gln3\Delta$, $gat1\Delta$ $gln3\Delta$ y $ure2\Delta$ $gat1\Delta$ $gln3\Delta$ (Tabla 1) y evaluamos su crecimiento en medio mínimo con glutamina, amonio o prolina (1 mg/mL) como fuentes de nitrógeno. Como puede observarse en la Tabla 4, todas las cepas mostraron un tiempo de duplicación similar cuando crecieron en medio rico (YPD). Por otro lado, en todas las fuentes de nitrógeno que probamos el tiempo de duplicación entre las cepas parental y gat1 Δ fue similar. Cuando el medio en el que crecieron las levaduras contenía glutamina, las cepas gln3A

 $(1.6\pm0.02h), ure2\Delta$ $(1.5\pm0.03h), ure2\Delta$ $gat1\Delta$ $(1.6\pm0.02h), ure2\Delta$ $gln3\Delta$ $(1.6\pm0.02h)$, gat1 Δ gln3 Δ $(1.5\pm0.01h)$ y ure2 Δ gat1 Δ gln3 Δ $(1.7\pm0.06h)$ mostraron un ligero incremento en el tiempo de duplicación comparado con el que observamos en la cepa parental. Cuando usamos prolina como fuente de nitrógeno, observamos un incremento en el tiempo de duplicación en las cepas $gln3\Delta$ (2.5±0.05h), $ure2\Delta$ $gat1\Delta$ (2.2±0.04h), $ure2\Delta$ $gln3\Delta$ (2.7±0.07h), $gat1\Delta$ $gln3\Delta$ (2.5±0.04h) y ure2 Δ gat1 Δ gln3 Δ (3.2±0.04h) comparado con el de la cepa parental. Finalmente, cuando analizamos el crecimiento en el medio que contenía amonio, las cepas $ure2\Delta$ (1.3±0.01h) y $ure2\Delta$ $gat1\Delta$ (1.4±0.02h) aumentaron ligeramente su tiempo de duplicación comparado con el de la cepa parental (1.1±0.02h). Además, éste aumentó significativamente en las cepas, gln3A $(3.0\pm0.04h)$, ure2 Δ gln3 Δ $(3.0\pm0.04h)$, gat1 Δ gln3 Δ $(3.1\pm0.06h)$ y ure2 Δ gat1 Δ $g/n3\Delta$ (3.6±0.03h). Estos resultados sugieren que Gat1 no juega un papel importante en la asimilación de estas fuentes de nitrógeno, y que, además, tiene un pequeño papel solo detectable en la cepa $ure2\Delta qat1\Delta qln3\Delta$. Por otro lado, Ure2 parece tener un papel en la asimilación de glutamina y amonio. Finalmente, nuestros resultados posicionan a Gln3 como un factor muy importante para la asimilación de estas fuentes de nitrógeno, ya que, es posible que este factor se encuentre regulando genes relacionados con en el transporte y metabolismo de estos compuestos en C. glabrata.
Tabla 4.- Tiempo de duplicación de la cepa parental y las mutantes en Gat1, Gln3 y Ure2 de *C. glabrata* crecidas en distintas fuentes de nitrógeno.

Medio	Tiempo de duplicación (h) ^a							
	WT	gat1∆	gIn3∆	ure2∆	ure2∆ gat1∆	ure2∆ gln3∆	gat1∆ gln3∆	ure2 Δ gat1 Δ gln3 Δ
Glutamina	1.3±0.04	1.3±0.03	1.6±0.02 ^c	1.5±0.03 ^c	1.6±0.02 ^c	1.6±0.02 ^c	1.5±0.01°	1.7±0.06 ^c
Amonio	1.1±0.02	1.1±0.02	3.0±0.04 ^c	1.3±0.01 ^c	1.4±0.02 ^c	3.0±0.04 ^c	3.1±0.06 ^c	3.6±0.03 ^c
Prolina	1.8±0.07	1.7±0.03	2.5±0.05 ^c	1.9±0.06	2.2±0.04 ^c	2.7±0.07 ^c	2.5±0.04 ^c	3.2±0.04 ^c
YPD ^b	0.9±0.03	0.9±0.01	1.2±0.02 ^c	0.9±0.01	1.0±0.01°	1.2±0.02 ^c	1.3±0.02 ^c	1.4±0.02 ^c

^a El tiempo de duplicación calculado representa el promedio de tres experimentos independientes ± la desviación estándar.

^b YPD fue usado como medio rico.

^c El tiempo de duplicación fue diferente estadísticamente del calculado en la cepa parental crecida en el mismo medio (P

< 0.05 prueba de t de dos colas).

GIn3 como regulador maestro del transporte de amonio extracelular

Dado que la ausencia de Gln3 afecta de forma severa el crecimiento de C. glabrata en amonio (Tabla 4), decidimos investigar si Gln3 está implicado en el transporte del amonio hacia la célula. Para esto, determinamos la concentración del amonio residual en el medio durante el crecimiento de las cepas parental, gat1 Δ , gln3 Δ , ure2 Δ , ure2 Δ gat1 Δ , ure2 Δ gln3 Δ , gat1 Δ gln3 Δ y ure2 Δ gat1 Δ gln3 Δ (Materiales y Métodos). Como puede observarse en la Figura 4, a las 12h de cultivo ninguna de las cepas probadas mostró algún descenso significativo en la concentración del amonio en el medio, comparadas con la concentración inicial. Por otro lado, a las 24h, la cepas parental y gat1 ya habían consumido todo el amonio disponible en el medio mientras que, en ese mismo tiempo las cepas $ure2\Delta$ y $ure2\Delta$ $gat1\Delta$ habían consumido el 84% y el 70% del amonio disponible, respectivamente. Cabe señalar que las cepas $gln3\Delta$, $ure2\Delta$ $gln3\Delta$ y $gat1\Delta$ $gln3\Delta$, aún a las 36h de cultivo, solo habían consumido aproximadamente el 39% del amonio presente en el medio mientras que, la cepa $ure2\Delta gat1\Delta gln3\Delta$ solo había consumido aproximadamente el 17% (Figura 4). Estos resultados sugieren que Gln3 juega un papel importante en el transporte de amonio hacia el interior de la levadura. Sin embargo, también es posible que el pobre consumo de amonio que observamos en las cepas que carecen de Gln3, sea un reflejo del elevado tiempo de duplicación que ocasiona la falta de este factor de transcripción (Tabla 4). Para descartar esto, cuantificamos la cantidad de amonio residual en las cepas parental y gln3∆ crecidas en medio mínimo con amonio a una baja concentración (0.5 mg/mL), inoculados a la misma densidad óptica (D.O.(600nm) 1), durante una escala de tiempo tan corta (de 0 a 4h) que no permitió que la masa celular de los cultivos fuera diferente significativamente. Como puede observarse en la Figura suplementaria 5, a 1 ó 2h de incubación la masa celular entre los cultivos fue la misma, en esos puntos encontramos ligeras diferencias en el amonio residual. Aunque éstas diferencias fueron más evidentes en los tiempos posteriores (3 y 4h), no fue posible determinar su relevancia biológica ya que la masa celular entre esos cultivos fue significativamente diferente.

Figura 4.- Ensayo de amonio residual de las cepas parental y mutantes de *C. glabrata.*

El amonio residual se determinó en el sobrenadante de cultivos de las cepas parental, *gat1* Δ , *gln3* Δ , *ure2* Δ , *ure2* Δ *gat1* Δ , *ure2* Δ *gln3* Δ , *gat1* Δ *gln3* Δ y *ure2* Δ *gat1* Δ *gln3* Δ . Las células crecieron un medio mínimo con sulfato de amonio como fuente de nitrógeno (1mg/mL) desde 0 hasta 36h a una temperatura de 30 °C en un "roller drum". Los porcentajes de amonio residual que se reportan corresponden a los promedios de tres experimentos independientes ± la desviación estándar.

Los genes de *C. glabrata MEP2*, *GAP1* y *GLN1* son regulados por la fuente de nitrógeno de forma dependiente de Gln3

Para probar si Gln3 está implicado en la regulación de genes relacionados al transporte o metabolismo de las fuentes de nitrógeno disponibles. Primero investigamos si *C. glabrata* posee genes ortólogos a *GAP1* (permeasa general de aminoácidos), *MEP2* (permeasa de amonio y *GLN1* (glutamina sintetasa) de *S. cerevisiae.* Para esto, se usó la base de datos "Yeast Gene Order Browser"

(http://ygob.ucd.ie) (Byrne & Wolfe, 2005). Después, se descargaron las secuencias de las proteínas correspondientes de las bases de datos "Saccharomyces Genome" (http://www.yeastgenome.org) y "Candida Genome" (http://www.candidagenome.org) (Cherry et al., 2012; Inglis et al., 2012). Y se realizaron alineamientos pareados utilizando el programa "Needle" de la EMBOSS (Rice et al., 2000). Encontramos que MEP2 de C. glabrata (CAGL0J06028g) codifica para una proteína de 504 aminoácidos y posee un 86% de similitud con su ortólogo de S. cerevisiae. Por otro lado, GAP1 (CAGL0L03267g) codifica para una proteína de (597 aminoácidos) que muestra un 86% de similitud con Gap1 (602 aminoácidos) de S. cerevisiae. Por último, GLN1 (CAGL0K05357g) codifica para una proteína de 372 aminoácidos que muestra un 94% de similitud con su ortólogo Gln1 de S. cerevisiae. A continuación, decidimos investigar el papel que tiene la fuente de nitrógeno sobre la transcripción de estos genes. Para esto, realizamos experimentos de gRT-PCR en la cepa parental crecida en medio mínimo con amonio (1 mg/mL) como fuente de nitrógeno o después de re-incubarla durante 60 minutos en medio mínimo con prolina (1 mg/mL). Como se observa en la Figura 5, la expresión de los genes MEP2 y GAP1 fue aproximadamente 15 veces mayor en prolina que en amonio mientras, que la de GLN1 fue solo 6 veces mayor en prolina que en amonio. Estos resultados sugieren que la expresión de los genes MEP2, GAP1 y GLN1 está sujeta a NCR (reprimidos en amonio y sobre-expresados en prolina).

Figura 5.- La expresión de *MEP2*, *GAP1* y *GLN1* está regulada por la calidad de la fuente de nitrógeno.

La expresión de los genes se determinó en extractos de RNA total de la cepa parental de *C. glabrata*, obtenidos durante la fase de crecimiento exponencial de cultivos crecidos en amonio (Amo, barras grises) o después de 60 minutos de re-incubación en prolina (Pro, barras negras). La expresión relativa fue cuantificada por qRT-PCR. El gen *ACT1* fue usado como control de normalización. Los valores reportados representan el promedio de tres experimentos independientes ± la desviación estándar. La imagen fue modificada de (Pérez-delosSantos & Riego-Ruiz, 2016).

A continuación, analizamos el papel Gat1, Gln3 y Ure2 en la regulación de los genes *MEP2*, *GAP1* y *GLN1*. Como puede observarse en la Figura 6, cuando las células crecieron en un medio que contenía amonio, la expresión de *MEP2* y *GAP1* fue similar entre las cepas parental y *gat1* Δ . Por otro lado, la expresión de *MEP2* y *GAP1* aumentó entre 3 y 10 veces respectivamente, en las cepas *ure2* Δ y *ure2* Δ *gat1* Δ , con respecto de la observada en la cepa parental. Cabe destacar, que la expresión de *MEP2* y *GAP1* se encontró abolida en las cepas que carecen de Gln3 (Figura 6a y c). Estos resultados muestran que, aunque en amonio la expresión de MEP2 v GAP1 es baia, ésta depende totalmente de Gln3. Además. Ure2 funciona como un represor de la expresión de estos genes en amonio. Después de que las células son re-incubadas en prolina, la expresión de MEP2 y GAP1 en la cepa gat1 Δ fue similar a la observada en la cepa parental. Además, esta expresión se encontró disminuida en ausencia de Gln3, lo que sugiere que Gln3 es un regulador de la transcripción de estos genes en prolina (Figura 6b y d). Por otro lado, la expresión de MEP2 se encontró disminuida en las cepas ure2 y $ure2\Delta$ $gat1\Delta$, lo que sugiere que Ure2 retiene a un represor de MEP2 en esta condición (Figura 6c). Por último, observamos una ligera expresión de GAP1 en ausencia de Gln3, esto sugiere que a diferencia de lo que sucede en amonio, en prolina existe otro regulador de la expresión de este gen (Figura 6d). La expresión de GLN1 en amonio fue similar en casi todas las cepas que probamos, con excepción de la que observamos en las cepas $ure2\Delta$ y $ure2\Delta$ $gat1\Delta$ en donde, ésta fue mayor aproximadamente 10 veces que la de la cepa parental (Figura 6e). Cabe destacar, que esta sobre-expresión depende de Gln3, lo que sugiere que Ure2 impide que Gln3 active la transcripción de GLN1. Además, la expresión en la triple mutante $ure2\Delta$ $gat1\Delta$ $gln3\Delta$ fue similar a la de las cepas parental y $ure2\Delta$ $qln3\Delta$, lo que sugiere que existe un regulador desconocido e independiente de Gln3 involucrado en la regulación de este gen. Después de que las células fueron re-incubadas en prolina (Figura 6f), no observamos cambios en la expresión de *GLN1* en las cepas parental, $gat1\Delta$, $ure2\Delta$ y $ure2\Delta$ $gat1\Delta$, además, encontramos una disminución no significativa en las cepas $ure2\Delta gln3\Delta$ y $ure2\Delta gat1\Delta gln3\Delta$. Por otro lado, encontramos una ligera pero significativa disminución de la expresión de este gen en las cepas $gln3\Delta$ y $gat1\Delta$ $gln3\Delta$. Estos resultados sugieren que Gln3 puede tener un papel en la regulación de la expresión de GLN1 pero que no es el único regulador de la transcripción de este gen.

28

Figura 6.- Gln3 es un regulador maestro de la expresión de *MEP2*, *GAP1* y *GLN1*.

La expresión de los genes se determinó en extractos de RNA total obtenidos durante la fase de crecimiento exponencial de células crecidas en amonio (barras grises) o después de 60 minutos de re-incubación en prolina (barras negras). (a y b) Expresión relativa de *MEP2*. (c y d). Expresión relativa de *GAP1*. (e y f) Expresión relativa de *GLN1*. La expresión relativa se cuantificó mediante qRT-PCR. El gen *ACT1* fue usado como control de normalización. Los valores

reportados representan el promedio de tres experimentos independientes \pm la desviación estándar. * Se usa para designar que los valores son significativamente diferentes del calculado en la cepa parental (P < 0.05 prueba de t de dos colas). La imagen fue modificada de (Pérez-delosSantos & Riego-Ruiz, 2016).

Expresión de los genes PUT4 y GDH3 en amonio y prolina

A continuación, determinamos si Gat1 o Gln3 están involucrados en la regulación de otros genes necesarios para el metabolismo del nitrógeno, identificamos los genes ortólogos a *PUT4* (que codifica para la permeasa específica de prolina) y *GDH3* (que codifica para la NADP⁺ glutamato deshidrogenasa) de *S. cerevisiae*. Después, medimos la expresión de estos genes en células crecidas en amonio o después de haber sido re-incubadas en prolina. Como se puede observar en la Figura 7, la expresión de *PUT4* fue aproximadamente 34 veces mayor en prolina que en amonio mientras, que la de *GDH3* fue aproximadamente 3 veces mayor en amonio que en prolina. Estos resultados sugieren que *PUT4* y *GDH3* son regulados por la fuente de nitrógeno; sin embargo, para *PUT4* amonio es una fuente más represiva que prolina y para *GDH3* prolina es una fuente más represiva que amonio.

Figura 7.- Efecto de la fuente de nitrógeno sobre la expresión de *PUT4* y *GDH3*.

La expresión de los genes se determinó en extractos de RNA total de la cepa parental de *C. glabrata* obtenidos durante la fase de crecimiento exponencial de cultivos crecidos en amonio (Amo, barras grises) o después de 60 minutos de re-incubación en prolina (Pro, barras negras). La expresión relativa fue cuantificada por qRT-PCR. El gen *ACT1* fue usado como control de normalización. Los valores reportados representan el promedio de tres experimentos independientes \pm la desviación estándar.

Cuando se evalúo el papel de Gat1, Gln3 y Ure2 en la regulación de los genes *PUT4* y *GDH3*. Encontramos que la expresión de *PUT4* en amonio fue similar entre las cepas parental y *gat1* Δ mientras, que en el resto de las cepas, ésta aumentó entre 5 y 10 veces (Figura 8a). Por otro lado, en prolina la expresión de este gen en las cepas parental, *gat1* Δ y *ure2* Δ *gat1* Δ fue similar, esta expresión fue mayor que la de la cepa parental en las mutantes *gln3* Δ , *ure2* Δ *gln3* Δ , *gat1* Δ *gln3* Δ ; y se encontró disminuida en la cepa *ure2* Δ (Figura 8b). Estos resultados sugieren que en amonio y prolina Gln3 tiene un papel negativo en la regulación *PUT4*. Y que además, es posible que exista un regulador positivo

dependiente de Ure2, que es retenido en el citoplasma cuando el amonio está disponible como fuente de nitrógeno, y liberado cuando las células son reincubadas en prolina.

En amonio, la expresión de *GDH3* en las cepas *gat1*Δ, *ure2*Δ *gat1*Δ, *gat1*Δ *gln3*Δ y *ure2*Δ *gat1*Δ *gln3*Δ fue igual a la observada en la cepa parental y ésta se encontró disminíuda de 1 a 3 veces aproximadamente, en las cepas *gln3*Δ, *ure2*Δ y *ure2*Δ *gln3*Δ (Figura 8c). Por otro lado, en prolina la expresión de este gen fue similar en las cepas parental, *gat1*Δ, *gln3*Δ, *ure2*Δ *gat1*Δ, *ure2*Δ *gln3*Δ y *gat1*Δ *gln3*Δ, *y* ésta se encontró disminuida aproximadamente 3 veces en la cepa *ure2*Δ además, la expresión de este gen fue aproximadamente 2 veces mayor en la cepa *ure2*Δ *gat1*Δ *gln3*Δ que en la cepa parental (Figura 8c). Estos resultados sugieren que cuando las células se encuentran en amonio, Gln3 no es el único regulador positivo de la transcripción de este gen, y que además, Ure2 parece retener a un regulador negativo. Por otro lado, en prolina Ure2 parece estar retiendo a un represor que solo ejerce su papel cuando Gat1 y Gln3, están presentes en la *GDH3*.

Figura 8.- Efecto de la deleción de Gat1, Gln3 y Ure2 en la expresión de *PUT4* y *GDH3*.

La expresión de los genes se determinó en extractos de RNA total obtenidos durante la fase de crecimiento exponencial de células crecidas en amonio (barras grises) o después de 60 minutos de re-incubación en prolina (barras negras). (a y b) Expresión relativa de *PUT4*. (c y d) Expresión relativa de *GDH3*. La expresión relativa se cuantificó mediante qRT-PCR. El gen *ACT1* fue usado como control de normalizaición. Los valores reportados representan el promedio de tres experimentos independientes ± la desviación estándar. * Se usa para designar que los valores son significativamente diferentes (*P* < 0.05 prueba de t de dos colas) del calculado en la cepa parental.

IV. Discusión

S. cerevisiae puede utilizar fácilmente el amonio, la glutamina y la asparagina como fuentes de nitrógeno (Messenguy *et al.*, 2006). *C. glabrata* también puede crecer eficientemente en glutamina o en amonio, pero no puede utilizar la asparagina de forma eficiente tanto así, que su crecimiento en esta fuente de nitrógeno es más parecido al que se observa en prolina, glicina, leucina y valina (Figura 3). Cabe destacar que *C. glabrata* es capaz de utilizar la glicina y la adenina como fuentes de nitrógeno, mientras que *S. cerevisiae* no puede (Brunke *et al.*, 2014; Gojković *et al.*, 1998). Por otro lado, *S. cerevisie* y *C. glabrata* son incapaces de crecer en un medio que contiene uracilo o lisina como fuentes de nitrógeno (Gojković *et al.*, 1998) (Figura suplementaria 9).

Se sabe que la levadura Yarrowia lypolitica es capaz de utilizar la lisina como fuente de nitrógeno. En esta levadura, el primer paso en la degradación de este aminoácido es catalizado por la enzima N6-acetyltransferasa (EC 2.3.1.32) codificada por el gen *LYC1* (Gaillardin *et al.*, 1976; Large, 1986). Este gen no se ha identificado en ninguna otra levadura a pesar de que existen otras especies, como *Lachancea kluyveri* y *C. albicans*, capaces de utilizar la lisina como fuente de nitrógeno (Brunke *et al.*, 2014).

La levadura *L. kluyveri* es capaz de utilizar el uracilo como fuente de nitrógeno, esto lo hace mediante la ruta URC (Andersen *et al.*, 2008; Andersson Rasmussen *et al.*, 2014). Hasta el momento se han identificado seis *loci* en esta ruta (*URC1-6*). De éstos, *URC2* codifica para un factor de transcripción de tipo dedo de zinc (Zn₂Cys₆), *URC3-URC5* codifican para la urea amido liasa (EC 6.3.4.6 y EC 3.5.1.54) y *URC6* codifica para una enzima fosforibosil transferasa (EC 2.4.2.9). Por último, los genes *URC1* y *URC4* codifican para dos proteínas de función desconocida. Nosotros encontramos que *C. glabrata* posee genes ortólogos a *URC2, URC3-URC5* y *URC6* (Tabla suplementaria 3), por lo que sugerimos que es posible que la incapacidad que tiene esta levadura para utilizar el uracilo sea debido a la pérdida de los *loci URC1* y *URC4*.

Los genes ortólogos a Gat1, Gln3 y Ure2 de *C. glabrata* poseen poca identidad con sus ortólogos en *S. cerevisiae*. En particular, en el caso de Gat1 esta identidad está limitada al dedo de zinc. Sin embargo, ortólogos a Gat1 se han descrito en otras especies de hongos como *N. crassa* (Nit2), *A. nidulans* (AreA), *Cryptoccocus neoformans* (Gat1) y *C. albicans* (Gat1) (Kmetzsch *et al.*, 2011; Lee *et al.*, 2011; Limjindaporn *et al.*, 2003; Marzluf, 1997). Por otro lado, Gln3 es una proteína que parece solo estar presente en especies de la clase de los hemiascomicetos (Wong *et al.*, 2008). Gln3 de *C. glabrata* conserva una alta identidad con su ortólogo de *S. cerevisiae* en regiones que son importantes para la función de esta proteína como son: 1) el dominio de activación, 2) la señal de localización nuclear (

Figura suplementaria 3) (Carvalho & Zheng, 2003; Kulkarni, 2001). Por último, Ure2 está presente en diversas especies de levaduras como: *Saccharomyces paradoxus*, *Saccharomyces bayanus*, *Kluyveromyces lactis*, *Ashbya gossypii* y *C. albicans*. Se ha visto que la proteína Ure2 de estas levaduras puede complementar heterólogamente la ausencia de Ure2 en *S. cerevisiae* (Edskes & Wickner, 2002).

En *S. cerevisiae*, Ure2 mantiene retenidos a Gat1 y Gln3 en el citoplasma cuando glutamina o amonio están disponibles como fuentes de nitrógeno (Cooper, 2002; Magasanik & Kaiser, 2002). Además, se ha visto que en *C. albicans* Ure2 está implicado en la regulación de genes relacionados con el transporte y metabolismo de diversos aminoácidos (Edskes *et al.*, 2011). Dado el fenotipo que observamos en la cepa *ure* 2Δ cuando glutamina o amonio están disponibles como fuentes de nitrógeno (Tabla 4), proponemos que al igual que en *S. cerevisiae*, Ure2 de *C. glabrata* tiene un papel como regulador de la asimilación de las fuentes de nitrógeno, dado que su ausencia afecta el crecimiento de las células en todos los compuestos nitrógenados que probamos (Tabla 4). En *S. cerevisiae*, se ha visto que la ausencia de Gat1 o Gln3 incrementa el tiempo de duplicación en diversas fuentes de nitrógeno (Stanbrough *et al.*, 1995). Además, en otros hongos como *A. nidulans, N. crassa* y *C. albicans;* ya se ha estudiado el papel Gat1 y/o

Gln3 en la asimilación de diversas fuentes de nitrógeno (Arst & Cove, 1973; Liao *et al.*, 2008; Marzluf, 1997).

En *S. cerevisiae*, el transporte de amonio es llevado a cabo mediante una familia de transportadores codificados por los genes *MEP1*, *MEP2* y *MEP3* (Marini *et al.*, 1997), La mayoría de los L- D-aminoácidos son transportados mediante la permeasa general de aminoácidos codificada por el gen *GAP1* (Jauniaux & Grenson, 1990; Regenberg *et al.*, 1999). Por otro lado, la glutamina sintetasa codificada por el gen *GLN1*, cataliza la condensación de amonio y glutamato para formar glutamina (Mitchell, 1985). Como se muestra en la Tabla suplementaria 2, *C. glabrata* posee genes ortólogos a *MEP2*, *GAP1* y *GLN1*. Genes ortólogos a *MEP2* y *GAP1*, han sido descritos en *C. albicans* (Biswas & Morschhäuser, 2005; Kraidlova *et al.*, 2011). Además, *C. albicans* posee un gen putativo *GLN1*, cuya función aún no ha sido descrita.

En el presente estudio demostramos que, al igual que en *S. cerevisiae*, los genes *MEP2*, *GAP1* y *GLN1* de *C. glabrata* se encuentran bajo NCR (repremidos en amonio y sobre-expresados en prolina) (Figura 5) (Jauniaux & Grenson, 1990; Marini *et al.*, 1997; Stanbrough *et al.*, 1995). De acuerdo con la baja expresión de estos genes en amonio (Figura 5), la ausencia de Gln3 parece afectar el transporte de este compuesto, cuando éste se encuentra presente en baja concentración (0.5 mg/mL). Sin embargo, son necesarios más experimentos para probar por completo si Gln3 tiene un papel en la regulación del transporte de amonio. Por otro lado, la represión por nitrógeno de los genes *MEP2* y *GAP1*, se ha observado también en la levadura *C. albicans* (Liao *et al.*, 2008; Limjindaporn *et al.*, 2003).

En *C. glabrata*, la expresión de *MEP2* en amonio y prolina depende totalmente de Gln3 (Figura 6a y b). Esto es diferente de lo que se ha observado en *S. cerevisiae* y *C. albicans* donde la expresión de este gen depende tanto Gat1 como de Gln3 (Dabas & Morschhäuser, 2007; Marini *et al.*, 1997). Por otro lado, la expresión de *GAP1* en amonio y prolina es mayoritariamente dependiente de Gln3 con un pequeño papel para Gat1 (Figura 6c y d). Esta regulación difiere de lo que se ha observado en *S. cerevisiae*, en donde Gln3 y Gat1 son necesarios para que

GAP1 se exprese correctamente (Soussi-Boudekou & Andre, 1999; Stanbrough *et al.*, 1995).

En *S. cerevisiae* la expresión de *GLN1* depende de Gat1 y Gln3 cuando las células crecen en amonio o en prolina (Stanbrough *et al.*, 1995). Sin embargo, en *C. glabrata* la regulación de este gen parece ser independiente de Gat1, dependiente de Gln3, y de un factor transcripcional adicional que desconocemos (Figura 6e y f).

Por otro lado, de forma similar a lo que se ha descrito en *S. cerevisiae* y *C. albicans*, en *C. glabrata* la ausencia de Ure2 conduce también a la sobreexpresión de *MEP2*, *GAP1* y *GLN1* por lo que nosotros proponemos que en este organismo, Ure2 también es un regulador negativo de la transcripción de éstos (Figura 6a, c y e).

Nosotros encontramos que al igual que en S. cerevisiae la expresión de PUT4 en C. glabrata, es mayor en prolina que en amonio (Courchesne & Magasanik, 1983). Además, observamos que Ure2 es un regulador negativo de la transcripción de este gen, esto es consistente con lo que se ha descrito en estudios previos en C. glabrata y S. cerevisiae (Coffman et al., 1994; Edskes et al., 2011). Por otro lado, el papel de GIn3 como regulador negativo de PUT4 es diferente a lo que se ha observado en S. cerevisiae, en donde Gln3 es un regulador positivo de la transcripción de este gen (Daugherty et al., 1993). Sin embargo, va se ha viso el papel de Gln3 como represor en S. cerevisiae, en esta levadura Gln3 y Gat1, pueden tener un papel negativo, pero indirecto sobre regulación de algunos transportadores de aminoácidos, ya que regulan la expresión de la permeasa general de aminoácidos (Gap1), la cual ya se ha visto que ocasiona represión transcripcional de otros transportadores de aminoácidos como: Gnp1, Bap2, Tat1, Tat2, y Mup1 (Scherens et al., 2006). En S. cerevisiae, la biosíntesis de glutamato se lleva a cabo por dos isoenzimas glutamato deshidrogenasas dependientes de NADP+, estas son codificadas por los genes GDH1 y GDH3 (Avendano et al., 1997; Byrne & Wolfe, 2005; DeLuna et al., 2001). Nosotros determinamos, que C. glabrata posee solo un gen (GDH3) que codifica para una proteína putativa glutamato deshidrogenasa. A diferencia de lo que se ha observado en S.

cerevisiae (Avendaño *et al.*, 2005), la expresión de *GDH*3 en *C. glabrata* es mucho mayor en amonio que en prolina y no depende totalmente de Gln3.

En este estudio demostramos: que *C. glabrata* es capaz de utilizar una amplia variedad de compuestos como fuentes de nitrógeno, que posee genes ortólogos a *GAT1*, *GLN3* y *URE2* de *S. cerevisiae*, que Gln3, Gat1 y Ure2 están involucrados en la asimilación de diversas fuentes de nitrógeno, que esta levadura posee diversos genes ortólogos a los relacionados con el metabolismo del nitrógeno en *S. cerevisiae*, y por último que los *MEP2*, *GAP1* y *GLN1* de *C. glabrata* están regulados por un mecanismo similar al de NCR de *S. cerevisiae*. Sin embargo, el mecanismo de NCR en *C. glabrata* presenta ciertas diferencias con el de *S. cerevisiae* que es importante resaltar: i) Gln3 es completamente necesario para la correcta expresión de *MEP2* en amonio y en prolina, ii) la expresión de *GAP1* es principalmente dependiente de Gln3 con un ligero papel para Gat1 que es solo evidente en prolina y iii) la expresión de *GLN1* es dependiente de Gln3 e independiente de Gat1 además, este gen parece estar regulado por otro factor de transcripción desconocido (Figura 9).

Figura 9.- Modelo de la represión catabólica nitrogenada en *S. cerevisiae* y *C. glabrata.*

Representación esquemática de la NCR en *S. cerevisiae* y *C. glabrata*. (a) Cuando la levadura *S. cerevisiae* crece en una buena fuente de nitrógeno como amonio, se observa baja expresión de los genes *MEP2*, *GAP1* y *GLN1* debido a que los activadores Gat1 y Gln3 son mayoritariamente retenidos en el citoplasma por el represor Ure2. En contraste (b), cuando la levadura crece en una mala fuente como prolina, la expresión de los genes *MEP2*, *GAP1* y *GLN1* es mayor que la observada en amonio, debido a que en esta condición, Gat1 y Gln3 son liberados

de Ure2 por lo que entran al nucleo y se unen a los promotores de sus genes blanco. La levadura *C. glabrata*, también posee un mecanismo similar a NCR en el cual amonio es una buena fuente y prolina es una mala fuente (c y d). Aunque, la NCR en C. glabrata es similar a la descrita en S. cerevisiae, existen ciertas diferencias. (c) La baja expresión de los genes MEP2, GAP1 y GLN1 cuando la levadura se encuentra en amonio, solo depende de Gln3 sin ningún papel para Gat1. Además, en el caso de GLN1, se propone un regulador desconocido, que está encargado de la expresión basal en ausencia de Gln3. (d) En prolina, la sobre-expresión de MEP2 y GAP1, es completa o ampliamente dependiente de Gln3. En esta condición, la expresión de GLN1 es regulada por Gln3 pero, un factor de transcripción desconocido debe ser invocado para explicar por qué la expresión en la cepa *ure2* Δ *gat1* Δ *gln3* Δ es similar a la observada en la cepa parental. En la figura se muestran Gat1, Gln3 y Ure2 además de una proteína desconocida marcada con un signo de interrogación. El tamaño de las proteínas indica si la mayoría de una proteína en particular se encuentra principalmente en el citoplasma (Cit) o en el núcleo (Nuc) unido a las secuencias de los promotores. El tamaño de las flechas en los promotores de MEP2, GAP1, y GLN1 indica baja o alta transcripción en amonio o en prolina, respectivamente. Los triángulos pequeños o grandes (amonio o prolina) indican un incremento en el transporte de Gat1 o Gln3 hacia el núcleo. El modelo de C. glabrata está basado en los resultados del presente trabajo mientras, que el modelo de S. cerevisiae está basado en estudios reportados previamente por otros grupos (Cooper, 2002; Marini et al., 1997; Soussi-Boudekou & Andre, 1999; Stanbrough et al., 1995). La imagen fue modificada de (Pérez-delosSantos & Riego-Ruiz, 2016).

V. Conclusiones y perspectivas

En este trabajo observamos que la levadura *C. glabrata* puede utilizar un amplia variedad de compuestos como fuentes de nitrógeno. Sin embargo, algunos los utiliza con mayor facilidad que otros, por ejemplo, puede crecer más rápido en amonio de lo que crece en prolina.

La levadura *C. glabrata* posee genes ortólogos a *GAT1*, *GLN3* y *URE2* de *S. cerevisiae*. Mientras que *GAT1* y *GLN3* de *C. glabrata* codifican para dos proteínas putativas que pertenecen a una familia de factores de transcripción de tipo dedos de zinc, *URE2* codifica para una proteína que presenta un dominio Pre-priónico.

La proteína Gln3 de C. glabrata es un regulador clave para la asimilación de diversas fuentes de nitrógeno, su ausencia afecta el transporte de amonio hacia la célula, ésto lo hace regulando al menos, uno de los genes de los que codifican para las permeasas de amonio (MEP2). Por otro lado, este factor es muy importante para la expresión del gen que codifica para la permeasa general de aminoácidos (GAP1) y tiene un ligero papel en la regulación de los genes que codifican para las enzimas glutamina sintetasa (GLN1) v glutamato deshidrogenasa (GDH3). Otro gen que es regulado por Gln3, es el que codifica para el transportador de prolina (PUT4); sin embargo, el papel de Gln3 en la regulación de éste opuesto al que se ha descrito en S. cerevisiae. Gat1 parece no tener un papel importante en la asimilación de las fuentes de nitrógeno que usamos. Solo tiene un ligero papel en la regulación de la transcripción de GAP1 en prolina. Por otro lado, Ure2 es un regulador negativo de la transcripción de MEP2, GAP1, GLN1 y PUT4.

Hasta donde sabemos este es el primer estudio en el que se presenta evidencia del mecanismo de NCR en la levadura *C. glabrata*. Lo que genera un nuevo campo de estudio, pues elucidar este mecanismo puede ser de gran ayuda para establecer posibles blancos terapéuticos para el tratamiento de infecciones provocadas por este patógeno. Algunos experimentos que pueden servir para elucidar este mecanismo son: i) establecer mediante microscopia de fluorescencia la localización intracelular de Gat1 y Gln3 en diversas fuentes de nitrógeno, ii) determinar mediante coinmunoprecipitación (CoIP) si Ure2 mantiene retenidos a Gat1 y a Gln3 en el citoplasma de las células en presencia de una buena fuente de nitrógeno, iii) determinar mediante experimentos de transcriptómica (RNA-seq) la cantidad de genes de dependen de Gat1 y/o Gln3 en diversas fuentes de nitrógeno, iv) mediante inmunoprecipitación de la cromatina (ChIP) medir la unión de Gln3 y/o Gat1 en los promotores algunos genes que blanco de NCR.

Los resultados que obtuvimos en este trabajo están publicados en el artículo "Gln3 is a main regulator of nitrogen assimilation in *Candida glabrata*" y pueden ser consultados en la siguiente liga: doi: <u>10.1099/mic.0.000312</u>) (Figura suplementaria 10).

VI. Referencias

- Ahmad, K. M., Kokošar, J., Guo, X., Gu, Z., Ishchuk, O. P. & Piškur, J. (2014). Genome Structure and Dynamics of the Yeast Pathogen *Candida glabrata*. *FEMS Yeast Res* 14, 529–535.
- Alcoba-Flórez, J., Méndez-Alvarez, S., Cano, J., Guarro, J., Pérez-Roth, E. & del Pilar Arévalo, M. (2005). Phenotypic and Molecular Characterization of *Candida nivariensis* sp. nov., a Possible New Opportunistic Fungus. J Clin Microbiol 43, 4107–4111.
- Andersen, G., Björnberg, O., Polakova, S., Pynyaha, Y., Rasmussen, A.,
 Møller, K., Hofer, A., Moritz, T., Sandrini, M. P. B. & other authors. (2008).
 A Second Pathway to Degrade Pyrimidine Nucleic Acid Precursors in
 Eukaryotes. J Mol Biol 380, 656–666.
- Andersson Rasmussen, A., Kandasamy, D., Beck, H., Crosby, S. D., Bjornberg, O., Schnackerz, K. D. & Piškur, J. (2014). Global Expression Analysis of the Yeast Lachancea (Saccharomyces) kluyveri Reveals New URC Genes Involved in Pyrimidine Catabolism. Eukaryot Cell 13, 31–42.
- Arst, H. N. & Cove, D. J. (1973). Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126, 111–141.
- Avendano, A., DeLuna, A., Olivera, H., Valenzuela, L. & Gonzalez, A. (1997). GDH3 Encodes a Glutamate Dehydrogenase Isozyme, a Previously Unrecognized Route for Glutamate Biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179, 5594–5597.
- Avendaño, A., Riego, L., DeLuna, A., Aranda, C., Romero, G., Ishida, C., Vázquez-Acevedo, M., Rodarte, B., Recillas-Targa, F. & other authors. (2005). Swi/SNF-Gcn5-Dependent Chromatin Remodelling Determines Induced Expression of GDH3, One of the Paralogous Genes Responsible for Ammonium Assimilation and Glutamate Biosynthesis in Saccharomyces cerevisiae. Mol Microbiol 57, 291–305.
- Behzadi, P., Behzadi, E. & Ranjbar, R. (2015). Urinary Tract Infections and Candida albicans. Cent European J Urol 68, 96–101.
- Benjamin, P. M., Wu, J. I., Mitchell, A. P. & Magasanik, B. (1989). Three Regulatory Systems Control Expression of Glutamine Synthetase in Saccharomyces cerevisiae at the Level of Transcription. Mol Gen Genet 217, 370–377.
- Biswas, K. & Morschhäuser, J. (2005). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in *Candida albicans*. *Mol Microbiol* 56, 649–669.
- Brandriss, M. C. & Magasanik, B. (1980). Proline: an Essential Intermediate in Arginine Degradation in *Saccharomyces cerevisiae*. *J Bacteriol* 143, 1403–1410.
- Brunke, S., Seider, K., Richter, M. E., Bremer-Streck, S., Ramachandra, S., Kiehntopf, M., Brock, M. & Hube, B. (2014). Histidine degradation via an aminotransferase increases the nutritional flexibility of *Candida glabrata*. *Eukaryot Cell* **13**, 758–765.

- Byrne, K. P. & Wolfe, K. H. (2005). The Yeast Gene Order Browser: Combining Curated Homology and Syntenic Context Reveals Gene Fate in Polyploid Species. *Genome Res* 15, 1456–1461.
- Carvalho, J. & Zheng, X. F. S. (2003). Domains of Gln3p Interacting with Karyopherins, Ure2p, and the Target of Rapamycin Protein. *J Biol Chem* 278, 16878–16886.
- Castaño, I., Kaur, R., Pan, S., Cregg, R., Penas, A. D. L., Guo, N., Biery, M. C., Craig, N. L. & Cormack, B. P. (2003). Tn7-Based Genome-Wide Random Insertional Mutagenesis of *Candida glabrata*. *Genome Res* **13**, 905–915.
- Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., Christie, K. R., Costanzo, M. C., Dwight, S. S. & other authors. (2012). Saccharomyces Genome Database: the Genomics Resource of Budding Yeast. *Nucleic Acids Res* 40, D700–5.
- **Coffman, J. A., Berry, el, H. M. & Cooper, T. G. (1994).** The *URE*2 Protein Regulates Nitrogen Catabolic Gene Expression Through the GATAA-Containing UASNTR Element in *Saccharomyces cerevisiae*. *J Bacteriol* **176**, 7476–7483.
- **Cooper, T. G. (2002).** Transmitting the signal of excess nitrogen in *Saccharomyces cerevisiae* from the Tor proteins to the GATA factors: connecting the dots. *FEMS Microbiol Rev* **26**, 223–238.
- **Cormack, B. P. & Falkow, S. (1999).** Efficient Homologous and Illegitimate Recombination in the Opportunistic Yeast Pathogen *Candida glabrata. Genetics* **151**, 979–987.
- Correia, A., Sampaio, P., James, S. & Pais, C. (2006). Candida bracarensis sp. nov., a Novel Anamorphic Yeast Species Phenotypically Similar to Candida glabrata. Int J Syst Evol Microbiol 56, 313–317.
- Courchesne, W. E. & Magasanik, B. (1983). Ammonia Regulation of Amino Acid Permeases in *Saccharomyces cerevisiae*. *Mol Cell Biol* **3**, 672–683.
- **Dabas, N. & Morschhäuser, J. (2007).** Control of ammonium permease expression and filamentous growth by the GATA transcription factors *GLN3* and *GAT1* in *Candida albicans. Eukaryot Cell* **6**, 875–888.
- Daugherty, J. R., Rai, R., Berry, el, H. M. & Cooper, T. G. (1993). Regulatory Circuit for Responses of Nitrogen Catabolic Gene Expression to the *GLN3* and *DAL80* Proteins and Nitrogen Catabolite Repression in *Saccharomyces cerevisiae*. J Bacteriol 175, 64–73. American Society for Microbiology.
- **DeLuna, A., Avendano, A., Riego, L. & Gonzalez, A. (2001).** NADP-Glutamate Dehydrogenase Isoenzymes of *Saccharomyces cerevisiae*: PURIFICATION, KINETIC PROPERTIES, AND PHYSIOLOGICAL ROLES. *J Biol Chem* **276**, 43775–43783.
- Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine,
 I., de Montigny, J., Marck, C., Neuvéglise, C. & other authors. (2004).
 Genome Evolution in Yeasts. *Nature* 430, 35–44.
- Edskes, H. K., Engel, A., McCann, L. M., Brachmann, A., Tsai, H.-F. & Wickner, R. B. (2011). Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved. *Genetics* **188**, 81–90.
- Edskes, H. K. & Wickner, R. B. (2002). Conservation of a portion of the S.

cerevisiae Ure2p prion domain that interacts with the full-length protein. *Proc Natl Acad Sci U S A* **99**, 16384–16391.

- Gabaldón, T., Martin, T., Marcet-Houben, M., Durrens, P., Bolotin-Fukuhara, M., Lespinet, O., Arnaise, S., Boisnard, S., Aguileta, G. & other authors. (2013). Comparative Genomics of Emerging Pathogens in the *Candida glabrata* Clade. *BMC Genomics* 14, 623. BioMed Central Ltd.
- Gaillardin, C., Fournier, P., Sylvestre, G. & Heslot, H. (1976). Mutants of Saccharomycopsis lipolytica Defective in Lysine Catabolism. J Bacteriol 125, 48–57.
- Gojković, Z., Paracchini, S. & Piškur, J. (1998). A New Model Organism for Studying the Catabolism of Pyrimidines and Purines. In *Purine and Pyrimidine Metabolism in Man IX*, Advances in Experimental Medicine and Biology, pp. 475–479. Edited by A. Griesmacher, M. Müller & P. Chiba. Boston, MA: Advances in experimental medicine and biology.
- Grenson, M., Hou, C. & Crabeel, M. (1970). Multiplicity of the Amino Acid Permeases in *Saccharomyces cerevisiae*. *J Bacteriol* 103, 770–777.
- Gutiérrez-Escobedo, G. (2013, February 26). El Papel del Glutatión en la Respuesta a Estrés Oxidante del Hongo Patógeno Oportunista Candida glabrata.
- Inglis, D. O., Arnaud, M. B., Binkley, J., Shah, P., Skrzypek, M. S., Wymore, F., Binkley, G., Miyasato, S. R., Simison, M. & Sherlock, G. (2012). The Candida Genome Database Incorporates Multiple Candida Species: Multispecies Search and Analysis Tools with Curated Gene and Protein Information for Candida albicans And Candida glabrata. Nucleic Acids Res 40, D667–74.
- Jauniaux, J. C. & Grenson, M. (1990). *GAP1*, The General Amino Acid Permease Gene of *Saccharomyces cerevisiae*. Nucleotide Sequence, Protein Similarity with the Other Bakers Yeast Amino Acid Permeases, and Nitrogen Catabolite Repression. *Eur J Biochem* 190, 39–44.
- Juarez-Reyes, A., Ramirez-Zavaleta, C. Y., Medina-Sanchez, L., Las Penas, De, A. & Castano, I. (2012). A Protosilencer of Subtelomeric Gene Expression in *Candida glabrata* with Unique Properties. *Genetics* **190**, 101–111.
- Keeney, D. R. & Nelson, D. W. (1982). Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Nitrogen-Availability Indices, pp. 1–56. Edited by A. L. Page. Madison: American Society of Agronomy.
- Kmetzsch, L., Staats, C. C., Simon, E., Fonseca, F. L., Oliveira, D. L., Joffe, L. S., Rodrigues, J., Lourenço, R. F., Gomes, S. L. & other authors. (2011). The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen *Cryptococcus neoformans*. *Fungal Genet Biol* 48, 192–199.
- Köhler, J. R., Casadevall, A. & Perfect, J. (2015). The Spectrum of Fungi that Infects Humans. *Cold Spring Harb Perspect Med* 5, a019273. Cold Spring Harbor Laboratory Press.
- Kraidlova, L., Van Zeebroeck, G., Van Dijck, P. & Sychrová, H. (2011). The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. *Eukaryot Cell* **10**, 1219–1229.

American Society for Microbiology.

Kulkarni, A. A. (2001). Gln3p Nuclear Localization and Interaction with Ure2p in Saccharomyces cerevisiae. *J Biol Chem* 276, 32136–32144.

Kurtzman, C. P. (2003). Phylogenetic Circumscription of Saccharomyces, Kluyveromyces and other Members of the Saccharomycetacea, and the proposal of the New Genera Lachancea, Nakaseomyces, Naumovia, Vandelwaltozyma and Zygotorulospora. FEMS Yeast Res **4**, 233–245.

Large, P. J. (1986). Degradation of organic nitrogen compounds by yeasts. Yeast 2, 1–34.

Lee, I. R., Chow, E. W. L., Morrow, C. A., Djordjevic, J. T. & Fraser, J. A.
 (2011). Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen *Cryptococcus neoformans*. *Genetics* 188, 309–323.

Liao, W. L., Ramón, A. M. & Fonzi, W. A. (2008). *GLN3* encodes a global regulator of nitrogen metabolism and virulence of *C. albicans. Fungal Genet and Biol* **45**, 514–526.

Limjindaporn, T., Khalaf, R. A. & Fonzi, W. A. (2003). Nitrogen metabolism and virulence of *Candida albicans* require the GATA- type transcriptional activator encoded by *GAT1*. *Mol Microbiol* **50**, 993–1004.

Magasanik, B. & Kaiser, C. A. (2002). Nitrogen Regulation in Saccharomyces cerevisiae. Gene 290, 1–18.

Marini, A. M., Soussi-Boudekou, S., Vissers, S. & Andre, B. (1997). A Family of Ammonium Transporters in *Saccharomyces cerevisiae*. *Mol Cell Biol* **17**, 4282–4293.

Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the fungi. *Microbiol Mol Biol Rev* 61, 17–32.

Messenguy, F., André, B. & Dubois, E. (2006). Diversity of Nitrogen Metabolism Among Yeast Species: Regulatory and Evolutionary Aspects. In *Biodiversity and Ecophysiology of Yeasts*, The Yeast Handbook, pp. 123–153. Edited by G. Péter & C. Rosa. Berlin/Heidelberg: Springer-Verlag.

Miller, S. M. & Magasanik, B. (1990). Role of NAD-Linked Glutamate Dehydrogenase in Nitrogen Metabolism in *Saccharomyces cerevisiae*. J Bacteriol 172, 4927–4935.

Mitchell, A. P. (1985). The *GLN1* locus of *Saccharomyces cerevisiae* encodes glutamine synthetase. *Genetics* 111, 243–258.

O'Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J.-M. & Vilgalys, R. (2005). Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. *Appl Environ Microbiol* **71**, 5544–5550.

Pérez-delosSantos, F. J. & Riego-Ruiz, L. (2016). Gln3 is a Main Regulator of Nitrogen Assimilation in *Candida glabrata*. *Microbiology* (epub ahead of print).

Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M. C. & Holmberg, S. (1999). Substrate Specificity and Gene Expression of the Amino-Acid Permeases in Saccharomyces cerevisiae. Curr Genet 36, 317–328.

Regenberg, B., Holmberg, S., Olsen, L. D. & Kielland-Brandt, M. C. (1998). Dip5p Mediates High-Affinity and High-Capacity Transport of L-Glutamate and L-Aspartate in *Saccharomyces cerevisiae*. *Curr Genet* **33**, 171–177.

Rice, P., Longden, I. & Bleasby, A. (2000). EMBOSS: the European Molecular

Biology Open Software Suite. Trends Genet 16, 276–277.

- Scherens, B., Feller, A., Vierendeels, F., Messenguy, F. & Dubois, E. (2006). Identification of direct and indirect targets of the GIn3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. *FEMS Yeast Res* **6**, 777–791.
- Schmitt, M. E., Brown, T. A. & Trumpower, B. L. (1990). A Rapid and Simple Method for Preparation of RNA from *Saccharomyces cerevisiae*. *Nucleic Acids Res* 18, 3091–3092.
- Schreve, J. L., Sin, J. K. & Garrett, J. M. (1998). The Saccharomyces cerevisiae YCC5 (YCL025c) Gene Encodes an Amino Acid Permease, Agp1, Which Transports Asparagine and Glutamine. *J Bacteriol* **180**, 2556–2559.
- Sharma, C., Wankhede, S., Muralidhar, S., Prakash, A., Singh, P. K., Kathuria, S., Kumar, D. A., Khan, N., Randhawa, H. S. & other authors. (2013). *Candida nivariensis* as an Etiologic Agent of Vulvovaginal Candidiasis in a Tertiary Care Hospital of New Delhi, India. *Diagn Microbiol Infect Dis* 76, 46– 50.
- **Soussi-Boudekou, S. & Andre, B. (1999).** A Co-Activator of Nitrogen-Regulated Transcription in *Saccharomyces cerevisiae*. *Mol Microbiol* **31**, 753–762.
- Stanbrough, M., Rowen, D. W. & Magasanik, B. (1995). Role of the GATA Factors Gln3p and Nil1p of *Saccharomyces cerevisiae* In the Expression of Nitrogen-Regulated Genes. *Proc Natl Acad Sci U S A* **92**, 9450–9454.
- Stothard, P. (2000). The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. *Biotech* 28, 1102–1104.
- Valenzuela, L., Ballario, P., Aranda, C., Filetici, P. & Gonzalez, A. (1998). Regulation of Expression of *GLT1*, the Gene Encoding Glutamate Synthase in *Saccharomyces cerevisiae*. *J Bacteriol* **180**, 3533–3540.
- Weinstock, K. G. & Strathern, J. N. (1993). Molecular Genetics in Saccharomyces kluyveri: the HIS3 Homolog and its Use as a Selectable Marker Gene in S. kluyveri and Saccharomyces cerevisiae. Yeast 9, 351–361.
- Wong, K. H., Hynes, M. J. & Davis, M. A. (2008). Recent Advances in Nitrogen Regulation: a Comparison Between *Saccharomyces cerevisiae* and Filamentous Fungi. *Eukaryot Cell* **7**, 917–925.
- Wrobel, L., Whittington, J. K., Pujol, C., Oh, S.-H., Ruiz, M. O., Pfaller, M. A., Diekema, D. J., Soll, D. R. & Hoyer, L. L. (2008). Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set of *Candida albicans* Isolates from Humans and Nonmigratory Wildlife in Central Illinois. *Eukaryot Cell* 7, 1475–1486.
- Zhu, X., Garrett, J., Schreve, J. & Michaeli, T. (1996). *GNP1*, the High-Affinity Glutamine Permease of *S. cerevisiae*. *Curr Genet* **30**, 107–114.

VI. Anexos

Tabla suplementaria 1.- Comparación mediante alineamientos pareados de las proteínas del metabolismo central del nitrógeno en *S. cerevisae* y *C. glabrata.*

Proteína	S. cerevisiae ^a	C. glabrata ^b	Identidad (%)
Gdh1	YOR375C	No hay ortólogo	No aplica
Gdh3	YAL062W	CAGL0D00176g	82
Gdh2	YDL215C	CAGL0G05698g	85
Gln1	YPR035W	CAGL0K05357g	87
Glt1	YDL171C	CAGL0L01089g	81

^a Nombre sistemático de los genes que codifican para las enzimas en *S. cerevisiae*.

^b Nombre sistemático de los genes que codifican para las enzimas putativas en *C. glabrata.*

Tabla suplementaria 2.- Comparación mediante alineamientos pareados de los transportadores de diversos compuestos nitrogenados entre *S. cerevisiae* y *C. glabrata.*

Transportador	S. cerevisiae ^a	C. glabrata ^b	Identidad (%) ^c	Substratod
Gap1	YKR039W	CAGL0L03267g	75	Los 20
				aminoácidos
				más
				comunes
Agp1	YCL025C	CAGL0B01012g	67	Asn, Gln,
				Thr, Ser,
				Met, Cys,
				Gly, Ala,
				Val, Iso,
				Leu, Phe,
				Tyr,
Gnp1	YDR508C	CAGL0K05753g	64	Asn, Gln,
				Thr, Ser,
				Met, Cys,
				Leu
Dip5	YPL265W	CAGL0A01199g	66	Glu, Asp,
				Asn, Gln,
				Ser, Gly, Ala
Put4	YOR348C	CAGL0E05632g	64	Ala, Gly, Pro
Tat2	YOL020W	CAGL0D02178g	80	Gly, Ala,
				Trp, Tyr,
				Phe
				Met, Cys,
				Ala, Val,
Bap2	YBR068C	CAGL0L07546g	70	Leu, lle,
				Phe, Tyr,
				Trp

Bap3	YDR046W	CAGL0H08393g	66	Thr, Met,
				Cys, Ala,
				Val, Leu, Ile,
				Phe, Tyr,
				Trp
Tat1	YBR069C	No hay ortólogo	No aplica	Thr, Val
Equ2	VEPOSEC		60	Adenina,
T Gyz	TEROSOC	CAGEOLOOO7 19	09	Guanina
Lyp1	YNL268W	CAGL0J08162g	80	Lys, Met
Fur4	YBR021W	No hay ortólogo	No aplica	Uracilo
Mep1	YGR121C	CAGL0I10747g	76	Amonio
Mep2	YNL142W	CAGL0J06028g	77	Amonio
Мер3	YPR138C	CAGL0D04928g	65	Amonio

^a Nombre sistemático de los genes que codifican para los transportadores en *S. cerevisiae*.

^b Nombre sistemático de los genes que codifican para los transportadores putativos en *C. glabrata.*

^c Los alineamientos pareados fueron hechos con el programa bioinformático Needle de EMBOSS (Rice *et al.*, 2000).

^d La información sobre los sustratos de los transportadores fue obtenida de (Regenberg *et al.*, 1999), con excepción de los sustratos de Mep1, Mep2 y Mep3 que fue obtenida de (Marini *et al.*, 1997).

Tabla suplementaria 3.- Comparación mediante alineamientos pareados de las enzimas involucradas en el metabolismo de diversas fuentes de nitrógeno entre *S. cerevisiae* y *C. glabrata*.

Aminoácido	Proteína	S. cerevisiae	C. glabrata	Identidad (%)
	Car1	YPL111W	CAGL0J07062g	70
	Car2	YPL438W	CAGL0M00880g	70
nrolina	Pro3	YER023W	CAGL0I08283g	79
proma	Put1	YLR142W	CAGL0M04499g	59
	Put2	YHR037W	CAGL0D03982g	77
	Gly1	YEL046W	CAGL0I01342g	83
	Shm1	YBR263W	CAGL0I09284g	71
Glicina, serina	Gcv1	YDR019C	CAGL0D04356g	69
y treonina	Gcv2	YMR189W	CAGL0L00429g	67
	Gcv3	YAL044C	CAGL0M12188g	53
	Lpd1	YFL018C	CAGL0F01947g	78
	Asp1	YDR321W	CAGL0H07051g	74
	Asp3-1	YLR155C	No hay ortólogo	No aplica
Aspartato v	Asp3-2	YLR157C	No hay ortólogo	No aplica
asparagina	Asp3-3	YLR158C	No hay ortólogo	No aplica
asparagina	Asp3-4	YLR160C	No hay ortólogo	No aplica
	Aat1	YKL106W	CAGL0K08580g	56
	Aat2	YLR027C	CAGL0D01892g	76
	Bat1	YHR208W	CAGL0F09207g	76
	Bat2	YJR2148W	CAGL0M00176g	74
Valina	Thi3	YDL080C	CAGL0L06842g	60
isoleucina v	Pdc1	YLR044C	CAGL0M07920g	88
	Pdc5	YLR134W	No hay ortólogo	No aplica
	Pdc6	YGR087C	CAGL0G02937g	67
	Adh1	YOL086C	CAGL0I07843g	86
	Adh2	YMR303C	No hay ortólogo	No aplica

	Adh3	YMR083W	CAGLOJO1441g	76
	Adh4	YGL256W	No hay ortólogo	No aplica
	Adh5	YBR145W	No hay ortólogo	No aplica
	Sfa1	YDL168W	CAGL0L01111g	80
	Gud1	YDL238C	CAGL0C05555g	52
	Aah1	YNL141W	CAGL0J05984g	73
Purinas	Dal1	YIR027C	No hay ortólogo	No aplica
i unnas	Dal2	YIR029C	No hay ortólogo	No aplica
	Dal3	YIR032C	No hay ortólogo	No aplica
	Dur1,2	YBR208C	CAGL0M05533g	65
	Fcy1	YPR062W	CAGL0D01562g	79
	Pyd1	No hay ortólogo	No hay ortólogo	No aplica
	Pyd2	No hay ortólogo	No hay ortólogo	No aplica
	Pyd3	No hay ortólogo	No hay ortólogo	No aplica
	Pyd4	YGR019W	CAGL0D04026g	70
Pirimidinas	Urc1	No hay ortólogo	No hay ortólogo	No aplica
	Urc2	YDR250C	CAGL0H01683g	52
	Urc6	YHR128W	CAGL0H09064g	88
	Urc4	No hay ortólogo	No hay ortólogo	No aplica
	Urc3,5	YBR208C	CAGL0M05533g	65
	Urc8	YMR226C	CAGL0M11242g	70

 Tabla suplementaria 4.- Comparación mediante alineamientos pareados entre las proteínas involucradas en NCR entre S. cerevisiae y C. glabrata.

Función	Proteína	S. cerevisiae	C. glabrata	Identidad (%)
Factor de transcripción	Gat1	YFL021W	CAGL0K07634g	23
	Gln3	YER040W	CAGL0C02277g	34
	Gzf3	YJL110C	CAGL0G04389g	30
	Dal80	YKR034W	CAGL0L03157g	29
Represor	Ure2	YNL229C	CAGL0J07392g	77

Figura suplementaria 1.- Metabolismo de la arginina y la prolina.

Esquema del metabolismo de arginina y prolina. Se señalan los compartimientos celulares: citoplasma y mitocondria. En itálicas se muestran los nombres de los genes que, en *S. cerevisiae*, codifican para las enzimas involucradas en el metabolismo de arginina y de prolina. En *S. cerevisiae*, el metabolismo de arginina conduce a la formación de prolina en este, la arginina es primero convertida en ornitina y urea mediante una arginasa codificada en el gen *CAR1*. Después, la ornitina es convertida por una transaminasa codificada en el gen *CAR2* en glutamato- γ -semialdehído, este compuesto se encuentra en equilibrio con la Δ^{\Box} pirrolina-5-carboxilato. A continuación, la Δ^{\Box} pirrolina-5-carboxilato es convertida reductasa codificada en el gen *PRO3* en prolina. El metabolismo subsecuente sobre la prolina es llevado a cabo en la mitocondria en donde, la prolina es oxidada por la prolina deshidrogenasa (*PUT1*) en Δ^{\Box} pirrolina-5-carboxilato/glutamato- γ -semialdehído. Estos compuestos después son

oxidados mediante la pirrolina 5-carboxilato mitocondrial (*PUT2*) en glutamato (Brandriss & Magasanik, 1980).

ScGat1 CgGat1	MHVFFPLLFRPSPVLFIACAYIYIDIYIHCTRCTVVNITMSTNRVPNLDPDLNLNKEIWDLYSSAOKILPDSNRILNLSW MMYDISATSQMMYDISATSQ	80 10
ScGat1 CgGat1	RLHNRTSFHRINRIMQHSNSI-MDFSASPFASGVNAAGPGNNDLDDTDTDNQQFFLSDMNLNGSSVFENV-F FKQSALYKHNKQMSDQIKFDFNNFQFKNNQQLQNRDLMNDHYDNTFANKTSMQTSFVGHA-FNPSFQFDTIDF :::::::::::::::::::::::::::::::::::	150 82
ScGat1 CgGat1	DDDDDDDDVETHSIVHSDLLNDMDSASQRASHNASGFPNFLDTSCSSSFDDHFIFTNNLPF DDKGTFFDINKAQNPKNRILAMLENESRSNTATIDSNF-QAGVSNSLNIDLLDDPFKVDEQITRSDDIFP-NLPFPFS ***:*:*.*:*********************	211 158
ScGat1 CgGat1	-LNNNSINNNHSHNSSHNNNSPSIANNTNANTNTNTSASTNTNSPLLRRNPSPSIVKPGSRRNSSVRKKKPA TEDSNIITPSFESRSTSNDSNFEIVDVTTPVVSRSSNFSNADNIPMPKEFDIKHLHPTIPPKTKEPTSKRQIKVKKEK .::*.**:.*:::*::*::*::*:	282 236
ScGat1 CgGat1	Dedo de Zinc LKKIKSSTSVQSSATPPSNTSSN-PDIKCSNCTTSTTPLWRKDPKGLPLCNACGLFLKLHGVTRPLSLKTDIIKKRQRSS TPVCVETAKPSDADNNKEDLICTNCGTTNTPLWRKDIDRKPLCNACGLFFKLHGVMRPLSLKTDVIKKRKRTA *.***:::* .*:.*:*******************	361 309
ScGat1 CgGat1	-TKINNNITPPPSSSLNPGAAGKKKNYTASVAASKRKNSLNIVAPLKSQDIPIPKIASPSIPQYLRSNTRHHL KIKTNRHVTGKINLRDRKRKSNPSKKDNKKSITKRQQPSNSKSSIGSKSTALFKSDKCSSSGCNETADLTTPGSE .*.*.:******:.*:**:*:**	433 384
ScGat1 CgGat1	SSSVPIEAETFSSFRPDMNMTMNMNLHNASTS-SFNNEAFWKPLDSAIDHHSGDTNPNSNMNTTPNGN STSVSSTETIFDNSQSISLSSSSTDLKDSNHGFLPSNWSDFQSSDGDLPNFSVDFEFGVVDDHNSIYPLPVFQ *:** ** **:::::::::::::::::::::::::	500 457
ScGat1	LSLDWLNLNL 510	

CgGat1 YE----- 459

Figura suplementaria 2.- Alineamiento entre las proteínas ortólogas Gat1 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Gat1 de *S. cerevisiae* (YFL021W) y *C. glabrata* (CAGL0K07634g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (<u>http://www.bioinformatics.org/sms2</u>) (Rice *et al.*, 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un asterisco, dos puntos o un punto, respectivamente. El dedo de zinc se encuentra etiquetado.

ScGln3 CgGln3	MQDDPENSKLYDLLNSHL-DVHGRSNEEPRQTGDSRSQSSGNTGENEEDIAFASGLNGGTFDSMLEALPDDLYFT MEGFQDDLDGMGVLNSFLKDGSGESKSGAEKSSTTKPQAENVVPFVNDNYDSMLEALPDELNLDFT .***.::***** ** ::*.:*.:*** :.**	74 66
	Dominio de unión a Ure2	
ScGln3 CgGln3	DFVSPFTAAATTSVTTKTVKDTTPATNHMDDDIAMFDSLATTQPIDIAASNQ SLLSPFPAPGQGNDDDITV-NVNPYIGQSNNDFYKIDEVPEEDLQQGSEIINSTTQLQPITINNSKQQNYNQINVDSSNQ ***.*:::::::::::::::::::::::::::	126 145
Domi	nio de activación	
ScGln3 CgGln3	QNGEIAQLWDFNVDQFNMTPSNSSGSATISAPNSFTSDIP QNGEIAQLWDFNVDQFNMTPSNSSGSATISAPNSFTSDIP QNGEIAQFWDFNVDTLNITPSNSSGSATISAPNSYNSEIPLGVTTGFNNNNNHLFAHGVLGG GSSIGNS ******* ******* ****** ******	192 215
ScGln3 CgGln3	NINQPSINNNSNTNAQSHHSFNIYKLQNNNSSSSAMNITNNNNSNNSNIQHP NIINNTSLTYSNQQNSFPGSSLHSKPTTATTVTYTNTPPIKENQSIIANSSLKASQFTGKRPISVVGSNNSYSENP ** ***.*.*** ****	244 291
6-61-2	Dedo de Zinc	224
CgGln3	YILSAANTSNSVRKNSLLRPMSSTSLANPKRAASVSSSLSNMEPSGUNKKPLTQCFNCKTFKTPLWRRSPEGN YILSAANTSNSVRKNSLPRQLSSTSLNNYRKSVSSSERPPDPDAVHCDNCKTYKTPLWRRSPEGK ::: **::**:******************************	324 356
	SENSLN	
ScGln3 CgGln3	TLCNACGLFQKLHGTMRPLSLKSDVIKKRISKKRAK-QTDPNIAQNTPSAPATASTSVTTTNAKPIRSRKKSLQQNSLSR VLCNACGLFQKLHGTMRPLSLKTDVIRKRNSKKRTKIQMNPQQTQSQQRQHIQYQT .************************************	403 419
ScGln3	VIPEEIIRDNIGNTNNILNVNRGGYNFNSVPSPVLMNSQSYNSSNANFNGASNANLNSNNLMRHNSNT	471
CgGln3	LLSNHSSPIDTFSSGKSKKKLSSTRLNQDMTTTKYSKEGGSLTKQGFTTTPTYNSKSPNYSNSAAASNT :: *.:* ****	488
ScGln3	VTPNFRRS-SRRSSTSSNTSSSSKSSSRSVVPILPKPSPNSANSQQFNMNMNLMNTTNNVSAGNS	535 560
egotilo	*:* ********::*:*:*:*:*****************	500
ScGln3 CaGln3	VASSPRIISSANFNSNSPLQQNLLSNSFQRQGMNIPRRKMSRNASYSSSFMAASLQQLHEQQQVDVNSNTNTNSNRQNWN LTSSPRNASIYGTNAPSRNLSSSASKYGVSMPGRKLSRNASYSSSFINTNP00T0DIGNFNDD0SI0GNGT	615 631
- 9	· **** · · · · · ** · * · · · · ** · · · · ** · ** · ******	
	Dominio de unión a Tor1	
ScGln3 CgGln3	SSNSVSTNSRSSNFVSQKPNFDIFNTPVDSPSVSRPSSRKSHTSLLSQQLQNSESNSFISNHK GVNSQNIRRINSNYDSPQPNFDLFRLDSNKDSPENIPDVLRSDSRLSQKSQVSHTSLLSQQIQNQQRMRGEKSISQENLQ **.::**:*:*:*****:* ::*.:**********	678 711
ScGln3 CaGln3	FNNRLSSDSTSPIKYEADVSAGGKISEDNSTKDNSTK	710 791
-	*:.*.:*** ::* **:.*	
ScGln3 CgGln3	GSSKESSAIADELDWLKFGI 730 GQEQNFANPEANGNEAKKSALEQDLDWLKFGI 823	

Figura suplementaria 3.- Alineamiento entre las proteínas ortólogas Gln3 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Gln3 de *S. cerevisiae* (YER040W) y *C. glabrata* (CAGL0C02277g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (<u>http://www.bioinformatics.org/sms2</u>) (Rice *et al.*, 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un asterisco, dos puntos o un punto, respectivamente. Se muestran el dominio de unión a Ure2 (línea negra) y a TOR1 (línea amarilla). Además del dominio de activación (línea roja), dominio de tipo dedo de zinc (línea azul), la señal de exporte nuclear (línea verde) y la señal de localización nuclear (línea rosa).
	Dominito pre-prioriteo	
ScUre2	MMNNNGNQVSNLSNALRQVNIGNRNSNTTTDQSNINFEFSTGVNNNNNNSSSNNNNVQNNNSGRNGSQNNDNEN	75
CgUre2	-MGDSRNTGTISNLSSALRQVNIGSGQDQKNINYEFSNGLNNNVNDNGNHNLVNTNEDNVNKDGSINTNMMSRQV	74
	.::: .:****:********: **.***:*:****:*:*:*:	
	Dominio regulatorio por nitrógeno	
ScUre2	NIKNTLEQHRQQQQAFSDMSHVEYSRITKFFQEQPLEGYTLFSHRSAPNGFKVAIVLSELGFHYNTIFLDFNLGE	150
CgUre2	PI0HTHGS0LL00ERMNE00FNPMEYSRISKFF0N0PMEGYTLFSHRSAPNGFKVSIVLSELGL0YNTIFLDFNLGE	151
- J	*::* *:*.*.:***************************	
	Dominio regulatorio por nitrógeno	
ScUre2	HRAPEFVSVNPNARVPALIDHGMDNLSIWESGAILLHLVNKYYKETGNPLLWSDDLADQSQINAWLFFOTSGHAPMIGQA	230
CaUre2	HRAPEFVSVNPNARVPALIDHGLENLAIWESGAILLHLVNKFYKETGNPLLWSDDLADOAOINAWLFFOTSGHAPMIGOA	231
- J	*****	
	Dominio regulatorio por nitrógeno Ure2 αcap	
ScUre2	LHFRYFHSQKIASAVERYTDEVRRVYGVVEMALAERREALVMELDTENAAAYSAGTTPMSQSRFFDYPVWLVGDKLTIAD	310
CaUre2	LHFRYFHTOKIESAVERYTEEVRRVYGVIEMALAERREALIMELDTDNAAAYSAGTTPLSOSRFFDYPVWLVGDKLTIAD	311
5	****** : *** . ******* : ******* : ********	
	Dominio regulatorio por nitrógeno	
ScUre2	LAFVPWNNVVDRIGINIKIEFPEVYKWTKHMMRRPAVIKALRGE 354	
Callre2	LSEVPWNNVVDRIGINIKVEFPEVYKWTKHMMRRPAVIKALRGE 355	
	* * ***********************************	
	· · · · · · · · · · · · · · · · · · ·	

Dominio pre-priónico

Figura suplementaria 4.- Alineamiento entre las proteínas ortólogas Ure2 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Ure2 de *S. cerevisiae* (YNL229C) y *C. glabrata* (CAGL0J07392g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (<u>http://www.bioinformatics.org/sms2</u>) (Rice *et al.*, 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un asterisco, dos puntos o un punto, respectivamente. Se muestra el dominio Pre-priónico (línea azul), el dominio regulatorio por nitrógeno (línea roja) y la Ure2 α cap (línea verde).

Figura suplementaria 5.- Cuantificación del amonio residual entre las cepas parental y *gln3* Δ .

Se muestran, las curvas de crecimiento de las cepas parental y gln3 Δ (cuadrados v triángulos blancos) v la prueba del amonio residual de las cepas parental v $gln3\Delta$ (cuadrados y triángulos negros). Las muestras fueron preparadas de acuerdo a lo siguiente, cultivos de toda la noche (≈ 16h) fueron crecidos en medio YPD después, lavados dos veces con aqua milliQ estéril y resuspendidos en medio mínimo sin fuente de nitrógeno durante 2h. A continuación, se ajustó la D.O.(600nm) 1 en 10 mL de medio mínimo con 0.5 mg/mL de amonio. Posteriormente, estos cultivos fueron incubados a 30 °C con agitación constante en "roller drum" y se tomaron muestras a 1, 2, 3 y 4h. Se midió la D.O. (600nm) y el sobrenadante se usó para cuantificar el amonio residual. La prueba del amonio residual se hizó de acuerdo a lo descrito en Materiales y Métodos. Las curvas de crecimiento y la prueba del amonio residual reportadas son el promedio de tres experimentos independientes ± la desviación estándar. Se muestra el procentaje de amonio residual en cada punto. * Indica mediciones de absorbancia y cuantificaciones de amonio residual que fueron diferentes significativamente de los calculados en la cepa parental (P < 0.05 en una prueba t de dos colas). La imagen fue modificada de (Pérez-delosSantos & Riego-Ruiz, 2016).

				TMI	L1	TM	II	
ScMep2	MSYNFTGTPTGEG	FGGNSLTTDLNT	FDLANMGWIG	GVASAGVWIMVI	GIGLLYSGLSRKK	HALSLLWASMMA	SAVCIFQW	80
CgMep2	MSYNFTGTPTGHG	rgg <mark>d</mark> slttdlnto	FDLVNMTWLG	VCTSGVWLMV	GIGLLYSGLSRKK	HALSLLWASLMA	ACLVIFQW	80
	*********	***:********	****.**.*	* : : *** : **	****	********	< ****	
		1.2				1.2		
		LZ				L3		
ScMep2	FFWGYSLAFSHNT	RGNGFIGTLEFFO	GFRNVLGAPSS	SVSSLPDILFA	/YQGMFAAVTGALM	LGGACERARLFP	MMVFLFLW	160
CgMep2	FFWGYSLSFSHEII	RGNGFLGTLEFFC	FRNVLGAPSV	VISVPDIVFA.	LFQGMFAAVIGALM	LGGACERARLMP	MMIFLFLW	160
	******	*****	*********	*:*:***:**	******	**********	***	
	TMIV	L4	Т	MV	L5	Т	MVI	
ScMep2	MTIVYCPIACWVW	NAEGWLVKLGSL	YAGGLCVHLT	SGHGGLVYAL	LGKRNDPVTRKGM	PKYKPHSVTSVV	/LGTVFLWF	240
CgMep2	MTIVYCPIACWTW	NAEGWLAKLGAL	OYAGSGPVHTA	SGHGALVYAL	LGKRNDPVAKKGM	PKYKPHSVTSVV	/LGTVFLWF	240
	*********	*****	******	****.*****	********	*******	******	
		-						
	LO		MVII	L/				
ScMep2	GWMFFNGGSAGNA	TRAWYSIMSTN		IVIDYFRCGRK	VITVGLCSGIIAGL	VGITPAAGEVPI	WSAVVIGV	320
Cgmep2	GWQFFNPGSAGNAS	STRAWYSAMINTINL		FIDTFRIGGKI	VIIVGMCSGIISGL	VGITPGAGEVPI	WSSFILGV	320
	** ***	******	****•****	•****	*****	*****•	**:.:***	
	TMIX	L9	ТМХ	(L10			
ScMep2	VTGAGCNLAVDLK	GLLRIDDGLDCYS	SIHGVGGCIGS	SVLTGIFAADY	/NATAGSYISPIDG	GWINHHYKQVGY	QLAGICAA	400
CgMep2	LSAAGCNLAVDLK	NVLHIDDGLDVY#	LHGVGGCIGS	SVLTGIFAADY	/NATAGSYIAPIAG	GWLNHHWKQVGY	QLAAICAT	400
	:: .***********	* ******	********	*****	*******	**:***:****	***.**	
	TMVT							
		_						
ScMep2	LAWIVIVISILLL		ADEEELGIDA	AQIGEFTYEES		AQMPPPHENIDD	OKIVGNID-	479
Cgmepz				AEIGEFTYQE		PGMQPKMSS1DD		479
	*****	*: ****	****	* : ******	******	*.*.::***	****	
ScMep2	AEKNSTPSI	ASSTKNTDHIV	499					
CgMep2	IDSKLSESESGSN	EAGSNMGEKQTV	504					

:*..*..::*.*.....*

Figura suplementaria 6.- Alineamiento entre las proteínas ortólogas Mep2 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Mep2 de S. cerevisiae (YNL142W) y C. glabrata (CAGL0J06028g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (http://www.bioinformatics.org/sms2) (Rice et al., 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un dos puntos 0 un punto, respectivamente. dominios asterisco, Los transmembranales (TM) están marcados como TMI a TMXI, los bucles citoplasmáticos están marcados como L1, L3, L5, L7 y L9 y los no citoplasmáticos como L2, L4, L6, L8 y L10.

ScGap1 CgGap1	MSNTSSYEKNNPDNLKHNGI MSSLEKTDLPKNEL .**.**. :**.	TIDSEFLTQEPITIPS-NO QIDSEFLREEPLEISNFE .******.:**:.*.:	GSAVSIDETGSGS ESSSSQGPQPSGS .*:.* ***	KWQDFKDSFKRVKP RWRKFKDSFKPLDE :*:.******.:	IEVDPNLSEAEKVAI AVVTDDMSDIEKIAH *::*:.**:*	79 74
ScGap1 CgGap1	ITAQTPLKHHLKNRHLQMIA RTAHAPLKHHLKNRHLQMIA •**••*********	TMI IGGAIGTGLLVGSGTALR IGGAIGTGLFVGSGTALR ********	L1 TGGPASLLIGWGS TAGPAGILIGWGL *.***.:*****.	TGTMIYAMVMALGE TGTMIYCMVMAMGE ******	TMII LAVIFPISGGFTTYA LSVVFPISGGFTTYA *:*:**********	159 154
ScGap1 CgGap1	L2 TRFIDESFGYANNFNYMLQW TRFIDESFGFANNFNYMLQW *********	TMIII LVVLPLEIVSASITVNFW LCVLPLEIVAASITVNYW *.*******:******	L3 GTDPKYRDGFVALI GTDPKYRDGFVALI ********	TMIV FWLAIVIINMFGVK FWVVIVIINLFGVK **:.****	L4 GYGEAEFVFSFIKVI GYGEAEFVFSIIKVL **********	239 234
ScGap1 CgGap1	TMV TVVGFIILGIILNCGGGPTG TVIGFIIMGIVLNCGGGPEG **:****:**:**	L5 GYIGGKYWHDPGAFAGDT GYIGGKYFHDPGAFVGDT/ *******:******	PGAKFKGVCSVFV AGARFQGVCSVFV .**:*:*******	TMVI TAAFSFAGSELVGL TAAFSFAGSELIGI **********	L6 AASESVEPRKSVPKA AAAESAEPRKSVPKA **:**.*******	319 314
ScGap1 CgGap1	TMVII AKQVFWRITLFYILSLLMIG AKQVFWRITLFYMLSLLMVG	LLVPYNDKSLIGASSVDA/ LLVPYTDERLIGASSVDA/	L7 AASPFVIAIKTHG AASPFVIAITSHG	IKGLPSVVNVVILI IRGLPSVVNVVILI	TMVIII AVLSVGNSAIYACSR AVLSVGNSAVYGCSR	399 394
	*****	*****	********	*:***	********	
ScGap1 CgGap1	**************************************	*****.*:.********* TMIX KGRPLVGIAVTSAFGLIA SGRPLFGIAFTSAFGLVA .****.***.*******	**************** L9 FVAASKKEGEVFN FVAQSKKEGEVFA ****	*:************** TMX WLLALSGLSSLFTW WLLALSGLSSLFTW ******	**********:*.*** (GGICICHIRFRKALA GGICFCHIRFRAALT ****.******.**.	479 474
ScGap1 CgGap1 ScGap1 CgGap1	**************************************	*****.*:.********* TMIX KGRPLVGIAVTSAFGLIA SGRPLFGIAFTSAFGLVA .****.***.******* TMXI YWGLFMVIIMFIAQFYVA MWGLFMIVLMFMAQFYVA .*****	**************************************	*:***************** TM> WLLALSGLSSLFTW WLLALSGLSSLFTW *************** TMXII FEAYLSFPLVMVMY FQSYLSFPVVLAFY *::*****:*:*	********** GGICICHIRFRKALA GGICFCHIRFRAALT ****.******.**. IGHKIYKRNWKLFIP FGHKLYARNWKLLIP .***:*.*****.**	479 474 559 554

· . * : ********* : **** : * : ******* : * : * : * : * : * *** . : : ***

Figura suplementaria 7.- Alineamiento entre las proteínas ortólogas Gap1 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Gap1 de *S. cerevisiae* (YKR039W) y *C. glabrata* (CAGL0L03267g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (<u>http://www.bioinformatics.org/sms2</u>) (Rice *et al.*, 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un asterisco, dos puntos o un punto, respectivamente. Los dominios transmembranales están marcados como TMI a TMXII, los bucles citoplasmáticos están marcados como L2, L4, L6, L8 y L10 y los no citoplasmáticos como L1, L3, L5, L7, L9 y L11.

ScGln1 CgGln1	β1 β2 β3 β4 MAEASIEKTQILQKYLELDQRGRIIAEYVWIDGTGNLRSKGRTLKKRITSIDQLPEWNFDGSSTNQAPGHDSDIYLKPV MHEHSVEKTQILQKYLELPONGKVIAEYVWVDGTGNLRSKARTLNKVITSIEQLPEWNFDGSSTNQAPGYDSDIYLKPV *.*.*:********************************	'A 80 'A 80 ∞∗
ScGln1 CgGln1	<u>β5</u> <u>α1</u> <u>β6</u> YYPDPFRRGDNIVVLAACYNNDGTPNKFNHRHEAAKLFAAHKDEEIWFGLEQEYTLFDMYDDVYGWPKGGYPAPQGPYY FYPDPFRRGDNITVLAECFNSDGTPNKFNHRHEANKLFQAHKDEEIWFGIEQEYTLFDMYDNVYAWPKGGYPAPQGPYY :***********************************	℃ 160 ℃ 160 *
ScGln1 CgGln1	α2 β7 β8 α3 β9 GVGAGKVYARDMIEAHYRACLYAGLEISGINAEVMPSQWEFQVGPCTGIDMGDQLWMARYFLHRVAEEFGIKISFHPKF GVGAGKVYARDVIEAHYRACLYAGINISGINAEVMPSQWEFQVGPCEGISMGDQLWMARYFLHRVAEEFGVKISFHPKF ************************************	'L 240 'L 240 ∞*
ScGln1 CgGln1	β10 α4 α5 α6 β11 β12 KGDWNGAGCHTNVSTKEMRQPGGMKYIEQAIEKLSKRHAEHIKLYGSDNDMRLTGRHETASMTAFSSGVANRGSSIRIF KGDWNGAGCHTNVSTKDMRVPGGMKYIEQAIEKLSKRHAEHIKLYGADNEQRLTGRHETASMTSFSSGVANRGSSIRIF ************************************	R 320 R 320 R 320
ScGln1 CgGln1	α7β13α8SVAKEGYGYFEDRRPASNIDPYLVTGIMCETVCGAIDNADMTKEFERESS370PVAKEGFGYFEDRRPASNIDPYLVTGIMCETVCGAIENANMSKEYERETNEQ372.******:******************************	

Figura suplementaria 8.- Alineamiento entre las proteínas ortólogas Gln1 de *S. cerevisiae* y *C. glabrata*.

Las secuencias de las proteínas Gln1 de *S. cerevisiae* (YPR035W) y *C. glabrata* (CAGL0K05357g) fueron alineadas utilizando el programa Needle (EMBOSS) y la identidad en secuencia (gris) fue sombreada utilizando la suite de SMS2 (http://www.bioinformatics.org/sms2) (Rice *et al.*, 2000; Stothard, 2000). Los residuos idénticos, conservados y semiconservados están indicados por un asterisco, dos puntos o un punto, respectivamente. Se muestran las láminas β (β 1 a β 5) que conforman el dominio de tipo β -grasp. También se muestra la región catalítica que consiste de ocho α -helices (α 1 a α 8) y ocho laminas β (β 6 a β 13). Los aminoácidos que se ha propuesto que en *S. cerevisiae* están involucrados en el bloqueo de la entrada del glutamato hacia el sitio activo, están señalados con estrellas.

Figura suplementaria 9.- Diferencias en el crecimiento de distintas especies de levaduras en diversas fuentes de nitrógeno.

Las levaduras *C. glabrata* BG14, *S. cerevisiae* CLA-1, y *L. kluyveri*, fueron crecidas en medio mínimo con las fuentes de nitrógeno indicadas a una concentración de 1 mg/mL. Las abreviaturas de las fuentes de nitrógeno son las siguientes; medio sin fuente de nitrógeno (YNB); Amo, amonio; Gln, glutamina; Pro, prolina; Gly, glicina; Asn, asparagina; Leu, leucina; Val, valina; Ile, isoleucina; Ade, adenina; Lys, lisina; Ura, uracilo.

Este artículo está publicado en la revista Microbiology (ISSN 0022 -1287)

Gln3 is a main regulator of nitrogen assimilation in Candida glabrata

Figura suplementaria 10.- Relación de productos terminados.

glabrata.

Se muestra la captura de pantalla del artículo "Gln3 is a main regulator of nitrogen assimilation in *Candida glabrata*". El artículo puede ser consultado en la siguiente liga: <u>10.1099/mic.0.000312</u>.

similar to what has been described in S. cerevisiae. Our data, places Gln3 as a key regulator of nitrogen assimilation in C.