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In this paper, we present a class of three-dimensional dynamical systems having multiscrolls which
we call unstable dissipative systems �UDSs�. The UDSs are dissipative in one of its components but
unstable in the other two. This class of systems is constructed with a switching law to display
various multiscroll strange attractors. The multiscroll strange attractors result from the combination
of several unstable “one-spiral” trajectories by means of switching. Each of these trajectories lies
around a saddle hyperbolic stationary point. Thus, we describe how a piecewise-linear switching
system yields multiscroll attractors, symmetric or asymmetric, with chaotic behavior.
© 2010 American Institute of Physics. �doi:10.1063/1.3314278�

The construction of dynamical systems showing chaotic
behavior is relevant in diverse scientific disciplines, for
instance, biology and ecology, complex chemical net-
works, circuit and communication systems, etc. An im-
portant issue is to generate chaos via reliable methods
using simple dynamical systems. This issue allows one to
match the mathematical complexity of chaos with re-
quirements in other disciplines and motivates scientific
research in recent years. An interdisciplinary impact is
regarding the motion of trajectories in a set of subdo-
mains each one having its own equilibrium. For example,
let us consider the motion of flocks looking for distinct
feeding sites. Flock trajectories can be described by the
motion from one site to another and each site can be
interpreted as an equilibrium contained in a subdomain
within the migratory region. Chaos can appear by con-
ceiving the flock motion dynamics as a piecewise-linear
(PWL) system whose trajectories are in subdomains be-
longing to the migratory region. Moreover, the environ-
mental conditions can be seen as switching laws defining
the border between subdomains. Here, we show how
PWL systems with switching laws can generate multi-
scroll chaotic attractors. The simplicity of our method
allows to generate symmetric or asymmetric multiscroll
attractors.

I. INTRODUCTION

Over the past two decades, self-sustained chaotic sys-
tems generating multiscroll attractors have attracted the at-
tention of many scientists. The term multiscroll attractors is
used to refer to three or more scrolls in an attractor. A preva-
lent approach has been to modify a system that originally
produces double-scroll attractors such that multiscrolls arise,

like Chua and Lorenz systems, among others.1–3 Usually, a
characteristic of these modified multiscroll systems is that
they have more equilibria than scrolls. Although the reader
can find a summary of different approaches to yield multi-
scroll chaotic attractors in Refs. 4 and 5, we briefly discuss
the relevant contributions on our concern.

Multiscroll attractors can be induced by adding breaking
points. As a matter of fact, Chua’s double scroll is one of the
most extensively studied examples of chaotic behavior. This
system was modified at the nonlinear resistor with additional
breaking points by Suykens and Vandewalle.6,7 The modified
system can be seen as a generalization of the Chua’s
system. In the same spirit, the Brockett’s system was modi-
fied by Aziz-Alaoui.8 Both Suykens–Vandewalle’s and Aziz-
Alaoui’s proposals yield multiscroll attractors. More recently,
multiscroll chaotic attractors with five equilibria exhibited a
pair of double-wing chaotic attractors.9

Moreover, multiscroll attractors might be induced by
switching in piecewise systems. In fact, Lü10–12 presented
chaos generators using a switching PWL controller. Multiple
merged basins of attraction are generated in which an orbit
holds on a single scroll until the control forces it to enter into
a different one. This approach considers just one equilibrium
point at each attractor. In addition, switching in piecewise
systems has shown to yield very interesting chaotic
behaviors13 and multiscroll attractors are also generated by
thresholding.14

The effect of PWL functions on dynamics can yield
mutiscroll attractors. Yalçin and co-workers15 propounded a
linear system with a PWL function in order to generate a
family of scroll grid attractors. This approach allows to yield
scrolls in arbitrary location in R3 by having only one equi-
librium point for each scroll.

In this work, we propound a class of three-dimensional
dynamical systems. This class is called unstable dissipative
systems �UDSs� because it is dissipative in one of its com-

a�Author to whom correspondence should be addressed. Electronic mail:
rfemat@ipicyt.edu.mx.

CHAOS 20, 013116 �2010�

1054-1500/2010/20�1�/013116/6/$30.00 © 2010 American Institute of Physics20, 013116-1

http://dx.doi.org/10.1063/1.3314278
http://dx.doi.org/10.1063/1.3314278


ponents while unstable in the other two. The UDSs are con-
structed with a switching law to obtain various multiscroll
strange attractors. The strange multiscroll attractors appear as
a result of the combination of several unstable “one-spiral”
trajectories. Each of these trajectories lies around a saddle
hyperbolic stationary point. This is shown by numerical re-
sults which describe how the dynamical changes by switch-
ing around the hyperbolic points arise to multiscroll attrac-
tors. Our results contribute to extend �i� how a switching
system shows multiscroll strange attractors and �ii� some of
the routes to multiscroll chaos and bifurcation phenomena.
Thus, the evolution of the dynamics and mechanism for the
development of multiscroll strange attractors are discussed.

The rest of this work is organized as follows. In Sec. II,
the UDS and the switching law are presented to create mul-
tiscroll chaotic attractors. Some numerical examples of mul-
tiscroll attractors using the proposed approach are given in
Sec. III. Conclusions are given in Sec. IV.

II. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

In the same spirit that in Refs. 10, 15, and 16 we con-
sider the class of linear system given by

�̇ = A� + B , �1�

�= �x1 ,x2 ,x3�T�R3 is the state variable, B= �b1 ,b2 ,b3�T

�R3 stands for a real vector, and A�R3�3 denotes a linear
operator given as follows:

A = ��11 �12 �13

�21 �22 �23

�31 �32 �33
� . �2�

We assume the following to generate the multiscroll attrac-
tors. The system �1� is dissipative and unstable. Henceforth,
the matrix A is such that the sum of its eigenvalues is nega-
tive. The equilibrium of system �1�, ��=−A−1B���R3, is a
saddle hyperbolic point. Then, the linear system is character-

ized by the set of eigenvalues � : spec�A� and our assump-
tions are satisfied as one eigenvalue is a negative real num-
ber and two eigenvalues are complex numbers with positive
real part but the overall sum is real negative scalar. The
characteristic polynomial of Eq. �2� is given by

g��� = �3 − ��2 + �� − 	 , �3�

where �=Tr�A�, �=�11�22+�11�33+�22�33−�13�31

−�23�32−�12�21, and 	=det�A�. The classical Descartes’
rule of signs is a useful tool to state how many positive or
negative roots you can expect of polynomial g���. Thus,
since system �1� is assumed dissipative, a direct implication
is that �=Tr�A�=�i=1

3 �i
0. Additionally, the system �1� has
a saddle point at the equilibria as 	=det�A�
0. Moreover,
��0 in Eq. �3� is required to ensure that the real root of g���
is negative. Hence, under the above rationale, there are no
positive real roots because all coefficients in Eq. �3� are posi-
tive. Such implications give us the possibility that one of the
three eigenvalues is a negative real value and the other two
are complex with a real positive part. As a summary, �
0,
	
0, and ��0 imply two possibilities: �a� all roots of g���
are real negative or �b� g��� has one real negative root and
two complex roots with real positive part. Since the first
choice results on a stable equilibrium point, we are interested
is case �b� because the component related with the negative
real eigenvalue is attracting and the two complex eigenval-
ues are responsible for the steady outward slide, as is shown
in Fig. 1. Henceforth, we concentrate our discussion on sys-
tem �1� on case �b�. Next, we describe a switching law to
generate a UDS which displays a very interesting behavior as
multiscroll attractors.

We are interested in a switched system �SW�, constituted
by a set of systems in the form of Eq. �1� governed by a
switching law Si, with i=1, . . . ,n and n�2. Each system
Si has a domain Di�R3, containing the equilibrium
�i

�=−Ai
−1Bi, such that �i=1

n Di=� and �i=1
n Di=��R3. Then,

the switching law governs the SW dynamics by changing the
equilibria from �i

� to � j
�, i� j, when the flow 
t :Di→R3

crosses from the ith to the jth domain. The simplest way is
that one of the components xj defines parallel planes through
the one coordinate of the triple �x1 ,x2 ,x3��R3 and the vec-
tor Bi changes as the flow 
t reaches the border �see Fig. 2�.
As we shall see below, this very simple configuration allows
for the generation of multiscroll attractors.

FIG. 1. Saddle hyperbolic stationary point.
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FIG. 2. Generation of multiscroll chaotic attractors under domains Di. Note
that flow is governed by the corresponding pair Ai ,Bi.
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III. MULTISCROLL CHAOTIC ATTRACTORS

Once we have stated the problem, seeking clarity, next
our results are shown via study cases. Study case �i� shows
how the multiscroll attractors are derived as the matrix A is
the same at all domains Di; that is only the vector Bi

changes. Study case �ii� considers that both Ai and Bi change
as the flow 
t goes into the corresponding domain Di. Fi-
nally, study case �iii� shows how asymmetric multiscroll cha-
otic attractors are yielded.

Study case (i): In order to have a SW, we should define
at least two systems in the form �1�. In what follows, without
losing generality, we start by illustrating multiscroll attractor
generation using the simplest case, i.e., two systems. After
that, we add one more system to show how the number of
scrolls increases proportionally to the number of systems in
SW. For two systems, a switching law is given in terms of
only one state, which defines the hyperplanes as in Fig. 2. A
convenient approach to build the matrices A and B is based
on the linear ordinary differential equation �ODE� written in
the jerky form x�+�33ẍ+�32ẋ+�31x+�=0, where
�33,�32,�31, ��R.11,12,16 Note that coefficients of jerky
equation can be arbitrary real scalars. Thus, the dynamics of
a system in the SW can be represented in state space as Eq.
�1�, where the matrix A is found to be

A = � 0 1 0

0 0 1

− �31 − �32 − �33
� �4�

and B= �b1 ,b2 ,b3�T= �0,0 ,−��T. Details on the analysis of
this jerky equation have been reported in Ref. 11, whereas
numerical studies have been provided in Refs. 12 and 16.
Now, we are interested in coefficients for the jerky equation
satisfying the conditions �=Tr�A�=�i=1

3 �i
0, �=�23�32

�0, and 	=det�A�
0, such that g��� has one real negative
root and two complex roots with real positive part. Notice
that �� belongs to a one-dimensional �1D� submanifold im-
plying that only 1D n-scrolls can be generated. Therefore, we
can choose the entries of matrix A to be �31=1.5, �32=�33

=1.0, and �=−1.0 to generate a double scroll with the
switching law defined as follows:

SW = �B = �0,0,− ��T, if x1 � 0.35

B = �0,0,0�T, otherwise.
	 �5�

Also note that the matrix �2� is not restricted to the form
derived from jerky equation. This provides richer possibili-
ties on the scroll generation. Next, in order to show that
entries of matrix A can be chosen arbitrarily, but satisfying
conditions discussed in Sec. II, we consider the matrix A as

A = � 0 1 0

− 1 �22 1

�31 �32 �33
� , �6�

where we might choose �22=−0.2465, �31=−6.8438,
�32=−2.006, �33=−1.1102, and b1=b2=0. Then we have

	1=−7.9540, �1=−1.3567, and �1=3.2797. Moreover, let
us assume that for the first system S1, the vector
B1= �0,0 ,b3�T with b3=5.5355. Thus, the equilibrium of the
system S1 is �1

�= �0.6042,0 ,0.6042�. For the second system
S2, B2= �0,0 ,0�T, which means that the system S2 has equi-
librium �2

� at the origin �0,0 ,0�. The switching law is de-
fined as follows:

SW2 = �B1, if x1 � 0.3021

B2, otherwise.
	 �7�

Figure 3�a� shows the numerical results of the chaotic
double-scroll attractor generated by the system SW under
Eqs. �6� and �7�. Figure 3�b� depicts the projection of the
attractor on the plane �x1 ,x2�. A mathematical analysis for
the SW system can be done as in Ref. 11. Now, if we add a
third system S3 into SW, it is possible to generate an attractor
with triple scroll. For the third system, we have chosen the
follow vector B3= �0,0 ,−5.5355�T. Notice that B3=−B1,
which implies �1

�=−�3
�. This issue is intentionally defined to

illustrate the symmetry in scrolls. Now the switching law is
as follows:

SW3 = 
B1, if x1 � 0.3021

B2, if − 0.3021 
 x1 
 0.3021

B3, if x1 � − 0.3021.
� �8�

Figure 4�a� shows the chaotic multiscroll attractor generated
by the system SW under Eqs. �6�–�8�. Figure 4�b� shows the
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FIG. 3. �Color online� �a� The double-scroll chaotic attractor generated by
Eq. �7� is shown. �b� The projection on the plane �x1 ,x2�.
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projection of the attractor on the plane �x1 ,x2�. So, it is pos-
sible to yield several as attractors as required by adding sys-
tems in form �1� into SW. For example, the asymmetric
quintuple-scroll chaotic attractor might be given by the
next vectors: for the systems S1, B1= �0011.1699�T

with equilibrium located at �1
�= �1.4043,0 ,1.4043�; for S2,

B2= �006.1455�T with �2
�= �0.7726,0 ,0.7726�; for S3,

B3= �000�T with �3
�= �0,0 ,0�; for S4, B4= �00−6.1455�T

with �4
�= �−0.7726,0 ,−0.7726�; finally, for S5, B5= �−1.5

−0.3698−9.1545�T with �5
�= �−1.6325,1.5,−0.8929�. The

switching rule for these five systems is

SW5 =

B1, if x1 � �2

B2, if �1 
 x1 
 �2

B3, if − �1 � x1 � �1

B4, if x1 
 − �1 and x2 
 �2

B5, if x1 
 − �1 and x2 � �2,
� �9�

where �1=0.3863 and �2=1.0884. Figure 5�a� shows the
asymmetric quintuple-scroll chaotic attractor given by Eq.
�9�. The projection of the multiscroll chaotic attractor on the
plane �x1 ,x2� is shown in Fig. 5�b�.

Study case (ii): The following paragraphs are devoted to
show the effect of changes on the entries of matrix A into the
dynamics of SW system in form �1�. Although the case con-
sidering a switching law as Eq. �7� is interesting to chaos
generation, the effect of differences in matrix A with only
two domains is not relevant due to its similarity discussed

above. Then, we focus on the case with at least three do-
mains. We proceed maintaining the same values of entries
for B �as in the case �i�� and changing the entries for A. For
example, let us consider the system SW as follows. The first
system S1 has matrices defined by

A1 = � 0 1 0

− 1 − 0.2465 1

− 8.0521 − 2.006 − 1.1102
�,

�10�

B1 = � 0

0

5.5355
� ,

from where 	1=−9.1623, �1=−1.3567, and �1=3.2797 with
its equilibrium at �1

�= �0.6042,0 ,0.6042�; the second system
S2 becomes

A2 = � 0 1 0

− 1 − 0.2465 1

− 6.8438 − 2.006 − 1.1102
�, B2 = �0

0

0
� ,

�11�

resulting in 	2=−7.9540, �2=−1.3567, �2=3.2797, and the
equilibrium �2

�= �0,0 ,0�; finally, a third system S3 is consid-
ered to generate symmetric or asymmetric attractors depend-
ing on the position of the equilibrium point. The third system
S3 for the symmetric case is the following:
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FIG. 4. �Color online� �a� The multiscroll chaotic attractor generated by Eq.
�8� is shown. �b� The projection on the plane �x1 ,x2�.
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FIG. 5. �Color online� �a� The chaotic attractor generated by Eq. �9� is
shown. �b� The projection on the plane �x1 ,x2�
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A3 = � 0 1 0

− 1 − 0.2465 1

− 8.0521 − 2.006 − 1.1102
�,

�12�

B3 = � 0

0

− 5.5355
� .

Notice that �1
�=−�3

�. Now, the switching law for the symmet-
ric multiscroll attractor is defined as follows:

SW3 = 
S1, if x1 � 1/3
S2, if − 1/3 
 x1 
 1/3
S3, if x1 � − 1/3.

� �13�

In Fig. 6 is shown the projection on the plane �x1 ,x2� of the
chaotic attractor generated by Eqs. �10�–�13�. Next, for the
asymmetric case, we locate �1

��−�3
� under the same switch-

ing law �13�. The projection on the plane �x1 ,x2� of the mul-
tiscroll chaotic attractor is shown in Fig. 7.

Study case (iii): Actually, it is possible to yield as many
multiscroll chaotic attractors as we wish to, for instance, the
asymmetric quintuple-scroll chaotic attractor given by the
next systems. For first system S1, its matrix A is redefined to
be

A1 = � 0 1 0

− 1 − 0.2465 1

− 8.9394 − 2.006 − 1.1102
�,

�14�

B1 = � 0

0

11.1699
� ,

where 	1=−10.0496, �1=−1.3567, �1=3.2797, and its
equilibrium �1

�= �1.1115,0 ,1.1115�; for the second system S2

we consider A1=A2 and B2= �006.1455�T, which means
�2

�= �0.6115,0 ,0.6115�. The third system S3 is taken as

A3 = � 0 1 0

− 1 − 0.2465 1

− 8.7429 − 2.006 − 1.1102
�, B3 = �0

0

0
� ,

�15�

where 	3=−9.8531, �3=−1.3567, �3=3.2797, and its equilib-
rium is at �3

�= �0,0 ,0�. The fourth system S4 becomes such
that A4=A1 and B4= �0,0 ,−61455�T, which means that
equilibrium is at �4

�= �−0.6115,0 ,−0.6115�. The matrices for
the last system S5 are given by A5=A1 and B5= �−1.5,
−0.3698,−9.1545�T, which locate the equilibrium at
�5

�= �−1.2921,1.5,−0.5525�. The switching law for this
quintuple-scroll chaotic system is chosen as

SW5 =

S1, if x1 � �2

S2, if �1 
 x1 
 �2

S3, if − �1 � x1 � �1

S4, if x1 
 − �1 and x2 
 �2

S5, if x1 
 − �1 and x2 � �2,
� �16�

where �1=1 /3 and �2=4 /5. The projection of the quintuple-
scroll chaotic attractor on the plane �x1 ,x2� for the asymmet-
ric case is shown in Fig. 8�a�.

Note that if the position of �5
� is moved on its first com-

ponent �5
��1� near the first component of fourth equilibrium

�4
� �i.e., �5

��1�→�4
��1��, the quintuple scroll disappears �see

Fig. 8�b��. This fact can be explained in terms of the close-
ness of equilibrium �5

� to the border of D4 and its ration with
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FIG. 6. �Color online� Symmetric case: this figure shows the projection on
the plane �x1 ,x2� of the chaotic attractor generated by Eq. �13�, i.e.,
�1

�=−�3
�.
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FIG. 7. �Color online� Asymmetric case: this figure shows the projection
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oscillation rate induced by matrix A5. That is, the position of
the equilibrium point �5

� of S5 is close to the border defining
switching �5

�= �−0.6116,1.5,−0.6115�. In order to depict
this, Fig. 8�b� includes the projections of the hyperplanes
delimiting the border of each domain Di. This last discussion
shows that a necessary condition to generate each scroll from
SW in form �2� is that the equilibrium point presents a one
negative real eigenvalue and two complex eigenvalues with
positive real part. However, intuitively, such a condition is
necessary but not sufficient, because it is required to have a
sufficiently large region where the scroll can occur.

IV. CONCLUSIONS

This work presents a study of very simple switched sys-
tems yielding multiscroll chaotic attractors. The degrees of
freedom to yield the multiscrolls are two: �i� entries of affine
matrices A and B and �ii� the borders of each domain defin-
ing hyperplanes, where each switching law is established. In
other words, by defining UDS within different domains and
each domain containing one equilibrium point. The paper
contributes at the issue of constructing switching systems
SW with chaotic behavior. Our contribution has a potential
application at interdisciplinary science as, for example, the
trajectories of flocks looking for feeding or resting places are
interpreted as PWL systems and the hyperplanes are given by
borders of distinct environmental conditions at the migration
region.

A natural progression is to address the following issue:
�a� the equilibrium �i

��Rn defined by a pair �Ai ,Bi� lies
outside the borders of domain Di or �b� a pair �Ai ,Bi� induces
multiple equilibria at domain Di. This makes sense, for in-
stance, if matrix A�Rm�n, n�m. Additionally, �c� the cou-
pling between switched systems opens the possibility to

study what kind of synchronization occurs, e.g., multimodal
synchronization,17 asymmetric synchronization, forced
synchronization,18 or any other.19
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