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We present the design of an autonomous time-delay Boolean network realized with readily

available electronic components. Through simulations and experiments that account for the detailed

nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes

displays complex behavior. Furthermore, we show that the dynamics of two identical networks

display near-instantaneous synchronization to a periodic state when forced by a common periodic

Boolean signal. A theoretical analysis of the network reveals the conditions under which complex

behavior is expected in an individual network and the occurrence of synchronization in the forced

networks. This research will enable future experiments on autonomous time-delay networks using

readily available electronic components with dynamics on a slow enough time-scale so that

inexpensive data collection systems can faithfully record the dynamics. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928739]

In real-world, there exist many situations in which simple

objects are interconnected in a network, such as power

grids, ecosystems, communication systems, human rela-

tionships, economic trading, and biological neural net-

works. In the network approach for analyzing these

systems, the individual simple systems are represented as

nodes and their interactions are represented as links.

Mathematically, a network is represented as a collection

of points and ordered pairs describing their connections,

this mathematical object is called a graph. However, it is

often difficult to find a graph that represents a complex

real-world system, especially when signals travelling

along the links experience a delay time that is long in

comparison to the response time of the nodes. To simplify

the problem for the case when the nodes display a

switching-like behavior, a Boolean approximation for the

nodes is appropriate and allows for progress on a theoret-

ical analysis of the dynamics. Boolean networks are a

particularly simple form of a complex system and have

been found to be useful in the research of a wide range of

systems, including gene regulatory systems, circuit

theory, and computer science. A particularly interesting

behavior is when networks synchronize their behavior.

Here, we present the design of a Boolean network that

displays complex behavior and shows that the networks

can synchronize their behavior when they are forced by a

common periodic Boolean signal. This research lays the

foundation for future experimental research on time-

delay Boolean networks that will help to guide theoretical

research on these systems difficult to analyze.

I. INTRODUCTION

Boolean networks were first proposed by Kauffman in

1969 as a mathematical framework for studying gene regula-

tory networks.1 Boolean networks have received a great deal

of attention across many disciplines because they are an

approximate model of any network system where the net-

work nodes display switch-like behavior. Examples include

electronic logic circuits or gene regulatory networks, and it

is often useful to assume that for these systems, the state var-

iables take only two values (e.g., “high” and “low”), updated

according to specified Boolean functions.2–6

There are three ways in which the state variables can be

updated in Boolean networks: synchronously, asynchro-

nously, or autonomously. Synchronous update rules assume

that an external process, such as a clock, synchronizes all the

updates or a device that selects a particular order of individ-

ual gate updates.7 Because there are only a finite number of

total states, the network must eventually visit a state that it

has been before, and because the update rules are determinis-

tic, the network settles into a periodic attractor or fixed point.

For asynchronous updating rules, the Boolean states of the

nodes are updated according to their logic functions simulta-

neously successively with randomly chosen updating order.

In autonomous updating, the future behavior is determined

by the history of the past network switching events, and the

time-delays along the network links must be taken into

account. In other words, a node in an autonomous Boolean

network (ABN) updates its Boolean state whenever Boolean

transitions are present at its inputs. The mathematics describ-

ing autonomous time-delay Boolean networks is much less

developed, although it is known that they can display aperi-

odic patterns if the logic elements have instantaneous

response times, the link time delays are incommensurate,
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and the nodes predominantly perform the exclusive-OR

(XOR) Boolean operation.8–10 The importance of studying

ABNs lies on the fact that several processes in nature, for

example, genetic and metabolic regulation networks, update

their states in continuously way, thus, ABNs can approach in

a realistic way the qualitative behavior of this real-world

network. Another important point of ABNs is their possible

usefulness to generate true random signals applicable to

radars or cryptographic systems. A practical example of an

ABN consists on modelling neurological networks in which

it is possible to see recurring topological structures of

node assembled in loops with directed links as occurs with

C. elegans. At nodes that have multiple inputs, signals are

combined and the propagation times from their output to

their input via the different loops are given by the loop sizes

and are affected by heterogeneity in link time delays.11

Recently, Zhang et al.12 studied experimentally the

dynamics of a three-node autonomous network where the

nodes consisted of commercially-available discrete high-

speed electronic logic gates. The network links were imple-

mented by cascading an even number of inverted gates,

which effectively delayed the signal. For most situations,

this network displayed so-called Boolean chaos even though

the nodes did not have an instantaneous response time

assumed in the earlier theoretical studies described above.13

More recent work has demonstrated that large-scale autono-

mous time-delay Boolean networks can be realized experi-

mentally using field programmable gate arrays.14

In nature, synchronization phenomena occur when two or

more systems are coupled or are driven by a common signal.

For the case of coupled systems, synchronization can be

observed for either unidirectional coupling in a master-slave

configuration or bidirectional coupling where signals are

shared between both systems. Synchronization phenomena in

coupled systems have been extensively studied during the last

decades and several concepts describing synchronized dynam-

ics have been introduced in Refs. 15 and 16. Observed behav-

iors include frequency entrainment,17 phase synchronization,14

lag synchronization,18 multimodal synchronization,19 complete

(or full) synchronization,7 and generalized synchronization.20

Different cases of forced synchronization have been

presented, such as antisymmetric, lag, phase, and identical

synchronization. In Ref. 21, forced synchronization phenom-

enon was explored using two identical slave systems forced

harmonically, thus different modes of synchronized behav-

iors were found due to the high sensibility to changes in the

parameters values of the external driving, for example, iden-

tical, lag, and antisymmetric forced synchronization appear

when the two systems oscillate into a limit cycle and phase

locking forced synchronization when one of the attractors is

a torus and the other one is a limit cycle.

The purpose of this article is to introduce the design of

an ABN that can be realized with readily-available, low-

speed, and inexpensive electronic components. The network

consists of five nodes realized using a novel reconfigurable

logic gate (numerical simulation) and commercially-

available discrete electronic logic gates (experimentally). In

numerical simulation, the time-delay network links are real-

ized by a low-pass resistor-capacitor (RC) circuit, which

allows for delays even with slower-speed signals, although it

causes some signal degradation. Experimentally, the network

links are implemented by cascading an even number of

inverted gates, which effectively delayed the signal. We

study forced synchronization in two identical ABNs by driv-

ing two nodes in each network with a periodic Boolean

signal. The dynamics of an individual ABN and the two

forced networks are studied through numerical simulations

using SPICE (Simulation Program with Integrated Circuit

Emphasis) environment and experimentally using commer-

cial electronic logic gates. We focused this work in forced

synchronization scheme because it has application in chaotic

communication systems, where there are at least two forced

systems involved: (a) the transmitter, which has the informa-

tion signal as its external driving and (b) the receiver, which

is forced by the incoming carrier (delivered by the transmit-

ter). In this kind of communication systems, the goal is

achieved when the transmitter forces the receiver to syn-

chronize. As a result, the receiver may be seen as a filter

because its response depends on the transmitter output,

losing its autonomy. On the other hand, the transmitter is

forced by the information signal, but it must preserve

its autonomy and its chaotic behavior thus it cannot behave

as a filter.

Our work has important implications for research on

ABNs. From a fundamental perspective, we elucidate the

conditions under which an external drive signal can force the

synchronization of ABNs. From a practical perspective, our

ABN design can be realized in experiments using inexpen-

sive and readily available commercial components and the

time scale of the dynamics is slow enough that inexpensive

waveform capture hardware can be used. Furthermore, all

locations within the circuit can be probed so that it is possi-

ble to fully characterize the non-ideal behavior of the circuit,

which may be important for observing Boolean chaos,13 and

which is not possible when using field programmable gate

arrays.14

The remainder of this article is as follows. In Sec. II,

some concepts about Boolean networks and forced synchroni-

zation are given. In Sec. III, the design of the five-node ABN

is presented. Section IV describes our results on the complex

behavior observed in the ABN as well as the prediction of

forced synchronization. Section V contains the experimental

results. We discuss our results and conclude in Sec. VI.

II. PRELIMINARIES

A Boolean network consists of a number of nodes con-

nected to other ones through directed or undirected links.

Each node is associated with a binary state variable and its

value is determined by a Boolean logic function that evalu-

ates input arguments of such node. Based on this, a Boolean

network is defined in a general form as a triplet

BN ¼ ðG ¼ ðV;EÞ; B ¼ f0; 1g; F ¼ ff1;…; fngÞ; (1)

where G is a directed or undirected graph comprised by the

set of vertices V and the set of edges E, B is the set of logic

states that can be associated with each vertex, and F is the
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set of local activation functions also known as truth tables. It

is worth mentioning that the set of Boolean variables of the

BN is given by its vertices V ¼ fx1; x2;…; xng. Thus, the

phase space is given by Bn.

In many cases of interest, signals propagate along the net-

work links at slow enough speed so that the time delay along

the link is comparable to or larger than the characteristic

response time of the node. In this case, the time delay must be

accounted for in the model and can be introduced by prescrib-

ing a set of delays fsijg; i; j ¼ 1;…; n, such that sij � 0,

where sij is the time it takes for xj to have an effect on xi, i.e.,

the time that takes a signal to propagate to node i from node j.
Notice that it is not necessary to have sij ¼ sji. Thus, the feed-

backs among the Boolean variables are described by the set of

local activation functions fi : Bn ! B; i ¼ 1;…; n, as

follows:

x1ðtÞ ¼ f1ðx1ðt� s11Þ; x2ðt� s12Þ;…; xnðt� s1nÞÞ;

x2ðtÞ ¼ f2ðx1ðt� s21Þ; x2ðt� s22Þ;…; xnðt� s2nÞÞ;

..

.

xnðtÞ ¼ fnðx1ðt� sn1Þ; x2ðt� sn2Þ;…; xnðt� snnÞÞ:

(2)

The set of Boolean difference equations given by Eq. (2)

determines the dynamics of the BN considering time delays,

thereby defining an ABN. The dynamics of the ABN speci-

fied by Eq. (2) can be numerically solved8–10 once the

Boolean functions of the nodes are defined and the initial

condition functions on an interval

xiðtÞ ¼ xi0ðtÞ for t0 � s � t � t0; i ¼ 1;…; n (3)

are defined, where s ¼ maxfsijg is the length of the memory

of the system.

Equation (2) is still a highly idealized description of the

electronic circuit design presented below. It does not account

for the fact that the rise and fall times of the Boolean signals

propagating along the links are increased by the filtering

effect of the RC-circuit, the finite response time of the logic

elements, or electronic noise in the system.13,14 Nevertheless,

it provides a good starting point for understanding real-world

ABNs.

The general idea of forced synchronization is accom-

plished by considering slave systems which are forced by an

external signal as it is shown in Figure 1. Under this scheme,

m autonomous Boolean networks driven by an external

signal Se can be given as follows:

xð1ÞðtÞ ¼ Fðxð1Þ1 ðtÞ; x
ð1Þ
2 ðtÞ;…; xð1Þn ðtÞ; SeÞ;

xð2ÞðtÞ ¼ Fðxð2Þ1 ðtÞ; x
ð2Þ
2 ðtÞ;…; xð2Þn ðtÞ; SeÞ;

..

.

xðmÞðtÞ ¼ FðxðmÞ1 ðtÞ; x
ðmÞ
2 ðtÞ;…; xðmÞn ðtÞ; SeÞ;

(4)

where xðiÞðtÞ 2 Bn, for i ¼ 1;…;m. The forced synchroniza-

tion phenomenon occurs when m autonomous Boolean

networks given by (4) show correlated behavior because of

an external signal Se.

Definition II.1. Autonomous Boolean networks xðiÞðtÞ
and xðjÞðtÞ; i; j ¼ 1; 2;…;m, achieve complete forced syn-

chronization, if for any xðiÞð0Þ; xðjÞð0Þ 2 Bn, there is a time

tk � 0, such that xðiÞðtÞ ¼ xðjÞðtÞ, for t � tk.

III. AUTONOMOUS BOOLEAN NETWORKS

In the spirit of Ref. 12, we propose a topology of a

Boolean network that consists of five nodes as is shown in

Fig. 2. Each node has two inputs and one output that propa-

gates to two different nodes. Thus, this particular Boolean

network is described approximately by the set of local acti-

vation functions fi : B5 ! B; i ¼ 1;…; 5, as follows:

x1ðtÞ ¼ f1ðxuðt� siuÞ; xvðt� sjvÞÞ;
x2ðtÞ ¼ f2ðxuðt� siuÞ; xvðt� sjvÞÞ;

..

.

x5ðtÞ ¼ f5ðxuðt� siuÞ; xvðt� sjvÞÞ;

(5)

where i; j; u; v ¼ 1;…; 5 and xi0ðtÞ ¼ 0 for all the length of the

memory of the system. Nodes 1 and 2 execute the XOR logic

operation, node 3 executes the XNOR logic operation, while

nodes 4 and 5 execute the OR logic operation. For this first

approach, notice that a logic zero is introduced to each OR gate.

The Boolean delay equations that describe this Boolean

network are

x1ðtÞ ¼ x4ðt� s14Þ� x5ðt� s15Þ; (6)

x2ðtÞ ¼ x1ðt� s21Þ� x4ðt� s24Þ; (7)

x3ðtÞ ¼ x1ðt� s31Þ� x5ðt� s35Þ� 1; (8)

x4ðtÞ ¼ x2ðt� s42Þ þ 0; (9)

x5ðtÞ ¼ x3ðt� s53Þ þ 0: (10)

FIG. 1. Topology of m ABNs for the forced synchronization scheme.
FIG. 2. Proposed design of the five-node Boolean network that displays

complex dynamics.
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Theorem III.1 For an autonomous Boolean network
given by the set of equations (6)–(10), the orbits are always
oscillating.

Proof. To prove that this autonomous Boolean network

always generates oscillations in an infinite-dimensional

phase space, we must show that the Boolean network does

not have a fixed point to which the orbit can converge. If a

network with finite states has a fixed point then some of the

orbits are not always oscillating due to some orbits would be

eventually fixed. By contradiction, we demonstrate this state-

ment for autonomous Boolean network. We assume that

there exists a ðx�1; x�2;…; x�5Þ, fixed point of the system, such

that

x�1ðtÞ ¼ x1ðt� sÞ

x�2ðtÞ ¼ x2ðt� sÞ

x�3ðtÞ ¼ x3ðt� sÞ

x�4ðtÞ ¼ x4ðt� sÞ

x�5ðtÞ ¼ x5ðt� sÞ

for t� s ¼ maxfs14; s15; s21; s24; s31; s35; s42; s53g.
Thus, Eqs. (6)–(10) can be rewritten as

x1ðtÞ ¼ x4ðtÞ� x5ðtÞ; (11)

x2ðtÞ ¼ x1ðtÞ� x4ðtÞ; (12)

x3ðtÞ ¼ x1ðtÞ� x5ðtÞ� 1; (13)

x4ðtÞ ¼ x2ðtÞ; (14)

x5ðtÞ ¼ x3ðtÞ: (15)

Equation (14) implies that x4ðtÞ has the same logic value

than x2ðtÞ, and Eq. (15) implies that x5ðtÞ has the same logic

value than x3ðtÞ. Using this result, we can rewrite Eqs.

(11)–(13) as

x1ðtÞ ¼ x2ðtÞ� x3ðtÞ; (16)

x2ðtÞ ¼ x1ðtÞ� x2ðtÞ; (17)

x3ðtÞ ¼ x1ðtÞ� x3ðtÞ� 1: (18)

If we insert Eq. (16) into (17) and (18), we obtain

x2ðtÞ ¼ x2ðtÞ� x3ðtÞ� x2ðtÞ; (19)

x3ðtÞ ¼ x2ðtÞ� x3ðtÞ� x3ðtÞ� 1: (20)

Equation (19) implies x2ðtÞ ¼ x3ðtÞ, but Eq. (20) implies

x3ðtÞ ¼ x2ðtÞ. Therefore, we have a contradiction, which

leads us to conclude that the Boolean network has no fixed

point and it will oscillate permanently. �

Corollary III. 2. A Boolean network without fixed points

presents always periodic behavior if its delays are

commensurate.

To verify these predictions, we design an electronic

circuit through numerical simulation using SPICE with the

topology shown in Fig. 2. Each node of the Boolean network

is a reconfigurable logic cell discussed in Ref. 26. The time-

delay links are realized using a RC-circuit in low-pass filter

configuration. With this circuit, we can generate continu-

ously adjustable time delay set by the values of R and C,

although signal distortions become more pronounced for

larger delays. For a logic threshold equal to half of the differ-

ence between the “high” and “low” voltages, the time delay

is given by s ¼ ðln2ÞRC. The values of R and C used in to

generate the different delays our simulations are shown in

Table I. Last row indicates values of sij. The delays

s42 and s53 are considered as an intrinsic delay due to the

gate response �60 ns.

In order to build the ABN previously described, we con-

sider a reconfigurable structure for each node and we refer to

it as an autonomous dynamical Boolean network. Thus, the

Boolean network illustrated in Fig. 2 can be realized using

several programmable logic cells. Figure 3 shows the tempo-

ral evolution of the voltages of the ABN, which displays a

complex, non-repeating behavior, likely a manifestation of

Boolean chaos.12 As nodes 4 and 5 execute the OR logic

operation and one of its inputs is a zero logic state, then these

nodes behave as time-delay buffers, i.e., outputs of the nodes

4 and 5 are the same to that of the outputs of nodes 2 and 3,

respectively, but delayed a certain time for the network

shown in Fig. 2.

IV. FORCED SYNCHRONIZATION OF BOOLEAN
NETWORKS

Forced synchronization is accomplished by considering

two slave systems given by Eqs. (6)–(10) with the addition

of an external Boolean driving signal. Under this scheme,

forced synchronization phenomenon occurs when oscilla-

tions of these two slave systems xð1ÞðtÞ and xð2ÞðtÞ show

correlated behavior because of the external signal Se.

Complete forced synchronization can be detected by deter-

mining when the asymptotic behavior of slave systems is

given by

lim
t!1
jxð1ÞðtÞ� xð2ÞðtÞj ¼ 0: (21)

Thus, complete forced synchronization occurs when

orbits xð1ÞðtÞ and xð2ÞðtÞ satisfy Eq. (21) with

xð1Þð0Þ 6¼ xð2Þð0Þ, i.e., after a transient time, the trajectories

of the two orbits are identical and independent of the initial

conditions. Note that complete forced synchronization is just

a type of synchronization but there exist others, such as

phase or generalized synchronization.22,23

We investigate the dynamics of the forced synchroniza-

tion scheme shown in Fig. 1 with two ABNs using our

SPICE-based simulation software. We coupled two slave

Boolean networks by forcing nodes 4 and 5 of each network

TABLE I. Parameter values to generate the different link delays sij.

s14 s15 s21 s24 s31 s35

R 145 X 3.1 kX 1.1 kX 1.3 kX 2.3 kX 7.7 kX
C 22 pF 22 pF 22 pF 22 pF 22 pF 22 pF

s 2.21 ns 47.27 ns 7.28 ns 19.82 ns 35.07 ns 117.41 ns
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with an external Boolean signal with a frequency of 700 kHz,

as shown in Fig. 4.

The forced autonomous Boolean networks are described

as follows:

xi
1ðtÞ ¼ xi

4ðt� s14Þ� xi
5ðt� s15Þ; (22)

xi
2ðtÞ ¼ xi

1ðt� s21Þ� xi
4ðt� s24Þ; (23)

xi
3ðtÞ ¼ xi

1ðt� s31Þ� xi
5ðt� s35Þ� 1; (24)

xi
4ðtÞ ¼ xi

2ðt� s42Þ þ Se; (25)

xi
5ðtÞ ¼ xi

3ðt� s53Þ þ Se; (26)

where i¼ 1, 2.

Theorem IV.1 For a forced autonomous Boolean net-
work given by the set of equations (22)–(26), the external
signal determines the periods of time in which orbits are
oscillating or converging to a fixed point.

Proof. The external signal is oscillating between zero

and one logic, then it has two different effects over the

Boolean network. When the external signal is zero logic,

then it leaves nodes 4 and 5 to behave as it was explained in

Theorem III.1. Thus, the orbits are always oscillating.

However, when the external signal is one logic, we need to

prove that the Boolean network has a fixed point. So we start

by describing the system as follows:

x1ðtÞ ¼ x4ðt� s14Þ� x5ðt� s15Þ; (27)

x2ðtÞ ¼ x1ðt� s21Þ� x4ðt� s24Þ; (28)

x3ðtÞ ¼ x1ðt� s31Þ� x5ðt� s35Þ� 1; (29)

x4ðtÞ ¼ x2ðt� s42Þ þ 1; (30)

x5ðtÞ ¼ x3ðt� s53Þ þ 1: (31)

Again, we assume that ðx�1; x�2;…; x�5Þ is a fixed point of the

system, such that

x�1ðtÞ ¼ x1ðt� sÞ

x�2ðtÞ ¼ x2ðt� sÞ

x�3ðtÞ ¼ x3ðt� sÞ

x�4ðtÞ ¼ x4ðt� sÞ

x�5ðtÞ ¼ x5ðt� sÞ

for t > s ¼ maxfs14; s15; s21; s24; s31; s35; s42; s53g.
Thus, Eqs. (27)–(31) can be rewritten as follows:

x1ðtÞ ¼ x4ðtÞ� x5ðtÞ; (32)

x2ðtÞ ¼ x1ðtÞ� x4ðtÞ; (33)

x3ðtÞ ¼ x1ðtÞ� x5ðtÞ� 1; (34)

x4ðtÞ ¼ 1; (35)

x5ðtÞ ¼ 1: (36)

Equations (35) and (36) imply that x4ðtÞ ¼ 1; x5ðtÞ ¼ 1,

so equations (32)–(36) can be rewritten as follows:

x1ðtÞ ¼ 1 � 1; (37)

x2ðtÞ ¼ 1 � 1 � 1; (38)

x3ðtÞ ¼ 1 � 1 � 1 � 1: (39)

Therefore, when the external signal is one, there exists

an unique fixed point in x1ðtÞ ¼ 0; x2ðtÞ ¼ 1; x3ðtÞ ¼ 0;
x4ðtÞ ¼ 1; x5ðtÞ ¼ 1. �

Corollary IV.2. Two forced Boolean networks given by

the set of equations (22)–(26) present complete forced

FIG. 3. Temporal evolution in the simulated ABN measured at the output of

three nodes. (a) Node 1 temporal evolution. (b) Node 2 temporal evolution.

(c) Node 3 temporal evolution.

FIG. 4. Two Boolean networks driven by an external signal.
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synchronization when they are forced by a Boolean external

signal.

When the external signal is logic one (5 V), it forces

nodes 4 and 5 to update their outputs to one logic. Each time

the external signal changes to one, the logic states of the rest

of nodes of both Boolean networks try to get closer until the

time when synchronization occurs and all states of both

Boolean networks are equal.

Figure 5 shows numerical simulations of the temporal

evolution of the voltages of the two Boolean networks meas-

ured at the output of three of the nodes. It is seen that the

complex behavior displayed by each node gives way to

nearly identical periodic behavior in both ABNs essentially

immediately after the forcing signal is applied. Furthermore,

note that the duty cycle of the waveform measured at each

node can be different from the duty cycle of the applied forc-

ing function (50%), demonstrating that the response of each

node of the ABN is not just equal to the drive signal for all

initial conditions.

To detect forced synchronization of the two slave

ABNs, we use auxiliary XOR gates with inputs given by the

same node of each network. When complete synchronization

is achieved, the XOR output is logic low (0 V). Figure 6

shows the simulated temporal evolution of the outputs of the

auxiliary XOR Boolean gates, where we can corroborate

complete synchronization after a transient time. Note that

there exist two brief desynchronization events (short spikes)

due to the external signal forces directly nodes 4 and 5 to

take a high level state, and forces indirectly the rest of nodes

of both networks to get nearly a common state. After a tran-

sient time, synchronization occurs and all states of both

Boolean networks are equal.

V. EXPERIMENTAL RESULTS

The Boolean network illustrated in Fig. 2 can be experi-

mentally realized using commercial electronic logic gates, in

FIG. 5. Temporal evolution of the voltages of the two driven ABNs realized

numerically. (a) Outputs of nodes 1. (b) Outputs of nodes 2. (c) Outputs of

nodes 3. In three cases, upper signal corresponds to Boolean network 1,

while lower signal corresponds to Boolean network 2 and this signal has an

offset of �6 V. (d) External signal.

FIG. 6. Temporal evolution of the errors between corresponding nodes in

the two forced ABNs realized numerically. (a) Error between nodes 1. (b)

Error between nodes 2. (c) Error between nodes 3. (d) External signal used

to force both ABNs.
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our case we used logic gates from the family HD74LSXX.

The time delays come about from a combination of an even

number of NOT gates or Schmitt triggers wired in series,

which acts effectively as a time-delay buffer. Figure 7 shows

the temporal evolution of the voltages of the experimental

ABN.

The values of sij are given in the last two lines of Table II,

the labels s1 and s2 correspond to the first and second response

ABNs, respectively.

Chaos is characterized by the exponential divergence of

trajectories with nearby initial conditions which is indicated

by a positive Lyapunov exponent. There are several

approaches to estimate the Lyapunov exponents of a system,

for example, Ref. 25 used an approach for computing

Lyapunov exponents of a dynamical system described by

differential equations. In Ref. 12, a method to estimate the

Lyapunov exponent for dynamical systems based on differ-

ence equations was proposed, the metric used to measure

divergence of trajectories was proposed in Ref. 9 as follows:

d sð Þ ¼ 1

T

ðsþT

s

x t0 þ tað Þ� y t0 þ tbð Þdt0; (40)

where � is the XOR operation, and the Boolean distance

d(s) is computed over the interval T. In this work, this second

method was used to estimate the largest Lyapunov exponent

of an experimental ABN which is described by the following

algorithm:

• Acquire a long time series V of voltage of the experimen-

tal ABN.
• Transform the time series V into a Boolean time series

x(t).
• For a given d > 0 and T¼T0, search segments of x(t)

starting at times ta and tb such that d0 ¼ dðsÞ < d.
• Compute d(s) for s 2 ½0; k � T0�, using the segments found

in the previous step, for k> 0.
• Compute hlndðsÞi, where hi denotes an average over all

matching (ta, tb) pairs.
• Estimate the Lyapunov exponent kab ¼ ðlndðsÞ � lnd0Þ=s.

For our experiment, T0 ¼ 200 ns and d ¼ 0:01. We

acquired a 0.5 ms time series of the voltage in node 1 output,

and found �3600 matching pairs (ta, tb) that satisfy d0 ¼ dðsÞ
< 0:01; lnd0 ¼ �4:6. Figure 8 shows the associated Boolean

variables, xðsþ taÞ (top figure) and xðsþ tbÞ (bottom figure),

for the typical segments of Vðsþ taÞ and Vðsþ tbÞ, when

ta ¼ 2:10401	 10�4 s and tb ¼ 3:92001	 10�4 s. Figure 9

shows the time evolution of hdðsÞi. The average of kab over

all pairs of similar segments is our estimate of the largest

Lyapunov exponent k of the system. We find k ¼ 0:029 ns�1,

which demonstrates that the network is chaotic.

Also, we investigate experimentally the dynamics of the

forced synchronization scheme shown in Fig. 1 with two

experimental ABNs. We coupled two slave Boolean net-

works by forcing nodes 4 and 5 of each network with an

external Boolean signal with a frequency of 700 kHz, as

shown in Fig. 4.

FIG. 7. Temporal evolution of the experimental ABN measured at the output

of three of its nodes. (a) Output of node 1. (b) Output of node 2. (c) Output

of node 3.

TABLE II. Parameter values to generate the different link delays sij for the

two experimental networks.

s14 s15 s21 s24 s31 s35 s42 s53

s1 110 ns 232 ns 340 ns 150 ns 437 ns 220 ns 47 ns 51 ns

s2 109 ns 223 ns 352 ns 145 ns 419 ns 224 ns 40 ns 47 ns

FIG. 8. The resulting Boolean variables associated with V corresponding to

the matching pair ðta ¼ 2:10401	 10�4; tb ¼ 3:92001	 10�4Þ s.
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When the external signal of 700 kHz with a 90% duty

cycle is applied to both Boolean networks, there are two

clearly distinguishable behaviors shown in Fig. 10. The first

one (no transitions period) occurs when external signal is

“high,” it forces directly to nodes 4 and 5 to have the same

logic value, and indirectly forces to the remaining nodes.

The second one (short spikes) occurs when external signal is

“low” and each Boolean network has a free dynamics given

by its proper conditions. Furthermore, note that the duty

cycle of the applied forcing function (50%) in simulation is

different from the duty cycle of the applied forcing function

(90%) in electronic implementation, due to in simulations,

the ABNs are identical but experimentally they are different.

To determine if both Boolean networks achieve syn-

chronization, we introduced corresponding nodes voltages to

auxiliary XOR gates. Figure 11 shows the temporal evolu-

tion of the error between three corresponding nodes after the

external signal is applied, from the figure, it is possible to

see that the error practically tends to zero and we can see

essentially complete synchronization after a transient time.

VI. CONCLUSIONS

We presented the design of an autonomous Boolean net-

work with five reconfigurable nodes and time delays along

the links realized of two different ways: in numerical simula-

tion with a continuously adjustable RC filter and experimen-

tally with a cascading configuration of an even number of

inverters logic gates. We show that the autonomous Boolean

network does not have a fixed point so the dynamics always

must oscillate and present a chaotic behavior. We also dem-

onstrate forced synchronization of two networks, where a

common periodic Boolean signal drives each network.

Under this scheme, complete synchronization is obtained,

when the dynamics of the two networks is identical, numeri-

cal and experimental results were presented. In a future

study, we will use this system to investigate other general-

ized forms of synchronization, such as phase11 or lag

synchronization.18 Finally, by using the reconfigurability of

FIG. 9. Logarithm of the Boolean distance as a function of time, averaged

over the phase-space attractor.

FIG. 10. Temporal evolution of the voltages of the two driven ABNs real-

ized experimentally. (a) Experimental measures of nodes 1 outputs. (b)

Experimental measures of nodes 2 outputs. (c) Experimental measures of

nodes 3 outputs. In three cases, upper signal corresponds to Boolean network

1, while lower signal corresponds to Boolean network 2 and this signal has

an offset of �10 V.

FIG. 11. Temporal evolution of the errors between corresponding nodes in

the two forced ABNs realized experimentally. (a) Error between nodes 1. (b)

Error between nodes 2. (c) Error between nodes 3.
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the network nodes, we will explore evolution of networks by

changing the logic based on the state of the network.24 Such

evolutionary networks have application to neuronal and

social networks, for example.
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