
This article may be downloaded for personal use only. Any other use 
requires prior permission of the author or publisher. 

The following article appeared in International Journal of Advanced Robotic 
Systems, Volume 16, 1-12, (2016). Copyright © 2016. SAGE Publications. 
And may be found at https://doi.org/10.1177/1729881416663368  

https://doi.org/10.1177/1729881416663368


Research Article

Output-feedback proportional-integral-
derivative-type control with multiple
saturating structure for the global
stabilization of robot manipulators with
bounded inputs

Arturo Zavala-Rio1, Marco Mendoza2, Victor Santibanez3,
and Fernando Reyes4

Abstract
An output-feedback proportional integral derivative-type control scheme for the global regulation of robot manipulators with
constrained inputs is proposed. It guarantees the global stabilization objective—avoiding input saturation—releasing the
feedback not only from the exact knowledge of the system structure and parameter values but also from velocity mea-
surements. With respect to previous approaches of the kind, the proposed controller is expressed in a generalized form
whence multiple saturating structures may be adopted, thus enlarging the degree of design flexibility. Furthermore, experi-
mental tests on a two-degree-of-freedom direct-drive manipulator corroborate the efficiency of the proposed scheme.
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Introduction

The classical proportional-integral-derivative (PID) control

law has been frequently implemented in industrial manipula-

tors.1–3 This is mainly due to the practical certainty on the

achievement of the regulation goal experienced through its

simple linear structure.4 A simple structure that avoids

involving the system model and exact knowledge of the sys-

tem parameters.2 Nevertheless, through the classical PID lin-

ear structure, it has not been possible to derive a global proof

of the closed-loop stability properties experimentally

observed. This is why alternative nonlinear versions of the

PID controller, mainly oriented to guarantee global regula-

tion, have been developed for instance in Arimoto,5 Kelly6

and Santibáñez and Kelly.7 However, these algorithms impli-

citly assume that actuators can furnish any required torque

value. Unfortunately, this is impossible in practice in view of

the saturation nonlinearity that generally relates the controller

outputs to the plant inputs in actual feedback systems.

Furthermore, disregarding such natural constraints may lead
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to unexpected behaviors and/or degraded closed-loop perfor-

mances.8,9 For this reason, bounded PID-type approaches

have been further developed. For instance, semiglobal regu-

lators with different saturating PID-type structures have been

proposed in a frictionless setting by Alvarez-Ramrez J and

colleagues.10,11 The closed-loop analysis in these works was

carried out using singular perturbation methodology.

Through such a methodology, the authors show the existence

of some suitable tuning, mainly characterized by the require-

ment of small enough integral action gains and sufficiently

high proportional and derivative ones. Furthermore, the first

globally stabilizing bounded PID-type control scheme, that

the authors are aware of, was previously achieved by Gorez.12

The control algorithm developed therein was carried out

through the explicit consideration of friction forces on the

system open-loop dynamics. The resulting algorithm gives

the alternative to include or disregard velocities in the feed-

back. Nevertheless, the approach presented by Gorez12 is

quite complex. This inspired other researchers to find alter-

native bounded PID-type structures. Such efforts gave rise,

for instance, to the Saturating-Proportional Saturating-

Integral Saturating-Derivative (SP-SI-SD) type algorithm.

This was developed by Meza et al.13 via passivity theory and

later on by Su et al.14 through Lyapunov stability analysis. A

Saturating-Proportional-Derivative Saturating-Integral

(SPD-SI) type controller was further proposed by Santibáñez

et al.15 More recently, a state-feedback PID-type scheme with

a generalized saturating structure, that includes both the SP-

SI-SD and SPD-SI as particular cases, was presented by Men-

doza et al.16 In particular, Su et al.’s work14 includes a

velocity-free version of the presented controller by involving

the dirty derivative. Further concerns on the bounded input

problem have led to the additional consideration of the satura-

tion effects of the electronic control devices of practical PID

regulators.17,18 Exponential and/or global asymptotic stabili-

zation conditions were obtained under such natural restric-

tions for several implementation structures that are common

in industrial robots.

The above-cited bounded PID-type approaches give a solu-

tion to the formulated problem under input constraints and

restricted data. In this direction, output-feedback schemes, like

the velocity-free extensions of the algorithms presented by

Gorez12 and Su et al.,14 are particularly important. This is so

since they achieve regulation not only without the need for the

exact knowledge of the system structure and parameter values

but also through the exclusive feedback of the position variables.

This proves to be particularly useful when velocity measure-

ments are unavailable, which seems a common practical situa-

tion. However, how dirty-derivative-based output-feedback

PID-type bounded schemes with alternative saturating structures

(different to the SP-SI-SD one) can be designed and analytically

supported is not yet clear. Although this has already been treated

in the state-feedback context,16 it remains an unsolved problem

within the dirty-derivative-based output-feedback framework,

where the analytical complication is considerably higher. A

solution to such an open problem is not only motivated by the

implicated analytical challenge but also by the nice performance

expectations generated by analog saturating structures in grav-

ity-compensation-type state-feedback contexts.19 These argu-

ments actually constitute the main motivation of the present

work, which aims at giving a formal solution to the referred

unsolved problem. As a result, an output-feedback PID-type

control scheme with generalized saturating structure for the glo-

bal stabilization of robot manipulators with bounded inputs is

contributed here. With respect to previous approaches of the

kind, it increases the degree of design flexibility through its

generalized form that permits the implementation of multiple

saturating structures. The proposed scheme finds potential appli-

cations in numerous types of autonomous robot systems, saving

these from undesirable behaviors due to actuator saturation,

releasing them from the need for speed sensors, and opening

new control design possibilities to improve their closed-loop

behavior. The result is developed through formal analysis based

on Lyapunov stability theory. Furthermore, experimental tests

on a two-degree-of-freedom (DOF) direct-drive manipulator

support the analytical developments.

Preliminaries

Let X 2 Rm�n and y 2 Rn. Throughout this article, Xij stands

for the element of X at its i th row and j th column and yi

represents the i th element of y. 0n denotes the origin of Rn

and In the n� n identity matrix. k � k represents the standard

Euclidean norm for vectors, that is, kyk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 y2
i

q
, and

induced norm for matrices, that is, kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxfX TXg

p
where �maxfX TXg is the maximum eigenvalue of X TX . For

a continuous scalar function : R! R, 0 represents its deri-

vative, when differentiable, Dþ its upper right-hand (Dini)

derivative, that is, Dþ ð&Þ ¼ lim suph!0þ
 ð&þhÞ� ð&Þ

h
, with

Dþ ¼  0 at points of differentiability (Appendix C.2 in Kha-

lil20), and �1 its inverse, when invertible. Consider then-DOF

serial rigid robot manipulator dynamics with viscous friction 21

HðqÞ€qþ Cðq; _qÞ _qþ F _qþ gðqÞ ¼ � (1)

where q, _q, €q 2 Rn are, respectively, the position (general-

ized coordinates), velocity and acceleration vectors.

HðqÞ 2 Rn�n is the inertia matrix, which is a continuously

differentiable symmetric matrix function being positive defi-

nite and bounded on the whole configuration space, that is

�mIn � HðqÞ � �M In (2)

8q 2 Rn, for some constants 0 < �m � �M . Cðq; _qÞ _q is the

Coriolis and centrifugal (generalized) force vector, with

Cðq; _qÞ 2 Rn�n (the Coriolis matrix) satisfying

kCðq; _qÞk � kCk _qk (3)

8ðq; _qÞ 2 Rn � Rn, for some constant kC � 0,

_q T 1

2
_Hðq; _qÞ � Cðq; _qÞ

� �
_q ¼ 0 (4)
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8ðq; _qÞ 2 Rn � Rn, where _H denotes the rate of change of H ,

that is, _H : Rn � Rn ! Rn�n with _Hijðq; _qÞ ¼ @Hij

@q
ðqÞ _q,

i; j ¼ 1; . . . ; n, and actually

_Hðq; _qÞ ¼ Cðq; _qÞ þ C Tðq; _qÞ (5)

8ðq; _qÞ 2 Rn � Rn. F _q is the viscous friction force vector,

with F 2 Rn�n being a positive definite constant diagonal

matrix whose entries fi > 0, i ¼ 1; . . . ; n, are the viscous

friction coefficients, such that

fmk _qk2 � _q TF _q � fMk _qk2
(6)

8 _q 2 Rn, where 0 < fm @ miniffig � maxiffig @ fM .

gðqÞ ¼ rUðqÞ is the gravity force vector, with UðqÞ being

the gravitational potential energy, or equivalently

UðqÞ ¼ Uðq0Þ þ
Z q

q0

g TðrÞdr (7a)

Z q

q0

g TðrÞdr ¼
Z q1

q01

g1ðr1; q02; . . . ; q0nÞdr1

þ
Z q2

q02

g2ðq1; r2; q03; . . . ; q0nÞdr2

þ � � � þ
Z qn

q0n

gnðq1; . . . ; qn�1; rnÞdrn

(7b)

for any q; q0 2 Rn. From the conservative character of

gðqÞ ¼ rUðqÞ, for any q; q0 2 Rn, the inverse relation

UðqÞ ¼ Uðq0Þ þ
R q

q0
g TðrÞdr is independent of the integra-

tion path (Khalil et al., p. 120).20 Equation (7b) considers

integration along the axes. This way, on every axis (that is at

every integral in the right-hand side of (7b)), the correspond-

ing coordinate varies (according to the specified integral

limits) while the rest of the coordinates remain constant.

This work is addressed to robots whose gravity force

term gðqÞ is a continuously differentiable bounded vector

function with bounded Jacobian matrix @g

@q
. Equivalently,

manipulators whose gravity force vector components,

giðqÞ, i ¼ 1; . . . ; n, satisfy

jgiðqÞj � Bgi (8)

8q 2 Rn, for some positive constant Bgi, and @gi

@qj
,

j ¼ 1; . . . ; n, exist and are continuous and such that

@gi

@qj

ðqÞ
����

���� � @g

@q
ðqÞ

����
���� � kg (9)

8q 2 Rn, for some positive constant kg, and consequently

jgiðxÞ � giðyÞj � kgðxÞ � gðyÞk � kgkx� yk, 8x; y 2 Rn.

This is satisfied, for instance, by robot manipulators having

only revolute joints (Kelly et al.,21 § 4.3).

Finally, � 2 Rn is the external input force vector, whose

elements � i, i ¼ 1; . . . ; n, are assumed in this work to be

constrained by a given saturation bound Ti > 0, that is,

j� ij � Ti, i ¼ 1; . . . ; n. More precisely, letting ui represent

the control variable (controller output) relative to the i th

DOF, we have that

� i ¼ Ti satðui=TiÞ (10)

where satð�Þ is the standard saturation function, that is,

satð&Þ ¼ signð&Þminfj&j; 1g. From equations (1) and (10),

one sees that Ti � Bgi (see (8)), 8i 2 f1; . . . ; ng, is a nec-

essary condition for the robot manipulator to be stabilizable

at any desired equilibrium configuration qd 2 Rn. Thus, the

following assumption turns out to be important within the

analytical setting considered here.

Assumption 1. Ti > �Bgi, 8i 2 f1; . . . ; ng, for some sca-

lar � � 1.

The control scheme proposed in this work involves

functions fulfilling the following definition.

Definition 1. Given a positive constant M , a nondecreasing

Lipschitz-continuous function � : R! R is said to be a

generalized saturation with bound M if

( a) &�ð&Þ > 0, 8& 6¼ 0

( b) j�ð&Þj � M , 8& 2 R

If in addition

( c) �ð&Þ ¼ & when j&j � L

for some positive constant L � M , � is said to be a linear

saturation for ðL;MÞ.
Lemma 1. Let � : R! R be a generalized saturation with

bound M and let k be a positive constant. Then,

1. limj& j!1Dþ�ð&Þ ¼ 0;

2. 9�0M 2 ð0;1Þ such that 0 � Dþ�ð&Þ � �0M , 8& 2 R;

3. &½�ð& þ �Þ � �ð�Þ� � 0, 8&; � 2 R;

4. ½�ðk&þ�Þ� �ð�Þ�2��0M k&½�ðk&þ�Þ��ð�Þ��ð�0M k&Þ2,

8&; � 2 R;

5.
�2ðk&Þ
2k�0

M

�
R &

0
�ðkrÞdr � k�0

M
& 2

2
, 8& 2 R;

6.
R &

0
�ðkrÞdr > 0, 8& 6¼ 0;

7.
R &

0
�ðkrÞdr!1 as j&j ! 1;

8. if � is strictly increasing then, for any constant a 2 R,

��ð&Þ ¼ �ð& þ aÞ � �ðaÞ is a strictly increasing generalized

saturation function with bound �M ¼ M þ j�ðaÞj.
Proof. The proof of items 1, 2, 5–8 is found in López-

Araujo et al.,22 while items 3 and 4 are proven in Zavala-

Rió et al.23
c

The proposed control scheme

Consider the following generalized output-feedback

bounded PID-type control law

uðq; #; �Þ ¼ �sPðKP �qÞ þ sIðKI�Þ � sdð�q; #; �Þ (11)

Zavala-Rio et al. 3



where �q ¼ q� qd , for any constant desired equilibrium

position vector qd 2 Rn. �; # 2 Rn are the output vector

variables of the integral-action dynamics, defined as

_�c ¼ �"K�1
P sPðKP�qÞ; � ¼ ��qþ �c (12)

and the velocity estimation auxiliary subsystem, defined as

_#c ¼ �A½#c þ B�q�; # ¼ #c þ B�q (13)

Under time parametrization of the system trajectories, the

integral-action dynamics in equations (12) adopts

the (equivalent) integral-equation form �ðtÞ ¼ �ð0Þþ
�qð0Þ � �qðtÞ �

R t

0
"K�1

P sPðKP �qð&ÞÞd&, for any initial vector

values �ð0Þ; �qð0Þ 2 Rn. For any x 2 Rn, sPðxÞ ¼ ð�P1ðx1Þ;
. . . ; �PnðxnÞÞT

and sIðxÞ ¼ ð�I 1ðx1Þ; . . . ; �InðxnÞÞT
, with

�Pið�Þ, i ¼ 1; . . . ; n, being linear saturation functions for

ðLPi;MPiÞ and �Iið�Þ, i ¼ 1; . . . ; n, being strictly increasing

generalized saturation functions with bounds MIi, such that

LPi > 2Bgi ; MIi > Bgi (14)

i ¼ 1; . . . ; n. sd : Rn � Rn � Rn ! Rn is a continuous

vector function satisfying

ksdð�q; #; �Þk2 � 	#Tsdð�q; #; �Þ � 	2k#k2
(15a)

8ð�q; #; �Þ 2 Rn � Rn � Rn, for some positive constant	, and

juiðq; #; �Þj ¼ j � �PiðkPi �qiÞ þ �IiðkIi�iÞ � sdið�q; #; �Þj<Ti

(15b)

i ¼ 1; . . . ; n, 8ð�q; #; �Þ 2 Rn � Rn � Rn, for suitable

bounds MPi and MIi of �Pið�Þ and �Iið�Þ. KP;KI ;A;
B 2 Rn�n are positive definite diagonal matrices—that is,

KP ¼ diag½kP1; . . . ; kPn�, KI ¼ diag½kI 1; . . . ; kIn�, A ¼
diag½a1; . . . ; an� and B ¼ diag½b1; . . . ; bn� with kPi > 0,

kIi > 0, ai > 0, bi > 0, 8i ¼ 1; . . . ; n—such that

kPm @ min
i
fkPig > kg (16a)


d @ min
i

ai

bi

� �
>

	

2fm

(16b)

with 	 as defined through (15a). Finally, " (in equations

(12)) is a positive constant satisfying

" < "M @ minf"1; "2; "3g (17)

"1 @

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0
P�m

�2
M

s
; "2 @


0
dkPm

	
;

"3 @
fm � 	

2
d


M þ
f 2
M


0kPm

<

fm � 	
2
d


M

@ "4

(observe that by inequality (16b): fm � 	
2
d

> 0), with


0 @ 1�max
n

kg

kPm
;maxi

n
2Bgi

LPi

oo
, 
P @ mini

kPi

�0
PiM

n o
,


M @ kCBP þ �M�
0
PM , BP @

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

MPi

kPi

	 
2
r

and �0PM @

maxif�0PiMg (observe that by inequalities (16a) and (14):

0 < 
0 < 1), �0PiM being the positive bound of Dþ�Pið�Þ,
in accordance with item 2 of Lemma 1, and �m, �M , kC, fm,

fM , Bgi and kg as defined through the system properties

expressed by inequalities (2), (3), (6), (8) and (9).

Remark 1. Note that _q is not involved in any of the expressions

in equations (11)–(13). In fact, _q is estimated online through the

auxiliary subsystem in equations (13), driven by �q as input

variable. Its output variable # gives the estimated vector value

of _q. As a matter of fact, the auxiliary subsystem in equations

(13) gives rise to the so-called dirty derivative of �q. This is the

derivative of �q (or the velocity vector _q) with each of its com-

ponents going through a first-order low pass filter. This is com-

monly done in practice to bound the high-frequency gains,

giving rise to a causal (approximated) derivative operator.

Remark 2. In order to preserve the main feature of PID-type

controllers, the vector function sd in equation (11) shall not

involve any term of the open-loop system dynamics

(whether as online or desired compensation) or the exact

value of any of its parameters. In general, sd will include a

computed-derivative-action term (acting on the estimated

velocity vector) and may involve some form of the propor-

tional and/or the integral ones, as illustrated in Appendix 1.

Remark 3. It is important to note that, depending on the

specific choice of the vector function sd , Assumption 1 may

be required to be satisfied with some � strictly greater than

unity. This arises as a requirement to guarantee the feasibil-

ity of the simultaneous fulfillment of (15b) and inequalities

(14). For instance, in the particular control structure cases

presented in Appendix 1, such a feasibility is achieved by

requiring � ¼ 3, as pointed out in Remark 5. A similar

condition on the control input bounds has been required by

other approaches where input constraints have been consid-

ered.24 In some saturating PID-type schemes from previous

references, a similar or analog condition on the control input

bounds remains implicit, by requiring corresponding para-

meters to be high enough to satisfy conditions coming from

the stability analysis and simultaneously low enough to ful-

fill the input-saturation-avoidance inequalities.

Closed-loop analysis

Consider system (1),(10) taking u ¼ uðq; #; �Þ as defined

through equations (11)–(13). Let us define the variable

transformation

�q
#
��

0
@

1
A ¼ q� qd

#c þ Bðq� qdÞ
�� ��

0
@

1
A (18)

with �� ¼ ð��1; . . . ; ��nÞ
T

such that sIðKI�
�Þ ¼ gðqdÞ, or

equivalently ��i ¼ ��1
Ii ðgiðqdÞÞ=kIi, i ¼ 1; . . . ; n (notice

that their strictly increasing character renders �Ii inverti-

ble). Observe that the satisfaction of (15b), under the con-

sideration of (10), shows that

4 International Journal of Advanced Robotic Systems



Ti > juið�qþ qd ; #; ��þ ��Þj ¼ juij ¼ j� ij i ¼ 1; . . . ; n

8ð�q; #; ��Þ 2 Rn � Rn � Rn

(19)

Hence, under the consideration of the variable transfor-

mation (18), the closed-loop dynamics adopts the (equiva-

lent) form

HðqÞ€qþ Cðq; _qÞ _qþ F _qþ gðqÞ
¼ �sdð�q; #; �Þ � sPðKP�qÞ þ �sIð��Þ þ gðqdÞ (20a)

_# ¼ �A#þ B _q (20b)

_�� ¼ � _q� "K�1
P sPðKP�qÞ (20c)

where �sIð��Þ ¼ sIðKI
��þ KI�

�Þ � sIðKI�
�Þ. Observe that,

by item 1 of Lemma 1, the elements of �sIð��Þ, that is,

��Iið��iÞ ¼ �IiðkIi
��i þ kIi�

�
i Þ � �IiðkIi�

�
i Þ, i ¼ 1; . . . ; n, turn

out to be strictly increasing generalized saturation

functions.

Proposition 1. Consider the closed-loop system in equa-

tions (20), under the satisfaction of inequalities (14), the

conditions on the vector function sd stated through

expressions (15), and Assumption 1 with suitable value

of �. Thus, for any positive definite diagonal matrices A,

B, KI and KP such that inequalities (16) are fulfilled,

and any " satisfying inequality (17), global asymptotic

stability of the closed-loop trivial solution ð�q; #; ��ÞðtÞ 	
ð0n; 0n ; 0nÞ is guaranteed with j� iðtÞj ¼ juiðtÞj < Ti,

i ¼ 1; . . . ; n, 8t � 0.

Proof. By (19), one sees that, along the system trajectories,

j� iðtÞj ¼ juiðtÞj < Ti, 8t � 0. This proves that, under the

proposed scheme, the input saturation values, Ti, are never

attained. Now, in order to carry out the stability analysis,

the following scalar function is defined

Vð�q; _q; #; ��Þ ¼ 1

2
_q THðqÞ _qþ "s T

P ðKP �qÞK�1
P HðqÞ _qþ UðqÞ

� UðqdÞ � g TðqdÞ�qþ
Z �q

0n

s T
P ðKPrÞdr

þ
Z ��

0n

�s T
I ðrÞdr þ 	

2
#TB�1#

where
R �q

0n
s T

P ðKPrÞdr ¼
Pn

i¼1

R �qi

0
�PiðkPiriÞdri,

R ��
0n

�s T
I ðrÞdr¼Pn

i¼1

R ��i

0
��IiðriÞdri and recall that U represents the

gravitational potential energy. Note, by recalling

equations (2), that the defined scalar function can be

rewritten as

Vð�q; _q; #; ��Þ ¼ 1

2
_q THðqÞ _qþ "s T

P ðKP �qÞK�1
P HðqÞ _q

þ g0

Z �q

0n

s T
P ðKPrÞdr þ Uc

g0
ð�qÞ þ

Z ��

0n

�s T
I ðrÞdr

þ 	
2
#TB�1#

Uc
g0
ð�qÞ ¼

Z �q

0n

½gðr þ qdÞ � gðqdÞ þ ð1� g0ÞsPðKPrÞ�Tdr

¼
Xn

i¼1

Z �qi

0

½�giðriÞ � giðqdÞ þ ð1� g0Þ�PiðkPiriÞ�dri

�g1ðr1Þ ¼ g1ðr1 þ qd1; qd2; . . . ; qdnÞ
�g2ðr2Þ ¼ g2ðq1; r2 þ qd2; qd3; . . . ; qdnÞ

..

.

�gnðrnÞ ¼ gnðq1; q2; . . . ; qn�1; rn þ qdnÞ

and g0 is a constant satisfying


0

"2

"2
1

< g0 < 
0 (21)

(observe, from inequality (17) and the definition of 
0, that

0 < 
0"
2="2

1 < 
0 < 1). Under this consideration, Uc
g0
ð�qÞ

turns out to be lower-bounded by

W10ð�qÞ ¼
Xn

i¼1

w10
i ð�qiÞ (22a)

w10
i ð�qiÞ @

kli

2
�q2

i if j�qij � �q�i

kli �q
�
i

�
j�qij �

�q�i
2

�
if j�qij > �q�i

8>><
>>: (22b)

with 0 < kli � ð1� g0ÞkPi � kg and �q�i ¼ ½LPi � 2Bgi=
ð1� g0Þ�=kPi (note that by inequality (21) and the defini-

tion of 
0: 0 < ð1� g0ÞkPi � kg and �q�i > 0); this is proven

in Appendix 2 of Mendoza et al.16 From this, inequality (2)

and item 5 of Lemma 1, we have

Vð�q; _q; #; ��Þ � �m

2
k _qk2 � "�MkK�1

P sPðKP �qÞkk _qk

þ g0

Xn

i¼1

�2
PiðkPi �qiÞ

2kPi�PiM
0
þW10ð�qÞ þ

Z ��

0n

�s T
I ðrÞdr

þ 	
2
#TB�1# � W11ð�q; _qÞ þW10ð�qÞ

þ
Z ��

0n

�s T
I ðrÞdr þ 	

2
#TB�1#

(23)

W11ð�q; _qÞ ¼ �m

2
k _qk2 � "�MkK�1

P sPðKP �qÞkk _qk

þ g0
P

2
kK�1

P sPðKP�qÞk2

¼ 1

2

kK�1
P sPðKP �qÞk
k _qk

� �T

Q11

kK�1
P sPðKP �qÞk
k _qk

� �

Q11 ¼
g0
P �"�M

�"�M �m

� �

¼

g0
P � "

"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0
P�m

p

� "

"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0
P�m

p
�m

0
BBB@

1
CCCA
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By inequality (21), W11ð�q; _qÞ is positive definite (since

with " < "M � "1, in accordance to inequality (17), any g0

satisfying (21) renders Q11 positive definite) and observe

that W11ð0n; _qÞ ! 1 as k _qk ! 1. Further, from equations

(22), items 6 and 7 of Lemma 1 and the positive-definite

and diagonal characters of B, it is clear that the three last

terms in the right-hand side of (23) are radially unbounded

positive definite functions of �q, �� and # respectively. Thus,

Vð�q; _q; #; ��Þ is concluded to be positive definite and

radially unbounded. Its upper right-hand derivative along

the system trajectories, _V ¼ DþV (see section 6.1A

of Michel et al.25), is given by

_V ð�q; _q; #; ��Þ ¼ _q THðqÞ€qþ 1

2
_q T _Hðq; _qÞ _q

þ "s T
P ðKP �qÞK�1

P HðqÞ€qþ "s T
P ðKP �qÞK�1

P
_Hðq; _qÞ _q

þ " _q Ts0PðKP �qÞHðqÞ _qþ g TðqÞ _q� g TðqdÞ _q

þ s T
P ðKP �qÞ _qþ �s T

I ð��Þ _��þ 	#TB�1 _#

¼ � _q TF _q� _q Tsdð�q;#;�Þ � "s T
P ðKP �qÞK�1

P F _q

� "s T
P ðKP �qÞK�1

P sdð�q;#;�Þ
� "s T

P ðKP �qÞK�1
P ½gðqÞ þ sPðKP �qÞ � gðqdÞ�

þ " _q TCðq; _qÞK�1
P sPðKP �qÞ þ " _q Ts0PðKP �qÞHðqÞ _q

� 	#TB�1A#þ 	#T _q

where HðqÞ€q, _# and _�� have been replaced by their equiva-

lent expressions from the closed-loop dynamics in equa-

tions (20), equations (4)–(5) have been used and

s0PðKP �qÞ @ diag½Dþ�P1ðkP1 �q1Þ; . . . ;Dþ�PnðkPn �qnÞ�. The

resulting expression can be rewritten as

_Vð�q ; _q;#;��Þ ¼ � _q TF _qþ _q T½	#� sdð�q;#;�Þ�
� "s T

P ðKP �qÞK�1
P F _q� "s T

P ðKP �qÞK�1
P sdð�q;#;�Þ

� "g1s T
P ðKP �qÞK�1

P KPK�1
P sPðKP �qÞ � "Wg1

ð�qÞ
þ " _q TCðq; _qÞK�1

P sPðKP �qÞ þ " _q Ts0PðKP �qÞHðqÞ _q
� 	#TB�1A#

Wg1
ð�qÞ ¼ s T

P ðKP �qÞK�1
P ½ð1� g1ÞsPðKP �qÞ þ gðqÞ � gðqdÞ�

¼
Xn

i¼1

ð1� g1Þ
kPi

�2
PiðkPi �qiÞ þ

�PiðkPi �qiÞ
kPi

½giðqÞ � giðqdÞ�
� �

with g1 being a constant that satisfies


0 max
"

"2

;
"

"3

"4 � "3

"4 � "

� �� �� �
< g1 < 
0 (24)

(from inequality (17) and the definition of 
0, one verifies,

after simple developments, that 0 < 
0½maxf"="2;
"ð"4�"3Þ=½"3ð"4�"Þ�g�<
0<1; in particular, ""3="4<
"<"35""3<""4<"3 "450<"ð"4 � "3Þ<"3ð"4 � "Þ5
0 < "ð"4 � "3Þ=½"3ð"4 � "Þ� < 1). Under this consideration,

Wg1
ð�qÞ turns out to be lower-bounded by

W20ð�qÞ ¼
Xn

i¼1

w20
i ð�qiÞ (25a)

w20
i ð�qiÞ ¼

ci �q
2
i if j�qij � LPi=kPi

di

kPi

ðj�PiðkPi �qiÞj � LPiÞ þ ci

�
LPi

kPi

�2

if j�qij > LPi=kPi

8><
>:

(25b)

with di ¼ ð1� g1ÞLPi � 2Bgi, ci ¼ min h; dikPi

LPi

n o
and

h ¼ ð1� g1ÞkPm � kg (notice, from inequality (24) and the

definition of 
0, that di > 0 and h > 0, hence ci > 0). This

is proven in Appendix 3 of Mendoza et al.16

From this, inequalities (2), (3) and (6), items 2 of

Lemma 1 and (b) of Definition 1, and the positive definite

character of KP, we have that

_Vð�q; _q; #; ��Þ � �fmk _qk2 þ k _qkk	#� sdð�q; #; �Þk
þ "fMkK�1

P sPðKP �qÞkk _qk
þ "kK�1

P sPðKP�qÞkksdð�q; #; �Þk
� "g1kPmkK�1

P sPðKP �qÞk2 � "W20ð�qÞ
þ "kCBPk _qk2 þ "�M�

0
PMk _qk2 � 	
dk#k2

Let us further note that by (16), we have that k	#�
sdð�q; #; �Þk2 ¼ ½	# � sdð�q; #; �Þ�T ½	# � sdð�q; #; �Þ� ¼
	2#T#�2	#Tsdð�q; #; �Þþs T

d ð�q; #;�Þsdð�q;#;�Þ�	2k#k2�
ksdð�q; #; �Þk2 � 	2k#k2

, that is k	#� sdð�q; #; �Þk �
	k#k, 8ð�q; #; �Þ 2 Rn � Rn � Rn. From this and inequality

(16), we get

_Vð�q; _q; #; ��Þ � �fmk _qk2 þ 	k _qkk#k

þ "fMkK�1
P sPðKP �qÞkk _qk þ "	kK�1

P sPðKP �qÞkk#k

� "g1kPmkK�1
P sPðKP �qÞk2 þ "kCBPk _qk2

þ "�M�
0
PMk _qk2 � 	
dk#k2 � "W20ð�qÞ

� �"W21ð�q; #Þ �W22ð�q; _q; #Þ � "W20ð�qÞ

W21ð�q; #Þ ¼
g1kPm

2
kK�1

P sPðKP �qÞk2 � 	kK�1
P sPðKP �qÞkk#k

þ 	
d

2"
k#k2

¼ 1

2

kK�1
P sPðKP �qÞk
k#k

 !T

Q21

kK�1
P sPðKP �qÞk
k#k

 !

Q21 ¼
g1kPm �	

�	 	
d

"

0
B@

1
CA ¼

g1kPm �	

�	 	2"2


0kPm"

0
B@

1
CA

W22ð�q; _q; #Þ ¼ "g1kPm

2
kK�1

P sPðKP �qÞk2

� "fMkK�1
P sPðKP �qÞkk _qk þ ðfm � "
M Þk _qk2

� 	k _qkk#k þ 	
d

2
k#k2

¼ 1

2

kK�1
P sPðKP �qÞk
k _qk
k#k

0
B@

1
CA

T

Q22

kK�1
P sPðKP �qÞk
k _qk
k#k

0
B@

1
CA
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Q22 ¼
"g1kPm �"fM 0

�"fM 2ðfm � "
MÞ �	
0 �	 	
d

0
B@

1
CA

¼

"g1kPm �"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
0
M kPm

"4 � "3

"3

0
@

1
A

vuuut 0

�"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kPm
M
0

"4 � "3

"3

0
@

1
A

vuuut 2
M ð"4 � "Þ þ 	


d

�	

0 �	 	
d

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

By inequality (24), W21ð�q; #Þ and W22ð�q; _q; #Þ are posi-

tive definite (since with " < "M � minf"2; "3g < "4, in

accordance to inequality (24), any g1 satisfying (30) renders

Q21 and Q22 positive definite). Further, from equations (25),

it is clear that W20 is a positive definite function of �q. Hence,
_Vð�q; _q; #; ��Þ � 0 with _Vð�q; _q; #; ��Þ ¼ 05ð�q; _q; #Þ ¼
ð0n; 0n ; 0nÞ. Furthermore, from the closed-loop dynamics

in equations (20), we see that �qðtÞ 	 _qðtÞ 	 #ðtÞ 	 0n5
€qðtÞ	0n5�sIð��ðtÞÞ	0n5��ðtÞ	0n (at any ð�q; _q; #; ��Þ on

Z ¼ fðw; x; y; zÞ 2 Rn � Rn � Rn � Rn : w ¼ x ¼ y¼ 0ng
with �� 6¼ 0n, the resulting unbalanced force term �sI ð��Þ acts

on the closed-loop dynamics forcing the system trajectories

to leave Z). Therefore, by the invariance theory (Michel

et al.25, §7.2)—more precisely, by Corollary 7.2.1 of Michel

et al.25—, the closed-loop trivial solution ð�q; #; ��ÞðtÞ 	
ð0n; 0n ; 0nÞ is concluded to be globally asymptotically sta-

ble, which completes the proof. c

Remark 4. Let us note that the fulfillment of inequalities

(14), (16)–(17) is not necessary but only sufficient

for the closed-loop analysis to hold. This permits a

breach tolerance margin without destabilizing the closed

loop.

Experimental results

In order to corroborate the efficiency of the proposed

scheme, several real-time control tests were implemented

on a two-DOF robot manipulator. The experimental setup,

shown in Figure 1, is a two-revolute-joint mechanical arm

(on a vertical plane) located at the Instituto Tecnológico de

la Laguna, Mexico. The robot actuators are direct-drive

brushless servomotors operated in torque mode: that is,

they act as torque sources and receive an analog voltage

as a torque reference signal. Joint positions are obtained

using incremental encoders on the motors. In order to get

the encoder data and generate reference voltages, the robot

includes a motion control board based on a DSP 32-bit

floating point microprocessor. The control algorithm is

executed at a 2.5 millisecond sampling period on a PC-

host computer. Further technical information on this robot,

as well as its model and parameter values, can be found in

Reyes and Kelly.26

For the experimental manipulator, inequalities (2), (3), (6),

(8) and (9) are satisfied with�m ¼ 0:088 kg m2, �M ¼ 2:533

kg m2, kC ¼ 0:1455 kg m 2, fm ¼ 0:175 kg m2/s, fM ¼ 2:288

kg m2/s, Bg1 ¼ 40:29 N m, Bg2 ¼ 1:825 N m and kg ¼ 40:373

N m/rad. The maximum allowed torques (input saturation

bounds) are T1 ¼ 150 N m and T2 ¼ 15 N m for the first and

second links, respectively. From these data, one easily corrobo-

rates that Assumption 1 is fulfilled with � ¼ 3.

The proposed scheme in equations (11)–(13) was

tested in every one of the forms presented in Appendix 1. That

is, in the SP-SI-SD form—with sdð�q; #; �Þ ¼ sDðKD#Þ—
that is

uðq; #; �Þ ¼ �sPðKP �qÞ � sDðKD#Þ þ sI ðKI�Þ

with the saturation functions involved in sD—that is �Dið�Þ,
i ¼ 1; 2—being generalized saturations with bounds MDi,

and the involved bound values satisfying

MPi þMDi þMIi < Ti (26)

i ¼ 1; 2. The SPD-SI form—with sdð�q; #; �Þ ¼ sPðKP �qþ
KD#Þ � sPðKP �qÞ—that is

uðq; #; �Þ ¼ �sPðKP �qþ KD#Þ þ sIðKI�Þ

with bound values fulfilling

MPi þMIi < Ti (27)

i ¼ 1; 2. The Saturating-Proportional-Integral-Derivative

like (SPID-like) form—with sdð�q; #; �Þ ¼ sIðKI�Þ�
sPðKP �qÞ � s0ðsI ðKI�Þ � sPðKP �qÞ � KD#Þ—that is

uðq; #; �Þ ¼ s0ð�sPðKP �qÞ � KD#þ sIðKI�ÞÞ

with the saturation functions involved in s0—that is �0ið�Þ,
i ¼ 1; 2—being linear saturation functions for ðL0i;M0iÞ,
and the involved linear/generalized saturation function

parameters satisfying

MPi þMIi < L0i � M0i < Ti (28)

i ¼ 1; 2. And the SP-SID form—with sdð�q; #; �Þ ¼
sIðKI�Þ � sIðKI�� KD#Þ—that is

uðq; #; �Þ ¼ �sPðKP �qÞ þ sIð�KD#þ KI�Þ

Figure 1. Experimental setup: two-DOF robot manipulator.
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with bound values fulfilling

MPi þMIi < Ti (29)

i ¼ 1; 2. Letting �hð&; MÞ ¼ M satð&=MÞ (observe that this

is a linear saturation with L ¼ M) and

�sð&; L;MÞ ¼

& if &j � L

signð&ÞLþ ðM � LÞ & � signð&ÞL
M � L

0
@

1
A if j&j > L

8>><
>>:

with 0 < L < M , the saturation functions used for the

implementation were defined as: �Pið&Þ ¼ �hð&; MPiÞ,
�Dið&Þ ¼ �hð&; MDiÞ, �Iið&Þ ¼ �sð&; LIi;MIiÞ, i ¼ 1; 2, in

the SP-SI-SD case; �Pið&Þ ¼ �hð&; LPi;MPiÞ, �Iið&Þ ¼
�sð&; LIi;MIiÞ, i ¼ 1; 2, in the SPD-SI case; �0ið&Þ ¼
�hð&; M0iÞ, �Pið&Þ ¼ �hð&; MPiÞ, �Iið&Þ ¼ �sð&; LIi;MIiÞ,
i ¼ 1; 2, in the SPID-like cases; and �Pið&Þ ¼ �hð&; MPiÞ,
�Iið&Þ ¼ �sð&; LIi;MIiÞ, i ¼ 1; 2, in the SP-SID case. Let us

note that with these saturation functions, we have

�0PiM ¼ �IiM
0 ¼ �DiM

0 ¼ �0iM
0 ¼ 1, 8i 2 f1; 2g. As a con-

sequence, for all the four controllers, inequalities (15a)

and (16b) are satisfied with 	 ¼ maxifkDig (see equa-

tions (39)).

For comparison purposes, additional experimental

tests were implemented using the output-feedback ver-

sion of the bounded PID-type controller presented in Su

et al.14 The choice was made taking into account the

analog nature of the compared algorithms: globally sta-

bilizing via output feedback developed in a bounded-

input context, and the recent appearance of Su et al.14

That is

u ¼ �KP Tanhð�qÞ � KD Tanhð#Þ � KI Tanhð�Þ (30a)

_#c ¼ �A½#c þ Bq�; # ¼ #c þ Bq (30b)

_�c ¼ Tanhð�qÞ; � ¼ �2 �qþ ��c (30c)

with � being a (sufficiently large) positive constant and

TanhðxÞ ¼ ð tanh x1; . . . ; tanh xnÞT
for any x 2 Rn. In

place of equations (30c), the work of Su et al.14 defines

�ðtÞ ¼ �2 �qðtÞ þ �
R t

0
Tanhð�qð&ÞÞd&, which imposes the

auxiliary variable initial condition�ð0Þ ¼ �2 �qð0Þ (or, equiva-

lently, �cð0Þ ¼ 0n in the context of equations (30c)). Instead,

equations (30c)—or their (equivalent) time representation

�ðtÞ ¼ �ð0Þþ�2½�qðtÞ��qð0Þ� þ �
R t

0
Tanhð�qð&ÞÞd&— keeps

the required auxiliary dynamics while permitting any ini-

tial condition for � (or, equivalently, for�c in the context of

equations (30c)). This proves to be more appropriate in the

global stabilization framework considered in Su et al.14

(and what is generally expected from an approach devel-

oped within such a framework). For the sake of simplicity,

this algorithm is subsequently referred to as the S10

controller.

At all the experiments, the desired joint positions were

fixed at qd ¼ ð�=4; �=4ÞT
(rad), that is qd1 ¼ �=4 rad for

the shoulder and qd2 ¼ �=4 rad for the elbow. The initial

conditions were qð0Þ ¼ 02 (the home position), _qð0Þ ¼ 02

and, for the algorithms obtained through the proposed

scheme, �cð0Þ was taken so as to have �ð0Þ ¼ 02, while

�cð0Þ ¼ 02 was taken for the S10 controller in view of the

way it is presented by Su et al.14

The control and saturation function parameter values

were set so as to achieve pre-specified performance

requirements. Two such performance requirements were

a priori considered. The first one consisted in getting

closed-loop responses with small transient peak values

(whether as overshoot or undershoot) within a tolerance

margin level of 40% of the desired position value at every

link. The second aimed at achieving closed-loop responses

with stabilization times shorter than five seconds. Both

such requirements were achieved through a single test by

each one of the algorithms obtained from the proposed

scheme. On the contrary, the tuning procedure presented

by Su et al.14 permitted the S10 controller to achieve the

first requirement only through long stabilization times, and

the second only with high transient peak values, but not

both requirements simultaneously. The resulting control

and saturation function parameter values are presented in

Table 1. One can corroborate that inequalities (16)–(17) are

fulfilled by all the controllers obtained through the pro-

posed scheme, as well as the corresponding saturation-

avoidance inequalities (26)–(29) (through which (15b) is

guaranteed).The considered performance requirements

were achieved under an additional control-parameter

adjustment procedure that does not only take into account

the conditions obtained through the closed-loop analysis (in

the eponymous section) but also adopts the spirit of perfor-

mance-oriented tuning methods.27 Guidelines are given in

Appendix 2. The tunings for the S10 controller are labeled

as S10a and S10b for the peak and stabilization-time

requirements respectively. This labeling is subsequently

used to differentiate from the tests under tunings S10a

and S10b.

Figures 2 and 3 show the experimental results. One

sees from the graphs that in all the experiments the

control objective is achieved avoiding input saturation.

In order to establish a comparison criterion, a performance

index was evaluated for every controller: the integral

of the square of the position error (ISE), that isR tf
0
½
P2

i¼1 �q2
i ðtÞ�dt (with tf the final time of the experiment).

We further show evaluations of the stabilization time,

taken as ts ¼ inffte � 0 : k�qðtÞk � 0:02kqdk; 8t � teg,
and the largest transient peak (LTP) at every link, mea-

sured as a percentage of the corresponding desired posi-

tion. For each one of the considered quantifications (ISE,

ts, LTP), the lowest estimated value indicates the best

evaluated performance. Table 2 shows the resulting

evaluations.

One sees from the obtained values that the controller

with the lowest ISE index evaluation was the SPD-SI algo-

rithm (indicated by a check mark). On the other hand, the

algorithm with the highest ISE index value is the S10
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controller (indicating through asterisks the two higher ones,

with double asterisk for the highest). The rest of the eva-

luations give an analog idea on the system performance at

every implementation. They confirm that the algorithms

obtained from the proposed methodology were able to meet

both pre-specified performance requirements through a sin-

gle test. On the other hand, the S10 controller is the one

with the highest number of largest index evaluations.

Table 1. Control parameter values.

Parameter SP-SI-SD SPD-SI SPID-like SP-SID S10a S10b units

6000 6000 7000 6000 N m/rad
kP1 74 108 N m

500 500 350 500 N m/rad
kP2 8.5 11.5 N m

900 900 900 175 N m/rad
kI1 40.5 40.5 N m

1500 1500 700 1 N m/rad
kI2 1.9 1.9 Nm

2 2 2 2 N m s/rad
kD1 10.5 0.5 N m

2 2 2 2 N m s/rad
kD2 4.5 0.1 N m
a1 60 60 60 60 10 60 s�1

a2 60 60 60 60 210 40 s�1

b1 5 5 5 5 15 70 s�1

b2 5 5 5 5 210 20 s�1

" 0.024 0.024 0.021 0.024 s�1

� 30 170 s/rad
MP1 81 81 81 81 N m
MP2 7 7 7 7 N m
MI1 41 48 41 41 N m
MI2 2 5 2 4 N m
LI1=2 0:9MI1=2 0:9MI1=2 0:9MI1=2 0:9MI1=2 N m
MD1 22
M01 125 N m
MD2 5
M02 14 N m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

Time (s)

q̄ 1
(r

ad
)

SP-SI-SD SPD-SI SPID-like SP-SID S10a S10b

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

Time (s)

q̄ 2
(r

ad
)

Figure 2. Position errors.

Zavala-Rio et al. 9



Conclusions

Up to the submission of the present article, a methodology

for the design of output-feedback bounded PID-type con-

trollers for robot manipulators with constrained inputs,

leading to multiple saturating structures, was lacking in the

literature. For instance, it was not clear how to get a

velocity-free version of the SPD-SI state-feedback struc-

ture of Santibáñez et al.15 Such an open problem was

tackled in this work, leading to a generalized design

method and the corresponding closed-loop analysis, devel-

oped with the required rigorous formality. The proposed

scheme gives rise to bounded PID-type controllers with

multiple saturating structures, extending the degree of

design flexibility when velocity measurements are not

available. For instance, it does not only extend the SPD-

SI approach to such a velocity-free context and includes the

SP-SI-SD as a particular case, but it also offers the possi-

bility to generate innovative saturating structures as thor-

oughly shown. In addition, the design and analysis were

further addressed so as to include not only smooth, but also

nonsmooth (Lipschitz-continuous), saturation functions in

the control structure. Further efforts made possible the cor-

roboration of the analytical developments through

experimental tests on a two-DOF manipulator, which

showed the efficiency of the proposed controller. The con-

tributed approach is thus concluded to find potential appli-

cations in numerous types of autonomous robot systems,

saving these from undesirable behaviors due the actuator

saturations, releasing them from the need for speed sensors,

and opening new control design possibilities to improve

their closed-loop behavior.
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Figure 3. Control signals.

Table 2. Performance index evaluations.

Perf. index SP-SI-SD SPD-SI SPID-like SP-SID S10a S10b

ISE 0.2633 0.2242 P 0.2731 0.2454 0.3023* 0.5327**
ts 1.3227 P 1.6623 1.4945 1.8879 > 5** 4.9134*
LTP link 1 27.9% 7.3% P 28.1% 38.8%** 19.3% 32.6%*

link 2 16.6% P 30.9% 35.5%* 24.8% 23.3% 141.3%**
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Appendix 1

On the basis of bounded algorithms from previous refer-

ences, several particular control structures arise through the

proposed generalized scheme. For instance, let KD 2 Rn be

a positive definite diagonal matrix. An SP-SI-SD type algo-

rithm13,28 is obtained by defining

sdð�q; #; �Þ ¼ sDðKD#Þ (31)

giving rise to

uðq; #; �Þ ¼ �sPðKP �qÞ � sDðKD#Þ þ sI ðKI�Þ

Zavala-Rio et al. 11



where, for any x 2 Rn, sDðxÞ ¼ ð�D1
ðx1Þ; . . . ; �Dn

ðxnÞÞT
,

with �Dið�Þ, i ¼ 1; . . . ; n, being generalized saturation

functions with bounds MDi, and the involved bound values

satisfying

MPi þMDi þMIi < Ti (32)

An SPD-SI type scheme15,19 is obtained by defining

sdð�q; #; �Þ ¼ sPðKP �qþ KD#Þ � sPðKP �qÞ (33)

resulting in

uðq; #; �Þ ¼ �sPðKP�qþ KD#Þ þ sI ðKI�Þ

with bound values fulfilling

MPi þMIi < Ti (34)

An SPID-like scheme18,19 is obtained by defining

sdð�q; #; �Þ ¼ s0ðsI ðKI�Þ � sPðKP �qÞÞ � s0ðsI ðKI�Þ
� sPðKP �qÞ � KD#Þ (35)

where, for any x 2 Rn, s0ðxÞ ¼ ð�01ðx1Þ; . . . ; �0nðxnÞÞT
,

with �0ið�Þ, i ¼ 1; . . . ; n, being linear saturation functions

for ðL0i;M0iÞ, and the involved linear/generalized saturation

function parameters satisfying

MPi þMIi < L0i � M0i < Ti (36)

whence, by virtue of item (c) of Definition 1, we have

that s0ðsIðKI
��Þ � sPðKP

��ÞÞ 	 sIðKI
��Þ � sPðKP

��Þ, giving

rise to

uðq; #; �Þ ¼ s0ð�sPðKP �qÞ � KD#þ sIðKI�ÞÞ

Furthermore, the general character of the proposed

scheme permits the generation of control laws with inno-

vative saturating structure. For instance, an SP-SID type

controller can be obtained by defining

sdð�q; #; �Þ ¼ sIðKI�Þ � sIðKI�� KD#Þ (37)

resulting in

uðq; #; �Þ ¼ �sPðKP �qÞ þ sIð�KD#þ KI�Þ

with bound values fulfilling

MPi þMIi < Ti (38)

One can verify that in all the above cases the expres-

sions (15a) and (15b) are satisfied. In particular, the

input-saturation-avoidance requirement stated through

(15b) is accomplished through the fulfillment of inequal-

ities (32), (34), (36) and (38). Furthermore, from item 4

of Lemma 1, one sees that sdð�q; #; �Þ in every one of the

above cases in (31), (33), (35) and (37) satisfies inequal-

ity (15a) with

	 ¼ max
i
f�0iM kDig (39a)

�0iM ¼

�0DiM in the SP� SI� SD case

�0PiM in the SPD� SI case

�00iM in the SPID� like case

�0IiM in the SP� SID case

8>><
>>: (39b)

�0DiM , �0PiM , �00iM and �0IiM respectively being the positive

bounds of Dþ�Dið�Þ, Dþ�Pið�Þ, Dþ�0ið�Þ and Dþ�Iið�Þ, in

accordance with item 2 of Lemma 1.

Remark 5. Observe that the input-saturation-avoidance

conditions for the particular control structures presented

in this appendix, that is inequalities (32), (34), (36) and (38),

imply that MPi þMIi < Ti. On the other hand, the satisfac-

tion of inequalities (14) implies that MPi þMIi > 3Bgi.

Hence, for the specific choices of sd presented in equations

(31), (33), (35) and (37), the feasibility of the simultaneous

fulfillment of inequalities (14) and the corresponding input-

saturation-avoidance condition—(32), (34), (36) or (38),

respectively—is ensured by requiring the satisfaction of

Assumption 1 with � ¼ 3. Other particular choices of sd

in the generalized scheme (11) could require different val-

ues of � � 1.

Appendix 2

The performance-oriented tuning procedure used to obtain

the experimental results shown in the eponymous section is

sketched as follows:

1. Set the saturation function parameters (MPi, MDi,

M0i, MIi, LPi) so as to guarantee the satisfaction of

inequalities (14) and (26)–(29).

2. Set low control gains, under the consideration of (16a).

3. Adjust the velocity-estimation-subsystem para-

meters (ai, bi) under the consideration of (16b),

fixing ai such that 1=ai be six to 10 times the sam-

pling period of the controller, and bi < ai to reduce

inertial effects (inherent to the velocity estimation

dynamics), such as oscillations.

4. Run simulations/experiments with coefficient "
adhering to (17), if possible, or as small as the

closed-loop stability permits it. If the resulting

closed-loop response is satisfactory then stop, oth-

erwise perform the following steps.

5. Increase integral gains, kIi, so as to strengthen the

elimination of position errors, aiming at reducing

stabilization times.

6. Increase proportional gains, kPi, in order to reduce

the rise time (speed up the closed-loop response).

7. Increase derivative gains, kDi, in order to reduce

inertial effects (particularly added by the integral

actions), such as the overshoot.

8. Repeat steps 3–4.
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