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Set-Reset Flip-Flop Circuit with a Simple
Output Logic
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Abstract

The equation of the plane (EOP) in analytic geometry is used to build a
logic dynamic architecture, i.e., a combination of set-reset flip flop (SR-FF)
and basic logic gates. This is achieved by using two of the variables in the
EOP as the input signals of the SR-FF and the remaining variable as the
output signal. This theoretical proposal for mixing the SR-FF and the basic
logic gates is confirmed experimentally by means of a simple electronic im-
plementation.
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Camino a la Presa San José 2055, Col. Lomas 4a sección, CP. 78216, San Luis Potośı,
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1 Introduction

Nonlinear dynamics is an important source of a rich variety of patterns which
can be used in devices representing natural systems or even to perform com-
putational tasks. Since about a decade, there is much interest in developing
a type of dynamic logic architecture called chaos computing in which chaotic
(non-linear) elements are employed to get the logical operations [14, 15].
There is already some progress concerning experimental setups whose func-
tioning is based on this type of logic architecture [12, 6, 2]. The main goal
in the applications is to achieve flexible structures that are able to change
their response according to the control parameters and at the same time to
reconfigure the settings of the device in order to obtain whatever logic result.
In 1998, Sinha and Ditto [14] showed how a lattice of coupled chaotic maps
can be used to simulate logic gates and perform specific arithmetic opera-
tions. This was the initial theoretical step indicating the possibility to build
logic devices with dynamical architecture for computers and by 2005 Kuo [5]
briefly reviewed the potential of chaotic elements to perform universal com-
puting. More recently, Ditto and collaborators [4] reviewed the basic tenets
of the chaos computing emerging paradigm and also discussed some proof of
concept chips. In many theoretical works, the logistic maps are the chaotic
elements used to simulate logic gates. Moreover, Sinha and Ditto [15] ex-
tended the scheme to encode numbers, perform specific arithmetic operations
such as addition and multiplication, and other algorithms. Currently, there is
stimulating research activity in exploiting the logic features of the nonlinear
dynamical systems through their electronic and optoelectronic implementa-
tions, see [9, 7, 10, 8] and [13, 16], respectively. In addition, we point out
that there are works in the literature on the reconfigurable properties of the
neurons from the standpoint of Boolean logic gates, see e.g., [3].

The next step towards a full dynamical logic architecture is to build a
device that has some elements of memory. The flip-flop electronic circuits are
among the simplest ones since they are bistable oscillators that has two stable
states and also one bit of memory. The fundamental latch of this type is the
simple SR-FF. It is usually constructed from a pair of cross-coupled NAND
or NOR logic gates. Such pairs of logic gates are called logic cells. The aim of
this work is to present the theoretical and experimental results obtained by
means of a simple SR-FF electronic circuit with dynamic logic architecture.
The circuit design is based on the equation of the plane in analytic geometry.
The electric diagram of the logic scheme is easy to implement in this type of
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electronic circuit and the experimental results comply with the theoretical
arguments given here. A few years ago, Cafagna and Grassi [1] proposed
a SR flip flop based on a parallel architecture with a single chaotic Chua
circuit. The difference between their work and the present one resides in the
fact that their circuit has a full nonlinear dynamics whereas our circuit is
essentially based on a linear dynamics. On the other hand, the designs of
the two circuits are rather similar.

2 EOP and logic cells

In this section, we first show how to obtain a logic cell (LC) using the EOP.
Next, we present the procedure to get an EOP-based SR-FF. Consider the
EOP of the form

Ax1 +Bx2 + Cx3 +D = 0 , (1)

where A, B, and C are real constants and x1 and x2 are the input states of
the logic cell with x3 as its output. Then, the output function of the logic
cell is given by

x3 = N1x1 +N2x2 +M , (2)

where N1 = −A/C, N2 = −B/C and M = −D/C. Since LCs work with
binary values, the states x1 and x2 are restricted to take values only from the
set {0, 1}. Thus, the output function takes the values displayed in Table 1.

x1 x2 x3

0 0 M
0 1 N2 +M
1 0 N1 +M
1 1 N1 +N2 +M

Table 1: The output x3 given by the EOP equation (2) for the binary-valued
inputs x1 and x2.

The LC has two different outputs if N1 ̸= N2 for the inputs (0, 1) and
(1, 0), but the same output is obtained if N1 = N2. Thus, we set N1 =
N2 = N which provides the following outputs: U = M for the input (0, 0),
V = N +M for the inputs (0, 1) or (1, 0), and W = 2N +M for (1, 1). A
possible location of the outputs U , V , and W is illustrated in Figure 1, where
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we also display an open interval Ik = (−k, k) that generates a partition of
the output phase space into Ik and its complement Ick = (−∞,−k] ∪ [k,∞).

x

k-k M N+M 2N+M0

3

Fig. 1: The outputs x3 of the EOP linear function and the open interval )k =
(−k, k) used in the partition of the output phase space.

Now, it is possible to define a binary output under the following operation
rule

y(x3) =

{
1, if |x3| < k ,
0, otherwise .

(3)

Equations (2) and (3) define our LC. If the values of M and N are fixed
at whatever real values, then there are several cases that produce different
logic outputs. The interesting cases occur under the following assumption

0 < k < N < 2k . (4)

Then, from the different sets of the output values of {U, V,W} one can
get the following logic gates

Case I: if U ∈ Ik and V,W ∈ Ick. Then, the LC produces a NOR gate.

Case II: if U, V ∈ Ik and W ∈ Ick. Then, the LC produces a NAND gate.

Case III: if V ∈ Ik and U,W ∈ Ic. Then, the LC produces a XOR gate.

Case IV: if V,W ∈ Ik and U ∈ Ick. Then, the LC produces an OR gate.

Case V: if W ∈ Ik and U, V ∈ Ick. Then, the LC produces an AND gate.

The result of equations (2) and (3) is presented in Table 2.
We are ready now to develop a flip-flop procedure based on the EOP.

Roughly speaking, a SR-FF device takes into account its output in order to
elaborate a new output. Thus, in our case, we will consider a special type of
feedback y for the EOP equation (2)

x3 = N1x1 +N2x2 +M − Fy , (5)

4



NOR NAND XOR OR AND
00 1 1 0 0 0
01 0 1 1 1 0
10 0 1 1 1 0
11 0 0 0 1 1

Table 2: The logic gates as produced by equations 2 and 3 under the condition 4.

x1 x2 x3

0 0 M − Fy
0 1 N2 +M − Fy
1 0 N1 +M − Fy
1 1 M − Fy

Table 3: The RS-FF output x3 according to equation (5).

where one should take N1 ̸= N2 because the SR-FF inputs (0, 1) and (1, 0)
add up to different results. Assuming that 0 < M and N1 = −N2, the
resulting logical output x3 is shown in Table 3. The feedback signal y acts
like an offset. When it is in the lower state the offset is turned off, see
Figure 2 (a), and if it is in the upper state the offset is turned on, see
Fig. 2 (b). In order to get a SR-FF, the following requirements should be
fulfilled 0 < N2 +M < k < M , see Fig. 2 (a) and M −F < k, see Fig. 2 (b).

Finally, making the change of variables x1 = S, x2 = R and y = Q in
equations (3) and (5) one can get the SR-FF rules displayed in Table 4, where
the subindex n corresponds to the present state, while the symbol X stands
for Qn or Q̄n because the input (1,1) can be chosen at will.

It is worth noting that the SR flip flop structure proposed here has only

x

k-k M

N2+M N1+M

0

3

y=0

x

k-k

M-FN2+M-F N1+M-F

0

3

y=1

(a) (b)

Fig. 2: (a) The output x3 when the offset signal is turned off and (b) when it is
turned on.
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S R Qn+1

0 0 Qn

0 1 0
1 0 1
1 1 X = Qn

Table 4: The SR-FF rules for the case X = Qn. On the other hand, the case
X = Q̄n occurs when N1 ̸= N2.

one feedback loop which is different of the standard flip flop based on two
logic gates as used by Cafagna and Grassi [1]. This may be seen as an
advantage since one can define the SR flip flop input (1,1) at will instead of
being forbidden.

The approach presented here is confirmed experimentally in the electronic
circuit presented in the next section.

3 Electronic Implementation of the SR-FF

Figure 3 shows the design of the schematic diagram of the SR-FF. This circuit
consists of four comparators LM311 (labeled as A,B,C,D), four operational
amplifiers TL081 (labeled as G,H, I, J), and thirteen resistors.

The circuit shown in Fig. 3 operates under the following logic states: The
zero and one logic states have the potentials 0 V and 5 V, respectively. The
design of the circuit permits that the potentials in the a and b nodes depend
on the input values at x1 and x2. The outputs of the LM311 comparators
A and B simulate a multiplication between N1 and x1 signals at the a node
and between N2 and x2 signals at the b node, respectively. Thus, if x1 is
one logic, the potential at the a node is approximately N1 because of the

restriction R1 > 10R0,
R1

R0 +R1

N1 ≃ N1. The other case is when x1 is equal

to zero implying a zero potential at the a node. In the same way, if x2 is one
logic, the potential at the b node is approximately N2 under the restrictions

R3 > 10R2,
R3

R2 +R3

N2 ≃ N2. With the assumption that N1 = −N2, it

is necessary to add an operational amplifier (labeled as G) with negative
unitary gain, in which case the output is c = −bR4/R3. Then the potential
at the x3 node is obtained from the following equation
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Fig. 3: Schematic diagram for the LC: a) if SW = open, we get a logic gate, b) if
SW = close, we get the SR-FF.

x3 =


R9R7

R8

(
a

R1

+
c

R5

+
M

R6

)
, if SW = open ,

R9R7

R8

(
a

R1

+
c

R5

+
M

R6

− e

R10

)
, if SW = close ,

(6)

whereM is an offset value, e = −yR11/R12, and SW is an interruptor allowing
the operation of the circuit as a flip flop or logic gate. The electronic design
considers equal resistances for the set of resistorsR1, R3, R4, R5, R6, R7, R8, R9

and R10, such that equation (6) takes the form

x3 =

{
N1x1 −N2x2 +M, if SW = open ,
N1x1 −N2x2 +M − Fy, if SW = close ,

(7)

where F = R11/R12. Finally, the comparators C and D define the open inter-
val Ik = (−k, k), where the y potential takes the one logic or zero logic values
if the potential in the x3 node belongs to the interval Ik or Ick, respectively.
This operation corresponds to equation (3).
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We implemented this electronic design on a printed circuit board (PCB)
manufactured in our laboratory. A Tektronix PS280 unit provides ±15 V to
the comparators LM311 and operational amplifiers TL081. The resistances
of the resistors employed experimentally R1, R3, R4, R5, R6, R7, R8, R9 and
R10 have been all equal to 10 kΩ, while in the case of the resistors R0, R2 and
R13 we used 500Ω. The values of the F ratio and the potentials N1, N2, M
and k are shown in Table 5. The maximum frequency for stable operation of
the device is 1 MHz and the power consumption is 480 mW.

AND NAND SR-FF
N1 2 1.2 1
N2 -4 -0.5 -3
M 6 0.5 1.5
F 1 1 1

5

k 1 1 1

Table 5: The numerical values of the quantities in the utmost left column for the
logic gates AND and NAND and for the SR-FF.

Fig. 4: The inputs and output of the basic logic gate AND for the numerical values
given in Table 5.

Figure 4 shows the inputs and the output of the basic logic gate AND
according to the values given in Table 5. The first (upper signal) and second
(middle signal) channels correspond to the x1 and x2 inputs of (7) with SW
open. The frequency of the x1 signal is twice the frequency of x2 signal in
order to get the 00, 01, 10, 11 sequence. The third channel (down signal)
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corresponds to the y(x3) output of equation (3). Figure 5 shows the inputs

Fig. 5: The same as in the previous figure but for the basic logic gate NAND.

and the NAND output according to the values given in Table 5. The first
(upper signal) and second (middle signal) channels correspond to the x1 and
x2 inputs of (7) with SW open. The third channel (down signal) corresponds
to the y(x3) output of equation (3). Finally, Fig. 6 shows the inputs and the

Fig. 6: The same as in the previous figure but for the SR flip flop. Notice that
the input (1,1) is defined as the previous state Qn.

output of the flip flop according to the values given in Table 5. The first
(upper signal) and second (middle signal) channels correspond to the x1 and
x2 inputs of (7) with SW close. The third channel (down signal) corresponds
to y(x3) output of equation (3).
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4 Conclusions

In this paper, we first presented a reconfigurable analog block able to sim-
ulate different logic gates and a SR-FF with the logic of the output signal
based on the equation of the plane in analytic geometry. In addition, we val-
idate this simple approach with some experimental results. The electronic
circuit we propose has a dynamical architecture allowing the behavior of both
basic logic gates and SR-FF. Such circuit realizations have many potential
applications in reconfigurable computing. Finally, we notice that our design
can be manufactured on just one chip because the final electronic circuit
contains only semiconductors and passive components. This could lead to
the reduction of the power supply.
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