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Abstract –*** Missing author ***

The comment of Schulze-Halberg [1] on our work
[2] stems from the formalism of Darboux covariance of
second-order differential operators [3]. We thus recall that
two second-order linear differential operators D1 and D2

are Darboux covariant, or isospectral, if: (i) their factor-
izations are of the type D1 = L1L2 and D2 = L2L1, re-
spectively, and (ii) their eigenfunctions are related through
ψ2 = Lψ1, where L is known as the intertwining operator.
The L1,2 operators are first order and their non-operatorial
part is the logarithmic derivative of an eigenfunction ψ1,
or a linear combination of eigenfunctions of D1. In the
simplest constructions of this type, the nodeless ground
state of D1 is employed. The non-operatorial part of the
intertwiner L is also a logarithmic derivative of a func-
tion that should be linearly independent with respect to
ψ1. The Darboux covariance led in the 1980s to the de-
velopment of the rich area of supersymmetric quantum
mechanics [4].

On the other hand, our application is in the area of clas-
sical mechanics where the Darboux covariance should be
applied at fixed zero ‘spectral parameter’, where, as shown
by Schulze-Halberg, there is a direct relationship between
the function used in the intertwiner and ψ1. Then, at the
formal level, Schulze-Halberg obtains closed form expres-
sions of the solutions of the two Darboux partner equa-
tions in terms of the factorization coefficients α and β.
This is an important formal result. However, although it

might look like a simplification, we want to point out that
one still should substitute into formulas (10) and (11) our
expressions of α and β in order to show that the solutions
are the ones we obtained. In other words, for equations
of given structure, α and β can be obtained only through
the method explained in our papers [2, 5, 6] in which the
factorizations have been used for convenience since it is
not easy to disentangle their expressions directly from the
equation. Thus, the results of Schulze-Halberg are of rel-
evance once the two factorization coefficients have been
determined and for designed differential equations by giv-
ing the expressions of α and β.

Suppose, for example, that we give α = x and β = 1,
then the αβ designed equation is

ψ′′ +

(
x+

2

x

)
ψ′ + ψ = 0 (1)

whose general solution calculated with the formula (10) of
Schulze-Halberg is

ψ =
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. (2)

On the other hand, the Darboux partner equation is

ϕ′′ + xϕ′ + ϕ = 0 (3)
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whose general solution calculated with formula (11) of the
Comment is

ϕ = exp

(
−x

2

2

)∫ x

exp

(
t2

2

)
dt . (4)

However, if the equation to be analysed is

y′′ +
4ω0

sin 2ω0t
y′ + ω2

0y = 0 , (5)

and one knows a priori it is an αβ-designed equation but
without knowing α and β, it will not be easy to find α and
β and one should use standard methods such as those in
our papers. In fact, equation (5) corresponds to the case
λ = 1 and therefore it is still a singular oscillator equation
but we use it herein for illustrative purposes. Then, it is
easy to check that

y =
ω0

sinω0t
(6)

is a particular solution of (5) that we extracted from the
expression of the general solution given in our paper [2]
for C1 = 0 and C2 = ω0.
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[2] ROSU H.C., CORNEJO-PÉREZ O. and CHEN P., Eu-
rophys. Lett., 100 (2012) 60006.

[3] ROSU H. C., Short survey of Darboux transformations,
in Symmetries in Quantum Mechanics and Quantum
Optics, Eds. F. J. Herranz, A. Ballesteros, L. M. Ni-
eto, J. Negro and C. M. Perena (Serv. de Publ. Univ.
Burgos, Burgos, Spain) 1999.

[4] COOPER F., KHARE A and SUKHATME U., Super-
symmetry in Quantum Mechanics (World Scientific, Sin-
gapore) 2001.

[5] REYES M.A., ROSU H.C. and GUTIÉRREZ M.R.,
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