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Abstract

Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in

different orthogonal bases is a constant equal to 1/
√

d, with d the dimension of the finite Hilbert

space, are becoming more and more studied for applications such as quantum tomography and

cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum

optics. Complete sets of MUBs of cardinality d + 1 have been derived for prime power dimensions

d = pm using the tools of abstract algebra. Presumably, for non prime dimensions the cardinality

is much less.

Here we reinterpret MUBs as quantum phase states, i.e. as eigenvectors of Hermitean phase

operators generalizing those introduced by Pegg & Barnett in 1989. We relate MUB states to

additive characters of Galois fields (in odd characteristic p) and to Galois rings (in characteristic

2). Quantum Fourier transforms of the components in vectors of the bases define a more general

class of MUBs with multiplicative characters and additive ones altogether. We investigate the

complementary properties of the above phase operator with respect to the number operator. We

also study the phase probability distribution and variance for general pure quantum electromagnetic

states and find them to be related to the Gauss sums, which are sums over all elements of the field

(or of the ring) of the product of multiplicative and additive characters.

Finally, we relate the concepts of mutual unbiasedness and maximal entanglement. This allows to

use well studied algebraic concepts as efficient tools in the study of entanglement and its information

aspects.

2



I. INTRODUCTION

In quantum mechanics, orthogonal bases of a Hilbert space Hq of finite dimension q are

mutually unbiased if inner products between all possible pairs of vectors of distinct bases

are all equal to 1/
√
q. Eigenvectors of ordinary Pauli spin matrices (i.e. in dimension q = 2)

provide the best known example. It has been shown that in dimension q = pm which is

the power of a prime p, the complete sets of mutually unbiased bases (MUBs) result from

Fourier analysis over a Galois field Fq (in odd characteristic p)[1] or of Galois ring R4m(in

even characteristic 2)[2]. In[3, 4], one can find an exhaustive literature on MUBs . Complete

sets of MUBs have an intrinsic geometrical interpretation, and were related to discrete phase

spaces[3, 5, 6], finite projective planes[7, 8], convex polytopes [9], and complex projective

2-designs[10, 11]. There are hints on the relation to symmetric informationally complete

positive operator measures (SIC-POVMs)[12, 13, 14, 15], and to Latin squares[16].

There are strong motivations to embark on detailed studies of MUBs. First, they en-

ter rigorous treatments of Bohr’s principle of complementarity that distinguishes between

quantum and classical systems at the practical level of measurements. This fundamental

quantum principle introduces the idea of complementary pairs of observables in the sense

that precise measurement of one of them implies that possible outcomes of the other (when

measured) are equally probable. In the nondegenerate case, if an observable O represented

by a q times q hermitian matrix is measured in a quantum system prepared in the eigenbase

of its complementary counterpart Oc, then the probability to find the system in one of the

eigenstates of O is just 1/q as corresponding to mutually unbiased inner products. Another

domain of applications where MUBs have been found to play an important role is the field

of secure quantum key exchange (quantum cryptography). In the area of quantum state

tomography, one should use MUBs for a complete reconstruction of an unknown quantum

state [17].

In this paper we approach the MUBs theory from the point of view of the theory of

additive and multiplicative characters in Galois number field theory. The multiplicative

characters ψk(n) = exp(2iπnk
q−1

), k = 0...q − 2, are well known since they constitute the basis

for the ordinary discrete Fourier transform. But in order to construct MUBs, the additive

characters introduced below are the ones which are useful. This construction is implicit in

some previous papers[1, 2, 4], and is now being fully recognized[18, 19].
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An interesting consequence is the following: the discrete Fourier transform in Zq has

been used by Pegg & Burnett [20] as a definition of phase states |θk〉, k = 0...q − 1, in Hq.

The phase states |θk〉 could be considered as eigenvectors of a properly defined Hermitian

phase operator ΘPB. Phase properties and phase fluctuations attached to particular field

states were extensively described. In particular the classical phase variance π2/3 could be

recovered.

We construct here a phase operator ΘGal having phase MUBs as eigenvectors. In contrast

to the case of ΘPB, we find that the phase fluctuations of ΘGal can be expressed in terms of

Gauss sums over the finite number field Fq, and could be in principle smaller than those due

to ΘPB. This points to the fact that the phase MUBs may be of interest for quantum signal

processing. Character sums and Gauss sums which are useful for optimal bases of m-qudits

(p odd) are also generalized to optimal bases of m-qubits (p = 2).

II. PHASE MUBS IN ODD PRIME CHARACTERISTIC

A. Mathematical preliminaries

The key relation between Galois fields Fq and MUBs is the theory of characters. This

has not been recognized before and here we use the standpoint of characters as the most

general way of considering previous results and also as a better criterium for elaborating on

future results.

A Galois field is a finite set structure endowed with two group operations, the addition

“+” and the multiplication “·”. The field Fq can be represented as classes of polynomials

obtained by computing modulo an irreducible polynomial over the ground field Fp = Zp,

the integers modulo p[21]. A Galois field exists if and only if q = pm. We also recall that

Fq[x] is the standard notation for the set of polynomials in x with coefficients in Fq.

A character κ(g) over an abelian group G is a (continuous) map from G to the field of

complex numbers C of unit modulus, i.e. such that |κ(g)| = 1, g ∈ G.

We start with a map from the extended field Fq to the ground field Fp which is called

the trace function

tr(x) = x+ xp + · · ·+ xpm−1 ∈ Fp, ∀ x ∈ Fq. (1)
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Using (1), an additive character over Fq is defined as

κ(x) = ωtr(x)
p , ωp = exp(

2iπ

p
), x ∈ Fq. (2)

The main property is that it satisfies κ(x+ y) = κ(x)κ(y), x, y ∈ Fq.

On the other hand, the multiplicative characters are of the form

ψk(n) = ωnk
q−1, k = 0...q − 2, n = 0...q − 2. (3)

In the present research, the construction of Galois phase MUBs will be related to character

sums with polynomial arguments f(x) also called Weil sums[2]

Wf =
∑

x∈Fq

κ(f(x)). (4)

In particular, ( theorem 5.38 in [21]), for a polynomial fd(x) ∈ Fq[x] of degree d ≥ 1, with

gcd(d, q) = 1, one gets Wfd
≤ (d− 1)q1/2.

The quantum fluctuations arising from the phase MUBs will be found to be related to

Gauss sums of the form

G(ψ, κ) =
∑

x∈F ∗

q

ψ(x)κ(x) , (5)

where F ∗
q = Fq −{0}. Using the notation ψ0 for a trivial multiplicative character ψ = 1, and

κ0 for a trivial additive character κ = 1 the Gaussian sums (5) satisfy G(ψ0, κ0) = q − 1;

G(ψ0, κ) = −1; G(ψ, κ0) = 0 and |G(ψ, κ)| = q1/2 for nontrivial characters κ and ψ.

B. Galois quantum phase states

We now introduce a class of quantum phase states as a “Galois” discrete quantum Fourier

transform of the Galois number kets

|θ(y)〉 =
1√
q

∑

n∈Fq

ψk(n)κ(yn)|n〉, y ∈ Fq (6)

in which the coefficient in the computational base {|0〉, |1〉, · · · , |q−1〉} represents the product

of an arbitrary multiplicative character ψk(n) by an arbitrary additive character κ(yn).

It is easy to show that previous basic results in this area can be obtained as particular

cases of (6). Indeed:
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Pegg & Barnett (1989): For κ = κ0 and ψ ≡ ψk(n), one recovers the ordinary quantum

Fourier transform over Zq. It has been shown[20] that the corresponding states

|θk〉 =
1√
q

∑

n∈Zq

ψk(n)|n〉, (7)

are eigenstates of the Hermitian phase operator

ΘPB =
∑

k∈Zq

θk|θk〉〈θk|, (8)

with eigenvalues θk = θo + 2πk
q

, θ0 an arbitrary initial phase.

Wootters & Fields (1989): We recover the result of Wootters and Fields in a more general

form by employing the Euclidean division theorem (see theorem 11.19 in [22]) for the field Fq,

which says that given any two polynomials y and n in Fq, there exists a uniquely determined

pair (a, b) ∈ Fq ×Fq , such that y = an+ b, deg(b) < deg(a). Using the decomposition of the

exponent in (6), we obtain

|θa
b 〉 =

1√
q

∑

n∈Fq

ψk(n)κ(an2 + bn)|n〉, a, b ∈ Fq. (9)

(The result of Wootters & Fields corresponds to the trivial multiplicative character ψ0 = 1).

Eq. (9) defines a set of q bases (with index a) of q vectors (with index b). Using Weil sums

(4) it is easily shown that, for q odd, so that gcd(2, q) = 1, the bases are orthogonal and

mutually unbiased to each other and to the computational base

|〈θa
b |θc

d〉| = |1
q

∑

n∈Fq

ωtr((c−a)n2+(d−b)n
p | =







δbd if c = a (orthogonality)

1√
q

if c 6= a (unbiasedness).
(10)

III. QUANTUM FLUCTUATIONS OF PHASE MUBS IN ODD PRIME CHAR-

ACTERISTIC

Following Pegg and Barnett, a good procedure to examine the phase properties of a

quantized electromagnetic field state is by introducing a phase operator and this was one

of the reasons that led them to introduce their famous Hermitian phase operator ΘPB. In

Section 6 of their seminal paper they showed “for future reference” how their phase operator

could be employed to achieve this goal. In this section we proceed along the same lines using

the phase form of the Wootters-Field MUBs.
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A. The Galois phase operator

On the other hand, the phase MUBs as given in (9) are eigenstates of a “Galois” quantum

phase operator

ΘGal =
∑

b∈Fq

θb|θa
b 〉〈θa

b |, a, b ∈ Fq. (11)

with eigenvalues θb = 2πb
q

. We use this fact to perform several calculations of quantum phase

expectation values and phase variances for these MUBs.

Using (9) in (11) and the properties of the field theoretical trace the Galois quantum

phase operator reads

ΘGal =
2π

q2

∑

m,n∈Fq

ψk(n−m)ωtr[a(n2−m2)]
p S(n,m)|n〉〈m| , (12)

where S(n,m) =
∑

b∈Fq
bω

tr[b(n−m)]
p . In the diagonal matrix elements, we have the partial

sums

S(n, n) =
q(q − 1)

2
, (13)

so that 〈n|ΘGal|n〉 = π(q−1)
q

. In the non-diagonal matrix elements, the partial sums can be

calculated from

∑

b∈Fq

bxb = x(1 + 2x+ 3x2 + · · ·+ qxq−1) = x
[ 1 − xq

(1 − x)2
− qxq

1 − x

]

=
xq

x− 1
, (14)

where we introduced x = ω
tr(n−m)
p and we made use of the relation xq = 1. Finally, we get

S(m,n) =
q

1 − ω
tr(m−n)
p

. (15)

B. The Galois phase-number commutator

Using (12) and the Galois number operator

N =
∑

l∈Fq

l|l〉〈l|, (16)

the matrix elements of the phase-number commutator [ΘGal, N ] are calculated as

uGal(n,m) =
2π

q2
(n−m)ψk(n−m)ωtr[a(n2−m2)]

p S(n,m). (17)

The diagonal elements vanish, the corresponding matrix is anti-Hermitian since uGal(n,m) =

−u†Gal(m,n), and the states are pseudo-classical since limq→∞ uGal(n,m) = 0. These prop-

erties are similar to those of the Pegg & Barnett commutator.
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C. Galois phase properties of a pure quantum electromagnetic state

For the evaluation of the phase properties of a general pure state of an electromagnetic

field mode in the Galois number field we proceed similarly to Pegg & Barnett. Thus, we

consider the pure state of the form

|f〉 =
∑

n∈Fq

un|n〉, with un =
1√
q

exp(inβ), (18)

where β is a real parameter, and we sketch the computation of the phase probability distri-

bution | < θb|f > |2, the phase expectation value < ΘGal >=
∑

b∈Fq
θb| < θb|f > |2 and the

phase variance < ∆Θ2
Gal >=

∑

b∈Fq
(θb− < ΘGal >)2| < θb|f > |2, respectively (the upper

index a for the base is implicit and we discard it for simplicity).

The two factors in the expression for the probability distribution

1

q2
[
∑

n∈Fq

ψk(−n) exp(inβ)κ(−an2 − bn)][
∑

m∈Fq

ψk(m) exp(−imβ)κ(am2 + bm)], (19)

have absolute values bounded by the absolute value of generalized Gauss sums G(ψ, κ) =
∑

x∈Fq
ψ(g(x))κ(f(x)), with f, g ∈ Fq[x]. Weil [23] showed that for f(x) of degree d with

gcd(d, q) = 1 as in (4), under the constraint that for the multiplicative character ψ of order

s, the polynomial g(x) should not be a sth power in Fq[x] and with ν distinct roots in the

algebraic closure of Fq, the order of magnitude of the sums is (d + ν − 1)
√
q. For a trivial

multiplicative character ψ0, and β = 0, the overall bound is | < θb|f > |2 ≤ 1
q

and it follows

that the absolute value of the Galois phase expectation value is bounded from above as

expected for a common phase operator

| < ΘGal > | ≤ 2π

q2

∑

b∈Fq

b ≤ π. (20)

The exact formula for the phase expectation value reads

< ΘGal >=
2π

q3

∑

m,n∈Fq

eβ(m,n)S(m,n), (21)

where eβ(m,n) = ψk(m−n) exp[i(n−m)β]χ[a(m2−n2)] and the sums S(m,n) were defined

in (13) and (15). The set of all the q diagonal terms m = n in < ΘGal > contributes an

order of magnitude 2π
q3 qS(n, n) ≃ π. The contribution from off-diagonal terms in (21) are

not easy to evaluate analytically; we were able to show that for them one has |S(m,n)| =

q
2
| sin[π

p
tr(n−m)]|−1.
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The phase variance can be written as

< ∆Θ2
Gal >=

∑

b∈Fq

(θ2
b − 2θb < ΘGal >)| < θb|f > |2. (22)

The term < ΘGal >2
∑

b∈Fq
| < θb|f > |2 does not contribute since it is propor-

tional to the Weil sum
∑

b∈Fq
ω

tr(b(n−m)
p = 0. As a result a cancellation of the quantum

phase fluctuations may occur in (22) from the two extra terms of opposite sign. But

the calculation are again not easy to perform analytically. For the first term one gets

2(2π/q2)2
∑

m,n∈Fq
eβ(m,n)|S(m,n)|2 . The second term in (22) is −2

∑

b∈Fq
θb < ΘGal >

| < θb|f > |2 = −2 < ΘGal >
2. Partial cancellation occurs in the diagonal terms of (22)

leading to the contribution ≈ −2π2

3
which is still twice (in absolute value) the amount of

phase fluctuations in the classical regime. A closed form for the estimate of the non-diagonal

terms is still an open problem.

IV. PHASE MUBS FOR m-QUBITS

A. Mathematical preliminaries

The Weil sums (4) which have been proved useful in the construction of MUBs in odd

characteristic p (and odd dimension q = pm), are not useful in characteristic p = 2, since in

this case the degree 2 of the polynomial fd(x) is such that gcd(2, q)=2.

An elegant method for constructing complete sets of MUBs of m-qubits was found by

Klappenecker and Rötteler[2]. It makes use of objects belonging to the context of quaternary

codes [24], the so-called Galois rings R4m ; we refer the interested reader to their paper for

more mathematical details. We present a brief sketch in the following.

Any element y ∈ R4m can be uniquely determined in the form y = a + 2b, where a and

b belong to the so-called Teichmüller set Tm = (0, 1, ξ, · · · , ξ2m−2), where ξ is a nonzero

element of the ring which is a root of the so-called basic primitive polynomial h(x) [2].

Moreover, one finds that a = y2m

. We can also define the trace to the base ring Z4 by the

map

t̃r(y) =
m−1
∑

k=0

σk(y), (23)

where the summation runs over R4m and the Frobenius automorphism σ reads

σ(a+ 2b) = a2 + 2b2. (24)
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In the Galois ring of characteristic 4 the additive characters are

κ̃(x) = ω
t̃r(x)
4 = it̃r(x). (25)

The Weil sums (4) are replaced by the exponential sums [2]

Γ(y) =
∑

u∈Tm

κ̃(yu), y ∈ R4m (26)

which satisfy

|Γ(y)| =



















0 if y ∈ 2Tm, y 6= 0

2m if y = 0
√

2m otherwise.

(27)

Gauss sums for Galois rings were constructed [26]

Gy(ψ̃, κ̃) =
∑

x∈R4m

ψ̃(x)κ̃(yx), y ∈ R4m , (28)

where the multiplicative character ψ̄(x) can be made explicit [26].

Using the notation ψ̄0 for a trivial multiplicative character and κ̃0 for a trivial additive

character, the Gaussian sums (28) satisfy Gy(ψ̃0, κ̃0) = 4m; Gy(ψ̃, κ̃0) = 0 and |Gy(ψ̃, κ̃)| ≤
2m.

B. Phase states for m-qubits

The quantum phase states for m-qubits can be found as the “Galois ring” Fourier trans-

form

|θ(y)〉 =
1√
2m

∑

n∈Tm

ψ̃k(n)κ̃(yn)|n〉, y ∈ R4m . (29)

Using the Teichmüller decomposition in the character function κ̃ one obtains

|θa
b 〉 =

1√
2m

∑

n∈Tm

ψ̃k(n)κ̃[(a + 2b)n]|n〉, a, b ∈ Tm. (30)

This defines a set of 2m bases (with index a) of 2m vectors (with index b). Using the

exponential sums (26), it is easy to show that the bases are orthogonal and mutually unbiased

to each other and to the computational base. The case ψ̄ ≡ ψ̄0 was obtained before [2].
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C. Phase MUBs for m-qubits: m = 1, 2 and 3

For the special case of qubits, one uses t̃r(x) = x in (30) so that the three pairs of MUBs

are given as

[|0〉, |1〉]; 1√
2
[|0〉 + |1〉, |0〉 − |1〉]; 1√

2
[|0〉 + i|1〉, |0〉 − i|1〉].

For 2-qubits one gets a complete set of 5 bases as follows

(|0〉, |1〉, |2〉, |3〉);
1
2
[|0〉 + |1〉 + |2〉 + |3〉, |0〉+ |1〉 − |2〉 − |3〉, |0〉 − |1〉 − |2〉 + |3〉, |0〉 − |1〉 + |2〉 − |3〉]

1
2
[|0〉 − |1〉 − i|2〉 − i|3〉, |0〉 − |1〉 + i|2〉 + i|3〉, |0〉 + |1〉 + i|2〉 − i|3〉, |0〉 + |1〉 − i|2〉 + i|3〉]

1
2
[|0〉 − i|1〉 − i|2〉 − |3〉, |0〉 − i|1〉 + i|2〉 + |3〉, |0〉 + i|1〉 + i|2〉 − |3〉, |0〉+ i|1〉 − i|2〉 + |3〉]

1
2
[|0〉 − i|1〉 − |2〉 − i|3〉, |0〉 − i|1〉 + |2〉 + i|3〉, |0〉 + i|1〉 + |2〉 − i|3〉, |0〉 + i|1〉 − |2〉 + i|3〉],

(31)

and for 3-qubits a complete set of 9 bases

(|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉);
1
4
[|0〉 + |1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉, |0〉+ |1〉 − |2〉 + |3〉 − |4〉 − |5〉 − |6〉 + |7〉,

|0〉 − |1〉 + |2〉 − |3〉 − |4〉 − |5〉 + |6〉 − |7〉, |0〉+ |1〉 − |2〉 − |3〉 − |4〉 + |5〉 + |6〉 − |7〉,

|0〉 − |1〉 − |2〉 − |3〉 + |4〉 + |5〉 − |6〉 + |7〉, |0〉 − |1〉 − |2〉 + |3〉 + |4〉 − |5〉 + |6〉 − |7〉,

|0〉 − |1〉 + |2〉 + |3〉 − |4〉 + |5〉 − |6〉 − |7〉, |0〉+ |1〉 + |2〉 − |3〉 + |4〉 − |5〉 − |6〉 − |7〉],

· · · (32)

where only the first two bases have been written down for brevity reasons.

Quantum phase states of m-qubits (30) are eigenstates of a “Galois ring” quantum phase

operator as in (11), and calculations of the same type as to those performed in Sect. (III)

can be done, since the t̃r operator (23) fulfills rules similar to the tr operator (1). By analogy

to the case of qudits in dimension pm, p an odd prime, phase properties for sets of m-qubits

heavily rely on the Gauss sums (28). The calculations are tedious once again but can in

principle be achieved in specific cases.
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V. MUTUAL UNBIASEDNESS AND MAXIMAL ENTANGLEMENT

Roughly speaking, entangled states in Hq cannot be factored into tensorial products of

states in Hilbert spaces of lower dimension. We show now that there is an intrinsic relation

between MUBs and maximal entanglement (see below).

We start with the familiar Bell states

(|B0,0〉, |B0,1〉) = 1√
2
(|00〉 + |11〉, |00〉 − |11〉), (|B1,0〉, |B1,1〉) =

1√
2
(|01〉 + |10〉, |01〉 − |10〉),

where the compact notation |00〉 = |0〉⊙|0〉, |01〉 = |0〉⊙|1〉,. . . , is employed for the tensorial

products.

These states are both orthonormal and maximally entangled, i.e., such that

trace2|Bh,k〉〈Bh,k| = 1
2
I2, where trace2 means the partial trace over the second qubit [27].

One can define more general Bell states using the multiplicative Fourier transform (7)

applied to the tensorial products of two qudits [29][18],

|Bh,k〉 =
1√
q

q−1
∑

n=0

ωkn
q |n, n+ h〉, (33)

These states are both orthonormal, 〈Bh,k|Bh′,k′〉 = δhh′δkk′, and maximally entangled,

trace2|Bh,k〉〈Bh,k| = 1
q
Iq.

We define here an even more general class of maximally entangled states using the Fourier

transform (9) over Fq as follows

|Ba
h,b〉 =

1√
q

q−1
∑

n=0

ωtr[(an+b)n]
p |n, n+ h〉 . (34)

The h we use here has nothing to do with the polynomial h(x) of Section (II). A list of the

generalized Bell states of qutrits for the base a = 0 can be found in [28] which is a work

that relies on a coherent state formulation of entanglement. In general, for q a power of a

prime, starting from (34) one obtains q2 bases of q maximally entangled states. Each set of

the q bases (with h fixed) has the property of mutual unbiasedness.

Similarly, for sets of maximally entangled m-qubits one uses the Fourier transform over

Galois rings (30) so that

|Ba
h,b〉 =

1√
2m

2m−1
∑

n=0

itr[(a+2b)n]|n, n+ h〉. (35)
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For qubits (m = 1) one gets the following bases of maximally entangled states (in matrix

form, up to the proportionality factor)




(|00〉 + |11〉, |00〉 − |11〉) (|01〉 + |10〉, |01〉 − |10〉)
(|00〉 + i|11〉, |00〉 − i|11〉) (|01〉 + i|10〉, |01〉)− i|10〉)



 . (36)

Two bases in one column are mutually unbiased, while vectors in two bases on the same line

are orthogonal to each other.

For two-particle sets of quartits, using Eqs. (31) and (35), one gets 4 sets of (|Ba
h,b〉,

h = 0, ..., 3), see them below, each entailing 4 MUBs (a = 0, ..., 3):

{(|00〉 + |11〉 + |22〉 + |33〉 | + + −−〉 | + −− +〉 | + − + −〉);

(|00〉 − |11〉 − i|22〉 − i|33〉 | + −(+i)(+i)〉 | + +(+i)(−i)〉 | + +(−i)(+i)〉); · · ·}

{(|01〉 + |12〉 + |23〉 + |30〉 | + + −−〉 | + −− +〉 | + − + −〉);

(|01〉 − |12〉 − i|23〉 − i|30〉 | + −(+i)(+i)〉 | + +(+i)(−i)〉 | + +(−i)(+i)〉); · · ·}

{(|02〉 + |13〉 + |20〉 + |31〉 | + + −−〉 | + −− +〉 | + − + −〉); · · · }

{(|03〉 + |10〉 + |21〉 + |32〉 | + + −−〉 | + −− +〉 | + − + −〉); · · · }

where, for the sake of brevity, we omitted the normalization factor (1/2) and the bases in

the sets have been labeled by their coefficients unless for the first base. Thus, in the first set

|00〉+ |11〉+ |22〉+ |33〉 ≡ |++++〉. Within each set, the four bases are mutually unbiased,

as in (31), while the vectors of the bases from different sets are orthogonal.

As a conclusion, the two related concepts of mutual unbiasedness and maximal entangle-

ment derive from the study of lifts of the base field Zp to Galois fields of prime characteristic

p > 2 (in odd dimension), or of lifts of the base ring Z4 to Galois rings of characteristic 4 (in

even dimension). One wonders if lifts to more general algebraic structures would play a role

in the study of non maximal entanglement. We have first in mind the nearfields that are

used for deriving efficient classical codes and which have a strong underlying geometry[30].

VI. CONCLUSION

In this research, we approached the MUBs fundamental topic from the point of view of

the additive and multiplicative characters over finite fields in number theory. We consider

13



that this framework is the most general including previous results in the literature as par-

ticular cases. Since MUBs are essentially generalized discrete Fourier transforms over finite

number field kets, we formulated a quantum phase interpretation and illustrated several

calculations of the phase properties of pure quantum states of the electromagnetic field in

this finite number field mathematical context. Various types of Gauss sums get involved

in this type of calculations of the MUBs phase properties of a pure quantum state and

the generalization to the mixed states, although straightforward through the usage of the

density matrix formalism, could lead to even more complicated calculations involving such

sums. We hope to evaluate them in future works. We also mentioned in the last section a

possible application to phase MUBs states of Bell type. This could lead to finite number

field measures of the degree of entanglement.

Note: The authors acknowledge Dr. Igor Shparlinski for suggesting important corrections

on this paper. On June 20/2005 he sent us an e-message pointing to some mathematical

inconsistencies in subsection III.C (i.e., subsection 3.3 in the epjd version). Parameter β

therein should be itself an element in Fq to perform the calculations.
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