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In this paper, we implement a revised pseudo random bit generator based on a
rule-90 cellular automaton. For this purpose, we introduce a sequence matrix HN with
the aim of calculating the pseudo random sequences of N bits employing the algorithm
related to the automaton backward evolution. In addition, a multifractal structure of
the matrix HN is revealed and quantified according to the multifractal formalism. The
latter analysis could help to disentangle what kind of automaton rule is used in the
randomization process and therefore it could be useful in cryptanalysis. Moreover, the
conditions are found under which this pseudo random generator passes all the statistical
tests provided by the National Institute of Standards and Technology (NIST).
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1. Introduction

Random numbers constitute one of the main ingredients in a great number of ap-

plications such as cryptography, simulation, games, sampling, and so on. Cellular

automata (CA) offer a number of advantages over other methods as random number

generators (RNG), such as algorithmic simplicity and easy hardware implementa-

tion. In fact, CA are highly parallel and distributed systems which are able to

perform complex computations.

Over the last years, researchers have applied cellular automata in pseudo-random

number generation (PRNG) 1,2,3,4,5. These PRNGs must possess a number of

properties if they are to be used for cryptographic application. The most important

from this point of view are good results on standard statistical tests of randomness,

computational efficiency, a long period, and reproducibility of the sequence 6. In

many encryption systems, PRNGs are used to get keys, which are generated from

an initial seed, and they are reproducible if the same seed is used.

Wolfram was the first to apply the one-dimensional elementary cellular automata

(ECA) to obtain PRNGs 7. He considered only the use of the rule 30 in one dimen-

sion with radius 1. Other authors have used non-uniform ECA 5,8,9, where they

have found that the quality of the latter PRNGs was better than the quality of

Wolfram’s system.

Despite these works demonstrate an improvement in the quality of PRNGs,

this study is devoted to an extension of the analysis of the evolutionary technique

for getting PRNGs based on a uniform ECA with rule 90 2. Namely, we consider

a modification of the generator producing PRGNs. The initial proposal has been

never implemented and studied in terms of the sequence matrix HN , which is used

here to generate recursively the pseudo random sequences. The time series of the

row sums of the matrix HN are also analyzed within the multifractal formalism

because they could be a possible useful feature for cryptanalysis of these types of

PRNGs. In order to check the quality of this ECA-PRNG, the generated sequences

are evaluated statistically by the NIST suite. The generated sequences, in length

terms, pass all the statistical tests proposed by NIST. Our results suggest that this

generator in its two versions that we discuss in the following fit naturally in the

present digital communication systems and achieve high levels of performance.

2. Elementary Cellular Automata

The ECA can be considered as discrete dynamical systems that evolve in discrete

time steps. The state space of a CA of size N is the set Ω = Z
N
k of all sequences of

N cells that take values from Zk = {0, 1, . . . , k − 1}, where its evolution is defined

by the repeated iteration of an evolution operator A : ZN
k → Z

N
k . In this paper,

we consider k = 2 where Z is the set of integers. An automaton state x ∈ Z
Z

k has

coordinates (x)i = xi ∈ Z2 with i ∈ Z, and the automaton state at time t ≥ 0 is

denoted by xt ∈ Z
Z
2 and its evolution is defined iteratively by the rule xt+1 = A(xt).

Starting from the initial state x0, the automaton generates the forward space-time
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pattern x ∈ Z
Z×N

2 with state (x)t = xt = At(x0) reached at from x0 after t ∈ N

time steps. N denotes the set of nonnegative integers.

One can see that the time, space, and states of this system take only dis-

crete values. The ECA considered evolves according to the local rule xt+1
i =

AL(x
t
i−1, x

t
i, x

t
i+1) = [xt

i−1 + xt
i]mod 2, which corresponds to the rule 90. The fol-

lowing is the lookup table of rule 90.

Number 7 6 5 4 3 2 1 0

Neighborhood 111 110 101 100 011 010 001 000

Rule result 0 1 0 1 1 0 1 0

The third row shows the future state of the cell if itself and its neighbors are in

the arrangement shown above in the second row. In fact, a rule is numbered by the

unsigned decimal equivalent of the binary expression in the third row. When the

same rule is applied to update cells of ECA, such ECA are called uniform ECA;

otherwise the ECA are called non-uniform or hybrids. It is important to observe

that the evolution rules of ECA are determined by two main factors, the rule and

the initial conditions.

3. Pseudo Random Sequences Generator

In Ref. 2, Mej́ıa and Uŕıas presented an ergodic and mixing transformation of binary

sequences in terms of a cellular automaton, which is the main element of a pseudo-

random generator number (PRGN). To implement numerically the PRGN in its

basic form, we follow their algorithm, which is shown in Fig. 1. At first, the key

generator requires two seeds, x = xk+1
0 , of N bits, and y = xk

0 , of (N+1) bits, which

are the input of function t = h(x,y). The seeds are x = {x1, x2, x3, . . . , xN} and

y = {y1, y2, y3, . . . , yN+1}, and the first number generated of N bits is the sequence

output of function h, t = x1
0 = {t1, t2, t3, . . . , tN}. Now this sequence is feeding

back to the input, which becomes the next value of x, and the previous value of x

becomes the initial bits of the new y, where the missing bit is the least significant

bit (LSB) of the previous y, which becomes the most significant bit (MSB) of this

sequence, and the same procedure is iterated repeatedly.

The previous description to compute the function t = h(x,y) requires that the

cellular automaton runs backwards in time as is depicted in Fig. 2. The symbol

of a circled + represents a XOR gate and the connectivity of gates follows the

automaton rule. However, this way to compute the pseudo-random sequences is not

efficient since it requires the application of the local rule of the automaton at all

points in a lattice of the order of N2, where N is the number of bits considered

in the generation process. Fig. 3 (a) shows a complete evolution in the lattice of

the generator considered with N = 31 bits, where the two left columns comprise

the seed (x,y), the top row is the resulting pseudo random key sequence t, and

the intermediate elementary computations are the rest. A clear dot represents a bit
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value of 1, whereas a dark dot corresponds to a bit value of 0.

To overcome this, Mej́ıa and Uŕıas 2 formulated an efficient algorithm that

gets rid of the intermediate variables and produces boolean expressions for the

coordinates of the output sequence t = h(x,y) in terms of the input (x,y). This

algorithm offers a boolean representation of h, without intermediate steps, in terms

of some “triangles” in the underlying lattice. The pattern of triangles is observed in

Fig. 3(a). In fact, it is well known that the evolution of rule 90 has the appearance

of a Sierpinski triangle when responding to an impulse, i.e., when the first row is

all 0s with a 1 in the center.

We introduce now the sequence matrix HN , which computes the pseudo-random

sequences of N bits. This matrix has dimensions of (2N+1)×(2N+1) and is formed

by the matrices HNt
and HNb

, which constitute the top and bottom parts of HN ,

that is, HN =
(

HNt
;HNb

)

. The matrixHNt
has dimensions ofN×(2N+1) elements

and it is generated initially from vectors v = [v1, 0, . . . , 0, vN+2, . . . , 0] and w =

[0, w2, 0, . . . , wN+1, 0, wN+3, . . . , 0], where the components v1, vN+2, w2, wN+1

and wN+3 have a value of 1, and N is the number of bits, i. e., v and w are

vectors with (2N + 1) elements. The vectors v and w constitute the two first rows

of the matrix HNt
and the (N −2) rows are generated applying an addition modulo

2 operation of the two previous rows, with the elements of the previous row shifted

to the right by one position. The matrix HNt
, of dimensions (N + 1) × (2N + 1),

has a simpler form, an identity matrix in the first (N +1) columns and zeros in the

rest. For instance, for N = 3 we have that the top and bottom matrices are

H3t =





1 0 0 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 0 0 1



 , H3b =









1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0









, (1)

then the matrix H3 is

H3 =

(

H3t

H3b

)

=























1 0 0 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0























. (2)

Notice that HNt
computes the pseudo random key sequence, whereas HNb

the

feedback sequence. Therefore, once selected the number N of bits of sequences, we

can generate the pseudo random sequences of N bits with the help of the matrix

HN

Uk+1 = HNUk, k = 1, 2, . . . (3)
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where Uk = [x y]T corresponds to the first inputs of function h, and Uk+1

is composed by the next inputs of h; note that Uk+1 is formed by the generated

pseudo random key and the feedback sequence.

3.1. Modified generator

As was pointed out in Ref. 2, a generating scheme consisting of three coupled trans-

formations h is proposed to attain an asymptotically unpredictable generator under

a random search attack. This proposal is shown in Fig. 4, and it is explained briefly.

Inside the new generator two copies of the basic transformation h are iterated au-

tonomously from their initial words generating two sequences, {pk}k≥0 and {qk}k≥0.

The third copy, called the x-map, is iterated in a slightly different manner, the func-

tion h in the x-map is driven by the autonomous p-map and q-map according to

xk = h(pk, qk). The three maps generate pseudo random sequences, but just the x

sequence is released. In order to prevent predictability, the first two words are gen-

erated, used and destroyed inside this key generator, therefore they are not available

externally. Since the sequences pk and qk have a length of N bits, and the required

inputs of the h transformation must be one of N bits and other of (N + 1) bits,

the missing bit is obtained applying an addition modulo 2 operation between the

two respective LSB’s that become the MSB’s of their respective previous inputs of

maps. Of course, there exists different manners to generate this missing bit, but we

consider this way. The above scheme has been just proposed, but it has not been

implemented and studied in terms of the matrix sequence. The new pseudo-random

keys are computed as

XN = HNt
VN (4)

where XN = {x1, x2, . . . , xN}T , HNt
is the top matrix of HN , and VN =

{p1, . . . , pN , q1, . . . , qN+1}
T . For example, considering N = 3, we have

X3 =





x1

x2

x3



 =





1 0 0 0 1 0 0

0 1 0 1 0 1 0

1 0 1 0 0 0 1



























p1
p2
p3
q1
q2
q3
q4























= H3tV3, (5)

where we calculate pi and qi as it was explained above. Fig. 3 (b) shows the

complete evolution of this modified generator for 31 bits, with the p-map on the left

side, the q-map on the middle, and the x-map on the right side.
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3.2. Multifractal properties of the matrix HN

Since the evolution of the sequence matrix HN is based on the evolution of the CA

rule 90, the structure of the patterns of bits of the latter are directly reflected in

the structure of the entries of HN . There is recent literature on the multifractal

properties of cellular automata for some set of rules, see 10,11,12. In Ref. 13, we

used the technique of detrended fluctuation analysis based on the discrete wavelet

transform (WMF-DFA) to quantify the intrinsic multifractal behavior of the ECAs

for rules 90, 105, and 150.

Here, in the same spirit as in Ref. 13, we analyze the sum of ones in the sequences

of the rows of the matrix HN with the db-4 wavelet, a wavelet function that belongs

to the Daubechies family 14.

The results for two row sums, H1023 and H2047, are illustrated in Figs. 5-6.

We confirm the multifractality of both time series since we get a τ spectrum with

two slopes in both cases. The strength of the multifractality is roughly measured

with the width ∆α = αmax − αmin of the parabolic singularity spectrum f(α) on

the α axis. For the case of H1023 the width ∆αH1023
= 1.16 − 0.212 = 0.948, and

the most “frequent” singularity occurs at αmfH1023
= 0.694, whereas for H2047,

∆αH2047
= 1.12 − 0.145 = 0.975, and αmfH2047

= 0.638. We notice that both the

strongest singularity, αmin, and the weakest singularity, αmax, are very similar as

well as the most “frequent” singularity. These results are in a good agreement with

those obtained in Ref. 13 for the rule 90, although the spectra of the top matrix

present a slight shifting to the right. In fact, this behavior is more evident in the

row signals of HN (Figs. 5-6 (c)), where their corresponding spectra (dotted points)

are shown in Figs. 5-6 (f).

4. Statistical Tests

There are several options available for analyzing the randomness of the pseudo

random bit generators. The four most popular options according to Ref. 15 are the

following: NIST suite of statistical tests, the DIEHARD suite of statistical tests,

the Crypt-XS suite of statistical tests and the Donald Knuth’s statistical test set.

In this paper, we consider the NIST suite to analyze the generated pseudo ran-

dom sequence keys. The main reason is that this suite has several appealing prop-

erties 16,17. For instance, it is uniform, it is composed by a number of well known

tests and, for all of them, an exhaustive mathematical treatment is available. In

addition, the source code of all tests in the suite is public available and is regularly

updated 16. In fact, in Ref. 16 is mentioned that the NIST suite may be useful as

a first step in determining whether or not a generator is suitable for a particular

cryptographic application.

The NIST suite is a statistical package consisting of 15 tests that were de-

veloped to test the randomness of (arbitrarily long) binary sequences produced by

either hardware or software based cryptographic random or pseudo-random number

generators. These tests focus on a variety of different types of non-randomness that
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could exist in a sequence. Some tests are decomposable into a variety of subtests,

and the 15 tests are listed in Table 1.

Table 1. List of NIST Statistical Tests.

Number Test name

1 The Frequency (Monobit) Test
2 Frequency Test within a Block
3 The Runs Test
4 Tests for the Longest-Run-of-Ones in a Block
5 The Binary Matrix Rank Test
6 The Discrete Fourier Transform (Spectral) Test
7 The Non-overlapping Template Matching Test
8 The Overlapping Template Matching Test
9 Maurer’s “Universal Statistical” Test
10 The Linear Complexity Test
11 The Serial Test
12 The Approximate Entropy Test
13 The Cumulative Sums (Cusums) Test
14 The Random Excursions Test
15 The Random Excursions Variant Test

For each statistical test, a set of P − values (corresponding to the set of se-

quences) is produced. For a fixed significance level α, a certain percentage of

P − values are expected to pass/fail the tests. For example, if the significance level

is chosen to be 0.01 (i.e., α = 0.01), then about 1% of the sequences are expected to

fail. A sequence passes a statistical test whenever the P − value ≥ α and fails oth-

erwise. For each statistical test, the proportion of sequences that pass is computed

and analyzed accordingly. It is not sufficient to look solely at the acceptance rates

and declare that the generator be random if they seem fine. If the test sequences are

truly random, the P − values calculated are expected to appear uniform in [0, 1].

For the interpretation of test results, NIST has adopted two approaches, (1) the

examination of the proportion of sequences that pass a statistical test and (2) the

distribution of P − values to check for uniformity.

• Proportions of the sequence passing the tests : For each test is computed the pro-

portion of sequences that passes the tests. First, the range of acceptable propor-

tions is determined using the confidence interval, which is defined as

p̂± 3

√

p̂(1− p̂)

m
, (6)

where p̂ = 1− α, and m is the sample size. If the proportion falls outside of this

interval, then there is evidence that the data is non-random.

• Uniform Distribution of P − values: The distribution of P-values is examined to

ensure uniformity. This may be visually illustrated using a histogram. It may be
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also computed by means of a chi-square test (χ2), and the determination of a

P − value of the P − values. The computation is as follows:

χ2 =
10
∑

i=1

(fi −
m
10
)2

m
10

, (7)

where fi is the number of P − values in the sub-interval i and m is the size of

the sample, which is m = 100 for the present analysis. A P − value is calculated

such that P − valueT = igamc(9/2, χ2/2), where igamc(n, x) is the incomplete

gamma function. If P − valueT ≥ 0.0001, then the sequences can be considered

to be uniformly distributed.

4.1. Results of the NIST statistical test suite

For the present statistical test, the two analyses described above are applied

and evaluated to determine if the generated sequences are random or not. We

have considered m = 100 samples of 106 bit sequences, where each sequence has

been generated from a randomly chosen seed, and the proportion must lie above

0.960150(α = 0.01) and P − valueT ≥ 0.0001. In order to investigate the perfor-

mance of the generator, we analyze the generated pseudo-random sequences for

N = 7, N = 15 and N = 31 bits, considering one and three transformations.

4.1.1. Case of N = 7 bits

In Figs. 7-8 are shown the results from the NIST testing for N = 7 bits for one

and three transformations, respectively. We can observe that in this case there is a

poor performance; the generated pseudo random sequences just passes some tests

and are not uniformly distributed.

4.1.2. Case of N = 15 bits

Figs. 9-10 show the results for N = 15 bits for one and three transformations,

respectively. There is better performance that in the previous case. We can observe

that using one transformation, the generator do not passes all tests, see Fig. 9, but

it is uniformly distributed.

4.1.3. Case of N = 31 bits

In the last case, Figs. 11-12 show the results for N = 31 bits for one and three

transformations, respectively. As we can see, all tests are passed using one and

three transformations.

5. Conclusions

We have implemented and reviewed a pseudo-random number generator based on

a rule-90 cellular automata. This generator in its basic form (using one transforma-
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tion), and its modified version (with three transformations) are analyzed by means

of a sequence matrix HN . The intrinsic multifractal properties of the sequence ma-

trix in the two versions of the generator are discussed having in mind their possible

usage in cryptanalysis. In addition, the quality of the generated pseudo random

sequences are evaluated using the NIST statistical tests. According to these tests,

this PRNG can generate high-quality random numbers using one or three transfor-

mations. It is worth noticing that the longer the length of the generated numbers

the better is the quality of the random numbers we obtain. In other words, the

generator will produce sequences of keys with a better quality as the size of keys

is increased. The only case that fails to pass all the tests with one or three trans-

formations is for N = 7 bits. There are also some statistical problems for N = 15

bits using one transformation. We were able to obtain random sequences of 15 bits,

without repeating, of period length 227 and 231 using one and three transformations,

respectively. These results are sufficient for many cryptographic applications.
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Fig. 3. Complete backward evolution of the ECA to generate a random sequence of 31 bits with
(a) one transformation according to Eq. (3), and with (b) three transformations according to the
modified generator given in Eq. (4). We display the sequences pk, qk, and xk.
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Fig. 4. A generating scheme consisting of three coupled transformations.
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Fig. 5. (a) Time series of the row signal of H1023. Only the first 28 points are shown of the
whole set of 210 − 1 data points. Profiles of the row signal of (b)HNt

and (c) HN . (d) Generalized
Hurst exponent h(q). (e) The τ exponent, τ(q) = qh(q)− 1. (f) The singularity spectrum f(α) =

q
dτ(q)
dq

− τ(q). The calculations of the multifractal quantities h, τ , and f(α) are performed with
the wavelet-based WMF-DFA. Dotted points correspond to the row signal of HN .
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Fig. 6. Same plots as in Fig. 5 but for H2047.
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Fig. 7. Proportions and P−valuesT corresponding to N = 7 bits and one transformation. Dashed
line separates the success and failure regions.
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Fig. 8. Proportions and P − valuesT corresponding to N = 7 bits and three transformations.
Dashed line separates the success and failure regions.
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Fig. 9. Proportions and P − valuesT corresponding to N = 15 bits and one transformation.
Dashed line separates the success and failure regions.
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Fig. 10. Proportions and P − valuesT corresponding to N = 15 bits and three transformations.
Dashed line separates the success and failure regions.



February 25, 2013 13:55 WSPC/INSTRUCTION FILE EncripletasvF-
IJMPC

Improvement and Analysis of a Pseudo Random Bit Generator by Means of Cellular Automata 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.95

0.96

0.97

0.98

0.99

1

1.01

Test

P
 −

 V
al

ue
s

Proportions of the sequences passing the tests

0 2 4 6 8 10 12 14 16
1E−5

1E−4

.1E−3

0.01

0.1

1

Test

P
 −

 V
al

ue
s

P − Values corresponding to each statistical test

Fig. 11. Proportions and P − valuesT corresponding to N = 31 bits and one transformation.
Dashed line separates the success and failure regions.
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Fig. 12. Proportions and P − valuesT corresponding to N = 31 bits and three transformations.
Dashed line separates the success and failure regions.


