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Abstract

The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling prop-
erties of many different signals. In this paper, we determine scaling properties in the encrypted images
by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced
cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its un-
modified version and the encryption system AES. The numerical results show that the encrypted images
present a persistent behavior which is close to that of the 1/f -noise. These results point to the possibility
that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
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1 Introduction

At the present time, there are a great number of different methods to analyze or detect singular or fractal
behavior that may be embedded in different kind of information.[1, 2] To list a few of them, we count with
the wavelet transform and its versions,[3, 4, 5] the detrended fluctuation analysis (DFA),[6] the multifractal
detrended fluctuation analysis (MF-DFA) and its different modifications,[1, 7, 8] or combination of the dis-
crete wavelet transform with the DFA.[9] With the aim to extract meaningful features from high-dimensional
signals, such as images, some of the previous methods have been applied. For instance, the roughness fea-
tures present in the texture of images are an important characteristic that was analyzed by DFA scaling
techniques.[10] In particular, the DFA technique allows to extract the Hurst indices of the one-dimensional
sequences at different orientations in the plane of the image and based on their values the average scaling
exponent can be estimated. However, this is just a multiple form of the one-dimensional DFA method. In
2006, Gu and Zhou,[11] generalized the DFA and MF-DFA methods to higher dimensions, in particular to
the two-dimensional case for distinguishing fractal and multifractal properties of synthetic surfaces. There is
no doubt that these methods to detect long-range correlation and multifractal properties are very useful tools
in the field of image analysis, since they have been applied to investigate characteristics in some lymphoma
images,[12] to extract texture features,[13] to identify singular regions of crop leaf affected by diseases,[14]
and so on. It is worth to note that the performance of the methods based on fractal or multifractal techniques
are superior to other methods, due to the isotropic characteristics that present a huge amount of natural
and synthetic images.
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On the other hand, the digital image encryption is an important issue since there are many applications
that require to protect different kind of information such as medical imaging systems, military image com-
munications, surveillance, among others.[15] Despite that there are numerous image encryption methods,
it is crucial if we may be able to determine some kind of quality of the encrypted image content. In this
sense, we consider to apply to encrypted images an algorithm based on the two-dimensional DFA, since after
encryption, the image pixels tend to have isotropic characteristics or a “random” behavior. In fact, Ref. [16]
considered the generalized Hurst exponent as an efficient measure of encryption schemes, and the authors
were able to detect the presence of a message in a chaotic carrier with an embedded signal. In addition, to
achieve multimedia security some authors strongly suggest to use the selective encryption, see for example
References [17]-[18]. Here, following ideas expressed in Ref. [17], but employing different tools, we find out
that the encryption of four bitplanes is sufficient for providing high confidentiality.

The paper is organized as follows. Section 2 is devoted to a concise presentation of the enhanced encryp-
tion system based on a matrix approach that we introduced in previous works. In Section 3, the procedure
of the two-dimensional detrended fluctuation analysis is presented, whereas Section 4 contains the results
obtained by applying the two-dimensional DFA technique to the encrypted images. In addition, we analyze
images when only a partial encryption is considered. Finally, the conclusions are drawn in Section 5.

2 Encryption System Model

We consider a cryptosystem that comprises the sets M , C and X of binary words of length N , i.e., ZN
2 ,

where Z2 = {0, 1}, and two indexed families of permutations, Ψ = {ψx : x ∈ X} and Φ = {ϕx : x ∈ X}. The
words in M and C are called the plain-texts and cipher-texts, respectively, whereas the words in the set of
indices X are the encyphering keys. In addition, the functions ψx : M → C, and ϕx : C → M , are called
the encryption and decryption functions, respectively. Basically, the cryptosystem transforms a plain-text
sequence m to a cipher-text sequence c, i.e., for every x ∈ X one has c = ψx(m), whereas to disclose from
the sequence of cipher-blocks, one uses the decryption functions ϕx, i.e., m = ϕx(ψx(m)). Since the complete
encryption scheme is private, the encryption and decryption processes use the same enciphering key x. Such
a cryptosystem is based on the encryption scheme used in Ref. [19] where the synchronization phenomenon
of cellular automata (CA), which evolves according to the local rule 90, has been applied to devise the two
families of permutations and the asymptotically perfect pseudo-random number generator. The phenomenon
of synchronization in the case of coupled pairs of CA is described in detail in Ref. [20], where it was found
that a pair of coupled CA can synchronize if every pair of consecutive coordinates is separated by a block of
(2n − 1) uncoupled sites, where n is a positive integer greater than 1. This encryption system based on the
synchronization phenomenon of CA is called the ESCA system.

In our previous work,[21] we achieved a simple and flexible implementation by employing a matrix
approach to implement almost all the components of the ESCA system. Moreover, in Ref. [22] the latter
approach has been modified with the aim of making more flexible its matrix implementation and to improve
its security.

For the convenience of the reader we recall some relevant material from Ref. [22], thus making our
exposition self-contained.

In order to have an unintelligible form of the plain-text m = {m1,m2, . . .}, where each plain-text block
mk has N bits, we apply the following operation

(
m̂k

yk+1

)
= U

(
mk

yk

)
mod 2, with U =

 JN

JN

b

 , and k = 1, 2, . . . , (1)

where JN represents an N × (2N + 1) matrix that is initially generated from two vectors of (2N +
1) elements, f = [f1, 0, . . . , fN+2, . . . , 0] and g = [0, g2, 0, . . . , gN+1, 0, gN+3, . . . , 0], where the components
f1, fN+2, g2, gN+1 and gN+3 have a value of 1. These vectors comprise the two first rows of the matrix JN ,
and the other (N − 2) rows are generated by applying an addition modulo 2 operation of the two previous
rows, with fixed boundary conditions of zero to the left-hand side followed by the elements of the previous
row shifted to the right by one position. The row vector b has (2N + 1) elements with a value of 1 in its
first entry and 0 otherwise, i. e., b = [1, 0, . . . , 0]. In essence, to compute the sequence m̂1 of N bits we
require the product of the square matrix U with a column vector that concatenates the plain-text sequence
m1 = {m1,m2,m3, . . . ,mN}, and a random binary sequence y1 = {y1, y2, y3, . . . , yN+1}, of (N + 1) bits.
Next, to compute m̂2 by means of (1), we require again two sequences, a plain-text sequence to be modified
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m2, and a binary random sequence y2. At this time, the latter sequence comprises the m̂1 sequence, which
becomes the initial bits of the new y2, and the first bit of the previous y1, which becomes the last bit of this
sequence. For the following sequences, the same procedure is iterated repeatedly. Note that the top matrix
JN makes inexplicit the plain-text, whereas the low matrix [JN ;b] helps to compute a new binary pseudo
random sequence yk, for k ≥ 2.

Now, in order to continue with the encryption process, we need two matrices, P̂N and Q̂N , such that

ck = Ψx(m̂k) =
[(

P̂× x
)
+
(
Q̂× m̂k

)]
mod 2, k ≥ 1, (2)

where the vectors ck and m̂k have dimensions L× 1, with L = 2l, for l = 1, 2, . . ., and x has dimensions
N × 1, with N = 2n − 1, for n = 1, 2, . . ., such that n > l. P̂ is an upper triangular matrix with dimensions
L × N , and it is initially generated from the vector p = [p1, p2, . . . , pN ]. This vector constitutes the first
row, and the components with position index j = (2n + 1)− 2i+1, for i = 0, 1, 2, . . . , (n− 1), have a value of
1, and 0 otherwise. The (L− 1) rows are generated by applying a right shift of one position of the previous
row with a zero as its first value. On the other hand, Q̂ is a lower triangular matrix of order L, that can
be generated initially from the vector a = [a1, 0, . . . , 0], where the component a1 has a value of 1. The
latter vector constitutes the first row of the matrix Q̂, and the (L− 1) rows are generated by applying the
CA rule 90 of the previous row with fixed boundary conditions of zero to the left and right sides. Since the
decryption process is similar to the encryption procedure, the reader is referred to Ref. [22] for more details.
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Fig. 1: The encryption model considered in this work with its main components: the indexed families of permutations,
Ψ and Φ, and the pseudorandom generator of keys.

To carry out the encryption process, at first we load a plain-image I of size U ×V having all of its pixels
arranged into a vector by scanning the image I row by row. After that, each pixel value is converted to
their corresponding 8-bit value, [b8 · · · b1], where b1 is the least significant bit (LSB), whereas b8 is the most
significant bit (MSB).

3 Material and Methods

3.1 Material

A total of eighteen gray-level images were used in this study. Thirteen of them have dimensions of 512× 512
pixels, and five have dimensions of 1024×1024 pixels. These images are shown in Figure 2 and have been cho-
sen because they are widely used as standard test images in the field of image processing. This image database
is freely available at http://sipi.usc.edu/database, except the final two pictures. The first of the latter pair,
a picture of the Mars Yardangs region picture, can be downloaded from https://solarsystem.nasa.gov, while
the last one is a fractional Brownian surface with Hurst exponent H = 0.5, which was generated by the
MATLAB software FRACLAB 2.1 developed by INRIA.
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Fig. 2: The image dataset considered in this work.

3.2 Two-dimensional detrending fluctuation analysis

In general, an image I of size U×V will be considered as a surface and denoted by a matrix X(i, j), where the
number of rows and columns is represented by i = 1, 2, . . . , U and j = 1, 2, . . . , V , respectively. In order to
separate the trend from fluctuations in the images, we follow the two-dimensional DFA algorithm proposed
by Gu and Zhou,[11] which consists of the following steps.

1. Divide the surface X(i, j) into Us×Vs disjoint square windows of the same size s×s, where Us = ⌊U/s⌋
and Vs = ⌊V/s⌋. Each window can be denoted by Xu,v such that Xu,v(i, j) = X(i + l1, j + l2) for
1 ≤ i, j ≤ s, where l1 = (u− 1)s and l2 = (v − 1)s.

2. Compute the cumulative sum for each window Xu,v, positioned by u and v, as

Pu,v(i, j) =
i∑

k1=1

j∑
k2=1

(Xu,v(k1, k2)− ⟨Xu,v(k1, k2)⟩), (3)

where ⟨Xu,v(k1, k2)⟩ is the average of the sub-image Xu,v, for 1 ≤ i, j ≤ s.

3. Determine the trend of the obtained sub-image by fitting the set of data to the plane P̃u,v(i, j) =
ai + bj + c, where a, b, and c are parameters which are estimated using the least square method.
Subsequently, one calculates the local variances associated to each sub-image Xu,v as

F 2(u, v, s) =
1

s2

s∑
i=1

s∑
i=1

[Pu,v(i, j)− P̃u,v(i, j)]
2. (4)

4. Next, averaging over all sub-images the overall detrended fluctuation is obtained as

F2(s) =

(
1

UsVs

Us∑
u=1

Vs∑
v=1

F 2(u, v, s)

)1/2

. (5)

This procedure is repeated for a broad range of segment lengths s, considering the range 6 ≤ s ≤
min(U, V )/4. In order to assess a fractal scaling property of the pixelated surface, the fluctuation function
F2(s) should display a power law scaling

F2(s) ∼ sα, (6)

where α is called the scaling fluctuation exponent. This scaling exponent can be found as the slope of
a double logarithmic plot of F2 as a function of s, and it is a measure of the degree of correlation among
the pixels of the surface. In the one-dimensional case we have the following relationships: (a) If α = 0.5
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there is no correlation and the pixels are uncorrelated (white noise process). (b) For 0 < α < 0.5, the pixels
present an anticorrelated behavior, which means that a large value is more likely to be followed by a small
value, and vice versa; in this case the signal is said to be anti-persistent. (c) If 0.5 < α < 1, the correlation
of the pixels is persistent, where large values of the data are more probably to appear after large values, or
vice versa, small values are more probable after small values. (d) The values α = 1 and α = 1.5 correspond
to 1/f -noise and Brownian motion, respectively. Furthermore, this scaling exponent can be considered as
a generalization of the Hurst exponent H satisfying 0 < H < 1 as follows. For stationary signals, α is
identical to the Hurst exponent H, whereas for non-stationary time signals α = H +1.[7, 23, 24, 25] On the
other hand, in Ref. [26] is pointed out that the relationship between the Hurst exponent H and α for the
two-dimensional case is as follows: (a) If the two-dimensional signal is stationary α is identical to the Hurst
exponent H, whereas if it is non-stationary α = H + 2.

4 Results and Discussion

In this Section, we present the results obtained using the two-dimensional DFA analysis described in the
previous subsection. In the analysis, all of the eighteen standard gray-level images of different shapes and
three different encryption procedures were considered. The encryption schemes are the ESCA system,[21]
the improved form of the ESCA encryption system described in Section 2, and the Advanced Encryption
Standard (AES) in CBC mode,[15] which here we call as ESCAv1, ESCAv2, and AES, respectively. The
results of the performance of the two-dimensional DFA for the gray-scale mandrill plain-image and its
encrypted versions are shown in Fig. 3. It is observed that the fluctuation function F2(s) presents a similar
value and behavior for the three encryption procedures altogether. The fluctuation scaling exponents α for
the image datasets considered in this paper are given in Table 1. Since the majority of the α exponents
of the encrypted versions are close to unity, we can infer that in general the encrypted images present a
persistent behavior which is close to the 1/f -noise. As the fractal dimension is considered as an objective
metric to measure the quality of the encrypted image content,[15] it is possible to consider the latter result
as an alternative objective metric.
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Fig. 3: In the top row, there are the test images and the different encrypted versions, whereas in the bottom row
there are their respective scaling-fluctuation exponents provided by the fluctuation function F2.

In addition, following the ideas of Ref. [17] to delve into the sensitivity to the encrypted pixels, we carry
out a partial encryption of the images by encrypting four bits for each pixel, and apply the two-dimensional
DFA to the resultant encrypted image. We took the four most significant bits, and we shift one bit of
the group of four bits until we get the four least significant bits. The results of this scaling method for the
encrypted mandrill plain-images are presented in Figures 4-6, and the rest of the fluctuation scaling exponents
α for the considered image datasets are given in Tables 2-4. For the encryption systems ESCAv1 and AES,
the scaling exponents of the encrypted image are getting close to the values of the scaling exponents of the
plain-images as we get the four most significant bits, whereas for the encryption system ESCAv2 the scaling
exponents are remain without a significant change. In fact, some information is visible when we encrypt
the last three blocks of the least significant bits, that is, from the block of four bits b6, . . . , b3 to the block
b4, . . . , b1. These results illustrate that the encryption system ESCAv2 can provide high confidentiality in
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the case of partial encryption. In addition, since we just have a half-encryption of the data, we also improve
the execution time.

Table 1: The values of the α scaling exponents obtained from applying the 2D DFA algorithm to the 18 test images

and their encrypted versions.
Test
image

α exponents
Original ESCAv1 ESCAv2 AES

Bark 1.8173 0.9629 0.9721 0.9745
Beach sand 1.6555 0.9946 0.9759 0.9751
Brick 1.8347 0.9954 0.9742 0.9871
Grass 1.6243 0.9894 0.9810 0.9834
Leather 1.3778 0.9623 0.9918 0.9745
Lena 2.2544 0.9826 0.9806 0.9857
Mandrill 2.0335 0.9734 0.9783 0.9808
Peppers 2.2876 0.9770 0.9633 0.9782
Pigskin 1.5552 0.9701 0.9768 0.9610
Plastic bubbles 1.9467 1.0000 0.9858 0.9884
Raffia 1.4798 0.9841 0.9486 0.9798
Straw 1.7166 0.9555 0.9713 0.9870
Water 1.5591 0.9772 0.9795 0.9918
Weave 1.3403 1.0005 0.9588 0.9723
Wood 1.6261 0.9982 0.9788 0.9804
Wool 1.8473 0.9953 0.9760 0.9714
Yardangs 1.6223 0.9583 0.9930 0.9810
fBmS 2.5114 0.9884 0.9812 0.9900

8−5

2 4

5

6

7

8

ln ( s )

ln
 (

 F
2

, y
( 

s 
))

 

 
α = 0.972

Original

7−4

2 4

5

6

7

8

α = 1.01

6−3

2 4
4

5

6

7

8

9

α = 1.23

5−2

2 4
4

6

8

10

α = 1.59

4−1

2 4

4

6

8

10

α = 2.05

Fig. 4: In the top row, there are the encrypted images of the mandrill image performed with the ESCAv1 system,
where only the indicated bits are encrypted and the other part is not changed. In the bottom row, there are their
respective scaling-fluctuation exponents provided by the fluctuation function F2.

5 Conclusions

In this work, we have used a two-dimensional DFA algorithm to determine the singular behavior of encrypted
gray-level images. Although many methods for high-dimensional signals have been proposed, our results show
that the two-dimensional DFA method seems to be a natural and efficient tool for describing this kind of
images by means of scaling exponents. In addition, it is suggested that the fluctuation scaling exponent can
be used as an appropriate and objective measure of the quality of encryption schemes. In our opinion, a good
image encryption algorithm, such as the ESCAv2, should maintain the “same” scaling exponent despite a
partial encryption is carried out.
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Fig. 5: Same caption comments as in the previous figure, but the encryption procedure is carried out by the ESCAv2
system.
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Fig. 6: Same caption comments as in the previous figure, but the encryption procedure is carried out by the AES
system.
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Table 2: The values of the α scaling exponents obtained after applying the 2D DFA algorithm to the 18 encrypted

images by means of the ESCAv1 encryption system.
Test Image α exponents

b8 · · · b5 b7 · · · b4 b6 · · · b3 b5 · · · b2 b4 · · · b1
Bark 0.9622 0.9672 1.0337 1.3347 1.8150
Beach sand 0.9973 1.0023 1.1066 1.3791 1.6508
Brick 1.0001 1.0234 1.2576 1.6142 1.8288
Grass 0.9906 0.9952 1.0169 1.2062 1.6228
Leather 0.9646 0.9674 0.9937 1.1585 1.3769
Lena 0.9867 1.1250 1.3978 1.7999 2.2334
Mandrill 0.9718 1.0076 1.2347 1.5863 2.0460
Peppers 0.9702 1.1354 1.3487 1.7782 2.2537
Pigskin 0.9700 0.9692 1.0134 1.3231 1.5495
Plastic bubbles 0.9999 1.0033 1.1693 1.5566 1.9423
Raffia 0.9842 0.9872 1.0497 1.2177 1.4755
Straw 0.9543 0.9609 1.0253 1.3036 1.7143
Water 0.9745 0.9754 1.0885 1.3379 1.5496
Weave 1.0010 0.9992 1.0127 1.0634 1.3365
Wood 0.9976 1.0514 1.2495 1.2938 1.6204
Wool 0.9958 1.0000 1.0636 1.4865 1.8386
Yardangs 0.9599 1.0680 1.2584 1.4779 1.6275
fBmS 0.9973 1.1301 1.5487 1.8704 2.4288

mean 0.9821 1.0205 1.1594 1.4327 1.7728

Table 3: The values of the α scaling exponents obtained by applying the 2D DFA algorithm to the 18 encrypted

images by means of the ESCAv2 encryption system.
Test image α exponents

b8 · · · b5 b7 · · · b4 b6 · · · b3 b5 · · · b2 b4 · · · b1
Bark 0.9700 0.9690 0.9734 0.9660 0.9825
Beach sand 0.9738 0.9711 0.9732 0.9800 0.9831
Brick 0.9748 0.9794 0.9824 0.9783 0.9721
Grass 0.9812 0.9823 0.9841 0.9939 0.9968
Leather 0.9936 0.9924 0.9789 0.9716 0.9458
Lena 0.9800 0.9742 0.9750 0.9769 0.9780
Mandrill 0.9779 0.9736 0.9724 0.9653 0.9745
Peppers 0.9630 0.9643 0.9611 0.9588 0.9773
Pigskin 0.9768 0.9758 0.9766 0.9750 0.9738
Plastic bubbles 0.9867 0.9878 0.9928 0.9908 0.9763
Raffia 0.9484 0.9510 0.9504 0.9727 0.9582
Straw 0.9722 0.9738 0.9744 0.9768 0.9606
Water 0.9796 0.9825 0.9869 0.9956 0.9881
Weave 0.9606 0.9636 0.9594 0.9711 0.9701
Wood 0.9781 0.9760 0.9751 0.9841 0.9777
Wool 0.9768 0.9760 0.9709 0.9610 0.9744
Yardangs 0.9926 0.9926 0.9943 0.9779 0.9983
fBmS 0.9828 0.9845 0.9843 0.9914 0.9834

mean 0.9761 0.9761 0.9759 0.9771 0.9762
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[19] J. Uŕıas, E. Ugalde, and G. Salazar, Chaos, 8, 819 (1998).
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