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Abstract. A synchronization procedure of the generalized type in the sense
of Rulkov et al [Phys. Rev. E 51, 980 (1995)] is used to impose a nonlinear
Malasoma chaotic motion on the Frenet-Serret system of vectors in the differential
geometry of space curves. This could have applications to the mesoscopic motion
of biological filaments.
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The Frenet-Serret (FS) vector set is in much use whenever one focuses on
the kinematical properties of space curves. The evolution in time of the FS
triad is one of the most used descriptions of the motion of tubular struc-
tures such as stiff (hard to bend) polymers [1]. Many biological polymers
including the DNA helical molecule are stiff and their movement is of funda-
mental interest. At the mesoscopic level many sources of noise and chaotic
behaviour affect in a substantial way the motion of the biological polymers.
In general, one can think that a synchronization between the motion of the
polymers and the chaotic (or noisy) sources could be achieved in a natural
way through some control signal. We illustrate this idea employing a gen-
eralized synchronization procedure based on the theory of nonlinear control
by which we generate a chaotic dynamics of the FS evolution equations

~̇T = κ · ~N

~̇N = τ · ~B − κ · ~T

~̇B = −τ · ~N .

With this goal in mind, one should first write the FS system in the form

ẋ = Ax + EU y = Cx , (1)

where x ∈ R3 is the vector having as components the tangent T , normal
N and the binormal B, whereas A is the transfer matrix, E is an initial
vector that determines the channel where the control signal is applied, and
C = (c1, c2, c3) determines the measured signal of the FS system.

In this way, the main objective, from the synchronization standpoint, is
to force the states of the slave system, which is the FS system, to follow
the trajectories of the master system that, in general, presents a chaotic
behaviour. This is achieved by applying, in a well-defined way, a signal
given by U = Φ(x) and rewriting the FS system in the form given in Eq. (1)
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where, c1 = 1, c2 = 0, c3 = 1. If we choose now B = (0 0 0)T as the
input vector, one gets the open loop FR dynamics. This type of dynamics



Synchronization of Frenet-Serret with Malasoma 3

is shown in Fig. 1 for κ = 1, τ = 0.9, and initial conditions given by T0 =
0.0024, N0 = 0.0026, and B0 = 0.0039, where the states of the system are
given by the derivatives of the tangent, normal, and binormal unit vectors,
respectively, whereas κ and τ are the curvature and torsion scalar invariants.

On the other hand, a chaotic oscilator is a dynamic system whose evolu-
tion is difficult to predict. In general, its main feature is the sensibility to
the initial conditions and the variations of the parameters. Thus, its long-
term behaviour is hard to estimate. In the following, we will use one of the
simplest chaotic oscillator systems that has been introduced by Malasoma
[2]

Ẋ1 = X2

Ẋ2 = X3 (3)

Ẋ3 = −αX3 − X1 + X1X2 ,

where α is the bifurcation parameter. In matrix form, we get

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


=


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


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X2

X3







y = (1 0 0)x . (4)

This system exhibits chaotic behaviour for 2.0168 < α < 2.0577. The chaotic
evolution is shown in Fig. 2 for α = 2.025 and initial conditions X1 = 0.0022,
X2 = 0.0024, X3 = 0.0039. Having the two systems in the matrix form, we
choose the Malasoma one as the master system and the FS system as the
slave one, i.e., the Malasoma dynamics will be imposed to the FS motion
through the signal U = Φ(x). That means that a nonlinear dynamics is
forced upon the FS system leading to its chaotic behaviour.

To get the chaotic FS system one should achieve the synchronization
between the master (of subindex M in the following) and the slave systems
(of subindex S in the following) . For this, one defines a third system, which
refers to the synchronization error given by the difference in the dynamics
of the two systems, i.e.,

ė1 = κe2 + λ1(XM )

ė2 = τe3 − κe1 + λ2(XM ) (5)

ė3 = −τe2 + λ3(XM ) − U ,

where

λ1 = X2M (1 − κ)

λ2 = X3(1 − τ) + κX1M (6)

λ3 = −αX3M + X1M (X2M − 1) + τX2M .
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The function U = Φ(e) gives the control action that leads to the synchro-
nization of the two systems.

Once (5) defined, one simply choose y = C = (1 0 0)e (or y = e1) as
the output of the error system. In the synchronization approach, one writes
y = h(e) = e1 = X1M − X1S , and consequently the error system (5) can be
written in the general form

Ẋ = f(e) + g(e)U . (7)

The error system (7) should be stabilyzed at the origin or in an arbitrary
small neighbourhood of it. More details on the synchronization conditions
are provided in the papers [3,4] that we employ to obtain the control function
[5]

U =
−1

γ
(β + δ) , (8)

where γ and δ are real-valued functions obtained by means of Lie derivatives
of h(e) as follows

γ = LgL
ρ−1

f h(e) , β = L
ρ
fh(e) , (9)

where ρ is a positive integer that determines the so-called relative degree of
the system (see [5]). On the other hand, the desired dynamics, i.e., directed
towards the origin, is dictated by

δ = KP1e1 + KP2e2 + KP3e3 . (10)

Thus, performing the Lie derivatives and regrouping the terms, we obtain
the function U of the form

U =
−1

κτ

[ (

−κ2ė1 + κτ ė3

)

+ KP1e1 + KP2e2 + KP3e3

]

. (11)

Using the change of variables ei = XiM − XiFS , where the latter vector is
the column vector formed by the triad T , N , and B, (i = 1, 2, 3), the control
can be written as a function of the states of the two systems

U = Φ(x) =
−1

κτ

[

−κ2 (X2 − κN)−κτ
[

(−αX3 − X1 + X1X2)+(τN)
]

+δ

]

,

(12)
where δ = KP1(X1 − T ) + KP2(X2 − N) + KP3(X3 − B). Notice that
γ = LgL

2

fh(x) = κτ is a nonzero constant. Therefore the control signal is
defined for any T ,N ,B, X1,X2, and X3. In addition, one should choose the
values of the constants KPi in such a way that the differences in δ go to
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zero. Applying the dynamics generated by (12) leads to the synchronization
matrix

XFS =







X1M 0 0
0 X2M 0

κX1M 0 X3M






. (13)

From this synchronization matrix one can see that the first two states of
both systems are synchronized. However, the state B = X3M + κX1M is
extended by the term κX1M , i.e., the state B is the sum of two states of the
Malasoma oscillator; since the latter is chaotic, one concludes that the state
B is also chaotic.

We display the phase locking between the corresponding phases of the
two oscillators in Figs. 3 and 4 where the phase locking of the states T and
X1 and N and X2, respectively, shows that the two pairs of states are syn-
chronized. In Fig. 5, we see that the B and X3 states are not synchronized.
Thus, following the terminology of [6], we are in the situation of a general-
ized synchronization. In Fig. 6, the two already synchronized systems are
shown in the three dimensional space. One can notice that the FS system is
‘above’ the Malasoma oscillator, and that the two systems are in a chaotic
phase. Finally, in Fig. 7, the control signal used to achieve the generalized
synchronization of this paper is displayed.

In summary, we have shown here in a concrete way how the simple chaotic
dynamics of Malasoma type can be imposed to the linear Frenet-Serret evo-
lution of space curves.
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Figure 1: Three dimensional dynamics of the Frenet-Serret system with
κ = 1 and τ = 0.9.
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Figure 2: Three dimensional dynamics of the Malasoma system with α =
2.025.
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Figure 3: Phase locking of the T states of the FS system to the X1 states of
the Malasoma system.
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Figure 4: Phase locking of the N states of the FS system to the X2 states
of the Malasoma system.
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Figure 5: Phase behaviour of the states B and X3 of the FS system and
Malasoma system, respectively.
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Figure 6: Plot of the two chaotic attractors once they are synchronized in
the generalized form.
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Figure 7: The control signal U imposed to the Frenet-Serret system in order
to display Malasoma chaos.


