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A common way to test an optical wavefront is to use a phase-shifting 

interferometer along with (for example) a 3-step linear phase shifting algorithm 

(PSA). The following fundamental question arises: what phase-step should be 

used? Typically, / 2 , 2 / 3 , or / 3  are used and in fact, any phase-step 

within the open interval (0, )  can be employed. In the absence of any 

measuring noise, all these phase-shifts yield the same estimate for the modulating 

phase. However, which of these phase-steps 0  is the best to obtain the least 

noisy phase estimation from a temporal set of 3 noisy interferograms?. In this 

paper, working in the frequency space, a general procedure to obtain the optimum 

phase-step 0  of a given linear n-step PSA is given. This general procedure is 

exemplified to some particular linear PSAs, notably 3, 5, 7, and 27-step PSAs.  

Phase shifting algorithm; quadrature filter; signal to noise ratio  

1  Introduction 

Linear temporal phase-shifting algorithms (PSAs) are widely used to estimate the 

modulating phase of interferograms [1-5]. Linear PSAs incorporate a constant phase-

step 0  (in radians/interferogram) to obtain a set of interferometric data [2-5]. It is well 

known that the more temporal interferograms we have, the less noisy is the phase that 
                                                 

1  Corresponding author. Email: adonai@cio.mx  



we estimate; for example a 5-step linear PSA will provide (in general) less noisy phase 

demodulation than a 3-step one [5-6]. However, if we are restricted to take, say 5 

temporal interferograms, an interesting piece of information to be aware of is: which 

value for the phase-step 0  should be used in a 5-step linear PSA to obtain the least 

noisy demodulated phase? In this paper, we answer this question in a general way (not 

just for a 5-step linear PSA), and apply it to some concrete examples. A proper use of 

the procedure presented in this paper (necessarily) involves linear tunable N-step PSAs.  

It is worth to mention that PSAs may be clasified in three large groups: 

 Constat phase-step linear PSAs:  

These PSAs are phase estimating formulas in which the phase-step is constant. 

An example of a linear PSA with constant phase step ( 0 / 2  ) is the 5-step 

Schwider-Hariharan algorithm [8,9]: 
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 Where ( , )x y  is the estimated modulating phase. 

 Variable phase-step linear (tunable) PSAs:  

In a tunable phase-step PSAs, the explicit appearence of the phase-step 0  is 

given. We may generate an infinite number of linear tunable PSAs by selecting a 

real-value 0  within the interval (0,π). An example of a 5-step linear-tunable 

PSA is [10]:  
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 Non-linear self-tuning PSAs  

Non-linear self-tuning PSAs is an algorithm that do not need an explicit value of 

0  in the PSA’s arctangent ratio. The estimation of the frequency carrier 0  is 

given by an algebraic combination of the interferograms’ data. That is, a formula 

using the intensities of the interferograms give an estimate for 0  [11-17]. 

Stoilov et. al. designed the followig 5-steps non-linear self-tuning PSA [8]: 
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Comparing Eq. (3) with Eq. (2), we can see that  0sin   is given as the square 

root of a non-linear algebraic combination of the interferometric data. 

It is easy to note that Eq. (1) is derived from Eq. (2), by setting 0  to π/2; the result is 

the Schwider-Hariharan linear (constant phase-step) PSA. In turn, Eq. (3) is an 

extension of Eq. (2); the term  0sin  is given by the square-root estimator. 

The first impression is that linear tunable PSAs are hard to design, but as we 

show they are not difficult to construct. Once having a mathematical model for a linear 

tunable PSA (with explicit dependence on 0  as in Eq. (2)), we look for the best carrier 

0  within the interval (0, )  that maximizes the signal to noise ratio of the demodulated 

phase. 

2  Phase shifting interferometry 

The standard mathematical model for an interferogram corrupted by additive noise is: 

 0( , , ) = ( , , ) ( , , ) cos[ ( , ) ] ( , , ), (0,1 ).I x y t a x y t b x y t x y t n x y t t       (4) 



In this equation ( , )a x y  is the background illumination, ( , )b x y  is the contrast of the 

fringes, ( , )x y  is the phase being measured, 0  is the phase-step (or frequency carrier) 

used, and finally ( , , )n x y t  is an additive corrupting noise. The additive noise is 

considered Gaussian, stationary, white, with flat-power spectral density of ( ) = / 2S   . 

We know that additive noise is not the only kind of interferometric measuring noise. 

There is also the multiplicative or phase-noise that is attributable to speckles because of 

the coherent laser illumination used. However, once a linear low-pass filter is applied 

for cleaning-up the fringe data, the multiplicative noise turns into additive Gaussian 

noise by the law of large numbers [7]. Moreover, after using several times a 3x3-

averaging filter, one normally ends up with reasonably clear (still corrupted by some 

additive noise) fringes [7] as modeled in Eq. (4). The signal in Eq. (4) can be 

decomposed into complex components as follows: 

 0 0( ) = exp[ ( )] exp[ ( )] ( ).
2 2

b b
I t a i t i t n t          (5) 

The explicit dependence ( , )x y  of the signals has been omitted for clarity. To obtain the 

searched analytical signal 0( / 2)exp[ ( )]b i t   one needs to filter-out the low-

frequency background ( , )a x y , and the complex signals 0( / 2)exp[ ( )]b i t   . 

Assuming tha the complex term at 0  is kept, the linear PSA (a quadrature filter) 

must have a frequency transfer function (FTF) ( )H   with at least the following 

frequency response [4,5] 

0 0( ) 0 (0) = 0 ( ) 0.H H H     (6) 

Applying this FTF function ( )H   to the interferograms the following complex 

output signal is obtained [4,5]: 
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[ ]F   is the Fourier transform operator and 1[ ]F    its inverse. The symbol * 

denotes the one-dimensional (over t ) convolution, and ( )h t  is the quadrature’s filter 

impulse response associated with the PSA, with FTF ( ) = [ ( )]H F h t  [5]. The term 

exp( )n i  is a complex random-variable associated to the Gaussian additive output 

noise. Finally,   is a random (phase noise) process uniformly distributed within the 

interval [0,2 ]  [7]. The estimated phase at = 0t  is given by the linear PSA associated 

to ( )h t  as [5]: 
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where the operators [ ]Re   and [ ]Im   take the real and the imaginary part of their 

argument. The hat over ˆ( , )x y  denotes its estimated value that may differ from the true 

phase ( , )x y  stated in Eq. (4). 

In the next section, we describe two spectral linear tunable PSA models. The 

first analyzed spectrum is the tunable 3-step linear PSA, which is the simplest and 

probably the most frequently used algorithm. Later on, we analyze PSAs with 5, 7, 27-

steps using another tunable spectral model finding the best carrier 0  that maximizes 

the S/N ratio. Other linear tunable N-step PSA spectral models can be easily defined, 

although they may have different optimal carriers 0 . 

3  Linear tunable phase shifting algorithms 

As was mentioned in the introduction of this paper, to find the best 0  that maximizes 



the S/N we need linear tunable PSAs. In this paper we construct linear tunable PSAs by 

combining first-order digital filter, or by combining second-order digital linear filters. 

Repeated convolutions of these first or second order digital filters leads to higher order 

linear PSAs. 

3.1  Linear tunable PSAs by combining first-order digital filter 

We construct linear tunable PSAs by combining two simple first-order digital linear 

filters. The basic mathematical model for these first-order filters are: 

 1( ) = ( ) ( 1),h t t t           (9) 

 1 0 0( , ) = [ ( ) ( 1)]exp( ),h t t t i t       (10) 

where ( )t  is the Dirac delta function, and = 1i  . The frequency transfer function 

(FTF) of these basic models are: 

 1 1[ ( )] = ( ) = 1 exp( ),F h t H i   (11) 

 1 0 1 0 0[ ( , )] = ( , ) = 1 exp[ ( )],F h t H i        (12) 

the combination of several first-order blocks leads to the desired N-step linear tunable 

PSA’s FTF [18]. A spectral-model for high-order N-step linear tunable PSA may be 

given by: 

 0 1 1 0( , ) = ( ) ( , ) ; 1,n m
NH H H N n m         (13) 

Where the number of possible steps N is 3, 4, 5,6,..., 1n m  . The simplest example of 

this construction model is a 3-step lineat tunable PSA. This filter has the following FTF: 

 0( )1 1
3 0 1 1 0( , ) = ( ) ( , ) = (1 )[1 ]iiH H H e e          (14) 



taking the inverse fourier transform 1[ ]F    of Eq. (14), 1
3 0 3 0( , ) = [ ( , )]h t F H    one 

obtains the complex impulse response of the linear 3-step PSA tuned at 0 . 

3 0 0 0 0( , ) = ( 1) ( ) exp( ) ( ) exp( ) ( 1), (0, )h t t t i t i t                     (15) 

by using Eq. (8) and Eq. (15) one obtains a 3-step linear PSA tuned at 0  as [19]: 
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The equation above represent a 3-step linear tunable PSA, the spectral amplitude 

3 0( , )H    is shown in Fig. 1 for 0 2 / 3  . The complex harmonics rejected by this 

linear tunable PSA are clearly identify from the plot. In this particular frequency span 

the complex harmonics rejected are: (..., 6, 4, 3, 1, 2, 3, 5, 6,...)    . 

 

Figure  1:   The 3-step linear PSA, tuned at 0 2 / 3  . It is shown in this paper that the 

optimum carrier that minimizes the demodulated phase-noise of this linear PSAs is 

2 / 3 . In this particular figure the complex harmonic rejected are: 

(..., 6, 4, 3, 1, 2, 3, 5, 6,...)    . 

3.2  Linear tunable PSAs by combining  second-order digital filters 

In this sub-section we construct linear tunable PSAs by combining two second-order 



digital linear filters. Repeated convolutions of these two (second order) filters leads to 

higher order linear PSAs. In other words, several convolutions of these two simple 

building blocks generate arbitrary high order linear tunable PSAs [20]. The 

mathematical forms of these second-order filters are: 

 2 ( ) = [ ( 1) ( 1)]h t i t t     (17) 

 2 0 0 0( , ) = exp( ) ( 1) 2 ( ) exp( ) ( 1).h t i t t i t            (18) 

The frequency transfer function (FTF) of these filters are: 

 2 2[ ( )] = ( ) = 2 sin( )F h t H    (19) 

 2 0 2 0 0[ ( , )] = ( , ) = 2 2cos( ).F h t H       (20) 

2 ( )H   filters-out the background ( , )a x y  at = 0 , and also the components at 

= (..., 2 , ,0, , 2 ,...)      . On the other hand, the filter 2 0( )H    can be 

frequency-tuned to any 0  (within ( 0, ) ), removing the complex signal at 0=   

and letting pass its conjugate at 0=   (see Eq. (6)). The simplest spectral product of 

these two building blocks gives the FTF of a 5-step tunable PSA: 

 5 0 2 2 0 0( , ) = ( ) ( ) ; (0, )H H H         (21) 

This spectrum complies with Eq. (6), which gives the minimum conditions for a valid 

linear tunable PSA. Taking the inverse Fourier transform of Eq. (21), one obtains the 

complex impulse response of a 5-step linear tunable quadrature filter 

1
5 0 5 0( , ) = [ ( , )]h t F H   , 
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As this equation shows, the impulse response 5 0( , )h t   depends on the choice of the 

phase-step 0  used. Finally, according to Eq. (8), one obtains a linear 5-step PSA tuned 

at 0  as, 
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Note that this linear tunable 5-step PSA reduces to the Schwider-Hariharan 

linear PSA for 0 = / 2   [8, 9]. A useful spectral-model for higher order linear PSAs 

is obtained by combining 2 ( )H   and higher powers of 2 0( , )H   , increasing the 

detuning robustness of the PSA at 0 . In other words higher power of 2 0( , )H    

flattens the linear PSAs spectral response at 0  [5,18]. Therefore, the spectral-model 

for this high-order N-step linear tunable PSAs considered in this paper has the form: 

 
5

1
2

0 2 2 0( , ) = ( )[ ( )] , = 5, 7, 9,11,
N

NH H H N    



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For example, one can obtain the spectrum of a N = 27-step PSA tuned at 0 = / 2   as, 

 12
27 2 2( , / 2) = ( )[ ( / 2)] .H H H      (25) 

Figure 2 shows the spectra of a 5-step, 7-step, and 27-step linear PSAs all tuned 

at 0 = / 2  , obtained by Eq. (24). The left side complex signal at = / 2   is zero 

for all 5, 7 and 27-step linear PSAs, while being transparent at = / 2  . The 27-step 

linear PSA spectrum is (almost) flat-zero for ( ,0)    as a consequence it has very 

small detuning error [5, 18]. In these particular cases the complex harmonics rejected 



are: (..., 8, 6, 5, 4, 2, 1, 2, 3, 4, 6, 7, 8,...)      . Also as Fig. 2 shows, these quadrature 

filters are very robust to detuning at these harmonics. Finally, the linear tunable PSA 

that results from this N-step spectral model Eq. (24) applied to our set of N phase-

shifted interferograms ( , , )NI x y t  is: 
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where 1
0 0( , ) = [ ( , )]N Nh t F H   . 

 

Figure  2: Linear tunable PSAs with 5, 7 and 27-steps with spectral model given by Eq. 

(24). These quadrature filters remove the DC term at = 0  and the complex frequency 

component at = / 2  . The complex harmonics rejected are: 

(..., 8, 6, 5, 4, 2, 1, 2, 3, 4, 6, 7, 8,...)      . These harmonics rejections are robust to 

detuning. 

4  Optimum phase-step to obtain the maximum S/N ratio gain 

This section describes the objective of this paper, namely obtain the optimal carrier 0
opt  

for linear tunable PSAs to obtain the best signal to noise (S/N) power ratio. As far as 

we know, the optimal value 0
opt  for a given linear PSA’s spectral model that renders 



the least noisy demodulated phase has not been published. 

We assume that the output-power noise n  in Eq. (7) is substantially less than 

the amplitude of the output complex signal, i.e. 0 0<< ( , ) / 2n H b  ; additive low-

noise approximation. This condition is normally fulfilled when the interferograms are 

low-pass filtered to remove some noise [5,6]. Under these circumstances, the S/N 

power-ratio of the output phase can be demonstrated to be [6] 
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   (27) 

Where (S/N)input is the interferogram’s signal to noise power ratio. 0( , )H    stands for 

the filter’s spectrum (which depends on the interferogram’s carrier 0 ), and *
0( , )H    

stands for its complex conjugate. G( 0 ) is the algorithm’s (S/N) power gain. Note that 

the S/N algorithm’s gain G( 0 ) is a function of the carrier frequency 0  alone. In other 

words, given a mathematical spectral model for linear tunable PSAs, 0( , )H    we 

may choose the carrier 0  which maximizes this power-ratio gain G( 0 ) in Eq. (27). 

4.1  Optimum 0  to obtain the best (S/N) ratio for a 3-step linear PSA 

Owing to its wide use, let us first analyze the spectrum of a 3-step linear tunable PSA 

and find the optimum carrier that minimizes its demodulated phase noise. The 3-step 

linear PSA tuned at 0 , has the following formula [15,19]: 
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The temporal impulse response associated with this linear tunable PSA is [4, 5] 



3 0 0 0( , ) = sin( )[2 (0) ( 1) ( 1)] {[1 cos( )][ ( 1) ( 1)]}h t t t i t t                (29) 

and its FTF (in this case real) 0( , )H    is: 

3 0 3 0 0 0 0( , ) = [ ( , )] = 2sin( )[1 cos( )] 2[1 cos( )]sin( ); (0, )H F h t             (30) 

Finally, using Eq. (27) one obtains the S/N ratio gain G( 0 ) for a 3-step 

algorithm as follows: 
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This last equation states the importance of having a linear tunable PSA in order 

to find the best tuning frequency 0  within the interval (0, ) . Equation (31) shows that 

the S/N ratio gain G(.) depends only on 0 ; therefore setting the derivative of this 

equation (with respect to 0 )  equal to zero one obtains the optimum 0
opt  which 

renders the S/N power ration gain G( 0 ) maximum. In the case of the 3-step linear 

PSA, the optimum phase-shift is: 

 0

=2 /300

( )
| = 0.opt

d G

d  




        (32) 

This correspond to the optimal carrier frequency 0 = 2 / 3opt   

Figure 1 shows the FTF, 3( , 2 / 3)H   , corresponding to the optimum-carrier 3-

step linear PSA. This linear PSA filters out the complex signal at = 2 / 3  , while 

the complex signal at = 2 / 3   is allowed to pass. With this result one is now 

absolutely certain that a carrier of 2 / 3  is the best choice to obtain the cleanest 

demodulated phase for a 3-step linear PSA corrupted by additive noise. Table 1 shows 



the FTF for the 3, 5, 7, and 27-step linear tunable PSA models used in this paper. 

Table 2 shows the PSAs for the 3, 5, and 7-step FTFs in table 1. 

Table  1: N-step linear PSA construction results 
   

  N-step  Filter Spectral Response (FTF) 
  
3  

3 0 0 0( , ) = sin( ) sin( ) sin( )H          

5  
5 0 0 0( , ) = sin( ) sin( 2 ) 2sin( )H          

7  
7 0 0 0 0( , ) = sin( ) sin(2 3 ) sin( 2 ) sin(2 ) sin( )H                

27  
240

27 0( , ) = sin( ) sin( )
2

H
   

 

  Table  2: Linear tunable PSA 
   

N 
step 

Linear tunable PSA 

  
3  

0
3 0 0

0

( 1) (1) cos( )( (1) ( 1))ˆ ( , ) = arctan ; (0, )
sin( )( ( 1) 2 (0) (1))

I I I I

I I I

    


     
    

 

5  

0
5 0 0

0

cos( )( ( 2) (2)) ( 1) (1)ˆ ( , ) = arctan ; (0, )
sin( )( ( 2) (0) (2))

I I I I

I I I

    


      
    

 

7  

7 0

0 0
0

0 0

ˆ ( , ) =

cos(2 )( ( 3) (3) ( 1) (1)) cos( )( (2) ( 2)) 3( ( 1) (1))
arctan ; (0, )

sin(2 )( ( 3) (3) (1) ( 1)) sin( )(2 (0) (2) ( 2))

I I I I I I I I

I I I I I I I

 

   
 

           
          

 



 4.2  Optimum phase-step to obtain the maximum S/N gain in higher order 

linear tunable PSAs 

The main purpose of this sub-section is to calculate the optimum temporal carrier 0
opt  

from Eq. (27). Using these second-order filters we obtain the spectra for the 5, 7, and 

27-step spectra in Table 1. The optimum carrier 0
opt  is the one that gives the lowest 

noise in the phase demodulation process for the linear N-step PSA’s spectral model in 

Eq. (24). Figure. 3 shows four graphs corresponding to the 0( )G   ratio gain of 3, 5, 7, 

and 27-step linear tunable PSAs. The 0( )G   power-ratio gain depends solely on the 

carrier frequency 0  (see Eq. (27)). Higher order linear PSAs, modeled by Eq. (24), 

( 5)/2 1
0 2 2 0( , ) = ( ) ( , ) N

NH H H       , all have their maximum signal to noise gain G(.)  

at 0 = / 2opt   

2

0
2

( / 2)
( / 2) = ;

1 2( , / 2)
2

N
Maximum

N

H
G

H d




  
  

 




 (33) 

The step-angle of / 2  is a frequently chosen value in experimental work. Figure 3 also 

shows the intuitive result that, the more steps we have, the higher (optimum) S/N ratio is 

obtained. From Eq. (23), we see that for = 5N -steps, and 0 = / 2   we obtain the 

Schwider-Hariharan PSA. Therefore, the Hariharan-Schwider linear PSA uses the best 

possible carrier within its spectral model in Eq. (24).  



 

Figure 3: This figure shows the best frequency carrier through the S/N analysis 

performed herein as the main objective of this paper.  

5  Conclusions 

This paper shows a technique to find the optimum phase-shift 0
opt  which maximizes 

the signal to noise ratio (S/N) on the demodulated phase for linear tunable PSAs. This 

holds true whenever the corrupting interferogram noise is additive, white, and Gaussian. 

To apply our procedure, one needs a linear tunable PSA’ spectral model to vary 0  and 

keep the one that maximizes the G( 0 ) ratio in Eq. (27). The particular spectral models 

used in this paper were presented in Eq. (13) and Eq. (24). These two spectral models 

were substituted into Eq. (27), and the best carrier 0  that maximizes S/N ratio gain, 

G( 0 ) is chosen. This optimization was applied to 3, 5, 7, and 27-step linear tunable 

PSAs. We have found that for the case of a 3-step linear PSA, the carrier that 

maximizes the G( 0 ) ratio is 0 = 2 / 3opt  , while for the spectral model in Eq. (24), the 

best G( 0 ) ratio gain is obtained by 0 = / 2opt  . This optimizing procedure can be 

easily extended to other linear tunable PSA spectral models not considered here. Note 

the important fact that, the optimum value for 0  depends on the PSA’ spectral model 



chosen. For example, one may have two 5-step linear tunable PSAs with different 

spectral model, having possibly two different optimum carriers that optimize 0( )G  . 
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