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Abstract

It is shown that the presence of mixed-culture growth in batch fermentation pro-
cesses can be very accurately inferred from total biomass data by means of the
wavelet analysis for singularity detection. This is accomplished by considering sim-
ple phenomenological models for the mixed growth and the more complicated case
of mixed growth on a mixture of substrates. The main quantity provided by the
wavelet analysis is the Hölder exponent of the singularity that we determine for
our illustrative examples. The numerical results point to the possibility that Hölder
exponents can be used to characterize the nature of the mixed-culture growth in
batch fermentation processes with potential industrial applications. Moreover, the
analysis of the same data affected by the common additive Gaussian noise still lead
to the wavelet detection of the singularities although the Hölder exponent is no
longer a useful parameter.
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1 Introduction

The growth of microbial species in media containing two or several growth-
limiting substrates is of great importance in biotechnology and bioengineering.
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The mixed-culture growth occurs in many industrial processes. A first signifi-
cant class of such processes is the traditional fermented foods and beverages in
which either endemic microorganisms or an inoculum with selected microor-
ganisms are used, see for instance (1). Some beverages get two or more different
microorganisms in the inoculum with the purpose to provide a desired flavor.
Evidence of this influence are presented in the recent paper of (2), in which
the role of different yeast interactions on the wine flavor is discussed. However,
the phenomenological details and the theory of the time evolution of the fer-
mentation are as yet poorly understood. We can also mention the interesting
case of the bioethanol production, in which the substrates used for fermenta-
tion typically consist of a mixture of glucose and fructose. Bioethanol is the
product obtained from the metabolism of microbe mixtures feeding with this
combination of hexoses and pentoses, see e.g., (3). The last relevant example
we give is bioremediation, in which gasoline and chemical spills generally yield
a complex mixture of water-soluble organic compounds. In gasoline spills, for
instance, the four basic compounds are benzene, toluene, ethylbenzene, and
xylene. The consumption of this mixture by microorganisms is what is defined
as the bioremediation process.

In all the aforementioned cases, the presence of different populations of mi-
croorganisms and substrates is a key factor in the quality and quantity of the
final product. Therefore, it is quite useful to detect the presence or lacking
of process of mixed-culture growth type. Their presence could be used as an
estimate of the right evolution of the process in its early stage. In addition, a
rapid and reasonably accurate test is always useful for saving time and helping
to take quick decisions. It is quite clear then that the biomass concentration
is one of the most needed quantity that should be measured in fermentation
monitoring. The most popular method to get the biomass concentration is by
means of the measurement of the optical density of centrifugalized samples.
However, this procedure has limited usefulness because it cannot distinguish
neither the living cells from the dead ones, nor the different types of microor-
ganisms involved in the process. In some cases it is also possible to correlate
the total biomass concentration with the values of the redox potential of the
fermentation.

Recently, new techniques have emerged to quantify the biomass and distin-
guish the different microorganisms present in a mixed-culture. Some of then
based on sophisticated equipment ((5), (6) and (7)) and others resides on
molecular biology techniques ((3) and (4)). All these techniques are very
promising in the study of the dynamics of the mixed-culture growth, although,
they require expensive or complicated procedures. In this paper, we show that
it is possible to infer mixed-culture growth of microorganisms from their to-
tal biomass data, without using such complicated techniques. The alternative
procedure that we put forth here is based on treating the total biomass data
by means of the wavelet approach for detection of singularities in the growth
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curves. The idea is to treat the mixed growth curves as more or less regu-
lar signals that can nevertheless display singularities due to their compound
structure. In the wavelet literature there exist fundamental papers in which it
has been shown that the wavelet techniques are very efficient in detecting any
type of singularities.

The rest of the paper is organized as follows. In Section 2, we introduce a simple
dynamics of the mixed-growth type and discuss its basic assumptions. Next, in
Section 3, the method of the wavelet singularity analysis is briefly presented,
whereas its application to the mixed type dynamical curves is enclosed in
Section 4. A conclusion section ends up the paper. An appendix containing
the standard definitions of Hölder exponents of singularities of functions is
included as well.

2 A simple mixed-growth model

The technology of batch processes is well developed and numerous products
are obtained in this way. Some products such as food, beverages, and pharma-
ceutical ones require precise tracking of the batch information for safety and
regulatory purposes. The primary objective of monitoring batch processes is
to ensure that significant and sustained changes in the quality of the prod-
uct (caused by disturbances and/or faults) are detected as soon as possible.
In that sense, the rapid detection of singularities in the output of the batch
processes offers an interesting solution. The wavelet analysis for singularity
detection is by now well established but there was no direct application to
infer mixed-growth in the case of batch biochemical processes.

In order to achieve this task we will consider here a fermentation process con-
sisting of a perfectly stirred tank, where no streams are fed into it. In the batch
fermenter the substrate is converted by biomass into additional biomass and
products. The general unstructured mass balances for the well-mixed biore-
actor can be represented by the following equations for the concentrations of
the cells and substrates:

dx1,i

dt
= x1,i µi (x2,i)

dx2,i

dt
= −x1,i

Yi
µi (x2,i)

where x1,i represent the biomass concentrations, x2,i substrate concentrations
and Yi is the biomass yield, µi (x2,i) is the specific growth rate and i ∈ R

represent the i-th species, allowing for the possibility of multiple kinds of
substrates and microorganisms. The growth rate relates the change in biomass
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concentrations to the substrate concentrations. Two types of relationships for
µi (x2,i) are commonly used: the substrate saturation model (Monod Equation)
and the substrate inhibition model (Haldane Equation). Both cases will be
treated here. The substrate inhibited growth can be described by

µi (x2,i) =
µmaxi

x2,i

K1i
+ x2,i +K2i

x2
2,i

where K1i
is the saturation (or Monod) constant, K2 is the inhibition constant

and µmaxi
is the maximum specific growth rate. The value of K1i

expresses the
affinity of biomass for substrate. The Monod growth kinetics can be considered
as a special case of the substrate inhibition kinetics with K2i

= 0 when the
inhibition term vanishes. For the sake of simplicity, we will consider only two
species and two substrates. Moreover, we consider that it is possible to measure
only the total biomass concentration. That means that the output of the
system (y) will be given by

y =
m
∑

i=1

x1,i

where m is the number of species of microorganisms growing in the bioreactor
(in this work m = 2). We focus on the following four cases:

I The microorganism and substrate concentrations have the same initial con-
ditions, but different growth rates, one with a Haldane type and one with a
Monod type. In addition, quite different values of the Monod constant will
be taken into account.

II The microorganism and substrate concentrations have different initial con-
ditions, but the same growth rates.

III The microorganism and substrate concentrations have different initial con-
ditions and different growth rates, one with a Haldane type and one with a
Monod type.

IV The microorganism and substrate concentrations have the same initial con-
ditions and the same growth rates, but with different values of the maximal
growth rate.

Table 1 shows the variables and parameter values used to simulated the two
species growing in the two different substrates, under the four cases under
consideration.
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Table 1
The initial conditions and the values of the employed parameters of the mixed-
growth process model.

Symbol Meaning Values Units

Case I Case II Case III Case IV

µmax1
Maximal growth rate 1 1 1 0.9 [l/h]

K11
Saturation parameter 0.03 0.03 0.03 0.03 [g/l]

K21
Saturation parameter 0.5 0.5 0.02 0.5 [g/l]

Y1 Yield coefficient 0.5 0.5 0.5 0.5 −
x0

11
Initial biomass conc. 0.1 0.1 0.1 0.25 [g/l]

x0
21

Initial substrate conc. 10 10 10 10 [g/l]

µmax2
Maximal growth rate 1 1 1 1 [l/h]

K12
Saturation parameter 0.3 0.03 0.03 0.03 [g/l]

K22
Inhibition parameter 0 0.5 0 0.5 [l/g]

Y2 Yield coefficient 0.5 0.5 0.5 0.5 −
x0

12
Initial biomass conc. 0.1 0.2 0.1 0.25 [g/l]

x0
22

Initial substrate conc. 10 5 6 10 [g/l]

3 Mixed cultures on mixtures of substrates

When microbes are grown in a batch reactor containing a surplus of two sub-
strates, one of the substrates is generally exhausted before the other, leading to
the appearance of two successive exponential growth phases. This phenomenon
could be noticeable at simple view in the biomass signal or unnoticed due to
its nature or due to additive noise present in the signal. In general, such type
of phenomenon is known as growth of mixed cultures on mixtures of substrates
(MCMS).

The growth of MCMS is a phenomenon of practical and theoretical interest.
The fundamental understanding of this problem has impact on many practical
fields such as food processing, production of ethanol from renewable resources,
bioremediation and microbial ecology, among many others.

To study the usage of the wavelet approach in the detection of MCMS growth,
we consider the recent model proposed by Reeves 2004 (8), which takes into
account such type of growth.

Within this section, the index i will denote the species number, and the index
j will stand for the substrate number. Thus, ci denotes the concentration of
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the ith species, sj denotes the concentration of the jth substrate, eij denotes
the concentration of the lumped system of inducible enzymes catalyzing the
uptake and peripheral catabolism of sj by ci. Here, ci and sj are based on the
volume of the chemostat, and expressed in the units gdw/l and g/l, respec-
tively. eij is based on the dry weight of the biomass, and expressed in the units
g/gdw.

rsij = V s
ij eij

sj
Ks
ij + sj

rxij = kxij xij

reij = V e
ij

xij
Ke
ij + xij

rastij = kastij

rdij =Kd
ij eij

d sj
d t

=D
(

sfj − sj
)

− rs1j c1 − rs2j c2 (1)

d eij
d t

=V e
ij

eij σij
K̄e
ij + eij σij

+ kastij − kdij eij − rgi eij (2)

d ci
d t

=(rgi −D) ci (3)

where

K̄e
ij =

Ke
ij k

x
ij

V s
ij

, σij =
sj

Ks
ij + sj

rgi = Yi1 r
s
i1 + Yi2 r

s
i2

Reeves et al (8) comment that a plausible experimental situation is the case
of Escherichia coli and Pseudomonas aeruginosa, in which, E. coli prefers a
sugar over an organic acid, and P. aeruginosa prefers the organic acid over
the sugar.

In order to have the batch regime in the bioreactor we set parameter D = 0
and also employ Reeves’ parameters sf1 = 1 and sf2 = 2. Table 2 shows the
rest of the parameter values used to simulate the growth of the two species on
the two different substrates in the MCMS conditions.
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Table 2
Parameter values used in the MCMS growth model (8)

V s
11 = 1000 V s

12 = 1000 V s
21 = 1000 V s

22 = 1000 g/g h

Ks
11 = 0.01 Ks

12 = 0.01 Ks
21 = 0.01 Ks

22 = 0.01 g/l

V e
11 = 0.0025 V e

12 = 0.0020 V e
21 = 0.0006 V e

22 = 0.0036 g/gdw h

K̄e
11 = 0.0017 K̄e

12 = 0.0032 K̄e
21 = 0.0013 K̄e

22 = 0.0030 g/gdw

kd11 = 0.01 kd12 = 0.01 kd21 = 0.01 kd22 = 0.01 l/h

k∗

11 = 10−2 V11 k∗

12 = 10−2 V12 k∗

21 = 10−2 V21 k∗

22 = 10−2 V22 g/gdw h

Y11 = 0.41 Y12 = 0.24 Y21 = 0.35 Y22 = 0.20 g/g

4 Measuring regularity with the wavelet transform

Let us think of the total biomass of the mixed-growth curves as a signal.
In general, performing the analysis of a signal means to find the regions of
its regular and singular behavior. Usually the singularities are very specific
features for signal characterization. As it has been pointed in the seminal paper
of (14), the regularity of a signal treated as a function can be characterized
by Hölder exponents. The wavelet transform has been demonstrated to be a
tool exceptionally well suited for the estimation of Hölder exponents (for their
definitions see the Appendix).

4.1 The wavelet transform

Let L2(R) denote the space of all square integrable functions on R. In signal
processing terminology, L2(R) is the space of functions with finite energy. Let
ψ(t) ∈ L2(R) be a fixed function. The function ψ(t) is said to be a wavelet if
and only if its Fourier transform, ψ̂(ω) =

∫

eiωtψ(t)dt, satisfies

Cψ =

∞
∫

0

|ψ̂(ω)|2
|ω| dω <∞. (4)

The non-divergent relation given by Eq. (4) is called the admissibility condition

in wavelet theory, see for instance (12) and (14). It implies that the wavelet
must have a zero average on the real line

∞
∫

−∞

ψ(t)dt = ψ̂(0) = 0, (5)
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and therefore it must be oscillatory. In other words, ψ must be a sort of
wave ((12; 14)). Based on ψ(t), one defines the functions ψa,b as follows

ψa,b(t) =
1√
a
ψ

(

t− b

a

)

, (6)

where b ∈ R is a translation parameter, while a ∈ R
+ (a 6= 0) is a dilation or

scale parameter. The factor a−1/2 is a normalization constant such that ψa,b
has the same energy for all scales a. One notices that the scale parameter a in
Eq. (6) is a measures of the dilations of the spatial variable (t−b). In the same
way the factor a−1/2 measures the dilations of the values taken by ψ. Because
of this, one can decompose a square integrable function f(t) in terms of the
dilated-translated wavelets ψa,b(t). We define the wavelet transform (WT) of
f(t) ∈ L2(R) by

Wf (a, b)= 〈f, ψa,b〉 =

∞
∫

−∞

f(t)ψ̄a,b(t)dt

=
1√
a

∞
∫

−∞

f(t)ψ̄

(

t− b

a

)

dt, (7)

where 〈 , 〉 is the scalar product in L2(R) defined as 〈f, g〉 :=
∫

f(t)ḡ(t)dt,
and the bar symbol denotes complex conjugation. The WT given by Eq. (7)
measures the variation of f in a neighborhood of size proportional to a centered
on point b. In order, to reconstruct f from its wavelet transform (7), one needs
a reconstruction formula, known as the resolution of the identity ((12; 14)).

f(t) =
1

Cψ

∞
∫

0

∞
∫

−∞

Wf(a, b)ψa,b(t)
da db

a2
. (8)

From the above equation we can see why the condition given by Eq. 4 should
be imposed. One fundamental property that we require in order to analyze
singular behavior is that ψ(t) has enough vanishing moments as argued in the
works of (9) and (13). A wavelet is said to have n vanishing moments if and
only if it satisfies

∞
∫

−∞

tkψ(t)dx = 0, for k = 0, 1, . . . , n− 1 (9)

and
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∞
∫

−∞

tkψ(t)dt 6= 0, for k ≥ n. (10)

This means that a wavelet with n vanishing moments is orthogonal to poly-
nomials up to order n−1. In fact, the admissibility condition given by Eq. (4)
requires at least one vanishing moment. So the wavelet transform of f(t) with
a wavelet ψ(t) with n vanishing moments is nothing but a “smoothed version”
of the n–th derivative of f(t) on various scales. In fact, when someone is in-
terested to measure the local regularity of a signal this concept is crucial (see
for instance (12; 14)).

4.2 Wavelet singularity analysis

The local regularity of a function f at a point t0 is often measured by its Hölder
exponent. The Hölder exponent α measures the strength of a singularity at a
particular point t0, where t0 belongs to the domain of f , see the Appendix.
It is important to point out that if the singular part of a function f in the
neighborhood of t0 is of the type |t− t0|α, then it corresponds to a cusp and in
this case the singular behavior is fully characterized by its Hölder exponent.
However, there exists functions that involve oscillating singularities which have
to be described by an additional quantity: an oscillating exponent ((10; 11)).
In such a case, the oscillation has to be analyzed carefully. Such functions can
not be fully characterized only by the Hölder exponent. In this work, we will
only consider functions whose singularities are not oscillating.

One classical tool to measure the regularity of a function f(t) is to look at the
asymptotic decay of its Fourier transform f̂(ω) at infinity. However, the Fourier
transform is not well adapted to measure the local regularity of functions,
because it is global and provides a description of the overall regularity of
functions ((13; 14)). Consequently, we need another way to characterize local
signal regularity.

In the works (9; 12; 13; 14) it is shown that the WT provides a way of doing a
precise analysis of the regularity properties of functions. This is made possible
by the scale parameter. Due to its ability to focus on singularities in the
signals, the WT is sometimes referred to as ’mathematical microscope’ ((9;
12; 13; 14)), where the wavelet used determines the optics of the microscope
and its magnification is given by the scale factor a.

The WT modulus maxima (WTMM) decomposition introduced by (13) pro-
vides a local analysis of the singular behavior of signals. In the works of Mallat
(13; 14) it has been shown that for cusp singularities the location of the sin-
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gularity can be detected and the related exponent can be recovered from the
scaling of the WT along the so-called maxima line (Wtmml for short), which
is convergent towards the singularity. This is a line where the WT reaches
local maximum with respect to the position coordinate. Connecting such local
maxima within the continuous WT ’landscape’ gives rise to the entire tree of
maxima lines. Restricting oneself to the collection of such maxima lines pro-
vides a particularly useful representation of the entire WT. It incorporates the
main characteristics of the WT: the ability to reveal the hierarchy of (singular)
features, including the scaling behavior.

An other key concept, in addition to vanishing moments, used to characterize
the regularity of a function in terms of Wtmm is given next. Suppose that
ψ has compact support [−C,C]. The cone of influence of ψ at point t0 is the
set of points (a, b) in the scale-space plane or domain, such that t0 is in the
support of ψa,b(t). We will denote the scale–space plane or domain of the WT
as the (a, b)-plane or the (a, b)-domain. Since the support of ψ((t − b)/a) is
[b− Ca, b+ Ca], the point (a, b) belongs to the cone of influence of t0 if

|b− t0| ≤ Ca. (11)

The function f(t) has a Hölder exponent α ∈ (k, k + 1) at t0, if and only if
there exists a constant A > 0 such that at each modulus maxima (a, b) in the
cone defined by Eq. (11) one has

|Wf(a, b)| ≤ Aaα+1/2, a→ 0, (12)

(see (13; 14)). Here it is assumed that the wavelet has at least n > α vanishing
moments. If f(t) is regular at t0 or, if the number of vanishing moments is too
small, i.e., n < α, one obtains for a→ 0 a scaling behavior of the type

|Wf(a, b)| ≤ Aan+1/2. (13)

The scaling behavior of the Wtmml is given in Eq. (12) and can be rewritten
as follows

log |Wf(a, b)| ≤ logA+
(

α +
1

2

)

log a. (14)

The global Hölder regularity at t0 is thus the maximum slope −1

2
of log |Wf(a, b)|

as a function of log a along the maxima line converging to t0.
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5 Results and discussion

In this section, we present the results we obtained using the singularity detec-
tion procedure described in the previous section. The signal to be analyzed,
f(t) = y, represents the evolution in time of the total biomass concentration
for the fermentation process described in Section 2 that includes four different
cases as specified therein. In all the wavelet-related calculations we employed
as mother wavelet the first derivative Gaussian ψ′(t) = d/dt(e−t

2/2) having
only one vanishing moment. The final goal is always to calculate the Hölder
exponent of the singularities for such processes because it is a direct measure
of the irregularity of a signal (function) at the singular point t0, in the sense
that higher values of it correspond to more regular functions than the lower
values.

Figure 1 a,b,c shows the performance of the wavelet singularity analysis as
applied to Case I (same initial conditions but different kinetic rates). We
obtain a Hölder exponent of quite high value.

The following figure shows the performance of the scheme applied to Case II
(same growth rates but different initial conditions). In this case, the Hölder
exponent of the mixed growth singularity is lower than in Case I.

Similarly to the previous cases, Fig. (3) presents the graphical results for
Case III (different initial conditions and different growth rates). Although,
the singularity looks very mild in the time evolution of the total biomass
concentration the wavelet analysis is able to detect it with high precision.

Finally, Case IV (same initial conditions, same growth rates but with different
values of their maximal growth rates) is graphically analyzed in Fig. (4). For
this case we obtained the lowest Hölder exponent.

Although the latter two cases seem to correspond to almost overlapping of the
WTMML pointing to bifurcation phenomena we are still not at the threshold
of a completely different behavior of the log plots generated by bifurcations.
This could be explained by the fact that the strength of the first singularity
is bigger with respect to the second one.

5.1 Wavelet analysis for the MCMS case

The MCMS case is the most interesting case that we discuss here because we
will show that it is possible to infer in a very accurate manner by means of
WT the moment in which the microorganisms switch their carbon source. In
order to understand the detailed dynamics of this combined growth, we first
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apply separately the WT approach to the two biomass signals y = c1 (Fig. 5)
and y = c2 (Fig. 6) and then to the total signal y = c1 + c2 (Fig. 7).

It is worth noting that the Hölder exponent is bigger than one, a quite inter-
esting feature which means that the singularity lies in the second derivative
of the biomass signal. This result gives further opportunities to character-
ize the nature of the singularity because it suggests that the type of growth
can be inferred from the order of the derivative in which the singularity oc-
curs directly given by the value of the Hölder exponent. The latter fact is a
great simplification with respect to the analytical search of the singularities
which implies obtaining the analytical solution of the given dynamical growth
model. Moreover, even in such fortunate cases, the analytical solutions could
be subject to fixed parameter values of the model. On the other hand, the
WT numerical approach allows the singularity analysis even in the case of
time-varying parameters.

5.2 Wavelet analysis for the noisy data case

It is well known that in some cases the amplitude of the Gaussian noise af-
fecting the on-line signals can be an important annoying factor. Therefore, a
good analysis should be robust in such cases. Thus, we provide here the WT
analysis for the MCMS biomass signals in the presence of white noise, that
is, in the next figures (8-10) we consider signals of the form yi = ci + ǫ(t) and
their sum, where ǫ(t) stands for the functional form of the noise.

We notice from the corresponding plots that the noisy data do not allow to
obtain global Hölder exponents in a straightforward manner, which is a result
already reported in the wavelet literature ((14) and (15)). On the other hand,
the singularity detection is robust with respect to the noise for reasonable
levels of its amplitude. In addition, Figure 9 gives us the hint that when the
cones of influence produced by the Gaussian noise enter the scales of the
singularity the cone of the latter becomes undistinguishable from those of
the noise. This remark could be used as a sort of resolution criterium of the
WT method in the presence of noise. Therefore, one can determine a critical
amplitude of the noise for which the WT approach looses its applicability.

6 Concluding remarks

We showed here explicitly how the wavelet singularity analysis can be applied
to infer mixed growth behavior of fermentation processes using only total
biomass data. We prove that the wavelet analysis is very accurate for all the
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cases we considered. A very interesting feature of our research is that the
Hölder exponent is sensitive to the type of the mixed-growth phenomenon,
more specifically depends on the parameters of the growth processes and on
their initial conditions. The MCMS case points to the remarkable technological
possibility of detecting the change of the substrate uptake since the singularity
appears in the second derivatives of the biomass signal. This can lead one to
think of the possibility to infer substrate contaminations based only in the
analysis of the biomass data. In addition, our results for the noisy data clearly
hint to the fact that the wavelet singularity analysis maintains its attractive
features even in these more difficult but realistic case. We hope that in future
works we could find out the mathematical relationships implied by this possible
correlation. It might allow the usage of the Hölder exponent as an identification
criterium of the more specific nature of mixed-growth processes.
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Appendix

A function f : R → R is said to be Hölder continuous of exponent α (0 < α <
1) if, for each bounded interval (c, d) ⊂ R, we can find a positive constant K
such that

|f(t) − f(t0)| ≤ K|t− t0|α (15)

for all t, t0 ∈ (c, d).

The space of Hölder continuous functions is denoted Cα. A function is said
to be Cn+α if it is in Cn and its nth derivative is Hölder continuous with
exponent α. Thus, if we consider the Hölder exponent n < α < n + 1, with
n ∈ N, the function can be differentiated n times, but the (n+1)th derivative
does not exist. Therefore, a function with a Hölder exponent n < α < n + 1
is said to be singular in the nth derivative. Keeping this in mind, let us give
the following definition of the Hölder regularity of a function (12; 13; 14).

• Let n ∈ N and n ≤ α < n+ 1. A function f(t) has a local Hölder exponent
α at t0 if and only if there exist a constant K > 0, and a polynomial Pn(t)
of order n, such that

∀t ∈ R, |f(t) − Pn(t− t0)| ≤ K|t− t0|α (16)

• The function f(t) has a global Hölder exponent α on the interval (c, d) if
and only if there is a constant K and a polynomial of order n, Pn(t), such
that equation (16) is satisfied for all t ∈ (c, d).

• The Hölder regularity of f(t) at t0 is the supremum of the α such that f(t)
is Hölder α at t0.

• The nth derivative of a function f(t) is singular at t0 if f(t) has a local
Hölder exponent α at t0 with n < α < n+ 1.

A function f(t) that is continuously differentiable at a given point has a Hölder
exponent not less than 1 at this point. If α ∈ (n, n+ 1) in (16) then f(t) is n
times but not (n+ 1) times differentiable at the point t0, and the polynomial
Pn(t) corresponds to the first (n+1) terms of the Taylor series of f(t) around
t = t0. For example, if n = 0, we have P0(t− t0) = f(t0).
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Figure Captions

Fig. 1

a) The time evolution of the total biomass concentration signal for Case I.
b) The wavelet cones of influence corresponding to this case showing a very
accurate identification of the two singularity points presented in the signal, of
which the first one allows to infer the presence of the mixed growth feature of
the fermentation process whereas the second one is associated with the end of
the fermentation batch cycle.
c) From the slope in the double logarithmic plot, the Hölder coefficient of the
mixed growth singularity is calculated as α = 0.95.

Fig. 2

a) The time evolution of the total biomass concentration signal for Case II.
b) The wavelet cones of influence corresponding to this case again showing
the accurate identification of the two singularity points, of the same type,
respectively, as in Fig. 1.
c) The Hölder coefficient of the mixed growth singularity is now α = 0.88.

Fig. 3

Same caption comments as in the previous figures but for Case III. The Hölder
coefficient of the mixed growth singularity is now α = 0.92.

Fig. 4

Same caption comments as in the previous figures but for Case IV. The value
of the he Hölder coefficient for the mixed growth singularity is α = 0.84.

Fig. 5

Same caption comments as in the previous figures but for the MCMS biomass
signal y = c1. The Hölder coefficient of the mixed growth singularity is now
α = 1.89.

Fig. 6

Same caption as in the previous figures but for the MCMS biomass signal
y = c2. The Hölder coefficient of the mixed growth singularity is now α = 1.87.
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Fig. 7

Same caption comments as in the previous figures but for the total MCMS
signal. The Hölder coefficient of the mixed growth singularity is now α = 1.88.

Fig. 8

MCMS data corresponding to c1 with a small amplitude Gaussian noise added.
From the bottom plot c) one can see that because the curve is not a straight
line one cannot get a global Hölder coefficient from its slope.

Fig. 9

MCMS data corresponding to c2 with a small amplitude Gaussian noise added.
The Hölder coefficient is not a useful concept in this case.

Fig. 10

MCMS data corresponding to the sum c1 + c2 with the same Gaussian noise
added. The concept of global Hölder coefficient is again not useful.
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