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Abstract

We first apply the WT-MFDFA, MFDFA, and WTMM multifractal methods to binomial multifrac-

tal time series of three different binomial parameters and find that the WTMM method indicates

an enhanced difference between the fractal components than the known theoretical result. Next,

we make use of the same methods for the time series of the row sum signals of the two comple-

mentary ECA pairs of rules (90,165) and (150,105) for ten initial conditions going from a single

1 in the central position up to a set of ten 1’s covering the ten central positions in the first row.

Since the members of the pairs are actually similar from the statistical point of view, we can check

which method is the most stable numerically by recording the differences provided by the methods

between the two members of the pairs for various important quantities of the scaling analyses,

such as the multifractal support, the most frequent Hölder exponent, and the Hurst exponent and

considering as the better one the method that provides the minimum differences. According to this

criterion, our results show that the MFDFA performs better than WT-MFDFA and WTMM in

the case of the multifractal support, while for the other two scaling parameters the WT-MFDFA is

the best. The employed set of initial conditions does not generate any specific trend in the values

of the multifractal parameters.

PACS numbers:

89.75.Da – Systems obeying scaling laws

05.45.Tp – Time series analysis

05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Keywords: elementary cellular automata; complementary rules; extended initial conditions; scaling methods
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I. INTRODUCTION

Around 1975, Mandelbrot coined the term fractals to dynamical systems and objects

with a hierarchy of structures that can be detected under changes of scales although related

mathematical research on self-similar entities can be clearly traced back for at least two

centuries and even some formulations in Euclid’s Elements can be judged to allude to self-

affine properties. If the structures that appear at lesser scales are identical to the bigger

ones the systems or objects are monofractals, while if the structures are different on various

scales they can form the more general class of multifractals. It is then natural to think of

multifractals as complex systems but with a complexity that can be still characterized in

terms of scaling power laws whose exponents are known as scaling parameters. In addition,

during the last two decades of the past century the paradigms of self-organized criticality

and 1/f noise helped to make firm the idea of scaling laws of many hierarchical processes.

Moreover, such scale-dependent structures can be measured only with measuring devices

that are scale dependent themselves and their complexity can be characterized in terms of

non-integer dimensions such as the Hausdorff dimension.

On the other hand, wavelet transforms (WT, briefly introduced in the Appendix) are

pervading the analysis of multifractal processes since about two decades. It is well known

that the spectra of Hausdorff dimensions are accessible from time series by a Legendre trans-

form of the corresponding Hentschel-Procaccia (HP) spectra [1]. Muzy and collaborators [2]

proposed a dimension type characteristic based on the wavelet transform of a measure and

in [3] they demonstrated through several examples that the wavelet formalism yields the

same spectra as the HP formalism and raised the conjecture that the equivalence of both

formalisms should be valid in more general situations.

In this paper, we are interested in testing several multifractal numerical procedures to

determine the scaling properties of the time series generated by the evolution of elementary

cellular automata (ECA), originally introduced by von Neumann and Ulam during the 1960’s

under the name of ‘cellular spaces’ as a way of modelling biological self-reproduction. ECA

are a class of discrete dynamical systems since they evolve in discrete time steps. Willson

[4] proved a long time ago that ECA are fractals by providing rigorous definitions and

calculations of their fractal dimensions. In 2003, Sanchez [5] was the first to study the

multifractality of some ECA evolution rules using the random walk approach of Peng et al
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[6] and together with Alonso-Sanz also examined the interplay between multifractality and

memory effects [7]. In 2005, Nagler and Claussen [8] systematically computed the power

spectra of the ECA time series of their row sum signals and found spectra of the type 1/fαp

with αp = 1.2 and αp = 1.3 but only for 10% of the 256 ECA rules.

This paper is organized as follows. ECA are introduced in the next section. A brief

description of the numerical scaling methods is given in the third section. The multifractal

scaling analyses of the ECA time series for the so-called row sum signals makes the body of

the fourth section and last come the conclusions.

II. CELLULAR AUTOMATA (CA)

During 1980s, because of the impetuous research of Wolfram cellular automata turned

into a new scientific paradigm related to their ability to mimic through simple computed

rules many natural processes [9, 10]. The state space of a CA of size N is the set Ω = Z
N
k

of all sequences of N cells that take values from Zk = {0, 1, . . . , k − 1}, where its evolution

is defined by the repeated iteration of an evolution operator A : ZN
k → Z

N
k . In this paper,

we consider only two-digit cells, Z2 = {0, 1}, regularly distributed in one space and one

time dimensions, in which case the CA are called elementary. These ECA have only 23 = 8

different first-order neighbourhoods xi−1, xi, xi+1 which generates 22
3

= 256 possible rules

that are counted from 0 to 255. An automaton state x ∈ Z
Z

2 has coordinates (x)i = xi ∈ Z2

with i ∈ Z, and the automaton state at time t ≥ 0 is denoted by xt ∈ Z
Z

2 and its evolution is

defined iteratively by the rule xt+1 = A(xt). Starting from the initial state x0, the automaton

generates the forward space-time pattern x ∈ Z
Z×N

2 with state (x)t = xt = At(x0) reached

at from x0 after t ∈ N time steps. N denotes the set of nonnegative integers.

One can see that the time, space, and states of this system take only discrete values. The

first ECA that we consider here evolves according to the local rules

xt+1
i ≡ A90(x

t
i−1, x

t
i, x

t
i+1) = [xti−1 + xti+1]mod 2 ,

xt+1
i ≡ A165(x

t
i−1, x

t
i, x

t
i+1) = 1− [xti−1 + xti+1]mod 2 ,

which correspond to the rule 90 and its complementary rule 165 described in the tabular

form below:
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Current neighbourhood pattern: 111 110 101 100 011 010 001 000

Rule result for central cell: 90
165

0
1

1
0

0
1

1
0

1
0

0
1

1
0

0
1

The second row shows the future state of the cell if the cell itself and its left and right

neighbors are in the arrangement shown in the first row. In fact, a rule is numbered by

the unsigned decimal equivalent of the binary expression in the second row. For the second

complementary pair considered here, the local rules are:

xt+1
i ≡ A150(x

t
i−1, x

t
i, x

t
i+1) = [xti−1 + xti + xti+1]mod 2 ,

xt+1
i ≡ A105(x

t
i−1, x

t
i, x

t
i+1) = 1− [xti−1 + xti + xti+1]mod 2 ,

whereas their table form is the following one:

Current neighbourhood pattern: 111 110 101 100 011 010 001 000

Rule result for central cell: 150
105

1
0

0
1

0
1

1
0

0
1

1
0

1
0

0
1

The uniform ECA are those for which the same rule is applied to update the cells as in

this paper, otherwise the ECA are called non-uniform or hybrid.

The time series that we consider in the case of the four ECA rules examined here belong

to the row sum signals as used by Nagler and Claussen [8], i.e., the sums of the 1’s in each

row (at each time step). Examples of the corresponding time series for the four ECA rules

considered in this paper are displayed in Fig. 1.

It is also worth mentioning that the evolution rules of ECA are determined by two main

factors: the rule and the initial conditions. For example, for our time series samples, in the

case of the rule 90 with a single central 1 in the first row we have the first peak of amplitude

211 at time (row) 211, while the same peak is shifted two rows upwards if the initial condition

is three 1’s in the central position. On the other hand, for the rule 150 with a central 1

in the first row there are no peaks of height 211 but instead we have found peaks of height

211 + 1 at the rows 1536, 2046, 2560, and so forth.

III. BRIEF DESCRIPTION OF THE MULTIFRACTAL METHODS

In a previous work [11], we used the wavelet-transform detrended fluctuation analysis

proposed by Manimaran [12], henceforth WT-MFDFA, to perform the multifractal analysis
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FIG. 1: Time series of the row sum signal with a single 1 in the central position of the first row as

initial condition corresponding to: (a) rule R90, (b) its complementary rule R165, (c) rule R150,

and (d) its complementary rule R105. Only the first 212 points are shown of the whole set of 216

data points. Since the mean signals for the complementary rules are much higher than for the rules

themselves showing also some specific trends we eliminated their contribution in the time series of

the right column.

of three relevant ECA time series and found multifractal spectra estimates in quantita-

tive agreement with the ones obtained with the multifractal detrended fluctuation analysis

(MFDFA [13]). However, recently, the literature abounds in comparison works related to the

existing numerical methods for multifractal behaviour, which in fact try to establish their

advantages and disadvantages one with respect to the others [14]. According to those works,

the so-called wavelet leaders (WL), a scaling method that employs the coefficients of an or-

thogonal wavelet decomposition of the signal, seems to perform better than other competing

methods, such as the WT modulus maxima (WTMM) and the MFDFA. Oświȩcimka et al.

[15] processed synthesized data with WTMM and MFDFA and stated that the MFDFA pro-

6



vides a better estimation of singularity spectrum than WTMM. Jaffard et al. [16] claimed

that also WL provides a better singularity spectrum than WTMM. In addition, a compari-

son study of Serrano and Figliola [17] between WL and MFDFA favoured WL, although for

short time series they recommend MFDFA to extract the multifractal spectrum. Regarding

the estimation of the Hurst exponent, we note that in the review paper of Mielniczuk and

Wojdyllo [18] it is claimed that the properties of several variants of the DFA estimators

differ greatly in their performance!

A. WT-MFDFA

An important class of wavelets are those with the vanishing moment property (see the

Appendix) which directly helps to detrend the data. To reveal the MF properties of ECA

one should separate the trend from fluctuations in the ECA time series. We decided to

use the discrete wavelet method proposed by Manimaran et al. [12]. This method exploits

the fact that the low-pass version resembles the original data in an “averaged” manner in

different resolutions. Instead of a polynomial fit, we consider the different versions of the

low-pass coefficients to calculate the “local” trend. Let x(tk) be a time series type of data,

where tk = k∆t and k = 1, 2, . . . , N . Then the algorithm that we employ contains the

following steps:

1. Determine the profile Y (k) of the time series, which is the cumulative sum of the series

from which the series mean value is subtracted, i.e., Y (k) =
∑k

i=1(x(ti)− 〈x〉).

2. Calculate the fast wavelet transform (FWT), i.e., the multilevel wavelet decomposition

of the profile. For each level m, we get the fluctuations of the Y (k) by subtracting the

“local” trend of the Y data, i.e., ∆Y (k;m) = Y (k) − Ỹ (k;m), where Ỹ (k;m) is the

reconstructed profile after removal of successive details coefficients at each level m.

These fluctuations at level m are subdivided into windows, i.e., into Ms = int(N/s)

non-overlapping segments of length s. This division is performed starting from both

the beginning and the end of the fluctuations series (i.e., one has 2Ms segments). Next,

one calculates the local variances associated to each window ν

F 2(ν, s;m) = var∆Y ((ν − 1)s+ j;m) , j = 1, ..., s , ν = 1, ..., 2Ms . (1)
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3. Calculate a qth order fluctuation function defined as

Fq(s;m) =

{

1

2Ms

2Ms
∑

ν=1

|F 2(ν, s;m)|q/2
}1/q

(2)

where q ∈ Z with q 6= 0. The diverging behaviour for q → 0 can be avoided by using

a logarithmic averaging F0(s;m) = exp
{

1
2Ms

∑2Ms

ν=1 ln |F 2(ν, s;m)|
}

, see [19].

If the fluctuation function Fq(s;m) displays a power law scaling

Fq(s;m) ∼ sh(q), (3)

then the analyzed time series has a fractal scaling behaviour. The exponent h(q) is the

generalized Hurst exponent since it depends on q, while the original Hurst exponent is h(2).

If h(q) is constant for all q then the time series is monofractal, otherwise it has a MF

behavior. In the latter case, one can calculate various other MF scaling exponents, such as

τ(q) and f(α) [21].

B. MFDFA

MFDFA is an algorithm developed in 2002 by Kantelhardt et al [19], which differ from

WT-MFDFA by the fact that it does not make use of WT for detrending. In fact the origin

of both procedures is the conventional detrended fluctuation analysis of Peng et al [6]. Again

the data to be considered are profiles of the signals, which are divided into non-overlapping

segments both from the beginning and from the end of the set of data getting therefore 2Ns

segments altogether. In each of these segments the local trend is calculated by a least square

fit of the series. Then one calculates the variance F 2(s, ν) for each segment ν with respect

to the fitting line yν in each segment ν. Finally, an average over all segments is performed

leading to the q–th order fluctuation function similar to (2)

Fq(s) =

{

1

2Ns

2Ns
∑

ν=1

|F 2(ν, s)|q/2
}1/q

. (4)

C. WTMM

In the presence of an isolated singularity in the data at a particular point t0, the scaling

behavior of the wavelet coefficients (see equation (11) in the appendix) is described by the

Hölder exponent α(t0) as
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Wx(a, t0) ∼ aα(t0)+1/2, (5)

in the limit a → 0+. To characterize the singular behavior of functions, it is sufficient to

consider the values and positions of the Wavelet Transform Modulus Maxima (WTMM)

[22] defined as points (a0, b0) on the scale-position plane, (a, b), where |Wx(a0, b)| is locally
maximum for b in the neighborhood of b0. These maxima are located along curves in the

plane (a, b). However, the relationship (5) in some cases is not appropriated to describe

distribution functions with non-isolated singularities. The wavelet multifractal formalism

may characterize fractal objects which cannot be completely described using a single fractal

dimension. According to Bacry et al. [3], an “optimal” partition function Zq(x, a) can be

defined in terms of the WTMM. They consider the set of modulus maxima at a scale a as

a covering of the singular support of x with wavelets of scale a. The partition function Zq

measures the sum of all wavelet modulus maxima at a power q as follows

Zq(x, a) =
∑

p

|Wx(a, bp(a))|q, (6)

where {bp(a)}p∈Z is the position of all local maxima of |Wx(a, b)| at a fixed scale a. This

partition function is very close to the definition of the partition function introduced in [21].

It can be inferred from (6) that for q > 0 the most pronounced modulus maxima will prevail,

whereas for q < 0 the lower ones will survive. For each q ∈ R, the partition function is related

to its scaling exponent τ(q) in the following way Zq(x, a) ∼ aτ(q). A linear behavior of τ(q)

indicates monofractality whereas nonlinear behavior suggests that a signal is a multifractal.

A fundamental result in the (wavelet) multifractal formalism states that the singularity

(Hölder) spectrum f(α) of the signal x(t) is the Legendre transform of τ(q), i.e.,

α =
dτ(q)

dq
, and f(α) = qα− τ(q). (7)

The Hölder spectrum of dimensions f(α) is a non-negative convex function that is supported

on the closed interval [αmin, αmax], which is interpreted as the Hausdorff fractal dimension

of the subset of data characterized by the Hölder exponent α [23]. The most “frequent”

singularity, which corresponds to the maximum of f(α), occurs for the value of α(q = 0),

whereas the boundary values of the support, αmin for q > 0 and αmax for q < 0, correspond

to the strongest and weakest singularity, respectively.
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The analyzing wavelets which are used most frequently are the successive derivatives of

the Gaussian function

ψ(n)(t) :=
dn

dtn
(

exp(−t2/2)
)

, n ∈ Z
+, (8)

because they are well localized both in space and frequency, and they remove the trends of

the signal that can be approximated by polynomials up to (n − 1)th order. In particular,

our analyses were carried out with the Mexican hat wavelet ψ(2)(t).

IV. DATA ANALYSES

In order to illustrate the efficiency and the fitting properties of the three procedures, we

first carry out the analysis of the binomial multifractal time series, whose scaling parameters

are analytically known [19, 20]. The binomial multifractal time series are series of N = 2nmax

numbers xk, with k = 1, . . . , N , defined by

xk = cn(k−1)(1− c)nmax−n(k−1). (9)

where 0.5 < c < 1 is a parameter and n(k) is the number of digits equal to 1 in the binary

representation of the index k. Examples of binomial time series xk for three values of the

parameter c are given in Fig. (2).
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FIG. 2: Binomial time series xk for the binomial model (9) of parameters c = 2/3, 3/4, and 4/5

from left to right, respectively. We have used nmax = 13 but only the first 212 data are shown.

The binomial multifractal exponents h(q) and τ(q) can be calculated in closed forms

h(q) =
1

q
− ln[cq + (1− c)q]

q ln 2
, τ(q) = − ln[cq + (1− c)q]

ln 2
. (10)
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Figure 3 shows the multifractal singularity spectrum f(α), the generalized Hurst expo-

nent, and the τ exponent for three values of the binomial parameter c.
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FIG. 3: The singularity spectrum f(α), the generalized Hurst exponent, and the τ exponent for

the binomial multifractal model of parameters c = 2/3 (left column), c = 3/4 (middle column),

and c = 4/5 (right column). M1 corresponds to WT-MFDFA, M2 to MFDFA, and M3 to WTMM,

while Th corresponds to the theoretical binomial formulas for the same parameters.

A direct inspection of the binomial multifractal plots shows that the numerical differences

between the three methods are not significant in the case of the singularity spectra and

the generalized Hurst exponent, although the WT-MFDFA and MFDFA are closer to the

theoretical curves than the WTMM method. In the case of the τ exponent, the WTMM

clearly indicates a more pronounced multifractality than the theoretical one, while the first

two methods are again very close to the theoretical curve. We have checked that the high

|q| discrepancies of the WTMM τ exponent stay almost constant at least for sample sizes up

to 216 data but we do not rule out the WTMM procedure because as we said the singularity

spectra and the Hurst exponent obtained by this method do not appear to be different from

the binomial theoretical results in a relevant manner.

We proceed with the comparison study among the three scaling approaches, namely the

WT-MFDFA, MFDFA, and WTMM analyses, for the time series of the row sum signals of
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two pairs of complementary ECA rules (90, 165) and (105,150) with the goal of providing

further evidence of their multifractal nature and also to check the performance of the three

scaling methods. The idea behind the latter test is simple. Since the rules in the pairs are

complementary in the sense that their transition rates fulfill f105 = 1−f150 and f90 = 1−f165
they should not differ statistically for samples of reasonable sizes and should provide quite

similar results. Therefore, the most reliable scaling method is the one which gives the

smallest fluctuations in the differences of the scaling parameters between the two members

of any complementary ECA pair.

The main multifractal quantities are displayed in Fig. 4 for the first ECA pair and in

Fig. 5 for the second one. As in the binomial case, the simple inspection of the plots indicates

the following features. WT-MFDFA is closer to WTMM on the left wing of the singularity

parabola (α < αmax), whereas it is closer to the MFDFA on the right wing (α > αmax).

In the case of h(q), WT-MFDFA is closer to MFDFA at negative qs but closer to WTMM

at positive qs. Finally, for τ(q) WT-MFDFA is always closer to MFDFA; in fact, for rule

90 the results of the two methods are almost identical. At the same time, WT-MFDFA

indicates a less pronounced difference between the fractal components than MFDFA and

WTMM, as taken in this order. Similar results are obtained for the second pair although

these tendencies are less pronounced.

We merely use the WT-MFDFA here rather than WL because we employed it in our pre-

vious paper [11] and in fact both procedures are based on the coefficients of an orthogonal

wavelet decomposition. Our results for the extension (support) of the multifractality, the

most frequent Hölder exponent, and the Hurst exponent are presented graphically in Fig-

ures 6, 8, and 10, respectively, for the ECA pair (90,165) and in Figures 7, 9, and 11, for the

pair (150,105) as three groups of ten histograms corresponding to the three methods and ten

initial conditions of centered activity type, i.e., with symmetrically distributed 1’s around

the central position in the first row. As commented in the captions, the plots indicate that

in the case of the multifractal support, the MFDFA gives smaller differences between the

two complementary rules than WT-MFDFA and WTMM, while for the other two scaling

parameters the WT-MFDFA is the best from this point of view. We also mention that the

arguments of Huang and collaborators [14] against representing a continuous signal through

a discrete WT do not apply to our data because the CA signals are naturally discrete.

12



0 0.5 1 1.5
0

0.5

1

1.5

f 
(α

)

0 0.5 1 1.5 2
0

0.5

1

1.5

α

 

 

−10 −5 0 5 10
0.5

1

1.5

2

h
 (

q
)

 

 

−10 −5 0 5 10
0

1

2

3

q

−10 −5 0 5 10
−20

−10

0

10

τ 
(q

)

−10 −5 0 5 10
−20

−10

0

10

q

M1
M2
M3

FIG. 4: The singularity spectrum f(α), the generalized Hurst exponent, and the τ exponent for

the rule pair (90–165) for the three multifractal methods employed here.
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FIG. 5: The singularity spectrum f(α), the generalized Hurst exponent, and the τ exponent for

the rule pair (150–105) for the three multifractal methods as above.
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V. CONCLUSIONS

In conclusion, we provided here a strong confirmation of our previous results [11] that the

implementation of the discrete WT in the MFDFA method leads to the WT-MFDFA as a

very acceptable algorithm to obtain the multifractal ECA parameters with much less com-

putational cost and better accuracy. We also found that there is no apparent trend in the

results depending on an extended set of initial conditions represented by an extended cen-

tered initial activity in the CA terminology. Since we used complementary automaton rules,

which are statistically identical we could compare the numerical results of the WT-MFDFA,

MFDFA, and WTMM procedures. According to the criterion of minimum differences in

the scaling quantities for statistically identical data, it appears that the MFDFA performs

better than WT-MFDFA and WTMM in the case of the multifractal support, while for the

most frequent Hölder exponent and the Hurst exponent the WT-MFDFA is the best. The

same numerical techniques have been tested for the analytically known case of binomial

multifractal time series for three binomial parameters with the result that WT-MFDFA and

MFDFA reproduce very closely the theoretical values of the multifractal quantities. This

can be interpreting as compelling evidence that the latter numerical methods are reliable

tools to calculate the multifractal properties.

Appendix: Wavelet theory

The wavelet transform (WT for short) of a signal x(t) is given by

Wx(a, b) =
1√
a

∫

∞

−∞

x(t)ψ̄

(

t− b

a

)

dt, (11)

where ψ is the analyzing wavelet, b ∈ R is a translation parameter, whereas a ∈ R
+ (a 6= 0)

is a dilation or scale parameter, and the bar symbol denotes complex conjugation.

One fundamental property that is required to analyze singular behavior is that ψ(t) has

enough vanishing moments [3, 24]. A wavelet is said to have n vanishing moments if and

only if it satisfies
∫

∞

−∞

tkψ(t)dt = 0, for k = 0, 1, . . . , n− 1, and

∫

∞

−∞

tnψ(t)dt 6= 0 . (12)

This means that a wavelet with n vanishing moments is orthogonal to all polynomials up to

order n− 1. Thus, the wavelet transform of x(t) performed by means of a wavelet ψ(t) with
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n vanishing moments is nothing but a “smoothed version” of the n–th derivative of s(t) on

various scales.

Since in general the majority of data are represented by a finite number of values, we

consider the orthogonal (discrete) wavelet case in which the wavelets are associated to or-

thonormal bases of L2(R). First, a discrete grid is established for the dilation and translation

parameters such that wavelet function ψ(t), and its associated scaling function ϕ(t) [24, 25]

can be expressed in the form

ϕm,n(t) = 2m/2ϕ(2mt− n), ψm,n(t) = 2m/2ψ(2mt− n), m, n ∈ Z (13)

with m and n denoting the dilation and translation indices, respectively.

Within this framework, one can write the expansion of an arbitrary signal x(t) in an

orthonormal wavelet basis as follows

x(t) =
∑

n

(

am0,nϕm0,n(t) +

M−1
∑

m=m0

dm,nψm,n(t)

)

, (14)

where the scaling or approximation coefficients am,n and the wavelet coefficients dm,n are

given by

am,n =

∫

x(t)ϕm,n(t)dt, dm,n =

∫

x(t)ψm,n(t)dt. (15)

In this context, a computationally efficient method to compute (15) was developed by

Mallat [24] under the name of multi-resolution analysis (MRA). The MRA approach provides

a general method for constructing orthogonal wavelet basis and leads to the implementation

of the fast wavelet transform (FWT). A multi-resolution decomposition of a signal is based

on successive decomposition into a series of approximations and details, which become in-

creasingly coarse. The FWT calculates the scaling and wavelet coefficients at scale m from

the scaling coefficients at the next finer scale m+ 1 using

am,n =
∑

k

h[k − 2n]am+1,k, (16)

dm,n =
∑

k

g[k − 2n]am+1,k, (17)

where h[n] and g[n] are typically called low pass and high pass filters in the associated

analysis filter bank. In fact, the signals am,n and dm,n are the convolutions of am+1,n with

the filters h[n] and g[n] followed by a downsampling of factor 2 [24], respectively.

15



Conversely, a reconstruction of the original scaling coefficients am+1,n can be made from

the following combination of the scaling and wavelet coefficients at a coarse scale

am+1,n =
∑

k

(h[2k − n]am,k + g[2k − n]dm,k) . (18)

It corresponds to the synthesis filter bank. This part can be viewed as the discrete convo-

lutions between the upsampled signal am,l and the filters h[n] and g[n], that is, following an

upsampling of factor 2 the convolutions between the upsampled signal and the filters h[n]

and g[n] are calculated.
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[11] J.S. Murgúıa, J.E. Pérez-Terrazas, H.C. Rosu, Europhys. Lett 87 (2009) 28003.

[12] P. Manimaran, P.K. Panigrahi, J.C. Parikh, Phys. Rev. E 72 (2005) 046120.

[13] J.W. Kantelhardt, D. Rybski, S.A. Zschiegner, P. Braun, E. Koscielny-Bunde, V. Livina, S.

Havlin, A. Bunde, Physica A 330 (2003) 240.

[14] Y.X. Huang, F.G. Schmitt, J.-P. Hermand, Y. Gagne, Z.M. Lu, Y.L. Liu, Phys. Rev. E 84

(2011) 016208.
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FIG. 6: Rule 90 ECA: The multifractal support ∆α in the case of the row sum signal of a sequence

of 213 time steps with the ten initial conditions as explained in the text. There are no significant

differences in the case of the three scaling methods that we tested. In the lower three plots, the

differences |∆αR90 − ∆αR165| between the multifractal supports of the two complementary rules

for each scaling methods are displayed. The MFDFA procedure gives differences less than 0.08 for

the ten tested initial conditions, much better than WT-MFDFA and WTMM.
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FIG. 7: Rule 150 ECA: The multifractal support∆α in the case of the row sum signal of a sequence

of 213 time steps with the same initial conditions. There are no significant differences in the case of

the three scaling methods that we tested. In the lower three plots, the differences |∆αR150−∆αR105|

between the multifractal supports of the two complementary rules for each scaling methods are

displayed. Although WT-MFA and WTMM performs better for this complementary pair than for

the other one, the MFDFA procedure still provides less differences.
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FIG. 8: Rule 90 ECA: The most frequent Hölder exponent αf obtained with WT-MFA, MFDFA,

and WTMM for the ten initial conditions. The lower three plots display the difference |αfR90
−

αfR165
|. In this case, the WT-MFDFA works better.
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FIG. 9: Rule 150 ECA: The most frequent Hölder exponent αf obtained with WT-MFA, MFDFA,

and WTMM for the same initial conditions. The lower three plots display the difference |αfR150
−

αfR105
|. The WT-MFDFA works better again.
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FIG. 10: Rule 90 ECA: The Hurst exponent hR90(2) and the differences with respect to the

complementary rule for the three scaling methods. One can see that WT-MFDFA still performs

better.
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FIG. 11: Rule 150 ECA: The same as in the previous figure. WT-MFDFA is still better globally.
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