
This is the Author's Post-print version of the following article: E. Cervantes-
López, P.B. Espinoza, A. Gallegos, H.C. Rosu, Ermakov–Ray–Reid systems 
with additive noise, In Physica A: Statistical Mechanics and its Applications, 
Volume 439, 2015, Pages 44-47, which has been published in final form at 
https://doi.org/10.1016/j.physa.2015.07.023 This article may be used for 
non-commercial purposes in accordance with Terms and Conditions for 
Self-Archiving 

https://doi.org/10.1016/j.physa.2015.07.023


Ermakov-Ray-Reid Systems with Additive

Noise
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Abstract

Using the methods developed by us in Physica A 401, 141 (2014) for multiplicative
noises, we present results on the effects of the additive noise on the Ermakov-Lewis
invariant. This case can be implemented in the Euler-Maruyama numerical method
if the additive noise is considered as the forcing term of the parametric oscillator
and presented as a particular case of the Ermakov-Ray-Reid systems. The results
are obtained for the same particular examples as for the multiplicative noise and
show a tendency to less robustness of the Ermakov-Lewis invariant to the additive
noise as compared to the multiplicative noise.

Key words: Ermakov-Lewis invariant; additive noise; Euler-Maruyama method;
forced parametric oscillator; Ermakov-Ray-Reid system.

This work is the second paper in the series concerned with the effects of noises
on the stochastic parametric oscillators that we started with [1], where we
focused on the effects of multiplicative noises. Here we investigate the robust-
ness of the Ermakov-Lewis (EL) invariant to additive noises by making usage
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as in [1] of the Euler-Maruyama discretization for the numerical calculations.
As well known, the standard Ermakov system refers to the motion of a free
parametric oscillator

ẍ+ Ω2(t)x = 0 , (1)

together with the associated Milne-Pinney nonlinear equation

ρ̈+ Ω2(t)ρ =
k

ρ3
, (2)

where k is an arbitrary real constant. The solutions of (1) and (2) can be
related through the following formula [2]

x(t) = Cρ(t) sin(kΘT (t) + ϕ) , (3)

where C and ϕ are arbitrary constants and the total phase ΘT (t) is given by

ΘT (t) =

t∫ 1

ρ2(t′)
dt

′
. (4)

Such parametric systems are endowed with the EL invariant given by

I0 =
kx2

2ρ2
+

1

2
(ẋρ− ρ̇x)2 . (5)

Here we show that the effects of the additive noise can be evaluated by ex-
tending the Ermakov system to the forced case, as worked out for example in
[3] and in the more general context of forced Ermakov-Ray-Reid systems in
[4–8]. In particular, we consider the following forced parametric oscillator as
presented in [4]

ẍ+ Ω2(t)x = f (t) +
1

x2ρ
g(ρ/x) , (6)

with g(ρ/x), an arbitrary external force of the Ray-Reid type, for which the
EL invariant reads

I = I0 + ψ̇x− ψẋ+

t∫
ψ (τ) f (τ) dτ − ρ2xf (t) +

ρ/x∫
g(τ)dτ, (7)
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where the function ψ(t) is the solution of a second auxiliary equation

ψ̈(t) + Ω2(t)ψ(t) = ρ2ḟ(t) + 3ρρ̇f (t) +
1

x3ρ
g (ρ/x)ψ. (8)

It is important to mention that in this case the Milne-Pinney equation (2)
keeps its form unchanged [4]. As in [1], we will write the dynamical systems
given by the equations (6), (2), and (8) as a matrix version of a stochastic
matrix differential equation of the form

dYt = a(t, Yt)dt+ b(t, Yt)dBt , (9)

where Bt is the stochastic variable, for which the Euler-Maruyama numerical
method is readily available [9–11]. In the matrix formulation, the correspond-
ing stochastic variables and coefficients are identified in the following explicit
forms

dXt =

 dx
dẋ

 , a (t,Xt) =

 ẋ

−Ω2x+ g
x2ρ

 , b (t,Xt) = αΩ

 0

1

 , (10)

dρt =

 dρ
dρ̇

 , a (t, ρt) =

 ρ̇

−Ω2ρ+ 1
ρ3

 , b (t, ρt) =

 0

0

 , (11)

dψt =

 dψ
dψ̇

 , a (t, ψt) =

 ψ̇

ρ2ḟ + gψ
x3ρ

− Ω2ψ

 , b (t,Xt) = 3αΩ

 0

ρρ̇

 ,(12)

where αΩ is the amplitude of the noise [12]. In [1], the simplest case of mul-
tiplicative noise, m = 1, has been illustrated and a strong robustness of the
Ermakov-Lewis invariant has been reported. In the present calculations, the
term ρ2ḟ in a(t, ψt) has been disregarded because of its negligible effects on
the mean values and the standard deviations of the invariant as seen in Table
1. The chosen initial conditions are as in [1], i.e., x(0) = 1, ẋ(0) = 0, ρ(0) =
1, ρ̇(0) = 0, and additionally, ψ(0) = 1, ψ̇(0) = 0.

We consider two particular cases of this type of dynamical system governed
by the invariant (7):

(i) Ermakov systems affected only by additive noise by taking the noise as
the forcing term f(t), see [13], and setting g(ρ/x) = 0. The EL invariant is
displayed in Figure 1 for Ω(t) = 2, Ω(t) = 2 sin(t) and Ω(t) = 2t2. Three levels
of noise have been chosen, αΩ = 0.001, αΩ = 0.01, and αΩ = 0.1, termed weak,
intermediate, and strong regimes, respectively.
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Table 1
The invariants for the case (ii) with their mean values and standard deviations
for the three cases of Ω(t) considered here, each of them in the presence of weak,
intermediate, and strong noise amplitudes.

I (ρ2ḟ included) I (ρ2ḟ not included)

Ω(t) = 2, αΩ = 0 1.000000± 0.000000 1.000000± 0.000000

αΩ = 0.001 1.001280± 0.000770 1.001280± 0.000770

αΩ = 0.01 1.012550± 0.007800 1.012640± 0.007801

αΩ = 0.1 1.104260± 0.089765 1.104990± 0.089832

Ω(t) = 2 sin t, αΩ = 0 1.000000± 0.000000 1.000000± 0.000000

αΩ = 0.001 1.000370± 0.000805 1.000380± 0.000805

αΩ = 0.01 1.003790± 0.008051 1.003920± 0.008051

αΩ = 0.1 1.046310± 0.081424 1.047570± 0.081271

Ω(t) = 2t2, αΩ = 0 1.000000± 0.000000 1.000000± 0.000000

αΩ = 0.001 1.001140± 0.001017 1.001140± 0.001017

αΩ = 0.01 1.011460± 0.010115 1.011450± 0.010116

αΩ = 0.1 1.116590± 0.097451 1.116500± 0.097468

(ii) Ermakov-Ray-Reid systems in the presence of the additive noise f(t) and
an external force of the type g(ρ/x) = k′ρ/x [4]. In this case, the plots of the
invariant are given in Figure 2 for the same parametric oscillators. It is worth
noticing that we have taken k = k′ = 1 and because of the integral over the
external force g in (7) the EL invariant in this case is I = 1 and not 1/2 in
the absence of the noise.

In conclusion, the additive noise in Ermakov systems can be taken into ac-
count by considering them as particular cases of forced Ermakov-Ray-Reid
systems with the additive noise as the driven terms in the parametric oscil-
lator equation. In general, we conclude that the additive noise has somewhat
more pronounced effects on the robustness of the EL invariant as compared
to the multiplicative noise as seen in Table 2. On the other hand, the plots
provided here show that the average effect of the additive noise on the EL
invariant can be considered small when the driving is due only to the noise.
However, when there is also driving due to Ray-Reid external forces there is
a more pronounced effect as the amplitude of the noise is increased.

4



Table 2
The invariants for additive (case (i)) and multiplicative noise [1] with their mean
values and standard deviations for the three cases of Ω(t) considered here.

I (additive noise) I (multiplicative noise)

Ω(t) = 2, αΩ = 0 0.499955± 0.000032 0.499955± 0.000032

αΩ = 0.001 0.500077± 0.000753 0.499955± 0.000032

αΩ = 0.01 0.501185± 0.007480 0.499955± 0.000031

αΩ = 0.1 0.513179± 0.076993 0.499961± 0.000025

Ω(t) = 2 sin t, αΩ = 0 0.500054± 0.000041 0.500054± 0.000041

αΩ = 0.001 0.499558± 0.000946 0.500054± 0.000041

αΩ = 0.01 0.495245± 0.009723 0.500054± 0.000041

αΩ = 0.1 0.466946± 0.088735 0.500053± 0.000041

Ω(t) = 2t2, αΩ = 0 0.501059± 0.001620 0.501059± 0.001620

αΩ = 0.001 0.500883± 0.001666 0.501059± 0.001620

αΩ = 0.01 0.499309± 0.003966 0.501058± 0.001618

αΩ = 0.1 0.484304± 0.035113 0.501046± 0.001606
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Fig. 1. (color on line) Top left: Plots of the EL invariant I in (7) with g = 0 in
the interval t ∈ [0, π] for the harmonic oscillator with Ω(t) = 2: (blue color) the
case without noise; (magenta color) low-amplitude noise, α = 0.001; (olive color)
medium-amplitude noise, α = 0.01; (green color) high-amplitude noise, α = 0.1. Top
right: The same but for Ω(t) = 2 sin(t). Bottom: Same plots for the case Ω(t) = 2t2.
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Fig. 2. (color on line) Same plots as in the previous figure but for the EL invariant
in (7) with g = ρ/x.
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