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Abstract

The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using

the detrended fluctuation analysis based on wavelets, a modern technique that has been

successfully used recently for a wide range of natural phenomena and technological processes.

As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode

and two versions of a cryptosystem based on cellular automata, with the encryption process

applied both fully and partially by selecting different bitplanes. In all cases, the results

show that the encrypted images in which none understandable information can be visually

appreciated and whose pixels look totally random present a persistent scaling behavior with

the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA
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with wavelets is applied. This suggests that the scaling exponents of the encrypted images

can be used as a perceptual security criterion in the sense that when their values are close

to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual

point of view.

Keywords: Encryption system, Wavelet transform, Detrended fluctuation analysis, Scaling

laws.

1. Introduction

Data multimedia has become in recent years an important part of our daily lives. Either

personal information such as a mobile phone call, an online payment, an electronic transaction

or classified information as military strategies, require transmission, reception or storage of

secure and confidential information in a short time. It is for this reason that encryption

techniques together with their respective evaluation criteria are relevant topics. In particular,

due to the large number of images used in diversified applications, the image encryption

methods, as well as their efficiency analysis and security evaluation, play a crucial role.

Security is the basic requirement of multimedia content encryption, but different from

text/binary encryption requires both cryptographic security and perceptual security. The

cryptographic security refers to the ability of the encryption schemes to resist cryptanalysis

techniques such as differential analysis, related-key attack, and statistical attack, among

others, whereas perceptual security refers to a high visual degradation of the multimedia

content which makes it unintelligible to human perception [1].

In this context, this paper presents the scaling exponent α of the pixel fluctuation func-

tion as an objective metric with good potentiality for measuring the perceptual security of

an encrypted image. This is important because usually a subjective metric is based on visual

inspection which is carried out by persons that act as referees, but whose judgment depend

on personal decisions such as emotional state or physical condition. On the other hand, the

main features of an objective metric are consistency, efficiency, and robustness. Besides, it

is mathematically defined and it can be used automatically, being generically less time con-

suming.

Since the encrypted images must be completely unintelligible, namely not exhibiting any

feature of the images from which they are generated that might be understandable to the
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viewer, the image pixels should be made as random as possible. This randomness of the

encrypted image pixels can be quantified in terms of the fractal dimension of the encrypted

image [1] but also by means of its scaling exponent. It is well established that the latter is

close to that of the 1/f noise when a two-dimensional DFA approach is used [2].

Considering the above and bearing in mind that the partial image encryption through selec-

tive bitplane encryption has been recognized as a desirable option to reduce the computational

demand and to protect the most important visual parts of an image [3], we have used pre-

viously two methods to obtain the scaling exponent of images that has been encrypted in

complete or partial manners. One of these methods is based on the two-dimensional DFA

algorithm [4] and the other is based on the DFA procedure using wavelets [5]. Of the two

methods, the latter one will be applied here because it is a well-suited procedure to analyze

the singular behavior that may be hidden in time series data with much less computational

cost and better accuracy. In addition, with the aim of minimizing the processing time of the

main tasks of an encryption system we carry out a selective image encryption by applying

the encryption stages to some bitplanes only. Subsequently, we calculate the peak signal to

noise ratio (PSNR) of the encrypted images, perform the analysis of our results and end up

with some conclusions.

2. Database of encrypted images, scaling methods, and PSNR

2.1. Database of encrypted images

A total of eighteen gray-level images were used in this study. Thirteen of them have

dimensions of 512 × 512 pixels and five have dimensions of 1024 × 1024 pixels. The same

image database was used in Ref. [2] and is shown in Figure 1. These images have been

chosen because they are widely used as standard test images in the field of image process-

ing, and they can freely be downloaded at http://sipi.usc.edu/database, except the final

two pictures, the one representing the Mars Yardangs region that can be downloaded from

https://solarsystem.nasa.gov and the last one which represents a fractional Brownian surface

with Hurst exponent H = 0.5 generated by the MATLAB software FRACLAB 2.1 developed

by INRIA.

The simplest way to encrypt a two- or three-dimensional multimedia data is to consider

it as a one-dimensional data stream and perform the encryption with any available cipher,
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Figure 1: The image dataset considered in this work.

like Data Encryption Standard (DES), Advanced Encryption Standard (AES), International

Data Encryption Algorithm (IDEA), among others [6]. In this work, we encrypt all images

using three encryption schemes that are known for their simplicity, flexibility, and security:

the AES in RBT mode [7], the ESCA system, which is an encryption system based on

the synchronization phenomenon of the cellular automata with rule 90 [8], and finally with

an improved form of the ESCA encryption system described in Reference [9]. Moreover, a

selective encryption of images has been also carried out by encrypting only certain parts of

the data [3, 10] in order to reduce the time consuming cost.

2.2. Detrending fluctuation analysis using wavelets (W-DFA)

There are several methods to deal with the scaling properties of the fluctuations displayed

by many natural and technological processes. One method is the detrending fluctuation

analysis (DFA) proposed by Peng in 1994 [11]; several years later, in [12], Kantelhardt and

collaborators unveiled the multifractal detrending fluctuation analysis (MF-DFA), which is

a generalization of the same method. Subsequently, a DFA procedure using wavelets was

introduced by Manimaran [13]. Here, we implement the latter proposal, because it appears

to be a very acceptable algorithm with a less computational cost and better accuracy to

obtain important scaling properties in different applications, see for example [5, 14, 15] and

references therein. In particular, this method exploits the fact that the approximation version

of the discrete wavelet decomposition allows to calculate the local trend of information, which

traditionally is achieved by a polynomial fit. In general, for a time series x(tk) = x[k], with
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tk = k∆t and k = 1, 2, . . . , N , this procedure consists of the following steps:

1. Calculate the profile Y [k] of the temporal series,

Y [k] =
k∑

i=1

(x[i]− µ) (1)

where µ is the average of the time series x[k].

2. Calculate the wavelet decomposition of the profile using the fast wavelet transform for

each level m. The way in which the concept of levels enters in the algorithm is given

in the Appendix.

3. Then, for each level m, obtain the fluctuations of the profile of the temporal series by

subtracting the local trend of information, i.e.:

∆Y [k;m] = Y [k]− Ỹ [k;m], (2)

where Ỹ [k;m] is the profile reconstructed after removing of the detail coefficients at

each level m.

4. The fluctuations ∆Y [k;m] at each level m are divided into Ms = int(N/s) non-

overlapping windows whose size is s. Because the length of N may not be a multiple

of s, the division is performed beginning both with the start and the end of the profile,

i.e., it has 2Ms segments. Subsequently, one calculates the local variances associated

with each window ν

F 2[ν, s;m] = var(∆Y [(ν − 1)s+ j;m]), (3)

for each ν (ν = 1, . . . , 2Ms) j = 1, . . . , s.

5. Next, perform an averaging over all segments to obtain the fluctuation function

F2[s;m] =

{
1

2Ms

2Ms∑
ν=1

|F 2[ν, s;m]|1/2
}1/2

. (4)

6. Repeat steps 4 and 5 for different segment lengths s.

If the fluctuation function F2[s;m] displays a power law scaling

F2[s;m] ∼ sα, (5)
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then the analyzed sequence has a fractal scaling behavior with scaling fluctuation exponent

α. This exponent can be found as the slope of the line in a logF2[s;m] versus log s plot,

and it is a measure of the degree of correlation in the sequence as follows. If α = 0.5 there

is no correlation and the uncorrelated signal is also known as coming from a white noise

process. On the other hand, if 0 < α < 0.5 the signal presents an anticorrelated behavior

evidenced through an alternation of small and large values, and the time series is said to be

anti-persistent; if 0.5 < α < 1, the correlations in the time series are persistent, where large

values in the series of data are more likely to appear after large values, and vice versa. The

values α = 1 and α = 1.5 correspond to 1/f noise and Brownian motion, respectively.

To apply the W-DFA to images, we consider the steps similar to the DFA procedure

used in Ref. [16], to study the correlations in image textures. Such a technique contains the

following steps:

• Let I denote an image, and let Iθ be a subimage of I with orientation θ. In this work,

we consider two directions: the North-South orientation (θ = 0◦), and the East-West

orientation (θ = 90◦).

• The subimage Iθ is defined as a rectangular array Aθ(a, b) with N rows andM columns,

i.e., a = 1, . . . , N , and b = 1, . . . ,M .

• For each subimage, the analysis can be performed depending on the orientation, either

rows or columns. For example, for columns the W-DFA is applied to Aθ(a, b) on each

array column a = 1, . . . , N , obtaining a fluctuation function Fθ[b; s;m], as calculated

in the previous procedure, for each b = 1, . . . ,M .

• The scaling exponent can be determined from the geometric mean of the fluctuation

functions

Fave[s;m] =

(
M∏
b=1

Fθ[b; s;m]

)1/M

. (6)

The analysis is also carried out for different segment lengths s, and the scaling exponent

αθ is calculated as the slope of the graph of logFave[s;m] in terms of log s.
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2.3. The peak signal-to-noise ratio

To assess the quality of reconstructed images the peak signal-to-noise ratio (PSNR) is

usually considered. This metric is used to measure images’ quality losses caused by certain

operations such as transmission errors and compression, among others. PSNR is measured

in decibels (dB) and is defined by

PSNR = 10 log10
L2

MSE
, (7)

where L = (2B − 1) is the image pixel’s gray level, with B as the number of bits, and

MSE denoting the mean square error, defined as

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

∥I(m,n)− Î(m,n)∥ , (8)

where I is an N ×M image and Î is its approximation. Assuming pixel values in the

range [0, 255], the reconstructed images have been considered in (7) of good quality if the

PSNR values are of 30 dB or more.

3. Results and Discussion

To carry out the scaling analysis of the considered encryption schemes, we load a plain

image I of size N ×M having all of its pixels arranged into a vector by scanning the image

I row by row. After that, each pixel value is converted to their corresponding 8-bit value,

[b8 · · · b1], where b1 is the least significant bit (LSB), whereas b8 is the most significant bit

(MSB). The results of applying the W-DFA method with the db-4 wavelet function to the

mandrill test image and its full-encrypted versions are shown in Figure 2, where the North-

South orientation, 0◦, and the East-West one, 90◦, are considered. In this work, the db-4

wavelet of MATLAB is used, which having 8 filter coefficients retains the cubic polynomial

trend of the data [17], and thus provides a more accurate determination of their scaling

characteristics. This is in agreement with the conclusions of references [18, 19].

One can observe that the values of the scaling exponent α provided by the three encryption

systems used present a similar behavior in both directions. The complete scaling exponents

for the image datasets and their encrypted versions are given in Table 1. We notice that the

7



majority of the scaling exponents α of the encrypted images are close to the value of 0.5,

which suggests that the encrypted images present a behavior close to the Gaussian noise.
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Figure 2: Top row: the mandrill image test (a) and the encrypted image performed with (b) the ESCAv1

system, (c) the ESCAv2 system, and (d) the AES system. Bottom row: their respective scaling fluctuation

exponents provided by the fluctuation function of the W-DFA method.

Furthermore, we have reduced the time consuming negative feature of the encryption

by a selective encryption process in which different groups of bitplanes for each of the

images were chosen and encrypted. We have selected groups of four and three bitplanes,

where the subset of bitplanes starts from the MSB until the subset of bitplanes contain-

ing LSB of the pixels is attained. To take into account all the possible combinations, a

circular shift of one bit to the right is made until we get the corresponding number of se-

lected bitplanes. For instance, in the case of four bits we obtained the eight following sub-

sets: b8b7b6b5, b7b6b5b4, . . . , b4b3b2b1, b3b2b1b8, b2b1b8b7, b1b8b7b6. This allows us to analyze

the groups of bitplanes that preserve or not the most representative image information. The

results of the W-DFA method for partial encryption of images for the resulting subsets of

four and three bitplanes are presented in Figs. 3 and 4, respectively. The first and eighth

subsets of bits considering three bitplanes are b8b7b6 and b1b8b7, respectively.

One can notice that for the encryption systems ESCAv1 and AES, the values of the scal-

ing exponent are getting close to the values of the scaling exponents of the plain images as

we get the fifth and sixth group of bits considering four and three bitplanes, respectively,
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Table 1: The values of the α scaling exponents obtained from applying the W-DFA at the orientation of 0◦

to the eighteen test images and their encrypted versions.

Test

image

α exponents

Original ESCAv1 ESCAv2 AES

Bark 1.3328 0.5239 0.5218 0.5245

Beach sand 1.2326 0.5109 0.5111 0.5126

Brick 1.0595 0.5257 0.5227 0.5235

Grass 1.2586 0.5109 0.5123 0.5104

Leather 1.2498 0.5224 0.5243 0.5260

Lena 1.3219 0.5253 0.5255 0.5244

Mandrill 0.8647 0.5253 0.5240 0.5247

Peppers 1.5540 0.5225 0.5239 0.5247

Pigskin 1.2370 0.5246 0.5238 0.5249

Plastic bubbles 1.2790 0.5111 0.5104 0.5138

Raffia 1.2383 0.5240 0.5245 0.5262

Straw 1.4725 0.5273 0.5233 0.5209

Water 1.5743 0.5248 0.5250 0.5258

Weave 1.1953 0.5254 0.5248 0.5248

Wood 1.4895 0.5240 0.5234 0.5244

Wool 1.2503 0.5273 0.5252 0.5218

Yardangs 1.0099 0.5121 0.5110 0.5133

fBm 1.4099 0.5107 0.5123 0.5122

whereas for the encryption system ESCAv2 the scaling exponents remain without significant

changes. These results illustrate that the latter encryption system can provide high confi-

dentiality when a partial encryption is considered. In Figs. 5-7, we display the images after

the selected bitplanes have been encrypted. We can observe that in some images there is

sufficient structural information from which the original image can be traced out.

With the aim to assess the measure images’ quality losses of the encrypted images, we

compute the PSNR. Figures 8 and 9 display the values of the PSNR between the partially

encrypted images and the original images. The results obtained with this metric present the
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Figure 3: Scaling exponents of the encrypted images considering four bitplanes when the W-DFA algorithm

is applied.
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Figure 4: Scaling exponents of the encrypted images considering three bitplanes when the W-DFA algorithm

is applied.
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Figure 5: Partial encryption of the mandrill test image considering the selected three bitplanes when the

cryptosystem ESCAv1 is applied.
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Figure 6: Partial encryption of the mandrill test image considering the selected three bitplanes when the

cryptosystem ESCAv2 is applied.
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Figure 7: Partial encryption of the mandrill test image considering the selected three bitplanes when the

cryptosystem AES is applied.

same tendency of the scaling coefficients. However, Sun and collaborators [20] found that the

PSNR values do not work appropriately for the visual security assessment of some special
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encryption algorithms. This means that sometimes this typical metric may not reflect a good

visual security degree of the encrypted images.
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Figure 8: PSNR values of the encrypted images considering four bit-planes.

4. Conclusions

In this work, we have analysed the scaling behavior of different gray images that have

been encrypted through three encryption schemes.

The scaling exponent has been calculated using the DFA method based on wavelets. The

results show that if the most significant bits of an image are encrypted, the value of its scale

exponent is very close to the value of the scale exponent corresponding to the encryption of

the whole image, while if the encryption of the less significant bits is performed then the scale

exponents are closer to the values corresponding to the initial image. Despite the fact that

the PSNR is sometimes considered as an objective metric of encrypted images [1], this metric

sometimes presents some drawbacks to have an objective visual security [20]. For this reason,

we assert that the value of the scale exponent which is close to that for the Gaussian noise

12



0

10

20

30

40
ESCAv1

P
SN

R

0

5

10

15
ESCAv2

Subsets of 3 bits

1 2 3 4 5 6 7 8
0

10

20

30

40
AES

 

 

bark
beach sand
brick
grass
leather
Lena
Mandrill
peppers
pigskin
plastic bubles
raffia
straw
water
weave
wood
wool
Yardangs
fBm

Figure 9: PSNR values of the encrypted images considering three bit-planes.

can be well chosen as an objective measure of the unintelligible features of the image that

has been encrypted. This is because when such values occur the encrypted images do not

reveal any piece of information that can allow to distinguish the original image. Moreover,

although the PSNR of the encrypted images has the same tendency, the original and the

encrypted images are needed altogether in order to make the appropriate calculations. This

does not happen for the value of the scale exponent which can be calculated without having

the original image.

However, one cannot fully guarantee so far that an encrypted image with such values of the

scaling exponent is absolutely immune to any type of attack because while it is true that

AES and ESCAv2 are highly reliable with respect to plaintext attacks when a full encryption

scheme was applied to the image, this is not so for the ESCAv1.
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Appendix

The discrete wavelet transform (DWT) is considerably the most common choice for the

persistently wavelet transform required when performing the analysis and synthesis of the

original signal due to its enormous versatility for computational calculations through its

multiresolution filter bank structure [21]. Within this framework, the representation of a

function or process, x(t), is given in terms of the translated and dilated versions of the

wavelet function, ψ(t), as well as its associated scaling function, φ(t) [21]. Drawing on this

principle and considering that the scaling and wavelet functions

φm,n(t) = 2m/2φ(2mt− n), ψm,n(t) = 2m/2ψ(2mt− n), m, n = 0,±1,±2, . . . (9)

form an orthonormal basis, one can then write the expansion of x(t) as

x(t) =
∑
n

(
am0,nφm0,n(t) +

M−1∑
m=m0

dm,nψm,n(t)

)
, (10)

where the scaling or approximation coefficients am,n, and the wavelet coefficients dm,n are

defined as

am,n =

∫
x(t)φm,n(t)dt, dm,n =

∫
x(t)ψm,n(t)dt, (11)

with m and n denoting the dilation and translation indices, respectively.

In this context, to calculate am,n and dm,n, Mallat [21] developed an efficient algorithm

referred as fast wavelet transform (FWT), in which the multiresolution analysis (MRA) ap-

proach is involved. A multi-resolution decomposition of a signal is based on successive decom-

position into a series of approximations and details, which become increasingly coarse. The

FWT calculates the scaling and wavelet coefficients at scale m from the scaling coefficients

at the next finer scale m+ 1 using

am,n =
∑
k

h[k − 2n]am+1,k, (12)

dm,n =
∑
k

g[k − 2n]am+1,k, (13)
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where h[n] and g[n] are typically called low pass and high pass filters, respectively, in the

associated analysis filter bank. In fact, the signals am,n and dm,n correspond to the convo-

lutions of am+1,n with the filters h[n] and g[n] followed by a down-sampling of factor 2 [21],

respectively.

Conversely, a reconstruction of the original scaling coefficients am+1,n can be made from

the following combination of the scaling and wavelet coefficients at a coarse scale

am+1,n =
∑
k

(h[2k − n]am,k + g[2k − n]dm,k) . (14)

which corresponds to the synthesis filter bank, and represents the inverse of the FWT for

computing (10). This part can be viewed as the discrete convolutions between the up-sampled

signal am,l and the filters h[n] and g[n]. In other words, by following an up-sampling of factor

2, the convolutions between the up-sampled signal and the filters h[n] and g[n] are calculated.

To initialize the FWT, we consider a discrete time signal X = {x[1], x[2], . . . , x[N ]} of

length N = 2L. The first application of (12) and (13), beginning with am+1,n = x[n], defines

the first level of the FWT of X. The process goes on, always adopting the (m+1)th scaling

coefficients to calculate the “m” scaling and wavelet coefficients. Iterating (12) and (13) M

times, the transformed signal consists ofM sets of wavelet coefficients at scalesm = 1, . . . ,M ,

and a signal set of scaling coefficients at scaleM . There are exactly 2(L−m) wavelet coefficients

dm,n at each scalem, and 2(L−M) scaling coefficients aM,n. The maximum number of iterations

is Mmax = L.
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[8] Murgúıa JS, Flores-Eraña G, Mej́ıa Carlos M, Rosu HC. Matrix approach of an encryp-

tion system based on cellular automata and its numerical implementation, Int. J. Mod.

Phys. C 2012; 23:1250078.
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exponents of Nitzschia sp. diatom trajectories observed by light microscopy. Physica A

2015; 417:176-184.

[16] Alvarez-Ramirez J, Rodriguez E, Cervantes I, Echeverria JC. Scaling properties of image

textures: A detrending fluctuation analysis approach. Physica A 2006; 361:677-698.

[17] Manimaran P, Panigrahi PK, Parikh JC. Multiresolution analysis of fluctuations in non-

stationary time series through discrete wavelets, Phys. A 2009; 388:2306–2314.
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