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microtubules
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Abstract. The one-parameter nonrelativistic supersymmetry of Mielnik [J. Math. Phys. 25,
3387 (1984)] is applied to the simple supersymmetric model of Caticha [Phys. Rev. A 51,
4264 (1995)] in the form used by Rosu [Phys. Rev. E 55, 2038 (1997)] for microtubules. By
this means, we introduce Montroll double-well potentials with singularities that move along
the positive or negative traveling direction depending on the sign of the free parameter of
Mielnik's method. Possible interpretations of the singularity are either microtubule associated
proteins (motors) or structural discontinuities in the arrangement of the tubulin molecules.

PACS number(s): 87.15.He, 03.65.Ge, 11.30.Pb

Microtubules (MTs) are hollow cylinder tubes, 25 nm in outer diameter and 14 nm inner
diameter, made of two types of 4 nm-long dimers of a polar protein known as tubulin that
can self-assemble both vivo andin vitro to lengths from several nm up to mm in some
neurons. They form the main filamentary component of the cytoskeleton of all eukaryotic
cells. Along their walls the tubulin dimers are distributed onto 13 (the seventh Fibonacci
number) so-called protofilaments laterally associated. Brain tissues are especially enriched in
MTs. Many interesting speculations on MTs have been advanced in recentiyears [1].

Based on well-established results of Collins, Blumen, Currie and Ross [2] regarding
the dynamics of domain walls in ferrodistortive materials, Tuszyhski and collaboratois [3, 4]
considered MTs to be ferrodistortive and studied kinks of the Montroll type [5] as excitations
responsible for the energy transfer within this highly interesting biological context.

The Euler-Lagrange dimensionless equation of motion of ferrodistortive domain walls as
derived in [2] from a Ginzburg-Landau free energy with driven field and dissipation included
is of the traveling reaction-diffusion type

VA pp =Y +o=0, (1)

where the primes are derivatives with respect to a traveling coordinater — vt, p is a
friction coefficient and is related to the driven field][2].

There may be ferrodistortive domain walls that can be identified with the Montroll kink
solution of Eq.[(1L)

o V28
" T exp(8)°

where3 = (ay — a1)/+/2 and the parameters; anda, are two nonequal solutions of the
cubic equation

(p—a) (=)W —as) =¢* = —0. 3)
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In a previous papef [6], one of the authors noted that Mokgrddhk can be written as a
typical tanh kink

M(&) =~ — tanh (%) , (4)

wherey = ay+as = 1+ @1V2 The [atter relationship allows one to use a simple constuc
method of exactly soluble double-well potentials in the i8dmger equation proposed by
Catichal[f]. The scheme is a non-standard application ofeWg supersymmetric quantum
mechanics 8] having as the essential assumption the ideansfdering the traveling/ kink
as the switching function between the two lowest eigenst@itthe Schrodinger equation with
a double-well potential. Thus

(bl = M(b(] ) (5)
where ¢, are solutions ofp,; + [eo1 — u()]do1(§) = 0, andu(¢) is the double-well
potential to be found. Substituting E (5) into the Schmger equation for the subscript
1 and substracting the same equation multiplied by the bimigcfunction for the subscript O,
one obtains

¢o + Ruco =0, (6)
whereR), is given by
M" +eM
RM - W ) (7)

ande = ¢; — ¢ Is the lowest energy splitting in the double-well Schragin equation.
In addition, notice that EqL16) is the basic equation intiidg the superpotentiak in
Witten’s supersymmetric quantum mechanics, i.e., thea&icolution. For Montroll's kink
the corresponding Riccati solution reads

Ry (&) = —gtanh <§§> + 25 lsmh(ﬁ{) + 2+ cosh? <6§> ] (8)

and the ground-state Schrodinger function is found by medikq. [6)

15} €
do.m (&) = ¢0(0) cosh <§§> exp (2—52>

exp( 252[cosh<55> vﬁi—vsinh(ﬁé)D, ©)

while ¢, is obtained by switching the ground-state wave function Bans ofd/. This
ground-state wave function is of supersymmetric type

3
Go,1(&) = 0,1 (0) exp [— /0 RM(y)dy] : (10)

whereg, ,,(0) is a normalization constant.
The Montroll double well potential is determined up to thaliéide constank, by the
‘bosonic’ Riccati equation

2
—1)e
UM(S) RM RJV[+€0_ 6—+u+ —|—€0+
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852 { (47 € + (2% + 1)ecosh(BE) — 852) cosh(5¢)—
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— 4 (e + ecosh(B€) — 26%) sinh(B¢)] - (11)

Plots of the asymmetric Montroll potential and ground stat/efunction are given in
Figs. (1) and (2) for a particular set of the parameters. dfsaggested by Caticha, one
chooses the ground state energy to be
P e € 5
EO__I_§+4—52(1_7)7 (12)
then wuy,(€) turns into a traveling, asymmetric Morse double-well ptinof depths
depending on the Montroll parametétand~ and the splitting

2ey ]
(28)?
where the subscript: stands for Morse and the superscriptand R for left and right well,

respectively. The difference in depth, the bias)is = UF — Ut = 2¢v, while the location
of the potential minima on the traveling axis is at

LR _ ll [(25)2:&267
SCETE T

that shows that # +1.

A one-parameter supersymmetric extension of the previesdts is possible. It is quite
known in the literature on supersymmetric quantum meclisanteere it has been introduced
by Mielnik, Fernandez and Nietbl[9] and is based on the Daxlmmyariant isospectrality of
Schroedinger equations. In the biological context it haskegplied to the DNA molecule by
Drigo-Filho and Ruggierd[10]. The point is th&t,; as given in Eq.[{8) is only the particular
solution of the Riccati equation ocurring in EBL11). A mgeneral, parameter-dependent
Riccati equation of the form,, (&; \) = R2,(£; \) — R),(€; \) + € can be constructed whose
solution is a one-parameter function of the form

Ugit = B%|1 + (13)

(14)

Ra(§0) = () + 2 L (L) + V) (15)
and the corresponding one-parameter Montroll potentigiven by
2
M(€2) = wr () = 25 [ Wn(Lu(©) + V)] (16)

In these formulas], (&) = /¢ ¢§ 1 (€)dE and X is an integration constant that is used as
a deforming parameter of the potential and is related toriegular zero mode. The one-
parameter Darboux-deformed ground state wavefunctiofoeaihown to be

G (& A) = AN+ 1 IM%M (17)

where /(X + 1) is the normalization factor implying that¢ [0, —1]. Plots ofu,,(£; \) and

oo.m(&; ) for A = 10 are presented in Figs. (3) - (4). See also Fig. (5) for a pltt®@function

I (&) producing the parametric Darboux deformation. A singtyaat 7,,(¢) + A = 0 is
introduced in both potential and wavefunction. If the pagten) is positive the singularity
is to be found on the negativeaxis, while for negative\ it is on the positive side. For
large values oft-)\ the singularity moves towardsoo and the potential and ground state
wave function recover the shapes of the non-parametrimpatand wavefunction. The one-
parameter Morse case corresponds formally to the changée€spt)M — m in Egs. [I5)
and [16). For the single well Morse potential the one-patanfrocedure has been studied
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by Filho [11] and Bentaibat al [12]. Potentials and wavefunctions with singularities are
not so strange as it seems|[13]. Similar to the case ob thetential in condensed matter
physics, we interpret the singularity as representing ffexieof an impurity moving along
the microtubule in one direction or the other depending @nsilgn of the parametex. In

the case of microtubules, The impurity may represent a praetigached to the microtubule
or a structural discontinuity in the arrangement of the tubmolecules. This interpretation
of impurities has been given by TrpiSova and Tuszyhskidm-supersymmetric models of
nonlinear microtubule excitations [14].

In conclusion, the supersymmetric approaches allow forralbmar of interestingexact
results and point to a direct connection between Schroedidguble-well potentials and
nonlinear kinks encountered in nonequilibrium chemicalcpssses. MTs are an important
application but the procedures described here can be usadany other applications.
Moreover, the supersymmetric constructions can be used mcleground for clarifying
further details of the exact models. Although it is not sachkrhy one should take a certain
type of kink as switching function between the Schroedirggdit modes, it is interesting that
proceeding in this way one will be led to some familiar dowvkdl potential in chemical
physics.
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Figure 1. The Montroll asymmetric double-well potential (MDWP) caliated using Eq. (11)
foreo = 0. In all figuresa; = 1, ap = —1.5, 8 = —2.5/v/2,7 = —0.5,¢ = 0.1.
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Figure 2. The Montroll ground state wave function cf. Eq. (9) fay(0) = 1.
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Figure 3. The one parameter Darboux-modified MDWP fot= 10
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Figure 4. The ground state wave function corresponding te 10.
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Figure 5. Plot of the integrall,,(€) that produces the deformation of the potential and
wavefunctions.



