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I. INTRODUCTION

The nonlinear non-dissipative Ermakov-Pinney (EP) equations are known to have profound connections with the
linear equations of identical operatorial form without the inverse cubic nonlinearity and because of this they are
considered as an example of ‘nonlinearity from linearity’ [1]. Leach and Andriopoulos [2] provide a historical overview
and the fundamental importance of the EP equation for parametric oscillators, both classical and quantum-mechanical,
with their vast application reaches is well established in the literature. Recent works on the connections of the Ermakov
systems with the nonlinear superposition principle belong to Cariñena and collaborators [3, 4], where the reader can
also find more references. The importance of Ermakov equations stems from the fact that they can occur in many
research areas, such as in modeling the propagation of laser beams in nonlinear optics [5], magneto-gas dynamics [6],
the mean field dynamics of pancake-shaped Bose-Einstein condensates [7], and cosmology [8–11], to cite just a few.

On the other hand, the dissipative case and possible extensions, in spite of potential applications, are much less
studied, deserving more attention [12]. This gave motivation for this work in which we present, as main results, two
integrable cases of nonlinear differential equations of the following nonlinear dissipative form

vζζ + g(v)vζ + h(v) = 0 , (1)

where

h(v) = h0(v) + cv−3 . (2)

Regarding the function h0(v), we will consider in full detail the linear case h0(v) = λ2v corresponding to a constant
frequency ω2

0 = λ2, which makes (1) to have the simplest Ermakov-Pinney type format if one ignores the nonlinear
dissipation g(v). It is precisely the nonlinear dissipative ingredient which in general makes this equation nonintegrable.
However, we will show here that this type of EP equation is integrable in the special case in which the nonlinear
dissipation g(v) is obtained from h(v) through the Chiellini integrability condition of the Abel equation corresponding
to (1). We obtain the solution using the corresponding integrable Abel equation, and also we give a theorem for
obtaining the general solution if a particular solution is known. In the latter case, the phase of the solution is of the
Milne type [13] and the Ermakov invariant for a pair of nonlinear dissipative EP equations of the type (1) with different
nonlinearity parameters b and c is used in the derivation. Furthermore, the same type of solutions are obtained for
higher-order (Reid) negative power nonlinearities. In the context of dissipative equations, we recall that for the general
case of Ermakov equations with a linear dissipative term, it is known that one has to resort on numerical methods
because there are no Lie symmetries and reductions to simpler forms are useful only in particular cases [14]. We also
investigate the nonlinear case h0(v) = Ω2

0(v − v2), or equivalently the frequency case ω2
0(v) = Ω2

0(1 − v), with the
Chiellini dissipation, and show that it is also integrable.

The paper is structured as follows. We start by discussing briefly the basic properties of the simplest nondissipative
EP equation corresponding to the constant frequency case ω2

0 = λ2, as mentioned above. We next move to the special
EP equation with dissipation determined by Chiellini’s integrability condition for the corresponding Abel equation of
the first kind [15], and the general solution is obtained through the usage of the Ermakov invariant of a pair of such
dissipative EP equations. An application to the Courant-Snyder dynamics is included. The method is also applied to
Chiellini-dissipative Ermakov equations with Reid (higher-order Ermakov) nonlinearities for which we also provide the
general solutions. The last section is concerned with the nonlinear case h0(v) = Ω2

0(v − v2) endowed with Chiellini’s
dissipation, followed by conclusions and an appendix in which we present a simplified case.

II. THE CASE h0(v) = λ2v

A. Solutions of the simplest EP equation

Starting with the simple linear parametric oscillator equation,

uζζ + ω2(ζ)u = 0, (3)

it is a well-known fact that one can use two given linear independent solutions, u1, and u2, to build a particular
solution of the corresponding EP equation

vζζ + ω2(ζ)v + cv−3 = 0 (4)
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by means of Pinney’s formula [16]

v(ζ) =

√

u2
1 −

cu2
2

W 2
, (5)

where W is the Wronskian of the two solutions u1, and u2. Moreover, the general solution can be written

vg(ζ) =
√

α1u2
1 + α2u2

2 + 2α3u1u2 ,

with the three constants constrained by the condition α1α2 − α2
3 = −c/W 2.

Let us take the simplest case, i.e., ω2(ζ) = λ2, a constant:

uζζ + λ2u = 0 . (6)

Then the corresponding EP equation reads

vζζ + λ2v + cv−3 = 0 . (7)

This equation will be called the simplest EP (SEP) equation henceforth. From (5), the SEP particular solutions can
be written immediately in the form

v−(ζ) =

√

1−
(

c

λ̃2
− 1

)

sinh2λ̃ζ , λ2 = −λ̃2 < 0 ,

v0(ζ) =
√

1− cζ2 , λ2 = 0 ,

v+(ζ) =

√

1−
(

c
λ2 + 1

)

sin2 λζ , λ2 > 0 .

(8)

B. Chiellini dissipative SEP (CD-SEP) equations

Noticing that the SEP equation (7) can be also written in the form

vζζ + h(v) = 0, h(v) = λ2v + cv−3 , (9)

we build now CD-SEP equations, i.e., dissipative SEP equations with Chiellini-type damping as equations of the
following format

vζζ + g(v)vζ + h(v) = 0 , (10)

where h(v) is as given in (9) and the nonlinear damping term g(v) is obtained from h(v) by means of Chiellini’s
integrability condition [15]

d

dv

(

h(v)

g(v)

)

= kg(v), k, a real constant (11)

for the Abel equation of the first kind

dy

dv
= g(v)y2 + h(v)y3 . (12)

From (11) one easily gets

g(v) =
λ2v2 + cv−2

√
kλ2v4 + c1v2 − kc

, (13)
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where c1 is an integration constant. On the other hand, the solution of Abel’s equation (12) is given by y(v) =
g(v)
h(v) |k=−2 as one can check by direct substitution and usage of (11), see also [15]. Thus, for CD-SEP equations, one

gets the following Abel solution

y(v) =
v√

−2λ2v4 + c1v2 + 2c
. (14)

Furthermore, using the substitution vζ ≡ 1/y(v) between (10) and (12) in (14) and integrating, one has

ζ − ζ0 =

∫

vdv√
−2λ2v4 + c1v2 + 2c

. (15)

We then obtain the following general solutions for the CD-SEP equations:

v−
Λ̃
(ζ) =















1
2λ̃

√

−c1 +
√

−Λ̃ sinh
(

2
√
2λ̃(ζ − ζ0)

)

, Λ̃ < 0 ,
1
2λ̃

√

−c1 ± 4λ̃2e±2
√
2λ̃(ζ−ζ0) , Λ̃ = 0 ,

1
2λ̃

√

−c1 +
√

Λ̃ cosh
(

2
√
2λ̃(ζ − ζ0)

)

, Λ̃ > 0 ,

(16)

v0(ζ) =

√

c1(ζ − ζ0)2 −
2c

c1
, (17)

v+Λ (ζ) =















1
2λ

√

c1 + i
√
−Λsin

(

2
√
2λ(ζ − ζ0)

)

, Λ < 0 ,

1
2λ

√

c1 ± 4λ2e±2i
√
2λ(ζ−ζ0) , Λ = 0 ,

1
2λ

√

c1 +
√
Λsin

(

2
√
2λ(ζ − ζ0)

)

, Λ > 0 .

(18)

for λ2 = −λ̃2 < 0, λ2 = 0, and λ2 > 0, corresponding to (16), (17), and (18), respectively. Λ̃ = c21 − 16cλ̃2 and
Λ = c21 + 16cλ2 are discriminant quantities of the integrand in (15), while c1 and ζ0 are arbitrary constants.

It is also possible to construct a different form of the general solution for a CD-SEP equation in terms of particular
solutions. For this, we consider the CD-SEP equation whose general solution we seek as the first equation in the
following Chiellini-dissipative Ermakov-Lewis system

wζζ + g1(w)wζ + λ2w + bw−3 = 0 , with g1(w) =
λ2w2 + bw−2

√
−2λ2w4 + Ibcw2 + 2b

, (19)

vζζ + g2(v)vζ + λ2v + cv−3 = 0 , with g2(v) =
λ2v2 + cv−2

√
−2λ2v4 + c1v2 + 2c

. (20)

In the first equation, Ibc is the Ermakov-Lewis invariant

Ibc = −2b
(z

z

)2

− 2c
( z

z

)2

+ (zζz − zzζ)
2, (21)

built from particular solutions of the non-dissipative Ermakov system of double nonlinear couplings

zζζ + λ2z + 2bz−3 = 0 , (22)

zζζ + λ2z + 2cz−3 = 0 . (23)

If we choose particular solutions of equation (20) by fixing c1 and ζ0 in the v solutions v obtained through the Abel
route, then we can get general solutions of (19) according to the following theorem.

Theorem. For the CD-SEP equation (19), with v(ζ) the particular solutions of (20) and corresponding g’s, the
general solutions w(ζ) are given by

w−(ζ) = q−∆(ϕ− − ϕ̂) v−(ζ) , c < 0 ,

w0(ζ) = q0(ϕ0 − ϕ̂) v0(ζ) , c = 0 ,

w+(ζ) = q+∆(ϕ+ − ϕ̂) v+(ζ) , c > 0 ,

(24)



5

where the phases ϕ(ζ) are of the Milne type [13], i.e.,

ϕ+(ζ) =

∫

1

v2+
dζ , ϕ0(ζ) =

∫

1

v20
dζ , ϕ−(ζ) =

∫

1

v2−
dζ , (25)

and ϕ̂ is an initial phase. These phases have been introduced long ago by Milne in his EP approach for the Schrödinger
equation. The functions q∆ are given by the following expressions:

q−∆(ζ) =



















1
2
√
c

√

−Ibc +
√
−∆sinh

(

2
√
2c(ϕ− − ϕ̂)

)

, ∆ < 0 ,

1
2
√
c

√

−Ibc ± 4ce∓2
√
2c(ϕ

−
−ϕ̂) , ∆ = 0 ,

1
2
√
c

√

−Ibc − i
√
∆sinh

(

2
√
2c(ϕ− − ϕ̂)

)

, ∆ > 0 ,

(26)

q0(ζ) =

√

Ib0(ϕ0 − ϕ̂)2 − 2b

Ib0
, (27)

q+∆(ζ) =



















1
2
√
c

√

−Ibc +
√
−∆sinh

(

2
√
2c(ϕ+ − ϕ̂)

)

, ∆ < 0 ,

1
2
√
c

√

−Ibc ± 4ce±2
√
2c(ϕ+−ϕ̂) , ∆ = 0 ,

1
2
√
c

√

−Ibc +
√
∆cosh

(

2
√
2c(ϕ+ − ϕ̂)

)

, ∆ > 0 ,

(28)

where ∆ = I2bc − 16bc.

Proof. We start by showing that Ibc is constant as a simple application of the connection with the Abel solution.
For two equations of the CD-SEP type with hb = λ2z + bz−3 and hc = λ2z + cz−3, for arbitrary real constants b and
c, we use the fact that zζ = hb/gb and zζ = hc/gc to turn them into the dissipation-free form

zζζ + 2hb(z) = 0 ,

zζζ + 2hc(z) = 0 . (29)

But for this pair of EP equations it is well known that one has the Ermakov invariant Ibc given in (21), see, e.g., [4].
Then, using ϕ =

∫

z−2dζ, and q = z/z in (21) we obtain the following separable equation

qdq
√

2b+ Ibcq2 + 2cq4
= dϕ , (30)

which depending on the sign of the discriminant ∆ = I2bc − 16bc of the quadratic form in the denominator is solved
by cases.
Finally, since the CD-SEP format is independent of the symbols used for the unknown functions, from q = w/v one

gets w = qv, which leads to (24). Results similar to (24) but for the non-dissipative case can be found in a paper by
Qin and Davidson [17].
In section III, we will obtain explicit solutions of the type (24) for the more general case of Reid’s (2m− 1)th-order

nonlinearities and write (24) as the particular case m = 2.

C. Application using I01 (the Courant-Snyder Invariant)

The invariant I01 is also known as the Courant-Snyder invariant since I01 has been derived through the Hill equation
route in their seminal work on the motion of a charged particle in alternating-gradient field configurations in accelerator
physics [18]. The following example involving I01 is worthwhile to show how one can compute a solution of (19) using
the particular solution of (20). Let us consider a special case for which b = 0 and c = 1, and let us choose λ = 1/2.
The dissipation-free system is the following one:

zζζ +
1

2
z = 0 ,

zζζ +
1

2
z + 2z−3 = 0 . (31)

The particular solution to the second equation is obtained via the case Λ > 0 with c1 = 1 in (16) to give

z(ζ) =

√

1 +
√
5 sin

√
2ζ , (32)
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while the first equation is a simple harmonic oscillator with particular solution

z(ζ) = sin
ζ√
2
. (33)

Calculation of the Courant-Snyder invariant using these particular solutions gives:

I01 = −2
( z

z

)2

+ (zζz − zzζ)
2 =

1

2
. (34)

Using the Chiellini dissipation functions, we get the following Chiellini dissipative Ermakov-Lewis system

wζζ +

√
2|w|

4
√
1− w2

wζ +
1

4
w = 0 , (35)

vζζ +
v4

4 + v−2

√

− v4

2 + v2 + 2
vζ +

1

4
v + v−3 = 0 . (36)

Substituting the value of the invariant I01 in (30), it yields

arcsinh 2q = ±
√
2(ϕ− ϕ̂). (37)

The Milne phase is obtained using (32), to get

ϕ =

∫

dζ

1 +
√
5 sin

√
2ζ

= − 1√
2
arctanh

(

√
5 + tan ζ√

2

2

)

. (38)

By substituting the Milne phase in (37), and choosing zero initial phase, we get

q =

√
5 + tan ζ√

2

4

√

1− 1
4

(√
5 + tan ζ√

2

)2
. (39)

Now, the w solution is obtained from (39) and (32)

w(ζ) = qv =

(√
5 + tan ζ√

2

)

√

1 +
√
5 sin

√
2ζ

4

√

1− 1
4

(√
5 + tan ζ√

2

)2
=

√
5 cos ζ√

2
+ sin ζ√

2

2i
. (40)

The squares of the particular solutions z(ζ), z(ζ) of the non-dissipative system (31), and the solution w are shown in
Fig. 1.

III. CD-SEP EQUATIONS WITH REID’S HIGHER-ORDER NONLINEARITIES

In this section, we show that the method of obtaining the general solution just described can be also applied to
equations with high-order Ermakov nonlinearities and associated Chiellini dissipation.
Reid has shown in [19] that a particular solution to

vζζ + h(ζ)v + q̃m(ζ)v−(2m−1) = 0 (41)

is given by

v(ζ) =

(

um
1 − c

(m− 1)W 2
um
2

)
1
m

(42)

provided that u1 and u2 are two independent solutions of (3), and

q̃m(ζ) = c(u1u2)
m−2 . (43)
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Notice that (42) is a direct generalization of the Pinney formula (5). For h(ζ) belonging to the constant triplet
(−λ2, 0, λ2), the solutions of (41) are

v−(ζ) =
(

amemλζ − cmbme−mλζ
)

1
m , h(ζ) = −λ2 ,

v0(ζ) = (1− c
m−1ζ

m)
1
m , h(ζ) = 0 ,

v+(ζ) =
(

am cosmλζ − cmbm sinmλζ
)

1
m , h(ζ) = λ2,

(44)

where

cm =
c

4λ2(ab)m(m− 1)
(45)

and a and b are constants determined by the initial conditions.
We are interested in a general solution to the Chiellini-dissipative equation with constant h(ζ) = +λ2, 0,−λ2

wζζ + g(w)wζ + h(ζ)w + q̃m(ζ)w1−2m = 0, (46)

via the machinery of invariants as in the previous theorem. For simplification, let us denote A = am, B =
−c/[4λ2am(m− 1)], and B0 = −c/(m− 1). Then, by integrating ϕ∓ =

∫

v−2
∓ dζ and ϕ0 =

∫

v−2
0 dζ leads to



























ϕ−(ζ) =
Ae2mλζ+B

2λB
(

Aemλζ+Be−mλζ

) 2
m

2F1

(

1, m−1
m

; m+1
m

;−A
B
e2mλζ

)

,

ϕ0(ζ) = ζ 2F1

(

1
m
, 2
m
; m+1

m
;−B0ζ

m
)

,

ϕ+(ζ) = − sin
2
m

(

mλζ+arctan A
B

)

cos
(

mλζ+arctan A
B

)

mλ
(

A cosmλζ+B sinmλζ
) 2

m
2F1

(

1
2 ,

1
2 + 1

m
; 3
2 ; cos

2
(

mλζ + arctan A
B

)

)

.

(47)

Finally, the solution to (46) is w = qv, with q obtained by integrating (30).

We now fix h(ζ) = + 1
4 , 0,− 1

4 , together with a = b = −c = c1 = 1, in order to obtain the following more conventional
solutions that can be plotted:

w−(ζ,m) =
(

e
mζ
2 + 1

m−1e
−mζ

2

)
1
m
(

− 1∓
√
3 sinh(

√
2ϕ−)

)
1
2 , h(ζ) = − 1

4 ,

w0(ζ,m) =
(

1 + 1
m−1ζ

m
)

1
m
(

ϕ2
0 − 1

)
1
2 , h(ζ) = 0

w+(ζ,m) =
(

cos mζ
2 + 1

m−1 sin
mζ
2

)
1
m
(

1±
√
5 sin(

√
2ϕ+)

)
1
2 , h(ζ) = 1

4 ,

(48)

where


































ϕ−(ζ) =
(m−1)emζ+1

(

e
mζ
2 + e

−

mζ
2

m−1

) 2
m

2F1

(

1, m−1
m

; m+1
m

;−
(√

m− 1e
mζ
2

)2 )

,

ϕ0(ζ) = ζ 2F1

(

1
m
, 2
m
; m+1

m
;− 1

m−1ζ
m
)

,

ϕ+(ζ) =
2 sin

2
m

(

mζ
2

+arctan (m−1)
)

cos
(

mζ
2

+arctan (m−1)
)

m
(

cos mζ
2

+ 1
m−1

sin mζ
2

) 2
m

2F1

(

1
2 ,

1
2 + 1

m
; 3
2 ; cos

2
(

mζ
2 + arctan(m− 1)

)

)

.

(49)

Note that for the case m = 2, which is the standard dissipative SEP case, the solutions (48) simplify to

w−(ζ, 2) =

√

(eζ + e−ζ)
(

− 1∓
√
3 sinh

(√
2 arctan eζ

)

)

, h(ζ) = − 1
4 ,

w0(ζ, 2) =
√

(ζ2 + 1)(arctan2 ζ − 1) , h(ζ) = 0 ,

w+(ζ, 2) =

√

(cos ζ + sin ζ)
(

1±
√
5 sin

(

arctanh cos ζ−sin ζ√
2

)

)

, h(ζ) = 1
4 .

(50)
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We plot in Figs. 2-4 the oscillating solutions w+ and v+ form = 2, 3, and 4 as given in (50), (48), and (44), respectively.
The interesting feature is that they are periodically pure real and pure imaginary. We notice also a diminishing of the
amplitudes with increased order of the negative-power nonlinearity. But the most interesting feature of the dissipative
solutions is that they may have larger amplitudes than the non-dissipative ones on some time intervals. This reveals
the presence of gain effects. Indeed, from the plots of the functions g(w) in Fig. 5, one can infer that this function is
not always dissipative, but it also has gain intervals.

IV. A NON-LINEAR FREQUENCY CASE: h0(v) = Ω2

0(v − v2)

Let us take now the case of the equation uζζ+ω2(u)u = 0 with ω2(u) = ±Ω2
0(1−u), and Ω0 a real nonzero constant

to obtain

uζζ ± Ω2
0(u− u2) = 0 . (51)

We will derive a Weierstrass ℘ solution of this equation below and other more particular solutions are also known.
However, since this equation is nonlinear we cannot apply the EP superposition principle to get the solution of the
Ermakov-extended equation

vζζ ± Ω2
0(v − v2) + cv−3 = 0 . (52)

On the other hand, we are able to get solutions of the corresponding CD-SEP equation:

vζζ + g(v)vζ + h(v) = 0 , h(v) = ±Ω2
0(v − v2) + cv−3 . (53)

The dissipation term g(v) is again obtained from h(v) using Chiellini’s integrability condition for Abel’s equation of
the first kind (12) corresponding to (53).

g(v) =
±Ω2

0(v
2 − v3) + cv−2

√

k
(

± Ω2
0(v

4 − 2v5

3 )
)

+ c2v2
. (54)

The Abel solution is in this case obtained from

y(v) =
v√

a5v5 + a4v4 + c2v2 + 2c
≡ v√

P5

, (55)

where a5 = ±4Ω2
0/3, a4 = ∓2Ω2

0, c2 is a free integration constant, and c is the Ermakov constant.
By integration, the solution to (53) is found implicitly in terms of a hyperelliptic integral of genus (n− 1)/2, where

n = 5 is the degree of the square-rooted polynomial in (55)

ζ − ζ0 =

∫

vdv√
P5

. (56)

This Jacobi inversion problem can be solved in terms of hyperelliptic functions of two variables with periods which
are two-by-two matrices [20].
When the Ermakov constant is zero (52) becomes (51), while (56) becomes the elliptic equation

ζ − ζ0 =

∫

du√
a5u3 + a4u2 + c2

, (57)

with solutions in terms of Weierstrass ℘ functions. Because (57) is not in standard form, we use a linear transformation

u = at+ b, where a = 3
√

4/a5 and b = −1/2±
√

1/4− a4
3
√

4a25/3, to turn it into

ζ − ζ0 = a

∫

dt
√

4t3 − g2t− g3
, (58)

with solution

u(ζ) = a℘−1
(ζ − ζ0

a
, g2, g3

)

+ b, (59)
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with a = 3
√

3/Ω2
0, b = −1/2±

√

1/4 + (8/9)Ω3
0

3
√
3Ω0.

The invariants of the ℘ function are given by

g2 = −3ab2a5 − 2aba4 ,

g3 = b3a5 + b2a4 + c2 ,
(60)

and they only depend on the frequency parameter Ω0, and the integration constant c2. Depending upon the signs of
g2 and g3, together with the discriminant ∆℘ = g32 − 27g23, (59) can be reduced to elementary periodic or hyperbolic
functions, see [21].

V. CONCLUSION

A class of dissipative Ermakov-Pinney equations, either with standard m = 2 or higher-order (m > 2) Reid
nonlinearities, and with nonlinear dissipation of the Chiellini type has been introduced. The general solutions are
obtained directly through the Abel equation route, and also using the dynamic invariant of Ermakov systems of this
type of equations and the particular solution of one member of the pair, both in the standard Ermakov case and in
the case of any Reid nonlinearity. The technique based on Abel’s equation we used here can be applied only to the
constant frequency systems and cannot be directly generalized to the case of time-dependent oscillators. This is due
to the fact that the Chiellini integrability condition which plays a central role in obtaining the results does not apply
to the cases with an explicit dependence on the independent variable. On the other hand, if Reid higher-order inverse
power nonlinearities or other type of additional nonlinearities are introduced, one can still obtain integrable Chiellini-
dissipative equations. We have discussed Reid examples of any order m and also an example with an additional
quadratic nonlinearity which led to a hyperelliptic case. Another remarkable aspect is that the Chiellini nonlinear
dissipative function is in many cases a dissipation-gain function. If it can be engineered, it might have interesting
applications in the propagation of laser beams and pulses in nonlinear optics and accelerators.

Appendix: The reduced CD-SEP equation

A very interesting case occurs if we take the nonlinear coupling c = 0 in the CD-SEP equation (10). Then, we
obtain an equation that we call the reduced CD-SEP equation, which is nonlinear only because of the damping of
Chiellini type:

uζζ + gr(u)uζ + λ2u = 0 , gr(u) =
λ2u√

c1 − 2λ2u2
. (61)

Despite being nonlinear, this equation has for λ2 > 0 the linear harmonic solutions u1r = (
√
c1/

√
2λ) sin

√
2λ(ζ − ζ0)

and u2r = (
√
c1/

√
2λ) cos

√
2λ(ζ − ζ0) as if the nonlinear dissipation does not act at all and if judged according to its

solutions the equation (61) is linear. This can be checked by direct substitution. The only feature introduced by the
reduced nonlinear Chiellini dissipation is that the amplitudes of the harmonic modes are inverse proportional to the
frequency, which in fact is an EP fingerprint. Thus, one can also obtain solutions of the reduced equation (61) from

the solutions (16)-(18) by taking c = 0, which also implies Λ = Λ̃ = c21 > 0:

u−(ζ) =
√
c1√
2λ̃

√

−1 + cosh
(

2
√
2λ̃(ζ − ζ0)

)

≡
√
c1
λ̃

| sinh
√
2λ̃(ζ − ζ0)| , λ2 = −λ̃2 < 0 ,

u0(ζ) =
√
c1(ζ − ζ0) , λ2 = 0 ,

u+(ζ) =
√
c
1√

2λ

√

1 + sin
(

2
√
2λ(ζ − ζ0)

)

≡
√
c
1√

2λ
| sin

√
2λ(ζ − ζ0) + cos

√
2λ(ζ − ζ0)|, λ2 > 0.

(62)

Notice also that the integration constant c1 should not be zero because it occurs in the amplitude of the reduced
harmonic modes.

Moreover, solutions of the type (24) can be also written for the reduced Chiellini-dissipative equations. If one
considers two such equations with different c1’s, say c1 and c′1, but the same λ2, then their Ermakov-Lewis invariant
is I00 = (wζv − wvζ)

2 and since the two constants c1 figure only in the amplitudes, we have I00 = c1c
′
1.
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[12] J. F. Cariñena, J. de Lucas, Applications of Lie systems in dissipative Milne-Pinney equations, Int. J. Geom. Meth. Mod.

Phys. 6 (2009) 683-699.
[13] W.E. Milne, The numerical determination of characteristic numbers, Phys. Rev. 35 (1930) 863-867.
[14] F. Haas, The damped Pinney equation and its applications to dissipative QM, Phys. Scr. 81 (2010) 025004.
[15] S.C. Mancas, H.C. Rosu, Integrable dissipative nonlinear second order differential equations via factorizations and Abel

equations, Phys. Lett. A 377 (2013) 1434-1438.
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case m = 2 and a = b = −c = c1 = 1, λ = 1/2.
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FIG. 4: (Color online). The squared moduli of the dissipative solution w+(ζ) (blue) and the non-dissipative solution v+(ζ)
(red) for the case m = 4 and the same values of the parameters.
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