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Abstract

The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an
Emden-Fowler (EF) equation that is written as an autonomous two-dimensional ODE
system for which we provide the phase-space analysis and the parametric solution.
Through an invariant transformation we find periodic solutions to a certain class of EF
equations that pass an integrability condition. We show that this condition is necessary
to have periodic solutions and via the ODE analysis we also find the sufficient condition
for periodic orbits. EF equations that do not pass integrability conditions can be made
integrable via an invariant transformation which also allows us to construct periodic
solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation
and a positive power Emden-Fowler equation are discussed in the same context.
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• An invariant transformation is used to find periodic solution of EF equations.

• Phase plane study of the EF autonomous 2D ODE system is performed.

• Three examples are presented from the standpoint of the phase plane analysis.
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1. Introduction

Many nonlinear oscillators belonging to the classes of positive and negative power
nonlinearity can be put in the following Emden-Fowler form [1]

qYY − αY−λ−2qn = 0 . (1)

Forλ = −2 and written in self-adjoint form, see Eq. (6) below, Eq. (1)is known as the
Lane-Emden equation and emerged first in astrophysics as theequation for the New-
tonian gravitational potential of a spherically symmetricpolytropic gas [2, 3], with the
dependent variable related to the density of the self-gravitating gas and the independent
variable as a dimensionless radius. The Lane-Emden equation is actually the Poisson
equation in disguise for polytropic gases in convective equilibrium. The case with
n = 3 and the dependent variable taken as the thermodynamic ideal temperature was
used by Eddington in his theory of the internal constitutionof stars which led to the
famous mass-luminosity relation for these cosmic objects [4]. Moreover, the Thomas-
Fermi model [5, 6] for the electrostatic field in the bulk of a heavy atom has the same
Poisson background and is also expressed by the self-adjoint form of Eq. (1) although
for a non-integern. On the other hand, for negativen of the formn = 1 − 2m, with
ma positive integer≥ 2, the self-adjoint Emden-Fowler equations can be associated to
Ermakov parametric oscillators and their Reid generalization [7], while for m = 1, it
gives a simple model of the path taken by an electron in an electron beam injected into
a plasma tube [8].

An important problem for nonlinear differential equations is to examine the exis-
tence of periodic solutions around some critical point. It appears that for the subclass
of Emden-Fowler equations defined byλ = −2 and any negative exponentn this prob-
lem is still under some debate. For example, in a recent paperby Gadella and Lara
(GL) [9], it was argued that the particular case of (1)

qqYY + 1 = 0 , (2)

also known as the ‘pseudo-oscillator’, has no periodic oscillatory solutions despite pre-
vious claims in the literature, which were based on approximate solution methods of
this equation. On the other hand, Van Gorder [10] showed thatwhile smooth periodic
solutions, i.e., with continuous derivatives, may not exist, non-smooth continuous pe-
riodic solutions (with the derivative not continuous at some points on the real axis) can
still be constructed. The GL paper served us as a motivation to study this problem in
the more general Emden-Fowler formulation and the corresponding autonomous two-
dimensional ODE system. After a brief discussion of the general pseudo-oscillator
solution in section 2, we introduce the integrable Emden-Fowler cases according to
Rosenau [11] in section 3, where we show that there is a transformation of variables
through which the pseudo-oscillator is made Rosenau integrable. In section 4, we
present the phase-plane analysis of the ODE system equivalent to the Emden-Fowler
equations. Three illustrative examples, including the pseudo-oscillator, are discussed
from this standpoint in section 5. Our conclusions are presented in section 6, essen-
tially stating that smooth continuous periodic solutions exist only for the positive class
of single power nonlinearity whenn = 2λ + 1 > 1.
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2. General solution of the pseudo-oscillator equation

By multiplying byqY in (2) one can easily find the first integral of motion

(qY)2 + ln q2 = H , (3)

whereH denotes a Hamiltonian with logarithmic potentialV(q) = 2 lnq, see Fig. 1.

Figure 1: Hamiltonian curves with the corresponding valuesofH in the phase spaceq, qY .

By a quadrature one can get the Polyanin solution [12]

Y− Y0 = ±
∫ q dz
√
H − 2 lnz

= ∓Aerf















√

H
2
− ln q















, (4)

where the amplitude is

A =

√

π

2
exp

(

H
2

)

.

This solution can be identified with the solution given by Gadella and Lara in their
Eq. (7) if Y0 = c2 andH2 = −c1, wherec1 andc2 are the constants of Gadella and Lara.
The general pseudo-oscillator solution is obtained by inverting (4), which gives

q(Y) =

√

2
π

Aexp

{

−
[

erf−1
(

∓Y− Y0

A

)]2 }

, (5)

see Fig. 2 forY0 = 0, andH = −2, 0, 2.
Gadella and Lara claim that this solution is not oscillatory, or in more general terms

that in the phase space there isno closed orbit associated to a periodic solution sur-
rounding at least a critical point, which is a necessary fingerprint for periodic solutions.
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Figure 2: Solutions (4) and (5) to equation (2).

3. The Emden-Fowler approach and an invariant transformation

The self-adjoint form of Eq. (1) is obtained by using Kamke’ssubstitutions [13],
q(Y) = η(ξ) andξ = 1

Y , which lead to

d
dξ

(ξ2η′) = αξληn , (6)

which becomes
ξη′′ + 2η′ = αξλ−1ηn , (7)

where′ = d/dξ.
Recall now that in 1984 Rosenau [11] was interested in the integration of the above

equation for which he constructed integrals of motion, provided that two conditions are
satisfied:n = 2λ + 1 orn = λ − 1. Therefore EF equations of type

qYY = αY−λ−2q2λ+1

qYY = αY−λ−2qλ−1 (8)

have integrals of motion and are integrable by quadratures.
In 1970s, Djukic [14] was concerned with finding integrals ofmotion for EF equa-

tions of the type
tẍ+ 2ẋ+ atνx2ν+3 = 0 (9)

which are identical to Eq. (7) provided thata = −α, n = 2(λ−1)+3 = 2λ+1, ν = λ−1
and he found that an integral of motion for Eq. (9) is

t3ẋ2 + t2xẋ+
a

ν + 2
tν+2x2(ν+2) = const. (10)

According to our identification of constants the integral ofmotion that corresponds to
the first Rosenau integrability conditionn = 2λ + 1 is

ξ3η′2 + ξ2ηη′ − α

λ + 1
ξλ+1η2(λ+1) = C, (11)
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which in terms of the original variables of Eq. (1) turns into

Y(qY)2 − qqY −
α

λ + 1

(

q2

Y

)λ+1

= C. (12)

Since for the pseudo-oscillator we requiren = −1, λ = −2 none of the integrabil-
ity conditions found by Rosenau are satisfied. However, we present a transformation
allowing us to circumvent this problem for which the second condition will be satisfied.

Let us use

q = w
s

Y = 1
s

(13)

that we call an invariant transformation, then the EF equation in (1) can be written with
a different power of the independent variable

wss= αsλ−1−nwn. (14)

Now, lettingn = 2λ + 1 we then obtain

wss= αs−λ−2w2λ+1. (15)

This equation is the same as (1) with the first Rosenau condition fulfilled, which is
a fingerprint of the invariant transformation, and hence theself-adjoint form (6) is
recovered forn = 2λ + 1, which is another feature of the invariant transformation.

On the other hand, if we use the second Rosenau integrabilityconditionn = λ − 1,
we obtain the ‘partner’ equation

w̃ss= αw̃λ−1 , (16)

which is the pseudo-oscillator whenλ = 0, and the linear oscillator whenλ = 2.
Moreover, now we can write the integral of motion for the casen = λ−1 by multiplying
by w̃s and integrating to get

w̃2
s −

2α
λ

w̃λ = C (17)

which in terms of the original variables of Eq. (1) becomes

(q− YqY)2 − 2α
λ

( q
Y

)λ

= C. (18)

Thus, by varyingλ in (16) one can generate classes of EF equations of type (15)
which, according to the analysis presented in the next section, will have periodic solu-
tions forλ > 1.

In addition, Rosenau integrability conditions allows us towrite general parametric
solutions of both Eqs. (8) as follows:

(i) The first equation of system (8) is Eq. (4) in section§2.3.1-2 of Polyanin’s book

y′′ = Ax−
n+3
2 yn , (19)
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whereA = α andn = 2λ + 1.

Y(τ) = aC2
1 expΘ(τ)

q(τ) = bC1τexp1
2Θ(τ)

Θ(τ) =
∫

dτ
√

C2+ψ(τ)+ τ2
4

α =
(

a
b2

)λ
.

(20)

Depending onλ there are two sets of parametric solutions:
First, if λ , −1 we haveψ(τ) = τ2(λ+1)

λ+1 , while if λ = −1 thenψ(τ) = 2 ln |τ|.
Using system (20) then

q2 =
τ2

α
1
λ

Y . (21)

(ii) The second equation of system (8) is Eq. (3) in section§2.3.1-2 of Polyanin’s book

y′′ = Ax−(n+3)yn , (22)

whereA = α andn = λ − 1. So, depending on the sign ofλ there are also two sets of
parametric solutions:
If λ , 0 we have

Y(τ) = aC1
λ−2

Θ(τ)

q(τ) =
bCλ

1τ

Θ(τ)

Θ(τ) = C2 +
∫

dτ√
1±τλ

α = aλb2−λ λ
2 ,

(23)

while, if λ = 0, we have

Y(τ) = C1
Θ(τ)

q(τ) = bexp∓τ2

Θ(τ)

Θ(τ) = C2 +
∫

exp∓τ2dτ
α = ±2b2 .

(24)

4. An autonomous two-dimensional ODE system

By transforming the general EF equation into an autonomous two-dimensional
ODE system one can classify the solutions based on linear stability analysis. This
mapping can be achieved by using the transformations given by Jordan and Smith in
[17]

X = ξη′

η

Y = ξλ−1 ηn

η′ ,
(25)

with ξ = et will turn (6) into an autonomous two-dimensional ODE system

Ẋ = −X(1+ X − αY) = M(X,Y)
Ẏ = Y(1+ λ + nX− αY) = N(X,Y) ,

(26)
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where˙= d/dt and with the four equilibrium points given by
{

(X0,Y0) = (0, 0); (X1,Y1) = (−1, 0); (X2,Y2) = (0,
λ + 1
α

); (X3,Y3) =

(

− λ

n− 1
,
λ − n+ 1
α(1− n)

)}

.

Following standard methods of phase-plane analysis, we usethe linear approxima-
tion of the equilibrium points to classify them. The Jacobian matrix of (26) is

J =

[

∂M
∂X

∂M
∂Y

∂N
∂X

∂N
∂Y

]

=

[

−1− 2X + αY αX
nY 1+ λ + nX− 2αY

]

(27)

and the characteristic polynomial of the Jacobian matrix is

θ2 − δ1θ + δ2 = 0 . (28)

The equilibrium points will be classified according to signsof the trace Tr(J) =
δ1 =

∂M
∂X +

∂N
∂Y , the determinant Det(J) = δ2 =

∂M
∂X

∂N
∂Y −

∂M
∂Y

∂N
∂X , and the discriminant

∆ = δ2
1 − 4δ2, all evaluated at (Xi,Yi).

As we can see from the Table 1 the location in the phase space depends on the non-
linear coefficientα and the powersλ, n, while the type of fixed point (its classification)
is given only by the powersλ, n.

In order to have purely periodic solutions a center is obtained whenδ1 = 0 and
δ2 > 0 which tells that the only fixed point that could be a center is(X3,Y3). Therefore
the curveδ1 = 0 is given exactly by the Rosenau first integrability conditionn = 2λ+1
which is anecessarycondition for periodic solutions. Using this condition we obtain
δ2 =

λ
2 which provides thesufficientcondition for periodicity, namelyδ2 > 0⇒ n > 1.

Fixed Points δ1 δ2 ∆ Type

(X0,Y0) λ −(1+ λ) (λ + 2)2 saddles, nodes (stable/unstable)
(X1,Y1) 2− n+ λ 1− n+ λ (n− λ)2 saddles, nodes (stable/unstable)
(X2,Y2) -1 −λ(1+ λ) (1+ 2λ)2 saddles, nodes (stable)
(X3,Y3) 1−n+2λ

−1+n
(−1+n−λ)λ
−1+n

1+n[−2+n−4nλ+4λ(1+λ)]
(−1+n)2 all

Table 1: General equilibrium points of the autonomous two-dimensional ODE system (26).

5. Examples

We present now three cases of nonlinear ODEs for which the periodicity of solu-
tions is characterized using the above phase-plane analysis. In all examples we use
α = −1.

(i) Ermakov-type equation. Forλ = −2⇒ n = −3, all of Eqs. (1), (8), (14), and (15)
are Ermakov equations of zero frequency

q3qYY + 1 = 0 . (29)
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There are two invariants that the latter equation possesses. One is the well-known
Ermakov invariant

I = 1
2

[(qY)2 − q−2] , (30)

and the second is theC invariant, which by using (12) and (30) is

C = Y[(qY)2 − q−2] − qqY = 2IY − qqY , (31)

and also shows that (q2)Y is a linear function ofY and the invariantC can be determined
from the ordinate intersection. By solving this equation and choosing an appropriate
integration constant, we get the general solution of Eq. (29) as a function ofC

q(Y) =
√

1− 2CY+ (C2 − 1)Y2 . (32)

As a particular solution, if one choosesC = 0 we recover Pinney’s solution which
comes from superposition formula [18]

q(Y) =
√

1− Y2 . (33)

Because the equation stays invariant under the transformation, another solution can
be obtained from (33) to get

w(s) =
√

s2 − 1 , (34)

which will solve
w3wss + 1 = 0 . (35)

Since this equation is both of the type (19) or (22) forn = −3 for whichλ = −2, then
for appropriate choices of constantsC1,C2, a, b we can use both sets of the parametric
solutions (20) or (23) to obtain the general solution (32), or a particular solution such
as (33) or (35).

Since for this case (δ1, δ2) = (0,−1), then (X3,Y3) = (− 1
2 ,−

1
2) becomes a saddle,

no periodic solutions are allowed becauseλ < 0, see Fig. 3.

(ii) The pseudo-oscillator equation.
For λ = −2, n = −1, Eq. (1) is the pseudo-oscillator Eq. (2) and the first Rosenau

integrability condition is not satisfied. If we now use the invariant transformation (13)
we obtain the EF with different powers

wss= αs−2w−1 (36)

which is actually of the type (22) withn = −1. Therefore, now the second Rosenau
integrability condition is satisfied and one can use the parametric system (24) with
λ = 0 to generate solutions of the pseudo-oscillator equation,including solution (5).

Since (δ1, δ2) = (1, 0) then the two fixed points collide (X3,Y3) = (X1,Y1) = (−1, 0)
becoming a degenerate unstable node as seen in Fig. 4.

(iii) A positive power EF equation. Let us chooseλ = 1
2 ⇒ n = 2, which gives

(X3,Y3) = (− 1
2 ,−

1
2) a center, since for this case (δ1, δ2) = (0, 1

4).
Hence the equation

qYY + Y−5/2q2 = 0 (37)
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Figure 3: Phase plane portrait for the Ermakov equation (29).

Figure 4: Phase plane portrait for the pseudo-oscillator equation (2).

has periodic solutions, see Fig. 5.
Since now we have a center we can also write the invariant

C = Y(qY)2 − qqY +
2
3

q3
√

Y
Y2

. (38)

As in the previous case we are able to solve the invariant Eq. (38) for the curveC = 0,
to get

q(Y) =
3
8

√
Ysech2

(

ln Y
4

)

. (39)
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The above solution is not periodic. It is a particular solution valid only whenC = 0, but
for other values ofC, although the periodic solutions exist indeed, they can be obtained
either by numerical means in the neighborhood of the center,see Fig. 5, or can be
constructed analytically using the theory of elliptic equations.

To see how analytic periodic solution are obtained forC , 0, first we notice that
Eq. (37) corresponds to Eq. (19) withn = 2. The solitonic solution (39) is obtained
from system (20) choosingC2 = 0, anda = C1 = 1. Notice that forλ = 1

2, sinceψ is a
cubic monomial , thenτ(Θ) satisfies the elliptic equation

(

dτ
dΘ

)2

=
2τ3

3
+
τ2

4
+C2 (40)

By choosing anyC2 , 0, inverting (40), and using system (20), families of smooth
and non-smooth periodic solutions with large amplitudes can also be obtained.

For this last case, its partner equation is
√

w̃w̃ss+ 1 = 0 , (41)

which has the form discussed by Parsons for the space-chargein a plane diode [19],
and later by Gettyset al [20]. Following the same idea of nonlinear superposition, we
obtain an obvious particular solution to (41)

w̃(s) =
3
2

3

√

3
2

(1+ s)4 . (42)

In [15], Aslanov discusses the following generalized Emden-Fowler equation

y′′ +
k+ 1

x
y′ + x2k+kp−2y2p+5 = 0 , (43)

which has as particular solution [16]

y =

















1

1+ xk(p+2)

k2(p+3)

















1
p+2

. (44)

In our case, we identifyk = −1, p = − 3
2, such that Eq. (43) is Eq. (19) forn = 2, or

Eq. (37). Thus, using (44), another particular solution to (19) is

y =
9x

(2+ 3
√

x)2
. (45)

6. Conclusion

Using the phase-plane analysis of the counterpart autonomous two-dimensional
ODE system for the Emden-Fowler equations of the type (1), wehave proved that these
equations have small amplitude smooth periodic solutions when the trajectories lie in a
neighborhoodof the equilibrium (−1/2, 1/(2α)) provided that the Rosenau integrability
condition is satisfied, i.e.,n = 2λ + 1, andn > 1. This is obtained from the condition
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Figure 5: Phase plane portrait for the positive power EF Eq. (37) and its associated periodic solutions ob-
tained by an Euler numerical scheme applied to the ODE systemin the neighborhood of the center.

of having at least one center in the set of fixed points, which is equivalent to the nullity
of the trace of the Jacobian matrix, a condition which comes out to be identical to
the Rosenau first integrability condition, whereas the sufficiency implyingn > 1 is
obtained from the determinant of the Jacobian matrix. Thus,we conclude that

qYY = αY−λ−2q2λ+1 (46)

has periodic solutions only whenλ > 0. These periodic solutions are of small ampli-
tude in the immediate neighborhood of the fixed point (−1/2, 1/(2α)), and also of large
amplitude away from the fixed point which can be found analytically by solving the
elliptic equation Eq. (40).

Using the transformationq = w
s with Y = 1

s, any EF equation of type (46) becomes

wss = αsλ−1−nq2λ+1. (47)
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When the first Rosenau conditionn = 2λ+ 1 is satisfied it generates the same equation

wss = αs−λ−2w2λ+1 (48)

while the partner equation obtained using first integrability conditionn = λ − 1 leads
to its partner equation

w̃ss = αw̃λ−1. (49)

Thus, one can get solutions of (46) from solutions of (48) andvice versa, and can
generate periodic solutions of (46) by varyingλ > 1 in (49).

For both integrability conditions we found the invariant (12) whenn = 2λ + 1 and
(18) whenn = λ − 1 respectively. In both cases, particular solutions can be calculated
by varying the arbitrary constants using the systems (20) and (23)-(24), respectively.
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