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Abstract

The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an
Emden-Fowler (EF) equation that is written as an autonomous two-dimensional ODE
system for which we provide the phase-space analysis and the parametric solution.
Through an invariant transformation we find periodic solutions to a certain class of EF
equations that pass an integrability condition. We show that this condition is necessary
to have periodic solutions and via the ODE analysis we also find tlieisat condition

for periodic orbits. EF equations that do not pass integrability conditions can be made
integrable via an invariant transformation which also allows us to construct periodic
solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation
and a positive power Emden-Fowler equation are discussed in the same context.
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e An invariant transformation is used to find periodic solution of EF equations.
e Phase plane study of the EF autonomous 2D ODE system is performed.

e Three examples are presented from the standpoint of the phase plane analysis.
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1. Introduction

Many nonlinear oscillators belonging to the classes oftp@sand negative power
nonlinearity can be put in the following Emden-Fowler fo@} [

Gy —aY %"= 0. 1)

For A = -2 and written in self-adjoint form, see Ef (6) below, Kdq.i€lknown as the
Lane-Emden equation and emerged first in astrophysics ssgtintion for the New-
tonian gravitational potential of a spherically symmepatytropic gas|I|2|,—_|3], with the
dependent variable related to the density of the self-taing gas and the independent
variable as a dimensionless radius. The Lane-Emden equatactually the Poisson
equation in disguise for polytropic gases in convectiveildmium. The case with
n = 3 and the dependent variable taken as the thermodynamict@eperature was
used by Eddington in his theory of the internal constitutidrstars which led to the
famous mass-luminosity relation for these cosmic obj@jtsl\{'loreover, the Thomas-
Fermi modellﬂs[b] for the electrostatic field in the bulk of @alry atom has the same
Poisson background and is also expressed by the self-athoin of Eq. [1) although
for a non-integen. On the other hand, for negativeof the formn = 1 — 2m, with
ma positive integer 2, the self-adjoint Emden-Fowler equations can be assattat
Ermakov parametric oscillators and their Reid genereiﬁnaﬂ], while form = 1, it
gives a simple model of the path taken by an electron in arrelebeam injected into
a plasma tubé [8].

An important problem for nonlinear fiierential equations is to examine the exis-
tence of periodic solutions around some critical point.pip@ars that for the subclass
of Emden-Fowler equations defined by= —2 and any negative exponanthis prob-
lem is still under some debate. For example, in a recent payp&adella and Lara
(GL) [|§], it was argued that the particular case[df (1)

a4, +1=0, (@)

also known as the ‘pseudo-oscillator’, has no periodicliagoiy solutions despite pre-
vious claims in the literature, which were based on appraténsolution methods of
this equation. On the other hand, Van Gordet [10] showedvithde smooth periodic
solutions, i.e., with continuous derivatives, may not £xi®n-smooth continuous pe-
riodic solutions (with the derivative not continuous at jpoints on the real axis) can
still be constructed. The GL paper served us as a motivatiatudy this problem in
the more general Emden-Fowler formulation and the cormedipg autonomous two-
dimensional ODE system. After a brief discussion of the gaingseudo-oscillator
solution in section 2, we introduce the integrable EmdewiEpcases according to
Rosenau@l] in section 3, where we show that there is a wemstion of variables
through which the pseudo-oscillator is made Rosenau iabdgr In section 4, we
present the phase-plane analysis of the ODE system equiivaléhe Emden-Fowler
equations. Three illustrative examples, including theugseoscillator, are discussed
from this standpoint in section 5. Our conclusions are priegkin section 6, essen-
tially stating that smooth continuous periodic solutioriseonly for the positive class
of single power nonlinearity whem= 21+ 1 > 1.



2. General solution of the pseudo-oscillator equation
By multiplying by g, in (2) one can easily find the first integral of motion

@) +Ing? =H, ®3)

whereH denotes a Hamiltonian with logarithmic potenti&g) = 2 Inq, see Fig[L.

Figure 1: Hamiltonian curves with the corresponding valoie#! in the phase spaagd, .

By a quadrature one can get the Polyanin solutioh [12]

a dz H
Y-Yoou [ — 2 _zaerf| /2 —ing|, 4
0 f H-2nz [ 2 q] )

where the amplitude is
A= \/gexp(g) .

This solution can be identified with the solution given by @ltaland Lara in their
Eq. (7)ifYo=c and% = —c1, wherec; andc; are the constants of Gadella and Lara.
The general pseudo-oscillator solution is obtained byriivg (4), which gives

aey) = \/gAexp{ - [erf’l (q—u%)r} , (5)

see Fig[R foiYp = 0, andH = -2,0, 2.

Gadella and Lara claim that this solution is not oscillatornin more general terms
that in the phase space therenis closed orbit associated to a periodic solution sur-
rounding at least a critical pointwhich is a necessary fingerprint for periodic solutions.
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Figure 2: Solutiond{4) anf[5) to equatidmh (2).

3. The Emden-Fowler approach and an invariant transfororati

The self-adjoint form of Eq[{1) is obtained by using Kaml«aﬁbstitutions@B],
a(Y) = n(é) andé = &, which lead to

d
d—f(fzn’) =at'y", (6)

which becomes
&’ + 2 =", @)

where’ = d/dé.

Recall now that in 1984 Rosen@[ll] was interested in tlegnation of the above
equation for which he constructed integrals of motion, pied that two conditions are
satisfied:n = 24 + 1 orn = A — 1. Therefore EF equations of type

q,, = aY 12t
qw — a,YwFZq/lfl (8)
have integrals of motion and are integrable by quadratures.
In 1970s, Djukic] was concerned with finding integralsradtion for EF equa-
tions of the type
t+2x+at’x**3 =0 (9)

which are identical to Eq[{7) provided thet —a, n=2(1-1)+3=21+1, v=41-1
and he found that an integral of motion for Eg. (9) is

. . a
352 + t2xk + ——t"+2x?0*2) = const (10)
v+2

According to our identification of constants the integrahaition that corresponds to
the first Rosenau integrability condition= 21 + 1 is

o ‘§_-/1+1772(/1+1) -, (12)
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which in terms of the original variables of EJ (1) turns into

a q2 A+1
2 _ - X =
v -aa -5 (5] -c (12)
Since for the pseudo-oscillator we require- —1, 1 = —2 none of the integrabil-
ity conditions found by Rosenau are satisfied. However, vesqnt a transformation
allowing us to circumvent this problem for which the secoaddition will be satisfied.

Let us use

nlFnls

q=
- (13)

that we call an invariant transformation, then the EF equiti (I) can be written with
a different power of the independent variable

Wss = a/S/lflann. (14)
Now, lettingn = 21 + 1 we then obtain
Wsgs = CZS_A_ZVVZ/H—].. (15)

This equation is the same d9 (1) with the first Rosenau conditilfilled, which is
a fingerprint of the invariant transformation, and hence gbé-adjoint form [(B) is
recovered fon = 21 + 1, which is another feature of the invariant transformation

On the other hand, if we use the second Rosenau integratslitglitionn = A — 1,
we obtain the ‘partner’ equation

Wss = W't (16)

which is the pseudo-oscillator wheh = 0, and the linear oscillator wheh = 2.
Moreover, now we can write the integral of motion for the case1—1 by multiplying
by Ws and integrating to get

M-%W:c (17)
which in terms of the original variables of Eg] (1) becomes
2a (g \!
_ 2_=2 () =
@-va?-=(9) =c (18)

Thus, by varyingt in (I8) one can generate classes of EF equations of Eype (15)
which, according to the analysis presented in the nextaeatiill have periodic solu-
tions fora > 1.

In addition, Rosenau integrability conditions allows uswviite general parametric
solutions of both Eqs[]8) as follows:

(i) The first equation of systerfil(8) is Eq. (4) in sect{#h3.1-2 of Polyanin’s book

_n+3

y'=AX Ty, (19)



whereA = @ andn = 24 + 1.

Y(r) = aC? exp@(r)
q(r) = bCl‘r exp 10(7)

o) = [ —E— (20)
\IC2+W(T)+
o= (3)
Depending ont there are two sets of parametric solutions:
First, if 1 # -1 we havey(r) = Tur, while if 1 = -1 theny(z) = 2Inlt].
Using system[{20) then
2
.
7=V, (21)

a1

(i) The second equation of syste[ (8) is Eq. (3) in secsidr8.1-2 of Polyanin’s book

y/ — AX—(n+3)yn , (22)
whereA = @ andn = 1 — 1. So, depending on the sign @there are also two sets of
parametric solutions:

If 2 # 0 we have

-2
Y() = S5y

_ bC T
() = 5ty . (23)
0(1) =Co+ [ o
a= a/lbz /1/1 ,

while, if 4 = 0, we have

YO = o
bexpFr?
9() = o (24)
O(r) =C + feXp+T
a=+2b2.

4. An autonomoustwo-dimensional ODE system

By transforming the general EF equation into an autonomagsdimensional
ODE system one can classify the solutions based on linehilistaanalysis. This
mapping can be achieved by using the transformations giyelotdan and Smith in

[17]

X =&

T (25)
_ A1
Y - f ”r )
with & = € will turn (B) into an autonomous two-dimensional ODE system

X =-X(1+X-aY)=M(XY) (26)
Y=Y(1+1+nX-aY)=NXY),



where = d/dt and with the four equilibrium points given by

{(xo, Yo) = (0.0); (%2, ¥2) = (~1.0); (4. ¥2) = 0.y, (x5, ¥5) = (—% 2(‘1—”_2)1)}

Following standard methods of phase-plane analysis, wéhedear approxima-
tion of the equilibrium points to classify them. The Jacokiaatrix of [28) is

M oM _1—
J:[ 7 7 ]:[ 1-2X+a¥Y aX ] @27)
and the characteristic polynomial of the Jacobian matrix is
?—610+6,=0. (28)

The equilibrium points will be classified according to sigifghe trace Trd) =
61 = ;,—")f + %M. the determinant Delj = 6, = 2428 — SM I and the discriminant
A = §7 — 465, all evaluated at;, Y;).

As we can see from the Talile 1 the location in the phase spaesds on the non-
linear codficienta and the powers, n, while the type of fixed point (its classification)
is given only by the powers, n.

In order to have purely periodic solutions a center is ole@iwhens; = 0 and
62 > 0 which tells that the only fixed point that could be a centgiig Ys). Therefore
the curves; = 0 is given exactly by the Rosenau first integrability cormfith = 24+ 1
which is anecessarygondition for periodic solutions. Using this condition wistain
02 = % which provides theyficientcondition for periodicity, namely, > 0 = n > 1.

| Fixed Points] 51 | 82 | A | Type |
(Xos Yo) A —-(1+2) (A+2)y saddles, nodes (stajllstable)
(X1, Y1) 2-n+1| 1-n+2 (n-2)? saddles, nodes (stajlmstable)
(X2, Y2) -1 A1+ 1) 1+22)7? saddles, nodes (stable)
(Xa, Ya) 1:21%1 (—1:rln+—nA)A 1+n[—2+?:1413:;4/1(1+/l)1 all

Table 1: General equilibrium points of the autonomous tineshsional ODE systerfi (26).

5. Examples

We present now three cases of nonlinear ODEs for which thiedtieity of solu-
tions is characterized using the above phase-plane asalysiall examples we use
a=-1.

(i) Ermakov-type equatiorForA = -2 = n = -3, all of Egs.[(1),[(B),[(14), and_(IL5)
are Ermakov equations of zero frequency

g, +1=0. (29)



There are two invariants that the latter equation posses¥es is the well-known
Ermakov invariant

1 _
I=3la)-a7, (30)
and the second is th@invariant, which by usind(12) anB(B0) is
C=Yl(a)*-q?-qg, =2lY -qq,, (31)

and also shows that?), is a linear function o and the invarian€ can be determined
from the ordinate intersection. By solving this equatiod ahoosing an appropriate
integration constant, we get the general solution of [Eq). é8% function o€

a(Y) = V1-2CY + (C2 - 1)Y2. (32)

As a particular solution, if one choosé€s= 0 we recover Pinney’s solution which
comes from superposition formulE_[lS]

qeY) = V1I-Y2. (33)

Because the equation stays invariant under the transfammanother solution can
be obtained fron{(33) to get

w(s) = V&£ -1, (34)

which will solve
ww,_+1=0. (35)

Since this equation is both of the tyjpel19)lod(22)rfes —3 for whichA = -2, then
for appropriate choices of constaiig C,, a, b we can use both sets of the parametric
solutions[(ZD) or[(23) to obtain the general solution (32)a particular solution such
as [33) or[(3b).

Since for this casesq, 62) = (0,-1), then &s, Y3) = (-3, -3) becomes a saddle,
no periodic solutions are allowed because 0, see Fig. B.

(i) The pseudo-oscillator equation

Ford = -2,n= -1, Eq. Q) is the pseudo-oscillator EQ] (2) and the first Ragen
integrability condition is not satisfied. If we now use thedriant transformatioi (13)
we obtain the EF with dierent powers

Wes = @S 2wt (36)

which is actually of the typed(22) with = —1. Therefore, now the second Rosenau

integrability condition is satisfied and one can use the patdc system[{24) with

A = 0 to generate solutions of the pseudo-oscillator equaitieiyding solution[(b).
Since 61, 62) = (1, 0) then the two fixed points collidé&g, Y3) = (X1, Y1) = (-1,0)

becoming a degenerate unstable node as seen inlFig. 4.

(iif) A positive power EF equationLet us choosel = % = n = 2, which gives
(X3, Y3) =(-3,-1) a center, since for this caséy(s2) = (0, 1.
Hence the equation

q,+Y 2P =0 (37)



X'=-X(X+ Y1)
Y =Y(-3X+Y-1)

Figure 3: Phase plane portrait for the Ermakov equalioh. (29)

XX+ Y1)
Y oY(-X+Y-1)

Figure 4: Phase plane portrait for the pseudo-oscillataatgn [2).

has periodic solutions, see Hig. 5.
Since now we have a center we can also write the invariant
203 VY
_ 2
C_Y(qy) _qu+§ Y2 .
As in the previous case we are able to solve the invarianfdg).for the curveC = 0,
to get

(38)

a(y) = gWsecﬁ(lnTY) . (39)

9



The above solution is not periodic. Itis a particular santvalid only wherC = 0, but
for other values o€, although the periodic solutions exist indeed, they canltiained
either by numerical means in the neighborhood of the cerésr,Fig.[b, or can be
constructed analytically using the theory of elliptic etijoias.

To see how analytic periodic solution are obtainedd@o# 0, first we notice that
Eq. [37) corresponds to Eq._{19) with= 2. The solitonic solution (39) is obtained
from system[(20) choosin@, = 0, anda = C; = 1. Notice that for1 = % sincey is a
cubic monomial , them(®) satisfies the elliptic equation

(—)2 =—+—+C, (40)

By choosing anyC, # 0, inverting [40), and using system{20), families of smooth
and non-smooth periodic solutions with large amplitudesalao be obtained.
For this last case, its partner equation is

Witiss+1 =0, (41)

which has the form discussed by Parsons for the space-chmegplane dioddﬂQ],
and later by Gettyst al [@]. Following the same idea of nonlinear superpositioa, w
obtain an obvious particular solution fg{41)

M@=§ﬁ§ﬂ+@+ (42)

In [@], Aslanov discusses the following generalized Eméfewler equation

y'/ n k '; 1)/ n X2k+kp—2y2p+5 =0, (43)

which has as particular squtio[E[16]

1

1 p+2

y = [—1 D) ] . (44)
k2(p+3)

In our case, we identifig = -1, p = —2, such that Eq[{43) is EqL{(]L9) far= 2, or
Eq. (37). Thus, usindg(@4), another particular solutiofl®) (s

9x

Nz (@)

y

6. Conclusion

Using the phase-plane analysis of the counterpart autonsrveo-dimensional
ODE system for the Emden-Fowler equations of the tizpe (1Lhawe proved that these
equations have small amplitude smooth periodic solutidmsnithe trajectories lie in a
neighborhood of the equilibrium-(L/2, 1/(2«)) provided that the Rosenau integrability
condition is satisfied, i.en = 22 + 1, andn > 1. This is obtained from the condition

10
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Figure 5: Phase plane portrait for the positive power EF [Bd) &nd its associated periodic solutions ob-
tained by an Euler numerical scheme applied to the ODE syist¢ine neighborhood of the center.

of having at least one center in the set of fixed points, whs@guivalent to the nullity
of the trace of the Jacobian matrix, a condition which comasto be identical to
the Rosenau first integrability condition, whereas thigency implyingn > 1 is
obtained from the determinant of the Jacobian matrix. Timesgonclude that

Gy = @Y 2 (46)

has periodic solutions only wheh> 0. These periodic solutions are of small ampli-
tude in the immediate neighborhood of the fixed poiit/2, 1/(2«)), and also of large
amplitude away from the fixed point which can be found anedty by solving the
elliptic equation Eq.[{40).

Using the transformatiog = § with Y = % any EF equation of typ&(#6) becomes

w,, = as" g, (47)

11



When the first Rosenau condition= 21 + 1 is satisfied it generates the same equation
W, = as 2wt (48)

while the partner equation obtained using first integrgbdonditionn = A — 1 leads
to its partner equation
W, = aW' 2, (49)

Thus, one can get solutions ¢f {46) from solutions[ofl (48) wivet versa, and can
generate periodic solutions ¢f {46) by varyihg 1 in (49).

For both integrability conditions we found the invaridn®fivhenn = 21 + 1 and
(@8) whenn = A — 1 respectively. In both cases, particular solutions canatautated
by varying the arbitrary constants using the systémb (20)Y28)-(24), respectively.
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