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An aperiodic(low-frequency spectrum may originate from the error term in the mean value of an arith-
metical function such as Muus function or Mangoldt function, which are coding sequences for prime num-
bers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the
low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums
Cq(n), well adapted to the analysis of arithmetical sequences with many resonafize3he sums are
quasiperiodic versus the timeand aperiodic versus the ordgof the resonance. Different results arise from
the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
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. INTRODUCTION pares one oscillator of frequendyn) at timen to a refer-

. ] o ence oscillator of frequency,, leads to an irreducible

In this age of computers, it is very natural to replace thefraction p; /q; of indexi given from continued fraction ex-
continuous with the finite. One thinks nothing about replac—pansiOns of v=f(n)/f, and beat signals of frequencies
ing thg r.eal lineR with a finite circle(i.e., qfinite ringZ/qZ_) F(n)="foqi|v—p;/q;|. Jumps between fractions of indéx
and similarly one replaces the real Fourier transform withthg 1 ;5 were clearly identified as a source of white or
fast Fogner transformﬂ]. . . . 1/f frequency noise in such frequency counting measure-

In this paper our claim is that the discrete Fourier trans'ments[s]. A phase locked loop was characterized as well,

form (and thus the fast Fourier transform or BH$ well . . . . ;

suited to the analysis of periodic or quasiperiodic sequence e’:adlng toa posglble rglatlonshlp betweeh lese close to
but fails to discover the constructive features of aperiodi aseband and arithmetical sequences of prime number theory
sequences, such as low-frequency noise. This claim is n - ) . ) _

new and led to alternative time series analysis methods such e introduce Ramanujan sums as a different signal pro-
as Poincaremaps[2] (i.e., one-dimensional return maps of €€ssing tool for these experimental files. In contrast to the
the form x,.,="f(x,) or more general multidimensional discrete Fourier transform in which the basis functions are all

maps, fractal or wavelet ana'ysis metho@g] and autore- roots of Unity (SeC. ID, the Ramanujan'Fourier transform
gressive moving average mod@!g to mention a few. These (RFT) is defined from powers over the primitive roots of
methods appeared in diverse contexts: turbulence, financiainity (Sec. Il). We provide a table of known RFT's and
ecological, physiological, and astrophysical data. For stoemphasize the connection betweeh fddise and arithmetic.
chastic sequences such ag #&lectronic noise only small In this context considered in Sec. 1V, a modified Mangoldt
progress was obtained thanks to these technifgles function plays a central role, since it connects ti@den
Here we introduce still another approach by consideringatio found in the slope of the FFT to the Mius function
the time series as an arithmetical sequence, that is a discrefieund in the structure of the RFT. Concerning the experimen-
sequence(n), n=1---t, in which generic arithmetical func- tal files considered in Sec. V, galactic nuclei are promising
tions such asr(n) the sum of divisors ofi, ¢(q) the num-  candidates for the application of the present method.
ber of irreducible fractions of denominatog the Mdius
function x(n), or the Mangoldt functiom\ (n), may be hid-
den. . . Il. THE DISCRETE FOURIER TRANSFORM
Recently we published a number of papers that emphasize
the connection between frequency measurements and arith- The discrete Fourier transfordDFT) or its fast analog
metic[2,5,6]. The standard heterodyne method, which com<the FFT) is a well known signal processing tool. It extends
the conventional Fourier analysis to sequences with finite
periodq (for the FFT one takeg=2', with | an integey.

*Electronic address: planat@Ipmo.edu In the DFT one starts with the roots of unity of the form
Electronic address: hcr@ipicyt.edu.mx exg2i7(p/q)], p=1,...q and the signal analysis is performed
*Electronic address: Serge.perrine@wanadoo.fr thanks to thenth power,
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TABLE I. 0 if q divides n
x(n) (p) (E): +1 if 2n is a square modulay @

x“=n(mo has a solutio

1 pw q (=n(modt) n

e(n) q8(p) —1 otherwise.

6i(n) e(—p)

1 There are a number of relations attached to the Legendre

5 (88N cos(2mplq) symbol,

Ly(—n) Lq(n) Lo(—1)

(g) =n'9"Y"%(mody),

ep(n)=exp< 2iwgn

. (1) _
(_> =(—1)@- 1P
q
(In the mathematical language one says th) is a char-
acter of G=2Z/qZ; it is a group homomorphism from the q\[p
additive groupG into the multiplicative group of complex (-)(-) =(—1)lP=Dr2Ala=1)72]
numbers of norm 1.The DFT of the time serieg(n) is p/q
defined as for distinct odd primesp,q,
q
X(p)= 2, x(n)ey(—n), 2 (E) —(—1)@*- D8
n=1 q '

and there are a number of relations such as the inversiophe invariant relation for the DFT oB/qZ is
formula

K Lqy(—n)=glLy(n) with g=Ly(—1). )
x(n)= =2, X(p)ey(n), (3) _ B - B
Qp=1 The Fourier coefficient at positiamequals the coefficient of
he P 't | ) ; the original sequence up to a constant facg@rl:q(—l)
the Parseval formu éconservatlon (0] energy =Eg:1(p/q)eXF[ZI7T(p/q)] ar-]dg2:(_:I_)(q—l)/qu
q 1 q
> |x(n)|2:a > 1x(p)|3, (4) ll. THE RAMANUJAN-FOURIER TRANSFORM
n=1 p=1
Ramanujan sums,(n) are defined as the sums of thth
the orthogonality relations between the characters powers of theqth primitive roots of the unity8,9),
q o q
g if p=r(mody) . P )
_ — c(n= > exd2im—n], (9)
nzl ep(ne(m=ady (=1, otherwise, (5) q =y a

and the convolution formula where (p,q) =1 means thap andq are coprimes. It may be

A observed that they(n) are the sums over the primitive char-
X*¥y=Xy, (6)  actersey(n). The sums were introduced by Ramanujan to
play the role of basis functions over which typical arithmeti-
where * means the convolution. Generic discrete Fouriercal functionsx(n) may be projected,
transforms are given in Table I. In particular, as is well
known, an oscillating signag,(n)=exg2i=(l/q)n] of fre- o
quencyl/q transforms to a line gi=1 in the DFT spectrum. x(n)= >, XqCq(N). (10)
Inversely a line an=I in the time series transforms to an q=1
oscillating signal exp-2iw(l/q)p] of frequencyl/q.

A Gaussian transforms to a Gaussian through the Fouridt should be observed that the infinite expansion wdth
integral. Not so well known is that the role of the Gaussian is—~ reminds of the Fourier series analysis, rather than the
played by the Legendre symbol in the context of the DFTdiscrete Fourier transform that is taken with a firgteAs a
[1,7]. Let us define the Legendre symdol(n)=(n/q) for  typical example the functioar(n) (the sum of divisors oh)
an odd primeq as follows: expands with a RFT coefficient,= (7*n/6)(1/g), that is,
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TABLE 11 . T T T T T T T
S o4
x(n) Xq g 02 ]
o(n) 1 :
T X
#n) 6 u(q) 3
n ™ ¢o(0)
H(MA(n) Q) o 0w #0060 5000 2000 10000 12000 14000 76000
b(n): vy time t
n )]
) (M(Q))Z FIG. 1. The normalized summatory Mius functionM (t)/t2.
n L
A one gets the numbe#(q) of irreducible fractions of denomi-
natorq, also called the Euler totient function
w°n (—1)" 2cos2n/3) 1
U(n)zT 1+ 22 + 32 ¢(Q)ZQH (1_E>1 (18)
n 2 cognm/2) L (17 and a coding of prime numbers from the"Mos function
42 ’ n(n) which is defined as
For functionsx(n) having a mean value 0 if n contains a squargs,>1
t 1 if n=1
- pm(n)= B
A, (X)= |lmT 21 x(n), (12 (—1)% if n is the product
o v N=
t of k distinct primes.
one obtains the inversion formula (19
1 Ramanujan sums are evaluated frph]
XqZWAU(X(n)Cq(n))- (13

q

wved i Cq(n):“((q m [ q
More general formulas have also been derived in Rid]. ' ( )
In the rest of the paper the coefficiext given in Eq.(13) (a,n)
will be called the Ramanujan-Fourier transform. It follows

from a number of important relations. There is the multipli- Note that for €,n)=1, cq(n)=w(q). The first values are

¢(a)

(20

cative property of Ramanujan sums, given from
Cqq(N)=Cq(N)Ccq:(n) if (q,q")=1, (14) c;=1, c,=—-11, Ccg=—1,-1,2,

and the orthogonality property €,=0,-2,072, cs=—-1,-1,-1-14,..., (22)

ad’ where the bar indicates the period. For instancg]l)=

21 Cq(n)cq () =1 if g#q’, =1, c3(2)=—1, c3(3)=2, c3(4)=—1,.... Some generic

i

100 T T T T
q
>, cX(n)=qe¢(q) otherwise, (15) s 10
n=1 2z
a TR
which reminds us of Eq5). It is relatively easy to evaluate %; 04
Ramanujan sums from basic functions of number theory. Let 8
us denotegg,n) as the greatest common divisor g@fand n. . oo
Using the unique prime number decompositiorgaindn, & o001
" 0.0001 L e
qzl_i[ 9" (g prime), (16) 1 10 100 1000

Fourier Frequency f

FIG. 2. The power spectral densitfFFT) of the normalized
n= H nfk (n, prime), (1 summa;tory Mblu.s functionM (t)/t*2 in comparison to the power
K law 1/f< (dotted ling.
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FIG. 3. The Ramanujan-Fourier transfo(RFT) of the normal- FIG. 5. Error term in the Mangoldt function (n).

ized summatory Mbius function shown in Fig. 1.
IV. LOW-FREQUENCY NOISE FROM ARITHMETICAL
Ramanujan-Fourier transforms are given in Table II. In the FUNCTIONS

table the functionb,(q) generalizes the Euler function The idea which subtends our signal processing is that ex-

1 perimental signals may hide arithmetical features. It is thus
1- 2). (220  very important to master the low-frequency effects due to
di generic arithmetical functions such as Bes function,
Mangoldt function, and so ofb,6].

¢z(q)=q2H

In b(n) the Mangoldt functionA (n) is defined as

A. On the summatory Mobius function

A Inp if n=p% p a prime ) _ .
(n)= 0 otherwise. (23 Let us consider the summatory function
t
According to Hardy and Littlewood1922 the number of M(t)=D w(n)=0(t¥2*¢) whatevere. (27)
n=1

pairs of primes of the fornp,p+h is

The asymptotic dependence assumes the Riemann hypoth-

Th(X)=C(h) 1=~ (24)  esis[5]. The normalized summatory functiod (t)/t*? is
n<(x) N ) L
shown in Fig. 1. The corresponding power spectral density is
with in Fig.. 2; it looks like the FFT of a random walk since the
slope is close to-2.
p— The RFT of M(t)/tY? is shown in Fig. 3. There is no
2C,,— if h odd known formula for it, but it shows a signature with well
C(h)= p—2 (25  defined peaks which is reminiscent of the function
0 if h even, ©(a)/ ¢(gq) shown below in Fig. 4.
wherep>2 is a prime, and the notatigrih meansp divides B. Results related to the Mangoldt function

h. The paramete€,=0.660... is the twin prime constant. It
was recently conjecturd@] that this problem of prime pairs
is also related to an autocorrelation function from the
Wiener-Khintchine formula

The Riemann hypothesis can also be studied thanks to the
summatory Mangoldt function,

t
p(t)=2 A)=t[1+ey(D)]. (28
A,(b(mb(n+h))=C(h). (26 =1 !
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FIG. 4. Ramanujan-Fourier transfor(RFT) of the error term

(upper curvg of the new Mangoldt functiob(n) in comparison to FIG. 6. Power spectral densit§FFT) of the error term of
the functionw(q)/ ¢(q) (lower curve. Mangoldt functionA (n).
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FIG. 7. Error term in the new Mangoldt functida(n).
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FIG. 8. Power spectral densitf-FT) of the error term in the
new Mangoldt functiorb(n) in comparison to the power lawffF,
with a=[+/(5)—1]/2 the golden mean.
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FIG. 9. X-ray variability from an active galactic nucle(&sGN).

The bin time for the light curve is 30 s. The vertical axis is the

normalized count rate.
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FIG. 10. Power spectral densitffFT) of the normalized x-ray
variability from the AGN.
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FIG. 11. Ramanujan-Fourier transfofRFT) of the normalized
x-ray variability of an AGN.

The error term represented in Fig. 5 can be expressed ana-
lytically from the singularitiesthe pole and the zerpsf the
Riemann zeta functiof5]. Figure 6 shows the FFT of the
error terme ,(t): it roughly behaves as flhoise.

Hardy found that the RFT of the modified Mangoldt func-
tion b(n)=A(n)¢(n)/n equalsu(q)/ $(q). It is thus inter-
esting to look at the summatory function

t
B(t):g1 A(n)@(n)n=t[1+eg(t)]. (29)

The error term in Fig. 7 is found to follow approximately the
power law

Se(t)~f~2¢ (30

with = (\/5—1)/2=1/(1+1[1+1/(1+---)]), as shown in
Fig. 8. This spectrum shows a possible connection between
andu(q) and thus a possible relationship between the theory
of diophantine approximations for quadratic irrational num-
bers such as and prime number theory. The RFT &f(t)
looks similar to the onew(q)/#(q) of the new Mangoldt
functionb(n).

V. LOW FREQUENCY NOISE FROM EXPERIMENTAL
DATA

Our final goal in using the Ramanujan-Fourier transform
is to discover known arithmetical rules behind experimental
sequences. We choose two examples.

T T T T
fi=1Hz.tt! ——
1.8 h

1.6
1.4
1.2

0.8
0.6

1 1 1 1 1 1 L 1
0 500 1000 15002000250030003500400045005000
time t

beat frequency close to phase locking

FIG. 12. Beat frequencyin Hz) between two 5 MHz radio-

frequency oscillators close to phase locking versus the bin time
(in 9.
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RFT of the beat note close to phase locking

FIG. 13. FFT(in uHz) of the beat frequency for two oscillators
close to phase locking versus the Fourier frequeiityHz).
FIG. 14. RFT(in Hz) of the beat frequency for two oscillators
A. Low-frequency noise from galactic nuclei close to phase locking.

The first example is taken from astronomy. The observa- VI. DISCUSSION
tion of variability in astronomical systems may lead to valu- Th t least t t chall in the studv of
able information on the physical nature of the observed sys- ere are at least two great chailenges In the study o

tem. In particular Seyfert galaxies are a subset of galaxieg"?‘mam{]an sums. One can be interested in the extraction of
. . i . ; .—arithmetical features from experimental files, with the aim to
which exhibit evidence for highly energetic phenomena in

: . ; . . develop a relevant theory of their randomness. We have in
their nuclei: they are called active galactic nuclei or AGN's. P y

, >*mind the signals exhibiting L/hoise, since this type of noise
They are thought to be powered by accretion onto MAsSIVE)| carries much mystery in electronics as well as in other

b!ack holes at thelr_ centers. X—rays are creat_ed mainly iMields ranging from physics to biology and society.
h|_gh-temperature, hlgh'—densny regimes, and since matter is The RFT signature of 1/noise in a phase locked loop
fairly transparent to high-energy x-rays, monitoring x-ray stydied in Sec. VB still does not keep one’s promise, since
emission from AGN'’s provides a view into the core and maywe were unable to relate it to a known arithmetical function.
be used to understand the accretion process there. Further work is required. In contrast, high-energy astrophys-
Here we used a sample of data taken from HY®SAT  ics seems to be a relevant field for signal processing based on
archive by Koenid12] (see Fig. 9. The power spectral den- Ramanujan sums. They may help to derive plausible theories
sity exhibits a 1f low-frequency noise as well as white noise of the strong variability observed close to Seyfert or other
as shown in Fig. 10. The corresponding RFT analysis showmassive galaxies. See R¢f.3] for another application of
in Fig. 11 shows a well defined signature reminiscent of thearithmetics to the black-hole remote sensing problem.
RFT signature of Mangoldt function, that ig,(q)/¢(q). The other challenge behind Ramanujan sums relates to
That may be an indication that many resonance processéime number theory. We just focused our interest to the
occur between the black hole and the matter to be accreted glation between 1/noise in communication circuits and the

process which may be described from prime number theontill unproved Riemann hypothedi$4]. The mean value of
the modified Mangoldt functiorb(n), introduced in Eg.

(29), links Riemann zeros to the f£#* noise and to the Mo
bius function. This should follow from generic properties of
Our second example is taken from the study of radiothe modular group SL(Z), the group of 2 2 matrices of

frequency oscillators close to phase locking. We recentlydeterminant 1 with integer coefficienf$5], and to the sta-
demonstrated a relation between phase locking, fig¢- tistical physics of Farey spin chaifit6]. See also the link to
quency noise and prime numbd®j. According to that ap- the theory of Cantorian fractal space tirfie].

proach the coupling coefficient between the oscillators could

be described by a Mangoldt function, leading to desynchro- ACKNOWLEDGMENTS
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B. Low-frequency noise close to phase locking
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