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An aperiodic~low-frequency! spectrum may originate from the error term in the mean value of an arith-
metical function such as Mo¨bius function or Mangoldt function, which are coding sequences for prime num-
bers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the
low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums
cq(n), well adapted to the analysis of arithmetical sequences with many resonancesp/q. The sums are
quasiperiodic versus the timen and aperiodic versus the orderq of the resonance. Different results arise from
the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
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I. INTRODUCTION

‘‘In this age of computers, it is very natural to replace t
continuous with the finite. One thinks nothing about repla
ing the real lineR with a finite circle~i.e., a finite ringZ/qZ)
and similarly one replaces the real Fourier transform with
fast Fourier transform’’@1#.

In this paper our claim is that the discrete Fourier tra
form ~and thus the fast Fourier transform or FFT! is well
suited to the analysis of periodic or quasiperiodic sequen
but fails to discover the constructive features of aperio
sequences, such as low-frequency noise. This claim is
new and led to alternative time series analysis methods s
as Poincare´ maps@2# ~i.e., one-dimensional return maps
the form xn115 f (xn) or more general multidimensiona
maps!, fractal or wavelet analysis methods@3# and autore-
gressive moving average models@4# to mention a few. These
methods appeared in diverse contexts: turbulence, finan
ecological, physiological, and astrophysical data. For s
chastic sequences such as 1/f electronic noise only smal
progress was obtained thanks to these techniques@2#.

Here we introduce still another approach by consider
the time series as an arithmetical sequence, that is a dis
sequencex(n), n51¯t, in which generic arithmetical func
tions such ass(n) the sum of divisors ofn, f(q) the num-
ber of irreducible fractions of denominatorq, the Möbius
functionm(n), or the Mangoldt functionL(n), may be hid-
den.

Recently we published a number of papers that empha
the connection between frequency measurements and a
metic @2,5,6#. The standard heterodyne method, which co
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pares one oscillator of frequencyf (n) at time n to a refer-
ence oscillator of frequencyf 0 , leads to an irreducible
fraction pi /qi of index i given from continued fraction ex
pansions ofn5 f (n)/ f 0 and beat signals of frequencie
F(n)5 f 0qi un2pi /qi u. Jumps between fractions of indexi,
i 61, i 62,... were clearly identified as a source of white
1/f frequency noise in such frequency counting measu
ments@5#. A phase locked loop was characterized as w
leading to a possible relationship between 1/f noise close to
baseband and arithmetical sequences of prime number th
@6#.

We introduce Ramanujan sums as a different signal p
cessing tool for these experimental files. In contrast to
discrete Fourier transform in which the basis functions are
roots of unity ~Sec. II!, the Ramanujan-Fourier transform
~RFT! is defined from powers over the primitive roots
unity ~Sec. III!. We provide a table of known RFT’s an
emphasize the connection between 1/f noise and arithmetic.
In this context considered in Sec. IV, a modified Mango
function plays a central role, since it connects thegolden
ratio found in the slope of the FFT to the Mo¨bius function
found in the structure of the RFT. Concerning the experim
tal files considered in Sec. V, galactic nuclei are promis
candidates for the application of the present method.

II. THE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform~DFT! or its fast analog
~the FFT! is a well known signal processing tool. It extend
the conventional Fourier analysis to sequences with fin
periodq ~for the FFT one takesq52l , with l an integer!.

In the DFT one starts with the roots of unity of the for
exp@2ip(p/q)#, p51,...,q and the signal analysis is performe
thanks to thenth power,
©2002 The American Physical Society28-1
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ep~n!5expS 2ip
p

q
nD . ~1!

~In the mathematical language one says thatep(n) is a char-
acter of G5Z/qZ; it is a group homomorphism from th
additive groupG into the multiplicative group of complex
numbers of norm 1.! The DFT of the time seriesx(n) is
defined as

x̂~p!5 (
n51

q

x~n!ep~2n!, ~2!

and there are a number of relations such as the inver
formula

x~n!5
1

q (
p51

q

x̂~p!ep~n!, ~3!

the Parseval formula~conservation of energy!

(
n51

q

ux~n!u25
1

q (
p51

q

ux̂~p!u2, ~4!

the orthogonality relations between the characters

(
n51

q

ep~n!er~n!5qdp~r !5H q if p[r ~modq!

0 otherwise,
~5!

and the convolution formula

x* ŷ5 x̂ŷ, ~6!

where * means the convolution. Generic discrete Four
transforms are given in Table I. In particular, as is w
known, an oscillating signalel(n)5exp@2ip(l/q)n# of fre-
quencyl /q transforms to a line atp5 l in the DFT spectrum.
Inversely a line atn5 l in the time series transforms to a
oscillating signal exp@22ip(l/q)p# of frequencyl /q.

A Gaussian transforms to a Gaussian through the Fou
integral. Not so well known is that the role of the Gaussian
played by the Legendre symbol in the context of the D
@1,7#. Let us define the Legendre symbolLq(n)5(n/q) for
an odd primeq as follows:

TABLE I.

x(n) x̂(p)

1 q d0(p)
el(n) q d l(p)
d l(n) el(2p)

1

2
~d11d21!~n! cos(2pp/q)

Lq(2n) Lq(n) L̂q(21)
05612
on

r
l
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s

S n

qD55
0 if q divides n

11 if n is a square moduloq

~x2[n~modq! has a solution!

21 otherwise.

~7!

There are a number of relations attached to the Legen
symbol,

S n

qD5n~q21!/2~modq!,

S 21

q D5~21!~q21!/2,

S q

pD S p

qD5~21!@~p21!/2#@~q21!/2#

for distinct odd primesp,q,

S 2

qD5~21!~q221!/8.

The invariant relation for the DFT onZ/qZ is

L̂q~2n!5gLq~n! with g5L̂q~21!. ~8!

The Fourier coefficient at positionn equals the coefficient o
the original sequence up to a constant factorg5L̂q(21)
5(p51

q (p/q)exp@2ip(p/q)# andg25(21)(q21)/2q.

III. THE RAMANUJAN-FOURIER TRANSFORM

Ramanujan sumscq(n) are defined as the sums of thenth
powers of theqth primitive roots of the unity@8,9#,

cq~n!5 (
p51

~p,q!51

q

expS 2ip
p

q
nD , ~9!

where (p,q)51 means thatp andq are coprimes. It may be
observed that thecq(n) are the sums over the primitive cha
actersep(n). The sums were introduced by Ramanujan
play the role of basis functions over which typical arithme
cal functionsx(n) may be projected,

x~n!5 (
q51

`

xqcq~n!. ~10!

It should be observed that the infinite expansion withq
→` reminds of the Fourier series analysis, rather than
discrete Fourier transform that is taken with a finiteq. As a
typical example the functions(n) ~the sum of divisors ofn!
expands with a RFT coefficientsq5(p2n/6)(1/q2), that is,
8-2
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s~n!5
p2n

6 H 11
~21!n

22 1
2 cos~2np/3!

32

1
2 cos~np/2!

42 1¯J . ~11!

For functionsx(n) having a mean value

Av~x!5 lim
t→`

1

t (
n51

t

x~n!, ~12!

one obtains the inversion formula

xq5
1

f~q!
Av„x~n!cq~n!…. ~13!

More general formulas have also been derived in Ref.@10#.
In the rest of the paper the coefficientxq given in Eq.~13!
will be called the Ramanujan-Fourier transform. It follow
from a number of important relations. There is the multip
cative property of Ramanujan sums,

cqq8~n!5cq~n!cq8~n! if ~q,q8!51, ~14!

and the orthogonality property

(
n51

qq8

cq~n!cq8~n!51 if qÞq8,

(
n51

q

cq
2~n!5qf~q! otherwise, ~15!

which reminds us of Eq.~5!. It is relatively easy to evaluate
Ramanujan sums from basic functions of number theory.
us denote~q,n! as the greatest common divisor ofq and n.
Using the unique prime number decomposition ofq andn,

q5)
i

qi
a i ~qi prime!, ~16!

n5)
k

nk
bk ~nk prime!, ~17!

TABLE II.

x(n) xq

s~n!

n

p2

6

1

q2

f~n!

n

6

p2

m~q!

f2~q!

b~n!5
f~n!L~n!

n

m~q!

f~q!

C~n! Sm~q!

f~q!D
2

05612
et

one gets the numberf(q) of irreducible fractions of denomi-
natorq, also called the Euler totient function

f~q!5q)
i

S 12
1

qi
D , ~18!

and a coding of prime numbers from the Mo¨bius function
m(n) which is defined as

m~n!55
0 if n contains a squarebk.1

1 if n51

~21!k if n is the product

of k distinct primes.
~19!

Ramanujan sums are evaluated from@11#

cq~n!5mS q

~q,n! D f~q!

fS q

~q,n! D
. ~20!

Note that for (q,n)51, cq(n)5m(q). The first values are
given from

c151̄, c2521,1, c3521,21,2,

c450,22,0,2, c5521,21,21,21,4,..., ~21!

where the bar indicates the period. For instance,c3(1)5
21, c3(2)521, c3(3)52, c3(4)521,... . Some generic

FIG. 1. The normalized summatory Mo¨bius functionM (t)/t1/2.

FIG. 2. The power spectral density~FFT! of the normalized
summatory Mo¨bius functionM (t)/t1/2 in comparison to the powe
law 1/f 2 ~dotted line!.
8-3
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Ramanujan-Fourier transforms are given in Table II. In
table the functionf2(q) generalizes the Euler function

f2~q!5q2)
i

S 12
1

qi
2D . ~22!

In b(n) the Mangoldt functionL(n) is defined as

L~n!5H ln p if n5pa, p a prime

0 otherwise.
~23!

According to Hardy and Littlewood~1922! the number of
pairs of primes of the formp,p1h is

ph~x!.C~h!
x

ln2~x!
, ~24!

with

C~h!5H 2C2Ppuh
p21

p22
if h odd

0 if h even,

~25!

wherep.2 is a prime, and the notationpuh meansp divides
h. The parameterC2.0.660... is the twin prime constant.
was recently conjectured@8# that this problem of prime pairs
is also related to an autocorrelation function from t
Wiener-Khintchine formula

Av„b~n!b~n1h!…5C~h!. ~26!

FIG. 3. The Ramanujan-Fourier transform~RFT! of the normal-
ized summatory Mo¨bius function shown in Fig. 1.

FIG. 4. Ramanujan-Fourier transform~RFT! of the error term
~upper curve! of the new Mangoldt functionb(n) in comparison to
the functionm(q)/f(q) ~lower curve!.
05612
e
IV. LOW-FREQUENCY NOISE FROM ARITHMETICAL

FUNCTIONS

The idea which subtends our signal processing is that
perimental signals may hide arithmetical features. It is th
very important to master the low-frequency effects due
generic arithmetical functions such as Mo¨bius function,
Mangoldt function, and so on@5,6#.

A. On the summatory Möbius function

Let us consider the summatory function

M ~ t !5 (
n51

t

m~n!5O~ t1/21e! whatever e. ~27!

The asymptotic dependence assumes the Riemann hyp
esis @5#. The normalized summatory functionM (t)/t1/2 is
shown in Fig. 1. The corresponding power spectral densit
in Fig. 2; it looks like the FFT of a random walk since th
slope is close to22.

The RFT of M (t)/t1/2 is shown in Fig. 3. There is no
known formula for it, but it shows a signature with we
defined peaks which is reminiscent of the functi
m(q)/f(q) shown below in Fig. 4.

B. Results related to the Mangoldt function

The Riemann hypothesis can also be studied thanks to
summatory Mangoldt function,

c~ t !5 (
n51

t

L~n!5t@11ec~ t !#. ~28!

FIG. 5. Error term in the Mangoldt functionL(n).

FIG. 6. Power spectral density~FFT! of the error term of
Mangoldt functionL(n).
8-4
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FIG. 7. Error term in the new Mangoldt functionb(n).

FIG. 8. Power spectral density~FFT! of the error term in the
new Mangoldt functionb(n) in comparison to the power law 1/f 2a,
with a5@A(5)21#/2 the golden mean.

FIG. 9. X-ray variability from an active galactic nucleus~AGN!.
The bin time for the light curve is 30 s. The vertical axis is t
normalized count rate.

FIG. 10. Power spectral density~FFT! of the normalized x-ray
variability from the AGN.
05612
The error term represented in Fig. 5 can be expressed
lytically from the singularities~the pole and the zeros! of the
Riemann zeta function@5#. Figure 6 shows the FFT of the
error termec(t): it roughly behaves as 1/f noise.

Hardy found that the RFT of the modified Mangoldt fun
tion b(n)5L(n)f(n)/n equalsm(q)/f(q). It is thus inter-
esting to look at the summatory function

B~ t !5 (
n51

t

L~n!f~n!/n5t@11eB~ t !#. ~29!

The error term in Fig. 7 is found to follow approximately th
power law

SB~ t !; f 22a ~30!

with a5(A521)/251/„111/@111/(11¯)#…, as shown in
Fig. 8. This spectrum shows a possible connection betweea
andm(q) and thus a possible relationship between the the
of diophantine approximations for quadratic irrational nu
bers such asa and prime number theory. The RFT ofeB(t)
looks similar to the onem(q)/f(q) of the new Mangoldt
function b(n).

V. LOW FREQUENCY NOISE FROM EXPERIMENTAL
DATA

Our final goal in using the Ramanujan-Fourier transfo
is to discover known arithmetical rules behind experimen
sequences. We choose two examples.

FIG. 11. Ramanujan-Fourier transform~RFT! of the normalized
x-ray variability of an AGN.

FIG. 12. Beat frequency~in Hz! between two 5 MHz radio-
frequency oscillators close to phase locking versus the bin t
~in s!.
8-5
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A. Low-frequency noise from galactic nuclei

The first example is taken from astronomy. The obser
tion of variability in astronomical systems may lead to va
able information on the physical nature of the observed s
tem. In particular Seyfert galaxies are a subset of gala
which exhibit evidence for highly energetic phenomena
their nuclei: they are called active galactic nuclei or AGN
They are thought to be powered by accretion onto mas
black holes at their centers. X-rays are created mainly
high-temperature, high-density regimes, and since matte
fairly transparent to high-energy x-rays, monitoring x-r
emission from AGN’s provides a view into the core and m
be used to understand the accretion process there.

Here we used a sample of data taken from theEXOSAT

archive by Koenig@12# ~see Fig. 9!. The power spectral den
sity exhibits a 1/f low-frequency noise as well as white nois
as shown in Fig. 10. The corresponding RFT analysis sho
in Fig. 11 shows a well defined signature reminiscent of
RFT signature of Mangoldt function, that is,m(q)/f(q).
That may be an indication that many resonance proce
occur between the black hole and the matter to be accret
process which may be described from prime number the

B. Low-frequency noise close to phase locking

Our second example is taken from the study of rad
frequency oscillators close to phase locking. We recen
demonstrated a relation between phase locking, 1/f fre-
quency noise and prime numbers@6#. According to that ap-
proach the coupling coefficient between the oscillators co
be described by a Mangoldt function, leading to desynch
nization effects and 1/f frequency noise. The RFT should b
able to support that conjecture. Figures 12–14 show the
note close to phase locking of 5-MHz oscillators, the 1f
noise calculated from the FFT and the corresponding RF

FIG. 13. FFT~in mHz! of the beat frequency for two oscillator
close to phase locking versus the Fourier frequency~in Hz!.
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VI. DISCUSSION

There are at least two great challenges in the study
Ramanujan sums. One can be interested in the extractio
arithmetical features from experimental files, with the aim
develop a relevant theory of their randomness. We have
mind the signals exhibiting 1/f noise, since this type of nois
still carries much mystery in electronics as well as in oth
fields ranging from physics to biology and society.

The RFT signature of 1/f noise in a phase locked loo
studied in Sec. V B still does not keep one’s promise, sin
we were unable to relate it to a known arithmetical functio
Further work is required. In contrast, high-energy astroph
ics seems to be a relevant field for signal processing base
Ramanujan sums. They may help to derive plausible theo
of the strong variability observed close to Seyfert or oth
massive galaxies. See Ref.@13# for another application of
arithmetics to the black-hole remote sensing problem.

The other challenge behind Ramanujan sums relate
prime number theory. We just focused our interest to
relation between 1/f noise in communication circuits and th
still unproved Riemann hypothesis@14#. The mean value of
the modified Mangoldt functionb(n), introduced in Eq.
~29!, links Riemann zeros to the 1/f 2a noise and to the Mo¨-
bius function. This should follow from generic properties
the modular group SL(2,Z), the group of 232 matrices of
determinant 1 with integer coefficients@15#, and to the sta-
tistical physics of Farey spin chains@16#. See also the link to
the theory of Cantorian fractal space time@17#.
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FIG. 14. RFT~in Hz! of the beat frequency for two oscillator
close to phase locking.
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