This article may be downloaded for personal use only. Any other use
requires prior permission of the author and APS Publishing.

The following article appeared in Phys. Rev. E 71, 046607 (April 2005) and
may be found at https://doi.org/10.1103/PhysRevE.71.046607



https://doi.org/10.1103/PhysRevE.71.046607

PHYSICAL REVIEW E 71, 046607(2005

Supersymmetric pairing of kinks for polynomial nonlinearities

H. C. Rosd and O. Cornejo-Pérez
Potosinian Institute of Science and Technology, Apartado Postal 3-74 Tangamanga, 78231 San Luis Potosi, Mexico
(Received 5 October 2004; published 14 April 2D05

We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities
by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part.
We focus on reaction-diffusion equations in the traveling frame and damped-anharmonic-oscillator equations.
We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization
brackets in the supersymmetric quantum-mechanical style. In this way, one gets ordinary differential equations
with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the
same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We
illustrate the mathematical procedure with several important cases, among which are the generalized Fisher
equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubules.

DOI: 10.1103/PhysRevE.71.046607 PACS nuni®)er05.45.Yv, 12.60.Jv, 11.30.Pb

I. INTRODUCTION with é=x-ut, propagating at speead For this type of solu-

L . . . . __tions, the RD equation turns into the ODE,
Factorization of second-order linear differential equations,

such as the Schrédinger equation, is a well established
method to get solutions in an algebraic manfigr Here we

are interested in factorizations of ordinary differential equa- : _ .
tions (ODE) of the type where the prime denotdd3=d/d¢. The latter equation has

the same form as nonlinear damped oscillator equations with
the velocity playing the role of the friction constant.

For applications in physical optics and acoustics, it is con-
where F(u) is a given polynomial iru. If the independent venient to Write_ the traveling (_:oordi_nate in th_e forpa kx
variable is the time, thery is a damping constant and we are ~ @t=k(x-vt) with kv=w. This is a simple scaling by of
in the case of nonlinear damped oscillator equations. Man$he previous coordinate turning E@) into the form
examples of this type are collected in the Appendix of a
paper of Tuszski et al.[2]. However, the coefficieny can U+ Eu’ + iF(u) -0 5)
also play the role of the constant velocity of a traveling front k k2 '
if the independent variable is a traveling coordinate used to
reduce a reaction-diffusiofRD) equation to the ordinary which can be changed back to the form of Et). by rede-
differentia! form as briefl_y sketchgd in the foIIo'Wing.' These fining y=v/k andlE(u):(llkZ)F(u).

RD trayelmg fron'ts or kinks are important opjgcts in Iow—' In general, performing the factorization of E@) means
dimensional nonlinear phenomenology describing topologiza following:
cally switched configurations in many areas of biology, ecol-
ogy, chemistry, and physics. _ _ —
Consider a scalar RD equation fofx,t), [D = f(WID = fi(W]u=0. ©)

u"+vu’ +F(u)=0, (4)

u’+yu’ +F(u) =0, (1)

This leads to the equation

2
Mo sFw), 2)
ot ox df,
u'-—uu - fu’ - fu +f,fou=0. (7)
whereD is the diffusion constant arglis the strength of the du
reaction process. Equatid@) can be rewritten as The following groupings of terms are possible related to
5 different factorizations.
M_du, F(u) 3) (a) Berkovich groupingln 1992, Berkovich 3] proposed
gt oxe ’ to group the terms as follows:

where the coefficients have been eliminated by the rescalings . / df,
T=st andX=(s/D)%, and dropping the tilde. Usually, the u’=(f+fu’ + flfz—au u=0, (8)
scalar RD equation possesses traveling-wave soluti¢f)s

and furthermore discussed a theorem according to which any
factorization of an ODE of the form given in E(p) allows
*Email address: hcr@ipicyt.edu.mx us to find a class of solutions that can be obtained from
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solving the first-order differential equatiam =f,u. Substi- [l. GENERALIZED FISHER EQUATION
tuting the latter expression in the Berkovich grouping, one

gets Let us consider the generalized Fisher equation given by

dfy, u'+y +u(l-u"=0. (15)
u' = (fyp+ f )u’+(f fop———f u>u=0, (9)
e 2 gy P The casen=1 refers to the common Fisher equation and it
will be briefly discussed as a subcase. Equatit®) allows

where we redefined,;=f,, and f,=f,, to distinguish this us to factorize the polynomial function

case from our proposal following next. For the specific form

of the ODEs we consider here, Berkovich’s conditions read F(u)
brpo=——"=(1-u)=(1-u"?)(L+u"?). (16)
dfyp F(u) u
fap _'y_flb_d_u =, (10
u u Now, by choosing
=- 1
flb + f2b Y- (11) d)l — a]_(l _ un/Z), ¢)2 — a_(l + un/2)' a + 0, (17)
1

(b) Grouping of this workWe propose here the different

grouping of terms the explicit forms ofa, andy can be obtained from Eq14),

u - %u+q§ + ¢y U+ pypu=0 (120  do n
du 1T 172 EU thr1tp=- Ealunlz +ay(1-u"?) + (1/ay)(1 +u"?
that can be considered the result of changing the Berkovich =— 1. (18)
factorization by settind,=¢4 and fy,— ¢, under the con-
ditions Introducing the notatiom,=[(n/2)+1]"2, one gets
E — -1 i -1
(MZ:%, (13 a;= £hY, y= ¥ (h,+h?). (19
Then Eq.(15) becomes
P+ Py + ddifjluz—y_ (14) u" £ (hy + hyhu' +u(l -u") =0 (20)
] ) ] ] ] and the corresponding factorization is
The following simple relationship exists between the fac-
toring functions: [D+h,(u"?+ 1D * h*W"?-1u=0. (21
o=ty %u It follows that Eq.(20) is compatible with the first-order
277 gy differential equation
and further(third, and so forth factorizations can be ob- u x hgl(un/Z_ 1u=0. (22)
tained through linear combinations of the functidng f,y,
and ¢.. Integration of Eq(22) gives fory>0
Based on our experience, we think that the grouping we . 5 i
propose is more convenient than that of Berkovich and also us ={1 texd(h,—h ) (- &I " (23

of other people employing more difficult procedures. The . _ .
main advantage resides in the fact that whereas in BerkoyReWritten in the hyperbolic form, we get

ich's scheme Eq(10) is still a differential equation to be 1 1 1 2n
solved, in our scheme we make a choice of the factorization ul = (- -= tanr{—(hn - hal)(g— gO)D ,
functions by merely factoring polynomial expressions ac- 2 2 2

cording to Eq.(13), and then imposing Eq14) leads easily

to an n-dependenty coefficient for which the factorization ~ 1 1 1 o 2in

works. This fact makes our approach extremely efficient in w=15"5 coth E(hn_ h, ) (€ - &) . (29
finding particular solutions of the kink type, as one can see in

the following. The tanh form is precisely the solution obtained long ago by

We will show next in the explicit case of the generalized\yang[4] and Hereman and Takaok&] by more compli-
Fisher equation all the mathematical constructions related tgzted means.

the factorization brackets and their supersymmetric \oreover, a different solution is possible fgr<0,
quantum-mechanical-like reverse factorization. In addition,

in less detail, we treat within the same approach damped ut ={1+exd- (hn_hal)(g_go)]}—%, (25)
nonlinear oscillators of Dixon-Tus#gki-Otwinowski type
and the FitzHugh-Nagumo equation. or
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. 1 1 1 ) 2in mains the same. This is the main result of this wakkthe
uc={5+5tanh - E(h”_ h, ) (& - &) : velocity corresponding to the traveling kink of a given RD
equation, there is another propagating kink corresponding to
11 1 oI a different RD equation that is related to the original one by
u- = <— +— coth{— —(h, - h;l)(g— gO)D . (26) reverse factquzatlon\Ne can call this kink the supersymmet-
2 2 ric (SUSY) kink because of the mathematical construction.
Finally, one can ask if the process of reverse factorization
can be continued with Eq31). It can be shown that this is
_ o ) not the case because E(B1) has already a discretized
A. Reversion of factorization brackets without the change of (polynomial-order-dependenty and this fact prevents fur-
the scaling factors ther solutions of this type. Suppose we consider the follow-
Choosing now ¢;=a;(1+u”?) and ¢,=(1/a;)(u’?-1)  ing factorization functions:
leads to the same E¢R0) but now with the factorization ~ 4~ = Vo
d)l:al [1_hnu ]1 ¢2:a1(1+u ) (34)

— n2 _ -1, ,n/2 —

(D hp(u™ = DD £ hy (W4 DJu=0, - (27 Then, one getd,=h? and solve&; +&,=h;*+h,. The so-
and therefore the compatibility is with the different first- lutions aren=0, which implies linearity, anch=-4, which
order equation, leads to a Milne-Pinney equation. On the other hand, Eqg.
(31) with an arbitraryy can be treated by the inverse factor-

respectively.

’ -1 /2 —
u'£h 7 (U™ + Hu=0. (28) ization procedure to get the SUSY partner RD equation and
However, the direct integration gives the solutidor y>0)  its SUSY kink.
2/
= <_ 1 =) ) " C. Subcasen=1
1+exd(h,—h)(¢- &)]

This subcase is the original Fisher equation describing the
= (- 1?1 xexd(h,—h-h(E- &M, (290  propagation of mutant genes,
which is similar to the known solution E@23). For y<O0, o u

solutions of the type given by E§25) are obtained. Tl u(l -uw. (35

B. Direct reversion of factorization brackets In the traveling frame, the Fisher equation has the form

Let us perform now a direct inversion of the factorization u"+au’+u(l-u)=0. (36)

brackets in Eq(21) similar to what is done in supersymmet- When the y parameter takes the valugzl:g\s% (e, h

ric qguantum mechanics in order_to enlarge the class of Xz /6/2), one can factor Fisher’s equation, and employing our
actly solvable quantum Hamiltonians,

method leads easily to the known kink solution,

[DF h ' u"?-1][D+h,(u"?+1)Ju=0. (30 1 6 2
(1 —tanr{l—Z(S- §o)D :

Doing the product of differential operators, the following RD Ur=7

2 (37
equation is obtained:

that was first obtained by Ablowitz and Zeppetélfa with a
U+ (hy+h-hu' +u[1 +u™?[1-hu"2]=0. (31) series solution method. On the other hand, the SUSY kink

Equation(31) is compatible with the equation for this case reads

[~ 2
) _ 1 /6
U’ % hy(u"?+ )u=0, (32) Ur,susy= Z(l - tam{\g@‘ 50)}) , (39
and integration of the latter gives the kink solution of Eq.
(3D, i.e., it has a width one and a half times greater than the
o common Fisher kink and is a solution of the partner equation
+ 1 ) -
u—=\- “‘r
- ( 1+ expi (1~ o) (¢~ &) e 22y +u(1_§u1/2-§u) =0. (39
= {1+ exd(hy —h) (£ - &)]}72" (33)

A plot of the kinksug andu is displayed in Fig. 1.
for y>0. On the other hand, foy<0 the exponent is the P F F.susY pay 9

same but of opposite sign. Hyperbolic forms of the latter
solutions are easy to write down and are similar up to widths
to Eqgs.(24) and(26), respectively. This subcase is of interest in light of experiments on po-

Thus, a different RD equation given by E1) with lymerization patterns of microtubules in centrifuges. It has
modified polynomial terms and its solution have been foundbeen discovered that the polymerization of the tubulin
by reverting the factorization terms of EQO0). Although the  dimers proceeds in a kink-switching fashion propagating
reaction polynomial is different, the velocity parameter re-with a constant velocity within the sample. Portet, Tuszynski,

D. Subcasen=6
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FIG. 1. The front of mutant genegisher’s
Fo5f 7 wave of advancein a population and the partner
SUSY kink propagating with the same velocity.
041 7 The axes are in arbitrary units.
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and Dixon[6] used RD equations to discuss the modification 1 3 13
of self-organization patterns of MTs as well as the tubulin Cprp=2 7| 1 -tan Z(f— o) (41)

polymerization under the influence of reduced gravitational

fields. They used the value=6 for the mean critical number

of tubulin dimers at which the polymerization process startsy, the other hand, the SUSY polymerization kifsee Fig.
and showed that the same nucleation number enters the polﬁj of the form

nomial term of the RD process for the number concentration

c of tubulin dimers,

Csusy= 2 {1 - tanti3(¢£ - &3 (42)
¢ +3¢' +c(1-c%=0. (40)
can be taken into account according to the hyperbolic form
of Eqg. (33). It propagates with the same speed and corre-
The polymerization kink in their work reads sponds to the equation
1 T T
Tubulin
09 B
0.8 T
0.7 T
0.6} Crro 4
- / FIG. 2. The polymerization kink of Portet,
Sosr , T Tuszyaski, and Dixon[6] and the SUSY kink
Veravo o propagating with the same velocisxes in arbi-
L Cory 1 trary units.
0.3 E
0.2 E
0.1 E
MT’s
o 1
-5 0 5 10 15
&
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¢"+32¢ +c(1-15%%-16c% = 0. (43)

In principle, this equation could be obtained as a conse-
quence of modifying the kinetics steps in the microtubule

polymerization process.

lIl. EQUATIONS OF THE DIXON-TUSZY NSKI-
OTWINOWSKI TYPE

In the context of damped anharmonic oscillators, Digdn
al. [8] studied equations of the typ@n this section, the

prime denote®,=d/d7)

U +u +Au- un—l =u'+u + U(\’/Z\— U(nlz)_l)(\f’Z\+ u(n/Z)—l)
=0 (44)

and gave solutions for the casas 3 and A==, with n=4

PHYSICAL REVIEW E 71, 046607(2009

( \Z >2l(n—2) %
u. = ~ s Y .
= \1xexg- VAGy - g;h) (7 7o)]
(59

The solutions obtained by Dixoet al. are particular cases of
the latter formulas.
Reversing now the factorization brackets in E48),

[D, % g; ™™= VAD, £ gy(u™ " + VA u=0,
(54)
leads to the following equation:
2
— n
U+ \ﬁ(gn + g;l)u/ + u(\r’Z+ u(n/2)—1)<\,A _ Zu(nlz)—l) =0,

(55)

andn=6, respectively. For this case, time is the independenivhich is compatible with the equation

variable. The factorization method works nicely if one uses

g,=Vn/2 and dealing with the more general equation

U £ VA(gy + gp U’ +u(A-u"?) =0, (45)

for which we can employ either the factorization functions

— 1/ (A -
$1= 7 g (VA- U2,

$2= T gi(VA+ UMD (46)
or

$1= 7 g (VA+ UMD,

2= F Gr(VA- U™, (47)

Then, Eq.(45) can be factored in the forms

[D,+g,um21+ \"K)][DT T g i (um21- \,Z)]u -0
(48)

and

[D, 7 gh(U™ = VAID, + ;" (U™ + VA Ju=0.

(49)
Thus, Eq.(45) is compatible with the equations
u' + g u™? L+ JAu=0 (51)

that follow from Eq.(48) and Eq.(49). Integration of Eqgs.
(50) and(51) gives the solution of Eq45),

2/(n-2)
) , Y>> 0

(52

VA
u =
i <1iexmﬁ<gn—g;1><f— 7]

and

U +g,(u" 1+ A)u=0 (56)

whose integration gives the solution of H§5),

( \’A )Zl(n—z) . (57)
u = 1
“\1+ exd \ﬁgﬂ,(r— 70)] 4

< V’Z
U< = ”_
1+exd— VAgy(7— 7p)]

and

2/(n-2)
) , vy<0. (58

IV. FITZZHUGH-NAGUMO EQUATION
Let us consider the FitzHugh-Nagumo equation

%—@+u(1—u)(a—u):0,

v (59)

wherea is a real constant. Bi=-1, one gets the real Newell-
Whitehead equation describing the dynamical behavior near
the bifurcation point for the Rayleigh-Bénard convection of
binary fluid mixtures. The traveling frame form of EG9)

has been discussed in detail by Hereman and Takgglka

(60)

The FitzHugh-Nagumo polynomial function allows the fol-
lowing factorizations:

b= +(V2Hu-1), ¢=+\2a-u) (61

when they parameter is equal tg,; = +(-2a+1)/12 that we
also write asy, ;= i\s’a(gal—g;%), whereg,;=—-v2a.
In addition, we can employ the factorization functions

b= +(V2) Ha-u), ¢=+£\2u-1) (62

when y, ,=+(-a+ 2)/\2, or written again in the more sym-

metric form vy, ,= ﬂa(gaz—g;;), where g,,=—va/2. Thus,
Eq. (60) can be factored in the two cases

U+’ +u(u-1)(a-u)=0.

u"£ y,u +u(u-1)(a-u =0 (63)

and
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u" £ y,u" +u(u-1)(a-u)=0. (64) u F \r’E(a— wu=0 (75)

In passing, we notice that for the Newell-Whitehead case 5
=-1, the two equations coincide and are the same as the

generalized Fisher equation foF2. U F\2(u-1u=0, (76)
In factorization bracket forms, Eq&63) and(64) are writ-
ten as follows: respectively. Integrations of Egé/5) and (76) give the so-

lutions of Eqs(73) and(74), respectively. The explicit forms

[0+ \2@-wlD+ (21 -wu=0 65 are the following:

and (i) For Eq.(73),
[DF1\2u-DID + (2 Ha-wlu=0, (66 a
u = 7
and are compatible with the first-order differential equations T lxexd- V2a(é- &)l
U+ (V2 (1 -uu=0for y,,, (67)
a
;) — ’r'_ _ U. = — . (77)
u' F (V2) M a-uu=0 for y, . (68) S 1s exdv2a(é- &)]
Integration of the latter equations gives the solution of Eq. (ii) For Eq.(74),
(60) for the two different values of the wave front velocity
Ya,1 and Ya,2: U = 1
For Eq.(63), we get T lxexdV2(é-&)]
= 1
T 1xexd(V2) M- )] - 1 9
<= [ :
1 1xexd-v2(§-4)]

Ue = (69)
T 1xexd- (V2 M- &)
for v, 1 positive and negative, respectively.

As for Eq. (64), the solutions are This paper has been concerned with stating an efficient
factorization scheme of ordinary differential equations with

V. CONCLUSION

Us = ,E , polynomial nonlinearities that leads to an easy finding of
1xexg- (V2)Ma(é- &)] analytical solutions of the kink type that previously have
been obtained by far more cumbersome procedures. The
a (70) main result is an interesting pairing between equations with

different polynomial nonlinearities, which is obtained by ap-

u. =
T 1zexi(V2) la(e- &) | _ by 2
plying the SUSY quantum-mechanical reverse factorization.

for v, positive and negative, respectively. The kinks of the two nonlinear equations are of different
Considering now the factorization®5) and (66), the  widths but they propagate at the same velocity, or if we deal
change of order of the factorization brackets gives with damped polynomial nonlinear oscillators the two kink
D+ (\5)—1(1 ~w]D = \,E(a_ Wlu=0 (71) §0Iutions correspond to the same friction_ coeﬁigient. Several
important cases, such as the generalized Fisher and the
and FitzHugh-Nagumo equations, have been shown to be simple

— (o 1(a _ — op - mathematical exercises for this factorization technique. The
[D+ (2 (a-wllb =+ v2(u-1Ju=0. (72) physical prediction is that for commonly occurring propagat-
Doing the product of differential operatofand considering ing fronts, there are two kink fronts of different widths at a
the factorization termu’ - ¢,u=0) gives the following RD given propagating velocity. Moreover, the reverse factoriza-
equations: tion procedure can also be applied to the Berkovich scheme

" , _ with similar results. It will be interesting to apply the ap-
+ - -u) =
Ut U’ +ul4u-T)(@-w=0 (79 proach of this work to the discrete case in which various
and exact results have been obtained in recent yEgksMore
" , _ N general cases in which the coefficiepts an arbitrary func-
U" 75’ + u(u=1)(@=u=3u) =0. (74) tion could also be of much interest because of possible ap-
Equations(73) and(74) are compatible with the equations plications.

046607-6



SUPERSYMMETRIC PAIRING OF KINKS FOR. PHYSICAL REVIEW E 71, 046607(2005

[1] E. Schrodinger, Proc. R. Ir. Acad., Sect. &7, 53 (1941— [6] S. Portet, J. A. Tuszynski, and J. M. Dixon, Phys. Rev6&
1942; L. Infeld and T. E. Hull, Rev. Mod. Phys23, 21 021903(2003; J. Tabony, Scienc64, 245 (1994).
(1959); Yu. F. Smirnov, Rev. Mex. Fis45(S2), 1 (1999. [7] M. Ablowitz and A. Zeppetella, Bull. Math. Biol.41, 835
[2] J. A. Tuszyiski, M. Otwinowski, and J. M. Dixon, Phys. Rev. (1979.
B 44, 9201(1991). [8] J. M. Dixon, J. A. Tuszgski, and M. Otwinowski, Phys. Rev.
[3] L. M. Berkovich, Sov. Math. Dokl.45, 162 (1992. A 44, 3484(199)).
[4] X. Y. Wang, Phys. Lett. A131, 277 (1988; P. Kaliappan, [9] P. C. Bresseloff and G. Rowlands, PhysicalD6, 255(1997);
Physica D11, 368(1984. J. C. Comte, P. Marquié, and M. Remoissenet, Phys. Rev. E
[5] W. Hereman and M. Takaoka, J. Phys.28, 4805(1990. 60, 7484(1999.

046607-7



