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We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities
by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part.
We focus on reaction-diffusion equations in the traveling frame and damped-anharmonic-oscillator equations.
We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization
brackets in the supersymmetric quantum-mechanical style. In this way, one gets ordinary differential equations
with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the
same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We
illustrate the mathematical procedure with several important cases, among which are the generalized Fisher
equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubules.
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I. INTRODUCTION

Factorization of second-order linear differential equations,
such as the Schrödinger equation, is a well established
method to get solutions in an algebraic mannerf1g. Here we
are interested in factorizations of ordinary differential equa-
tions sODEd of the type

u9 + gu8 + Fsud = 0, s1d

whereFsud is a given polynomial inu. If the independent
variable is the time, theng is a damping constant and we are
in the case of nonlinear damped oscillator equations. Many
examples of this type are collected in the Appendix of a
paper of Tuszyński et al. f2g. However, the coefficientg can
also play the role of the constant velocity of a traveling front
if the independent variable is a traveling coordinate used to
reduce a reaction-diffusionsRDd equation to the ordinary
differential form as briefly sketched in the following. These
RD traveling fronts or kinks are important objects in low-
dimensional nonlinear phenomenology describing topologi-
cally switched configurations in many areas of biology, ecol-
ogy, chemistry, and physics.

Consider a scalar RD equation forusx,td,

]u

]t
= D]2u

]x2 + sFsud, s2d

whereD is the diffusion constant ands is the strength of the
reaction process. Equations2d can be rewritten as

]u

]t
=

]2u

]x2 + Fsud, s3d

where the coefficients have been eliminated by the rescalings
t̃=st and x̃=ss/Dd1/2x, and dropping the tilde. Usually, the
scalar RD equation possesses traveling-wave solutionsusjd

with j=x−vt, propagating at speedv. For this type of solu-
tions, the RD equation turns into the ODE,

u9 + vu8 + Fsud = 0, s4d

where the prime denotesD=d/dj. The latter equation has
the same form as nonlinear damped oscillator equations with
the velocity playing the role of the friction constant.

For applications in physical optics and acoustics, it is con-
venient to write the traveling coordinate in the formj=kx
−vt=ksx−vtd with kv=v. This is a simple scaling byk of
the previous coordinate turning Eq.s4d into the form

u9 +
v
k

u8 +
1

k2Fsud = 0, s5d

which can be changed back to the form of Eq.s1d by rede-

fining g̃=v /k and F̃sud=s1/k2dFsud.
In general, performing the factorization of Eq.s1d means

the following:

fD − f2sudgfD − f1sudgu = 0. s6d

This leads to the equation

u9 −
df1
du

uu8 − f1u8 − f2u8 + f1f2u = 0. s7d

The following groupings of terms are possible related to
different factorizations.

(a) Berkovich grouping. In 1992, Berkovichf3g proposed
to group the terms as follows:

u9 − sf1 + f2du8 + S f1f2 −
df1
du

u8Du = 0, s8d

and furthermore discussed a theorem according to which any
factorization of an ODE of the form given in Eq.s6d allows
us to find a class of solutions that can be obtained from*Email address: hcr@ipicyt.edu.mx
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solving the first-order differential equationu8= f1u. Substi-
tuting the latter expression in the Berkovich grouping, one
gets

u9 − sf1b + f2bdu8 + S f1bf2b −
df1b

du
f1buDu = 0, s9d

where we redefinedf1= f1b and f2= f2b to distinguish this
case from our proposal following next. For the specific form
of the ODEs we consider here, Berkovich’s conditions read

f1bS− g − f1b −
df1b

du
uD =

Fsud
u

, s10d

f1b + f2b = − g. s11d

(b) Grouping of this work. We propose here the different
grouping of terms

u9 − Sdf1

du
u + f1 + f2Du8 + f1f2u = 0 s12d

that can be considered the result of changing the Berkovich
factorization by settingf1b=f1 and f2b→f2 under the con-
ditions

f1f2 =
Fsud

u
, s13d

f1 + f2 +
df1

du
u = − g. s14d

The following simple relationship exists between the fac-
toring functions:

f2 = f2b −
df1b

du
u

and furthersthird, and so forthd factorizations can be ob-
tained through linear combinations of the functionsf1b, f2b,
andf2.

Based on our experience, we think that the grouping we
propose is more convenient than that of Berkovich and also
of other people employing more difficult procedures. The
main advantage resides in the fact that whereas in Berkov-
ich’s scheme Eq.s10d is still a differential equation to be
solved, in our scheme we make a choice of the factorization
functions by merely factoring polynomial expressions ac-
cording to Eq.s13d, and then imposing Eq.s14d leads easily
to an n-dependentg coefficient for which the factorization
works. This fact makes our approach extremely efficient in
finding particular solutions of the kink type, as one can see in
the following.

We will show next in the explicit case of the generalized
Fisher equation all the mathematical constructions related to
the factorization brackets and their supersymmetric
quantum-mechanical-like reverse factorization. In addition,
in less detail, we treat within the same approach damped
nonlinear oscillators of Dixon-Tuszyński-Otwinowski type
and the FitzHugh-Nagumo equation.

II. GENERALIZED FISHER EQUATION

Let us consider the generalized Fisher equation given by

u9 + gu8 + us1 − und = 0. s15d

The casen=1 refers to the common Fisher equation and it
will be briefly discussed as a subcase. Equations13d allows
us to factorize the polynomial function

f1f2 =
Fsud

u
= s1 − und = s1 − un/2ds1 + un/2d. s16d

Now, by choosing

f1 = a1s1 − un/2d, f2 =
1

a1
s1 + un/2d, a1 Þ 0, s17d

the explicit forms ofa1 andg can be obtained from Eq.s14d,

df1

du
u + f1 + f2 = −

n

2
a1u

n/2 + a1s1 − un/2d + s1/a1ds1 + un/2d

= − g. s18d

Introducing the notationhn=fsn/2d+1g1/2, one gets

a1 = ± hn
−1, g = 7 shn + hn

−1d. s19d

Then Eq.s15d becomes

u9 ± shn + hn
−1du8 + us1 − und = 0 s20d

and the corresponding factorization is

fD ± hnsun/2 + 1dgfD 7 hn
−1sun/2 − 1dgu = 0. s21d

It follows that Eq. s20d is compatible with the first-order
differential equation

u8 7 hn
−1sun/2 − 1du = 0. s22d

Integration of Eq.s22d gives forg.0

u.
± = h1 ± expfshn − hn

−1dsj − j0dgj−2/n. s23d

Rewritten in the hyperbolic form, we get

u.
+ = S1

2
−

1

2
tanhF1

2
shn − hn

−1dsj − j0dGD2/n

,

u.
− = S1

2
−

1

2
cothF1

2
shn − hn

−1dsj − j0dGD2/n

. s24d

The tanh form is precisely the solution obtained long ago by
Wang f4g and Hereman and Takaokaf5g by more compli-
cated means.

Moreover, a different solution is possible forg,0,

u,
± = h1 ± expf− shn − hn

−1dsj − j0dgj−2/n, s25d

or
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u,
+ = S1

2
+

1

2
tanhF−

1

2
shn − hn

−1dsj − j0dGD2/n

,

u,
− = S1

2
+

1

2
cothF−

1

2
shn − hn

−1dsj − j0dGD2/n

, s26d

respectively.

A. Reversion of factorization brackets without the change of
the scaling factors

Choosing nowf1=a1s1+un/2d and f2=s1/a1dsun/2−1d
leads to the same Eq.s20d but now with the factorization

fD 7 hnsun/2 − 1dgfD ± hn
−1sun/2 + 1dgu = 0, s27d

and therefore the compatibility is with the different first-
order equation,

u8 ± hn
−1sun/2 + 1du = 0. s28d

However, the direct integration gives the solutionsfor g.0d

u = S−
1

1 ± expfshn − hn
−1dsj − j0dgD

2/n

= s− 1d2/nh1 ± expfshn − hn
−1dsj − j0dgj−2/n, s29d

which is similar to the known solution Eq.s23d. For g,0,
solutions of the type given by Eq.s25d are obtained.

B. Direct reversion of factorization brackets

Let us perform now a direct inversion of the factorization
brackets in Eq.s21d similar to what is done in supersymmet-
ric quantum mechanics in order to enlarge the class of ex-
actly solvable quantum Hamiltonians,

fD 7 hn
−1sun/2 − 1dgfD ± hnsun/2 + 1dgu = 0. s30d

Doing the product of differential operators, the following RD
equation is obtained:

u9 ± shn + hn
−1du8 + uf1 + un/2gf1 − hn

4un/2g = 0. s31d

Equations31d is compatible with the equation

u8 ± hnsun/2 + 1du = 0, s32d

and integration of the latter gives the kink solution of Eq.
s31d,

u.
± = S−

1

1 ± expfshn
3 − hndsj − j0dgD

2/n

= h1 ± expfshn
3 − hndsj − j0dgj−2/n s33d

for g.0. On the other hand, forg,0 the exponent is the
same but of opposite sign. Hyperbolic forms of the latter
solutions are easy to write down and are similar up to widths
to Eqs.s24d and s26d, respectively.

Thus, a different RD equation given by Eq.s31d with
modified polynomial terms and its solution have been found
by reverting the factorization terms of Eq.s20d. Although the
reaction polynomial is different, the velocity parameter re-

mains the same. This is the main result of this work:At the
velocity corresponding to the traveling kink of a given RD
equation, there is another propagating kink corresponding to
a different RD equation that is related to the original one by
reverse factorization. We can call this kink the supersymmet-
ric sSUSYd kink because of the mathematical construction.

Finally, one can ask if the process of reverse factorization
can be continued with Eq.s31d. It can be shown that this is
not the case because Eq.s31d has already a discretized
spolynomial-order-dependentd g and this fact prevents fur-
ther solutions of this type. Suppose we consider the follow-
ing factorization functions:

f̃1 = ã1
−1f1 − hn

4un/2g, f̃2 = ã1s1 + un/2d. s34d

Then, one getsã1= ±hn
3 and solvesã1

−1+ ã1=hn
−1+hn. The so-

lutions aren=0, which implies linearity, andn=−4, which
leads to a Milne-Pinney equation. On the other hand, Eq.
s31d with an arbitraryg can be treated by the inverse factor-
ization procedure to get the SUSY partner RD equation and
its SUSY kink.

C. Subcasen=1

This subcase is the original Fisher equation describing the
propagation of mutant genes,

]u

]t
=

]2u

]x2 + us1 − ud. s35d

In the traveling frame, the Fisher equation has the form

u9 + au8 + us1 − ud = 0. s36d

When the g parameter takes the valueg1= 5
6
Î6 si.e., h1

=Î6/2d, one can factor Fisher’s equation, and employing our
method leads easily to the known kink solution,

uF =
1

4
S1 − tanhFÎ6

12
sj − j0dGD2

, s37d

that was first obtained by Ablowitz and Zeppetellaf7g with a
series solution method. On the other hand, the SUSY kink
for this case reads

uF,SUSY=
1

4
S1 − tanhFÎ6

8
sj − j0dGD2

, s38d

i.e., it has a width one and a half times greater than the
common Fisher kink and is a solution of the partner equation

u9 +
5Î6

6
u8 + uS1 −

5

4
u1/2 −

9

4
uD = 0. s39d

A plot of the kinksuF anduF,SUSY is displayed in Fig. 1.

D. Subcasen=6

This subcase is of interest in light of experiments on po-
lymerization patterns of microtubules in centrifuges. It has
been discovered that the polymerization of the tubulin
dimers proceeds in a kink-switching fashion propagating
with a constant velocity within the sample. Portet, Tuszynski,
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and Dixonf6g used RD equations to discuss the modification
of self-organization patterns of MTs as well as the tubulin
polymerization under the influence of reduced gravitational
fields. They used the valuen=6 for the mean critical number
of tubulin dimers at which the polymerization process starts
and showed that the same nucleation number enters the poly-
nomial term of the RD process for the number concentration
c of tubulin dimers,

c9 + 5
2c8 + cs1 − c6d = 0. s40d

The polymerization kink in their work reads

cPTD = 2−1/3S1 − tanhF3

4
sj − j0dGD1/3

. s41d

On the other hand, the SUSY polymerization kinkssee Fig.
2d of the form

cSUSY= 2−1/3h1 − tanhf3sj − j0dgj1/3 s42d

can be taken into account according to the hyperbolic form
of Eq. s33d. It propagates with the same speed and corre-
sponds to the equation

FIG. 1. The front of mutant genessFisher’s
wave of advanced in a population and the partner
SUSY kink propagating with the same velocity.
The axes are in arbitrary units.

FIG. 2. The polymerization kink of Portet,
Tuszyński, and Dixon f6g and the SUSY kink
propagating with the same velocitysaxes in arbi-
trary unitsd.
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c9 ± 5
2c8 + cs1 − 15c3 − 16c6d = 0. s43d

In principle, this equation could be obtained as a conse-
quence of modifying the kinetics steps in the microtubule
polymerization process.

III. EQUATIONS OF THE DIXON-TUSZY ŃSKI-
OTWINOWSKI TYPE

In the context of damped anharmonic oscillators, Dixonet
al. f8g studied equations of the typesin this section, the
prime denotesDt=d/dtd

u9 + u8 + Au− un−1 ; u9 + u8 + usÎA − usn/2d−1dsÎA + usn/2d−1d

= 0 s44d

and gave solutions for the casesA= 2
9 and A= 3

16, with n=4
andn=6, respectively. For this case, time is the independent
variable. The factorization method works nicely if one uses
gn=În/2 and dealing with the more general equation

u9 ± ÎAsgn + gn
−1du8 + usA − un−2d = 0, s45d

for which we can employ either the factorization functions

f1 = 7 gn
−1sÎA − usn/2d−1d,

f2 = 7 gnsÎA + usn/2d−1d s46d

or

f1 = 7 gn
−1sÎA + usn/2d−1d,

f2 = 7 gnsÎA − usn/2d−1d. s47d

Then, Eq.s45d can be factored in the forms

fDt ± gnsusn/2d−1 + ÎAdgfDt 7 gn
−1susn/2d−1 − ÎAdgu = 0

s48d

and

fDt 7 gnsusn/2d−1 − ÎAdgfDt ± gn
−1susn/2d−1 + ÎAdgu = 0.

s49d

Thus, Eq.s45d is compatible with the equations

u8 7 gn
−1susn/2d−1 − ÎAdu = 0, s50d

u8 ± gn
−1susn/2d−1 + ÎAdu = 0 s51d

that follow from Eq.s48d and Eq.s49d. Integration of Eqs.
s50d and s51d gives the solution of Eq.s45d,

u. = S ÎA

1 ± expfÎAsgn − gn
−1dst − t0dg

D2/sn−2d

, g . 0

s52d

and

u, = S ÎA

1 ± expf− ÎAsgn − gn
−1dst − t0dg

D2/sn−2d

, g , 0.

s53d

The solutions obtained by Dixonet al.are particular cases of
the latter formulas.

Reversing now the factorization brackets in Eq.s48d,

fDt 7 gn
−1susn/2d−1 − ÎAdgfDt ± gnsusn/2d−1 + ÎAdgu = 0,

s54d

leads to the following equation:

u9 ± ÎAsgn + gn
−1du8 + usÎA + usn/2d−1dSÎA −

n2

4
usn/2d−1D = 0,

s55d

which is compatible with the equation

u8 ± gnsusn/2d−1 + ÎAdu = 0 s56d

whose integration gives the solution of Eq.s55d,

u. = S ÎA

1 ± expfÎAgnst − t0dg
D2/sn−2d

, g . 0 s57d

and

u, = S ÎA

1 ± expf− ÎAgnst − t0dg
D2/sn−2d

, g , 0. s58d

IV. FITZHUGH-NAGUMO EQUATION

Let us consider the FitzHugh-Nagumo equation

]u

]t
−

]2u

]x2 + us1 − udsa − ud = 0, s59d

wherea is a real constant. Ifa=−1, one gets the real Newell-
Whitehead equation describing the dynamical behavior near
the bifurcation point for the Rayleigh-Bénard convection of
binary fluid mixtures. The traveling frame form of Eq.s59d
has been discussed in detail by Hereman and Takaokaf5g,

u9 + gu8 + usu − 1dsa − ud = 0. s60d

The FitzHugh-Nagumo polynomial function allows the fol-
lowing factorizations:

f1 = ± sÎ2d−1su − 1d, f2 = ± Î2sa − ud s61d

when theg parameter is equal toga1= ± s−2a+1d /Î2 that we
also write asga,1= ±Îasga1−ga1

−1d, wherega1=−Î2a.
In addition, we can employ the factorization functions

f1 = ± sÎ2d−1sa − ud, f2 = ± Î2su − 1d s62d

whenga,2= ± s−a+2d /Î2, or written again in the more sym-
metric form ga,2= ±Îasga2−ga2

−1d, wherega2=−Îa/2. Thus,
Eq. s60d can be factored in the two cases

u9 ± ga,1u8 + usu − 1dsa − ud = 0 s63d

and
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u9 ± ga,2u8 + usu − 1dsa − ud = 0. s64d

In passing, we notice that for the Newell-Whitehead casea
=−1, the two equations coincide and are the same as the
generalized Fisher equation forn=2.

In factorization bracket forms, Eqs.s63d ands64d are writ-
ten as follows:

fD 7 Î2sa − udgfD ± sÎ2d−1s1 − udgu = 0 s65d

and

fD 7 Î2su − 1dgfD 7 sÎ2d−1sa − udgu = 0, s66d

and are compatible with the first-order differential equations

u8 ± sÎ2d−1s1 − udu = 0 for ga,1, s67d

u8 7 sÎ2d−1sa − udu = 0 for ga,2. s68d

Integration of the latter equations gives the solution of Eq.
s60d for the two different values of the wave front velocity
ga,1 andga,2.

For Eq.s63d, we get

u. =
1

1 ± expfsÎ2d−1sj − j0dg
,

u, =
1

1 ± expf− sÎ2d−1sj − j0dg
s69d

for ga,1 positive and negative, respectively.
As for Eq. s64d, the solutions are

u. =
a

1 ± expf− sÎ2d−1asj − j0dg
,

u, =
a

1 ± expfsÎ2d−1asj − j0dg
s70d

for ga,2 positive and negative, respectively.
Considering now the factorizationss65d and s66d, the

change of order of the factorization brackets gives

fD ± sÎ2d−1s1 − udgfD 7 Î2sa − udgu = 0 s71d

and

fD 7 sÎ2d−1sa − udgfD 7 Î2su − 1dgu = 0. s72d

Doing the product of differential operatorssand considering
the factorization termu8−f2u=0d gives the following RD
equations:

u9 ± ga1u8 + us4u − 1dsa − ud = 0 s73d

and

u9 ± ga2u8 + usu − 1dsa − u − 3u2d = 0. s74d

Equationss73d and s74d are compatible with the equations

u8 7 Î2sa − udu = 0 s75d

and

u8 7 Î2su − 1du = 0, s76d

respectively. Integrations of Eqs.s75d and s76d give the so-
lutions of Eqs.s73d ands74d, respectively. The explicit forms
are the following:

sid For Eq.s73d,

u. =
a

1 ± expf− Î2asj − j0dg
,

u, =
a

1 ± expfÎ2asj − j0dg
. s77d

sii d For Eq.s74d,

u. =
1

1 ± expfÎ2sj − j0dg
,

u, =
1

1 ± expf− Î2sj − j0dg
. s78d

V. CONCLUSION

This paper has been concerned with stating an efficient
factorization scheme of ordinary differential equations with
polynomial nonlinearities that leads to an easy finding of
analytical solutions of the kink type that previously have
been obtained by far more cumbersome procedures. The
main result is an interesting pairing between equations with
different polynomial nonlinearities, which is obtained by ap-
plying the SUSY quantum-mechanical reverse factorization.
The kinks of the two nonlinear equations are of different
widths but they propagate at the same velocity, or if we deal
with damped polynomial nonlinear oscillators the two kink
solutions correspond to the same friction coefficient. Several
important cases, such as the generalized Fisher and the
FitzHugh-Nagumo equations, have been shown to be simple
mathematical exercises for this factorization technique. The
physical prediction is that for commonly occurring propagat-
ing fronts, there are two kink fronts of different widths at a
given propagating velocity. Moreover, the reverse factoriza-
tion procedure can also be applied to the Berkovich scheme
with similar results. It will be interesting to apply the ap-
proach of this work to the discrete case in which various
exact results have been obtained in recent yearsf9g. More
general cases in which the coefficientg is an arbitrary func-
tion could also be of much interest because of possible ap-
plications.
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