Is there a Grenvillian basement in the Guerrero-Morelos Platform of Mexico?

[1] Programa de Geofluidos, Centro de Geociencias, UNAM
Campus Juriquilla, Carr. Qro-SLP km 15, Querétaro, México CP 76230, México. Levresse E-mail: glevresse@geociencias.unam.mx

[2] CRPG-CNRS UPR A2300
BP 20, 54501 Vandoeuvre-lès-Nancy Cédex, France

San Luis Potosí, S.L.P. México

ABSTRACT

In the Guerrero-Morelos platform (Guerrero State, Mexico) the adakitic rocks of Early Tertiary age contain abundant hornblende-rich tonalite xenoliths. Zircon crystals have been concentrated from both adakites and xenoliths, and dated using in-situ U-Pb ion microprobe analyses. These analyses indicate the presence of inherited Grenvillian and early Triassic/late Permian crust ages, as well as a Paleocene age related with the adakite rock intrusion. This range of inherited ages is reported for the first time in the Guerrero-Morelos platform, suggesting that a continuous Grenvillian crust exists between the Oaxacan complex, to the East, and the Guerrero-Morelos platform.

KEYWORDS U-Pb dating, Zircon, Guerrero, Grenvillian Age.

INTRODUCTION

The Sierra Madre del Sur (SMS) is an orogen thought to be formed through the accretion of several arc-related terranes (Guerrero, Mixteco, Zapoteco, Xolapa and Cuicateco; Campa and Coney, 1983; Fig. 1), each of whom seem to present a specific paleotectonic evolution. The Guerrero-Morelos platform is a part of the sedimentary cover of the Guerrero terrane that has been intruded by tertiary magmatic bodies.

Previous SMS geodynamic reconstructions were mainly based on the accurate description of the litho-structural units as well as the nature and mutual relationships between the intrusives and the deformation patterns (Campa and Coney, 1983). During the last 10 years a series of studies coupling absolute dating with isotope systematics allowed the reinterpretation of the paleotectonic settings and the geodynamic evolution of the western part of Mexico. Also, a wide calc-alkaline magmatic province has also been defined in the SMS (Morán-Zenteno et al., 1999), with ages ranging from early Paleocene to Miocene. These authors also suggested that the SMS volcanism took place after the Laramide Orogeny (post-collision) in a fast, convergent regime characterized by
the subduction of oceanic crust underneath a thick continental crust.

An important key to decipher the geodynamic evolution of the western SMS is to ascertain the age of the basement and its relationship with the subsequent magmatism. Unfortunately, most of the age techniques based upon isotopic determinations, such as Rb-Sr or K-Ar, do not necessarily yield crystallization ages (Ortega-Gutiérrez, 1980; De Cserna and Fries, 1981; Linares and Urrutia-Fucugauchi, 1981; Bellon et al., 1982; Herwig, 1982; Hernández-Treviño et al., 1996; Correa-Mora, 1997; Alba-Aldave et al., 1998; Ortega-Gutiérrez et al., 1999). Moreover, the abundance of xenolithic material precludes the use of conventional dating methods, as only mixed ages can be obtained. Recently, U-Pb studies using the isotopic dilution method applied on multi-grain fraction of zircons in the Guerrero terrane yielded discordant ages, suggesting an unclear possible heritage (Herrmann et al., 1994; Schaal et al., 1995; Elías-Herrera et al., 2000).

Lately, Levresse et al. (2004) used the ion probe zircon U-Pb technique just to discern the age of the Mezcala adakite stock emplacement and skarn formation, without discussing the possible meaning of the inherited ages. So, the main goal of this paper is to interpret and place the zircon rim and core inherited ages found in the Mezcala adakite stock within the geological and geodynamical scenario of the Guerrero terrane in order to discern the possible presence of a Grenvillian and pre-Upper Jurassic basement underneath the Guerrero-Morelos platform.

THE SOUTHERN MEXICO TERRANE ARCHITECTURE

The Guerrero terrane is thought to be formed by the accretion of island-arc sequences, mostly of Early Cretaceous and Late Jurassic ages (Centeno-García et al., 1993). Both the stratigraphic relationships among these arc sequences as well as the nature and age of their basement are not yet clear (Campa and Coney, 1983). Campa

![Figure 1](image-url)
and Coney (1983) proposed the inclusion of the Guerrero-Morelos platform into the Guerrero terrane, locating the terrane boundary at the west side of the platform. Sedlock et al. (1993) proposed the boundary to be located between the Mixteco and the Nahualt terranes, east of the study area. Some evidences indicate that the sedimentary sequences attributed to the Guerrero terrane, outcropping northwest of Acapulco, unconformably overlie a pre-Cretaceous rock assemblage of oceanic affinity (Centeno-García et al., 1993). The materials outcropping in the thrusts overlying continental crust, located in the easternmost sector, are probably related with the basement of the Mixteco terrane, which includes the Acatlán Complex (Campa and Coney, 1983).

The Acatlán Complex (Fig. 1) is a pre-Mississippian tectonically heterogeneous assemblage, mostly with an oceanic basin affinity, affected by metamorphism (green-schist to eclogite facies) combined to form a poly-deformed and metamorphosed basement unit (Fig. 1; Yáñez et al., 1991; Campa and López, 2000). The rocks of the metamorphic basement are interpreted to represent an early to middle Paleozoic suture after the collision of oceanic and continental crusts (Proenza et al., 2004).

The Acatlán Complex roots, of Grenvillian age, were identified indirectly in several locations by interpreting U-Pb discordia ages (Esperanza Granite, Ortega-Gutiérrez et al., 1999; Magdalena Migmatite and Tultitlan gabbro, Keppie et al., 2004). The Acatlán Complex is unconformably overlain by a deformed volcano-sedimentary sequence attributed to a volcanic arc of presumed Mississippian to Permian ages (Navarro-Santillan et al., 2002). Ignimbrites and andesites of apparent Triassic age, epicontinental and marine sediments of Middle Jurassic and Cretaceous ages, and Cenozoic continental clastic and volcanic rocks complete the stratigraphic column (Morán-Zenteno et al., 1999).

The available information on the deep structure and lateral changes of the lower crust in southern Mexico is, so far, scarce. Ortega-Gutiérrez (1993) proposed that the general arrangement and tectonic history portrayed by the exposed basement units suggest that fragments of continental crust, gradually younger, were aggregated around the Oaxacan Complex during Paleozoic and Mesozoic times. The Oaxacan Complex (Grenvillian), a granulite-facies complex with associated mafic and felsic orthogneiss, paragneisses, meta-anorthosites and charnockites, presents two tectono-thermal events at ca. 1100Ma and ca. 990Ma (Solari et al., 2003). The post-metamorphic cover includes sedimentary sequences of Tremadoc, Mississippian–Permian and Jurassic–Cretaceous ages (Schlaepfer, 1970). Recent geochronological studies (Ducea et al., 2004) suggest the existence of a common Grenvillian basement for the Xolapa and Oaxaca terranes. In addition, the Xolapa, Mixteco and Oaxaca terranes have Gondwanan geochemical affinities (Dickinson and Lawton, 2001).

THE GUERRERO-MORELOS PLATFORM GEOLOGICAL SETTINGS

The Guerrero terrane is unconformably covered by a more than 2000 m thick sequence of carbonate rocks that consists of moderately to strongly folded Mesozoic limestone and clastic units of the Morelos, Cuautla and Mezcal Formations (Fms) (Fries, 1960).

The Albian-Cenomanian Morelos Fm is made up by an alternance of gray limestones and dolostone beds, with some flint nodule rich horizons and silicified fossil fragments. Locally, a pure anhydrite member is located at the base of this formation (Fries, 1960). The Morelos Fm is conformably overlain by the Cuautla Fm of Turonian age, which consists of an alternance of calcareous shales and limestones. The upper Cretaceous Mezcala Fm (Cenomanian to Campanian age) conformably overlains the Cuautla Fm and consists of calcareous shales, and bedded sandstones. The sedimentary sequence was deformed by the Laramide Orogeny.

Late Cretaceous to Early Tertiary plutons of adakite affinity and younger mid-Tertiary dacite plugs intrude the carbonate sequence. Locally, these intrusives developed Fe-rich skarn bodies, including some with associated gold mineralization.

N-S and WNW-ESE structural trends control the distribution of the granodioritic stocks (De la Garza et al., 1996), which intruded the whole sedimentary sequence (Fig. 2). Meza-Figueroa et al. (2003) determined the Laramide age (64±1 Ma; “Ar/39Ar on biotite) for the calcalkaline granodiorites; these intrusive rocks were reclassified as adakites by Gonzalez-Partida et al. (2003).

Mid to late Tertiary volcanic rocks of the Sierra Madre Occidental province, including rhyolite, trachyte and minor andesite, unconformably cover the Mesozoic series.

Adakite petrography

The adakites always present a porphyritic texture, with phenocrysts always present by plagioclase (oligoclaseandesine; 50-60%), microcline (7-15%), quartz (20-30%), biotite (15-20%), and magnesio-hornblende (5-10%), and a groundmass composed mainly by microcrystalline quartz and plagioclase (Fig. 2, Table 1). Minor phases include apatite, titanite, zircon, hematite and titanomag-
netite. This rock is lately altered by a low temperature propillitic event.

These intrusives are characterized by the high abundance of tonalitic xenoliths, mainly composed by hornblende (60-70%), plagioclase (15-20%), rare interstitial orthoclase, abundant apatite (15-20%), and biotite (5-10%). These xenoliths are always affected by the hydrothermal alteration event that produced a pervasive albitization of the plagioclase, with local sericitization, and the subsequent formation of epidote after Ca release during the albitization process. Primary ferromagnesian minerals (hornblende, biotite) and apatite remain almost undisturbed by this alteration phenomenon, suggesting that the fluid involved was a high temperature, Fe-K-rich magmatic fluid. The presence of these tonalitic xenoliths provides the possibility of sampling parts of the Guerrero-Morelos platform basement (lower crust?).

ION PROBE ZIRCON U-PB GEOCHRONOLOGY

Sample selection

Fifty Kg of rock sample from the Nukay stock were collected for zircon separation. Samples were powdered and sieved using 200-50 µm sieves. Mineral fractions were obtained by density preconcentration with the use of heavy liquids. The non magnetic fraction was separated with a Cook isodynamic magnet. Final zircon fractions, suitable for analysis, were hand picked under a binocular microscope and cold mounted in an epoxy resin with a zircon standard (91500, Wiedenbeck et al., 1995), polished and gold-coated. All grains were examined using a SEM in back-scattering mode in order to characterize their internal structure. The selected grains present well-preserved prismatic shapes and euhedral growth zones (Fig. 3), indicative of their magmatic origin (Pupin, 1983), and are devoid of any significant subsequent resorption and/or recrystallization.

Analytical techniques

Zircon U-Pb analyses were performed on a Cameca IMS-1270 ion microprobe at the CRPG-CNRS, Nancy, France (Deloule et al., 2002). The instrument was used in monocollection ion counting mode, and the measurements were made by peak jumping. An empirical linear correlation (Compston et al., 1992) was defined between UO^+/U^+ and Pb^+/U^+ from the standard measurements to determine the relative sensitivity factor for Pb and U. Correction for common lead was made by measuring the ^{206}Pb amount and using the Stacey and Kramers (1975)
Is there a Grenvillian basement in Morelos - Mexico?

G. LEVRESSE et al.

Model for terrestrial lead isotopic composition. The \(^{206}\text{Pb}/^{204}\text{Pb}\) ratios were always higher than 1,000, indicating relatively low \(^{204}\text{Pb}\) amount.

Isotopic data with their analytical uncertainties and calculated ages are listed in Table 1 (Levresse et al., 2004). All the ages were calculated using the Isoplot program (Ludwig, 2000) and the weighted mean at 95% confidence levels. More details on the analytical techniques can be found in Levresse et al. (2004).

Results

The twenty-one \(^{206}\text{Pb}/^{238}\text{Pb}\) ages obtained scatter between 59±1Ma and 1057±17Ma (Fig. 4). Fifteen \(^{206}\text{Pb}/^{238}\text{U}\) and \(^{207}\text{Pb}/^{235}\text{U}\) ages are concordant or sub-concordant and seven are discordant. The higher intrinsic error on \(^{206}\text{Pb}/^{238}\text{U}\) vs. \(^{207}\text{Pb}/^{235}\text{U}\) values yield elliptical-shaped representative points in the concordia diagram (Fig. 4). The \(^{206}\text{Pb}/^{238}\text{U}\) ages are very sensitive to a common lead contribution because the signal of the \(^{207}\text{Pb}\) ion is about ten times lower than the \(^{206}\text{Pb}\) ion signal. Additionally, the \(^{207}\text{Pb}\), product of the \(^{235}\text{U}\) disintegration, presents a very low concentration in young zircon grains. Therefore, the individual \(^{206}\text{Pb}/^{238}\text{U}\) ages are more reliable.

Ion-probe data on selected zircons define a geochronologically homogeneous group consisting of eight concordant analyses taking into account the youngest ages (Fig. 4). These yield a weighted mean age of Early Paleocene (63±2Ma), that was interpreted by Levresse et al. (2004) as the emplacement age of the adakite and skarn formation.

Six other concordant ages reveal the existence of three older magmatic events located at Early Cretaceous (ca. 135 Ma, n=2), Triassic (ca. 240 Ma, n=1) and Grenvillian (ca. 1000 Ma, n=3) ages.

Seven discordant ages, ranging from 67±1Ma to 516±12Ma, represent mixing-ages of the inherited cores from plutonic rocks probably belonging to Guerrero-Morelos platform basement. Five of them are distributed along a discordia line, where the lower intercept is well defined by the youngest group age (ca. 63 Ma), whereas the upper intercept plot into the Grenvillian age range (between 1,000 Ma and 1,150Ma).

It is noteworthy that the age distribution of the zircons does not correlate with an specific position...
(core, rims) of the analysis within a single crystal: while some zircon crystals present single Grenvillian, Paleozoic or Tertiary ages, some others present an old (Grenvillian or Paleozoic) inherited core and younger (Paleozoic, Tertiary) outer rims.

GEOLOGICAL SIGNIFICANCE OF THE INHERITED MEZCALA AGES

The eight concordant younger ages found during this zircon study were already interpreted in Levresse et al. (2004) exclusively to place the Mezcala gold-bearing skarn deposits into the Lower Tertiary geological scenario. The rest of gathered data were disregarded in that study as they are not related with the Mezcala mineralizing events, the main focus of the 2004 paper.

The inherited component of the Nukay zircons contain the most complete history found on the magmatic events that affected the basement rocks of the Guerrero-Morelos platform. These newly uncovered magmatic events can be crucial to understand the origin and evolution of the Guerrero and associated terranes in SW Mexico.

The Grenvillian inherited ages clearly indicate the existence of a Precambrian basement underneath the Guerrero-Morelos platform and, in extension, underneath the Guerrero Terrane. The existence of this basement has important implications on the geodynamic history of the SMS. Three different possibilities can be considered: 1) the presence of a thrust of the Guerrero Terrane over an Oaxaquian crust of Grenvillian age, located East of the Guerrero terrane, that does not outcrop; 2) a supposed thrust of the Guerrero terrane over a crust of Grenvillian age from the Mixteco terrane (in agreement with Campa and Coney, 1983; in opposition with Sedlock et al., 1993), and 3) the existence of an in situ Grenvillian crust underlying the so-called Guerrero terrane. This last proposition is strongly supported by previous U-Pb zircon dating studies carried out by Elías-Herrera et al. (2000) on the Tizapa metagranite northwest of the Mezcala area. These authors also identified the presence of an old continental crust (ca. 1,000 Ma) beneath at least the eastern part of the Guerrero terrane, which can now be extended south-eastward to the Mezcala area.

The presence of an Early Cretaceous thermal episode suggests a link between the magmatic history of the Mezcala basement with the Guerrero terrane (Hermann et al., 1994; Elías-Herrera and Ortega-Gutiérrez, 2002; Keppie et al., 2003). Similar U-Pb ages on zircons were reported by Robinson et al. (1989) and Hermann et al. (1994), even though the latter considered the pre-Cenozoic ages as speculative. Evidences for an Early Triassic-Late Permian magmatic episode for the Guerrero terrane are rarely reported, but they have been already found in the Acatlán (Mixteco Terrane; Yáñez et al., 1991; Elías-Herrera and Ortega-Gutiérrez, 2002) and the Juchatengo complex (Grajales-Nishimura et al., 1999) of the Xolapa terrane.
CONCLUSIONS

The new data on inherited ages in zircons we present in this paper confirm the existence of three major magmatic pulses from Grenvillian to early Tertiary times in the Guerrero Terrane.

Moreover, the uncovering of a Grenvillian magmatic episode implies the existence of a Grenvillian crust at this location. Whether this crust represents an *in situ* basement or the sedimentary cover thrusted over this Grenvillian crust will be a matter of debate. In any case, these new uncovered ages imply the necessity to re-open the discussion of the tectonic evolution and the crustal structure of southern Mexico.

ACKNOWLEDGEMENTS

We wish to thank the Peñoles Mining Corporation for their logistic field assistance and the permission to publish the results. The ion-probe analyses were performed under the supervision of Dr. E. Deloule, Dr. M. Champenois and D. Mangin at the CRPG-CNRS, Nancy, France. We also wish to thank Dr Vaquer and an anonymous reviewer for their useful comments.

REFERENCES

Fries, C., Jr., 1960. Geología del Estado de Morelos y de partes adyacentes de México y Guerrero, región central meridional de México. Instituto de Geología, Boletín, 60, 236 pp.

Ortega-Gutiérrez, F., 1993. Tectonostratigraphic analysis and significance of the Paleozoic Acatlán Complex of Southern
Is there a Grenvillian basement in Morelos - Mexico?

Manuscript received November 2005; revision accepted October 2006.