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ABSTRACT

RNA molecules play different roles in coding, decod-
ing and gene expression regulation. Such roles are
often associated to the RNA secondary or tertiary
structures. The folding dynamics lead to multiple
secondary structures of long RNA molecules, since
an RNA molecule might fold into multiple distinct na-
tive states. Despite an ensemble of different struc-
tures, it has been theoretically proposed that the
separation between the 5′ and 3′ ends of long single-
stranded RNA molecules (ssRNA) remains constant,
independent of their base content and length. Here,
we present the first experimental measurements of
the end-to-end separation in long ssRNA molecules.
To determine this separation, we use single molecule
Fluorescence Resonance Energy Transfer of fluores-
cently end-labeled ssRNA molecules ranging from
500 to 5500 nucleotides in length, obtained from two
viruses and a fungus. We found that the end-to-end
separation is indeed short, within 5–9 nm. It is re-
markable that the separation of the ends of all RNA
molecules studied remains small and similar, despite
the origin, length and differences in their secondary
structure. This implies that the ssRNA molecules are
‘effectively circularized’ something that might be a
general feature of RNAs, and could result in fine-
tuning for translation and gene expression regula-
tion.

INTRODUCTION

Ribonucleic acids (RNAs) are a large family of
biomolecules present in all forms of life. RNAs play
central roles in coding, decoding and gene expression
regulation (1,2). Moreover, some RNAs, for instance,
ribozymes, have catalytic activity per se (3). Such roles
depend on the way that the RNA molecules are structured.
Disruption of the native structure at any level severely
reduces the function of RNA molecules (4,5). Most func-
tional RNA molecules exhibit a secondary structure that
is highly conserved across the large evolutionary distance
from bacteria to mammals, e.g. the tRNAs (6,7). Calcula-
tions of the minimum free energy secondary structures of
single-stranded RNA (ssRNA) molecules indicate that the
percentage of paired nucleotides (nts) (f) and the average
duplex length (k) approach a constant value as the number
of nts increases (8–10). This constancy for f and k has
been verified for a wide range of viral and yeast ssRNA
sequences (11) by application of both the mFOLD (12) and
the RNA Vienna algorithms (13). Based on these findings
and using the tree graph theory, statistical mechanics as
well as mFOLD and the RNA subprogram from Vienna
RNA Package, Yoffe et al. (14) proposed that the ends
of RNA molecules larger than 1000 nt in length are close
to each other, independent of their base composition and
length. They predicted that on average, the exterior loop
contour length (L), the loop which contains the unpaired
5′-3′ ends, for viral RNAs was between 15 and 20 nt; for
randomly computer-generated RNA sequences L was
around 12 nt. Using a probabilistic model and an RNA
sequence of 1000 nt with pairing fraction of 0.6, Fang (15)
deduced an L equivalent to 14.4 nt, which was in agree-
ment with the results of Yoffe et al. (14). A more rigorous
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mathematical treatment by Clote et al. (16) provided a
formal confirmation of the 5′-3′ ends distance constancy
and finds an L value around 6 nt (depending on a stickiness
parameter) for a random 1000 nt RNA sequence, while
their calculations of natural RNAs showed a correlation
with the molecular length. In addition, Han et al. (17)
found a probability distribution for the 5′-3′ end distance
from which the end-to-end separation of random RNA
sequences ‘were distinctively lower than those reported by
Yoffe et al.’.

Despite the inherent differences in the computed distance
among theoretical methods, all of them agree that there
is a short end-to-end distance of RNA molecules; there-
fore, if this distance is adopted in vivo, it could have bio-
logical relevance for their functions in the cell. The close
proximity provides a so-called ‘effective circularization’ of
RNA molecules that should facilitate translation (14). For
instance, a small gap between the 5′-cap and the 3′ poly(A)
tail promotes the interaction of the eukaryotic initiation
factor eIF4E with the poly(A) binding protein (18). Like-
wise, in cap-independent translation, base pair (bp) com-
plementarities between the 5′- and 3′-UTRs (5′- and 3′-
untranslated regions) are essential for initiation of transla-
tion (19). Furthermore, RNA circularization has been ef-
fective in the translation of some viral RNA, including the
yellow fever (20), influenza A (21), dengue (22) and viroids
(23).

Even with the evident biological relevance of the end-to-
end distance of RNA molecules and regardless of the the-
oretical calculations, no experimental measurements of this
distance in long RNA molecules have yet been provided.
Here, we present the first experimental determination of the
end-to-end distances of RNA molecules of different biolog-
ical sources, orientation and lengths (Table 1) by using sin-
gle molecule Fluorescence Resonance Energy Transfer (sm-
FRET).

MATERIALS AND METHODS

The smFRET measurements use a modified Nikon E800
microscope. Briefly, a single-line 514-nm laser (Excelsior-
515-50, Spectra-Physics) was directed through a beam ex-
pander into the back of the microscope. A 100× Plan-
Apochromat objective (NA 1.4, Nikon, Japan) focused the
beam down to a tight focal spot within the sample cham-
ber. Collected back fluorescence was separated from the
excitation beam by a band-pass filter 67–118 Technspec
(Edmund Optics, USA) and focused into a 100 �m pin-
hole. The donor and acceptor fluorescence was separated
by a dichroic mirror 540DRLP (Omega Optical, USA),
filtered (580DF30 and 670DF40, Omega Optical) and fo-
cused into single photon counting avalanche photodiodes
(SPCM-AQR-14, PerkinElmer Inc., USA). A SCB-68 card
(National Instruments, USA) stores the photon rates in
1 ms bins in a computer. Photon bursts were analyzed
using a Matlab (MathWorks, Natick, MA, USA) algo-
rithm. To identify single-molecule events, we consider only
bins with total photon rates above a background thresh-
old value. FRET efficiency values were computed using
the usual equation for the energy transfer efficiency Ei =
Ii

A/
(
Ii

A + Ii
D

)
, where Ii

A and Ii
D are the background sub-

tracted photon counts of the acceptor and donor emission,
respectively, on bin i. The efficiencies were collected into a
histogram, which was fitted with a Gaussian distribution to
obtain the mean FRET efficiency and its corresponding full
width at half maximum (Supplementary Figure S1a).

smFRET calibration

The smFRET system was calibrated by determining the
transfer efficiencies of fluorescently end-labeled double-
stranded DNA molecules of 10, 13, 16, 19, 20, 21, 22,
25, 28 and 45 bp in length taking into account that a
DNA bp has a separation of 0.34 nm. UTP-Alexa Fluor-
546 and CTP-Alexa Fluor-647 (Invitrogen) were used as
FRET pairs, and they were attached to DNA fragments
by Klenow-dependent filling of overhanging Adenines and
Guanines on each end of the DNA molecules. Thereafter,
DNA fragments were purified using Sephadex G-25 gravity
flow columns (GE Healthcare, USA). Calibration was per-
formed with DNA fragments at a concentration of 90 pM
in TE buffer (10 mM Tris, 1 mM ethylenediaminetetraacetic
acid, pH 8.0).

RNA isolation and cloning of the different genes

To obtain the different fungal messenger RNAs (mRNAs),
Trichoderma atroviride, IMI 206040 strain, was grown over
a sterilized cellophane sheet on potato dextrose agar (Difco)
plates and incubated at 26◦C for 48 h in total darkness. The
mycelium was collected from the surface of the cellophane
with a scalpel and immediately frozen in liquid nitrogen to
prevent RNA degradation. Total RNA was isolated using
Trizol R© Reagent (Invitrogen, USA) according to the man-
ufacturer’s protocol. Contaminating genomic DNA was re-
moved by DNase treatment using the TURBO RNAse-
free kit (Ambion). Complementary DNA (cDNA) synthe-
sis was performed using SuperScript II Reverse Transcrip-
tase (Invitrogen Life Technologies), following the manufac-
turer’s recommendations. The cDNA was quantified with a
Nanodrop spectrophometer (Thermo Scientific, Wilming-
ton, USA) and used to obtain the fgen1 (24) and triat1
(24) genes by polymerase chain reaction (PCR) amplifica-
tions. The phr1 gene was amplified using cDNA obtained
from T. atroviride (IMI 206040) mycelia exposed to a 5 min
blue light pulse as described elsewhere (25). The gene chi18-
4 (26) was amplified with cDNA obtained from T. atro-
viride strain P1 (ATCC 74058) setting in plate confronta-
tion assays against the phytopathogenic fungus Rhizoctonia
solani as described by (27). For reverse transcriptase-PCR
(RT-PCR) forward and reverse primers (Supplementary Ta-
ble S3) were designed on the 5′ and 3′ UTRs. RT-PCR for
phr-1 and chi18-4 was performed using GoTaq DNA poly-
merase (Promega) with the following conditions: 5 min at
94◦C, 35 cycles of 94◦C (30 s), 55◦C (30 s) and 72◦C (30
s), and a final extension of 72◦C for 10 min. The RT-PCR
for fgen1 and triat1 was basically as described for phr-1
and chi18–4, only changing the temperature and annealing
time, to 45◦C for 35 s for fgen1, whereas the temperature
for triat1 was 44◦C for 38 s. The PCR products were visu-
ally inspected by loading 4 �l onto 1% agarose gel. Each
PCR product was cloned into pBlueScript SK II (+) vec-
tor using KpnI (fgen1) or ApaI-BamHI (triat1, phr1 and
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Table 1. mRNA molecules obtained from two plant-viruses and a fungus used in this study

RNA name Source Length (nt)

Monocistronic RNAs
Anti-sense fgen1 T. atroviride 574
fgen1 T. atroviride 574
triat1 T. atroviride 1012
chi 18–4 T. atroviride 1667
phr1 T. atroviride 2012
RNA1 BMV 3234
RNA2 BMV 2865
RNA2 CCMV 2774

Dicistronic RNAs
RNA3 BMV 2117
RNA3 CCMV 2177
RNAB1B3 RNA1-RNA3 from BMV 5345

Details of the RNA samples can be consulted in Material and Methods and Supplementary Information S3.

chi18-4). fgen1 was cloned also as antisense strand (fgen1-
). Constructed plasmids were transformed into Escherichia
coli strain TOP10F′ Cl2Ca competent cells. Plasmid DNA
extraction from E. coli was performed by the alkaline ly-
sis method and precipitated with ethanol. CCMV, RNA2
and RNA3 were already cloned into pMJ5 using StuI-XbaI
(28), whereas BMV, RNA1, RNA2, RNA3 and RNA1+3
were already cloned into pT7T3–18U (29). Regardless of
the plasmid, all genes were cloned in front of a T7 promoter.
To obtain the different transcripts, all plasmids were lin-
earized using proper restriction enzymes, and purified using
the Wizard SV Clean-up system (Promega, USA). In vitro
RNA transcription was performed using the T7 RiboMax
kit as described by the manufacturer (Promega). DNA tem-
plates were removed by treatment with RNase-Free Dnase
RQ1 (Promega). No 5′-cap nor 3′-Poly(A) tail were added
to any of the mRNAs synthesized.

RNA labeling

On all the RNA molecules, Alexa Fluor-546 on the 3′-
end and Alexa Fluor-647 on 5′-end were used as FRET
pairs. Custom made r-Adenosine-3′,5′-(bis)phosphate-8-
[(6-Amino)hexyl]-amino-Alexa Fluor-546 (Jena Bioscience,
Thuringia, Germany) was linked to the 3′-OH of the RNA
molecule by the action of T4 RNA Ligase in 10 mM MgCl2,
10 mM DTT, 50 mM Tris-HCl, pH 7.8 and in the presence
of 5 mM adenosine triphosphate. Labeled RNA molecules
were cleaned using Amicon ultra-0.5 ml centrifugal filters,
and subjected to 5′-end labeling in a three step strategy as
follows: (i) RNA molecules were dephosphorylated using
alkaline phosphatase, calf Intestinal (NEB), (ii) a thiophos-
phate group was added into the dephosphorylated 5′-end
using ATP�S and T4 polynucleotide kinase (NEB), (iii) the
thiol-reactive C-2 maleimide-Alexa Fluor 647 was allowed
to react with the thiophosphate for 30 min at 65◦C. All la-
beled RNA molecules were phenol extracted and precipi-
tated using absolute ethanol, and resuspended either in TE
buffer (magnesium-free condition) or TM buffer (Tris 10
mM, MgCl2 5 mM, pH 8.0).

RESULTS

Mean FRET efficiencies were extracted from FRET his-
tograms (Supplementary Figure S1a) and plotted as a func-

Figure 1. DNA calibration curve for the smFRET signals as a function
of the separation of the fluorophores used as FRET pair. The error bars
represent one standard deviation (±1σ ). The solid line is the calibration
curve fitted to E−1 = 1 + (R/Reff )6 that gives Reff = 8.5 ± 0.9 nm.

tion of the fluorophore separation. The DNA calibration
curve for the smFRET signal is shown in Figure 1. We fit
the data to the usual formula E−1 = 1 + (R/Reff )6, where
Reff = R0γ

1/6 contains the Förster radius R0 and γ that de-
pends on the quantum yields and detection efficiencies for
both donor and acceptor (30). The fit to the curve gives
Reff = 8.5 ± 0.9 nm, where the (10%) uncertainty in the
linker length of dyes used was taken into account (31).

To determine the end-to-end distance we performed sm-
FRET measurements using the 11 end-labeled mRNA
molecules described in Table 1. smFRET experiments were
carried out with freely diffusing mRNA molecules at 27◦C
either under magnesium-free conditions using TE buffer
or in the presence of 5 mM magnesium using TM buffer
(Figure 2 and Supplementary Figure S2a and b). As can
be seen from the FRET histograms, the fluorophores are
maintained around a particular separation. To determine
the end-to-end separation we used the calibration curve of
Figure 1. The result as a function of the mRNA length (Fig-
ure 3) shows a fluorophore separation in the range between
6.5 and 10.5 nm. The fluorophore separation is not com-
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Figure 2. FRET histograms of three RNA molecules. Top (bottom) panel
corresponds to data taken in the presence of TM (TE) buffer solution.
Black lines are Gaussian fits. To avoid cluttering the rest of the RNA sm-
FRET histograms are shown in Supplementary Figures S2a and b.

pletely constant; for example, there is a small slope of 7.2 ±
2 × 10−4 nm/nt in TM buffer. Increasing the RNA length
by a factor of 10, as in our experiments, changes the fluo-
rophore separation by less than 50%. Despite the important
role of Mg ions on RNA tertiary stability (32), our results
indicate that the end-to-end separation is not affected by
tertiary interactions. Furthermore, a long ssRNA molecule
might exist in a population of secondary structures (33).
However, our results indicate that the end-to-end separation
is not affected by the different secondary structures that an
RNA molecule might adopt.

Figure 3. Inter-dye distances for end-labeled mRNA molecules of different
lengths. Circles and triangles represent monocistronic fungal and viral mR-
NAs, respectively. Filled squares represent dicistronic mRNA molecules,
whereas empty squares represent the antisense mRNA fgen1. Blue and red
data are from TM and TE buffer solution smFRET experiments, respec-
tively. Error bars correspond to ±1σ . The plot includes the linear fits (y =
a + bx) with a = 6.8 ± 0.47 nm and b = 7.2 ± 2 × 10−4 nm/nt for TM
buffer and a = 7.2 ± 0.5 nm and b = 7.6 ± 2 × 10−4 nm/nt for TE buffer
with the 1σ band for each fit.

Out of the 11 RNA sequences studied, 8 RNA sequences
were monocistronic, including 1 antisense complementary
sequence, and 3 were dicistronic (see Table 1). They were ob-
tained from 9 coding sequences: 4 from T. atroviride, 2 from
CCMV and 3 from BMV. All fungal RNA sequences tested
contain their UTRs, but lack the 5′-cap and Poly(A) tails.
However, despite all those differences we find no significant
difference in the end-to-end separation in all tested mRNAs.
Although different biological roles of sense-antisense RNA
have been observed and proposed (34), here we observed
that the fluorophore distances of sense-antisense mRNA
fgen1 are similar (although not identical in the presence of
MgCl2). The error bars in Figure 2 are dominated by the
10% uncertainty of the calibration. The separations in Fig-
ure 3 fluctuate within a standard deviation of 1.2 nm, which
corresponds to about 14% of the measured separation.

To extract the end-to-end distance from data in Fig-
ure 3, the fluorophore linker has to be taken into account.
The fluorophores attached to both ends of the short DNA
molecules used for calibration point toward opposite direc-
tions adding an extra 1.5 nm to the total length. However,
secondary structures of our RNA molecules predicted by
mFOLD showed that in the case of the RNA molecules,
fluorophores point mainly in opposite directions as well
(Figure 4). smFRET histograms of the RNA molecules, are
50% wider than the limits of statistics (Supplementary Fig-
ure S2c). As in the case of DNA (Supplementary Figure
S1b), fluorophore linker motion on RNA molecules con-
tributes to the width (Supplementary Figure S2d). How-
ever, since the persistence length of ssRNA (2.1 nm at 5
mM MgCl2 (35)) is much smaller than that of dsDNA, there
should be considerable motion of the terminals that intrin-
sically contributes to the end-to-end separation (consider-
ing only the exterior loop as a ssRNA). The prediction of
an end-to-end distribution (36) with a persistence length of
2.1 nm gives histograms with a width greater than those
we observed (Supplementary Figure S2c–e). The narrower
widths measured indicate a higher rigidity of the ssRNA
exterior loop (Supplementary Figure S2e). The increased
rigidity may come from the fact that in most cases the exte-
rior loop, where the ends are located, is anchored by at least
two paired regions (stem-loops) on the mRNA (14) that re-
strict its movement.

DISCUSSION

The separation between fluorophores we found is in the
range between 6.5 and 10.5 nm (range 1). To extract the
separation between 5′-3′ ends (range 2) we need to subtract
from range 1 the contribution coming from the fluorophore
linker lengths (Figure 4). If we consider the fluorophores
as pointing out in opposite directions (with total effective
linker length of 1.5 nm) we obtain an RNA end-to-end dis-
tance between 5 and 9 nm (range 2, see Figure 4). Assuming
a rigid ssRNA and 0.59 nm separation between nt (37), we
obtain an exterior loop contour length (L) equivalent to 11–
19 nt for range 1 and 9–16 nt for range 2. If instead we use a
persistence length of 2.1 nm and the end-to-end distribution
(36) we obtain an L of 19–88 nt for range 1 and L of 12–46
nt for range 2. We propose that range 2 is the correct one for
the comparison and that the persistence length of the exte-
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Figure 4. Secondary structure of mRNA fgen1 predicted by mFOLD. The inset is a zoom of the exterior loop that contains the 5′ and 3′ ends. See text for
discussion of the ranges marked in the inset.

rior loop should be much higher than 2.1 nm to get results
consistent with the width of the histograms (Supplementary
Figure S2c–e). Under these assumptions, all the measured
RNA molecules give an L between 9 and 16 nt, which is
consistent with theoretical predictions (14–17). It is known
that magnesium ions are important for the structural stabil-
ity of RNA molecules (32). However, our results show that
the end-to-end separation is not affected by the presence of
magnesium ions. In addition, the end-to-end separation is
also neither affected by the different secondary structures
that an RNA molecule can adopt (33), nor the difference in
origin, secondary structures and length of all tested RNAs.

The length of the majority of conserved proteins found
in eukaryotes and prokaryotes species are between 70 and
1500 aminoacids (aa) in length (38–40). Therefore, the range
in size of the mRNA molecules we used spans a range of
what is biologically relevant. Because of the short end-to-
end separation we found, our results imply that the ssRNA
molecules are ‘effectively circularized’ and raise an intrigu-
ing question: is the end-to-end distance of RNAs conserved
in all forms of life? If so, this structural feature must have
played an important role in evolution, for example, in allow-
ing RNA recognition to carry out their functions, a remi-
niscent that we can find nowadays in riboswitches, mRNA
splicing (5) and transcription termination in prokaryotes
(41). However, there are mRNAs that code for exception-
ally large proteins, e.g. Titin that is made of ∼27 000 aa
(42). Certainly, these large mRNAs are of biological signif-
icance in cell physiology; we speculate that even these large

molecules also adopt similar end-to-end separation dis-
tance, since they probably use the same post-transcriptional
and translational machineries.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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