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The quantum mechanical transmission probability is calculated for one-dimensional finite lattices

with three types of potentials: periodic, quasiperiodic, and random. When the number of lattice

sites included in the computation is systematically increased, distinct features in the transmission

probability vs. energy diagrams are observed for each case. The periodic lattice gives rise to

allowed and forbidden transmission regions that correspond to the energy band structure of

the infinitely periodic potential. In contrast, the transmission probability diagrams for both

quasiperiodic and random lattices show the absence of well-defined band structures and the

appearance of wave localization effects. Using the average transmissivity concept, we show the

emergence of exponential (Anderson) and power-law bounded localization for the random and

quasiperiodic lattices, respectively. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4765628]

I. INTRODUCTION

The quantum mechanical problem of a moving particle in
the presence of a periodic potential (composed of a succes-
sion of identical potential barriers) is at the basis of solid
state physics—a field where “quantum mechanics has scored
some of its greatest triumphs.1” In the classroom, using this
problem as a model for the electron in a crystal lattice helps
students appreciate how the wave nature of matter directly
leads to the existence of an energy band structure, a concept
that in turn explains the distinction between conductors and
insulators.

In the past few decades, there has been a continuing inter-
est in the study of wave propagation in non-periodic struc-
tures. This area of research was sparked in 1958 with the
finding by P. W. Anderson that quantum transport can be
arrested by the presence of a random potential,2 an effect
that has been referred to as “Anderson localization.” Ander-
son localization depends on dimension. In one and two
dimensions, an arbitrarily small degree of disorder leads to
localization of all quantum states, provided that the system is
sufficiently large. In three dimensions, however, the local-
ized states occur only for energies below a critical value that
depends on the disorder strength.3

An unexpected turn in the field of transport in non-
periodic lattices came with the 1982 discovery by D. Shecht-
man of quasicrystals—structures that possess long-range
order but do not have the translational symmetry of crystals.4

The diffraction patterns of these materials display sharp
peaks (reflecting long-range order) but are fivefold symmet-
ric, which is inconsistent with a periodic lattice.5,6 Analysis
of the electronic states in 1D-quasiperiodic model systems
showed that the wavefunctions are quasi-localized or weakly
localized, meaning that the decay at long distances is
bounded by a power law rather than an exponential.7,8

Although originally developed within the context of quan-
tum transport in solid-state materials, wave localization stud-
ies soon extended to include localization of classical waves.
This approach has made it easier to compare experiments
and theoretical models on localization, because the often
obscuring effects of electron interactions are absent. Using
classical waves, it is possible to measure localization in a

material by determining how the transmission coefficient
scales with sample thickness: linear, power-law, or exponen-
tial decay corresponds to regular diffusion, quasilocalization,
or Anderson localization, respectively.3,9 Localization of
classical waves in systems consisting of a collection of ran-
domly oriented scattering objects has been observed using
light,10 microwaves,11 ultrasound,12 and even water waves.13

Similarly, localization in quasicrystalline systems has been
reported for light passing through Fibonacci dielectric multi-
layers.9 Recent experimental systems that have enabled
observations of localization effects include light inside ran-
domly modulated periodic14 and quasiperiodic15 photonic
bandgap materials, as well as matter waves inside random
optical potentials.16,17 Notably, using an ultracold atomic gas
expanding into a disordered potential, it has been possible to
observe three-dimensional Anderson localization.18

Here, we present a systematic study of wave propagation in
three types of one-dimensional finite structures: periodic, qua-
siperiodic, and random. For each type of lattice, we compute
the quantum mechanical transmission probability using a sim-
ple, yet accurate, numerical method. Finite or “local” systems
are relevant in many practical situations, when only a small
number of lattice elements are present, and their analysis has
been shown useful in introducing the physics of wave propa-
gation in finite media to the student classroom.19,20 We con-
tinue to use this pedagogical approach to show how the
impressive effects of wave localization naturally emerge in
non-periodic structures as the number of lattice sites consid-
ered is systematically increased. We begin by introducing the
method used to compute the transmission coefficient, and
consider first the periodic potential case, where we discuss the
appearance of allowed and forbidden bands as the system size
becomes infinite. Transport in the quasiperiodic and random
lattices is then analyzed, providing insight into effects of dis-
order in the transmission vs. energy diagrams, from which
wave localization results immediately follow.

II. STATEMENT OF THE PROBLEM

We consider the quantum mechanical problem of a parti-
cle of mass m and energy E incident from the left on a one-
dimensional region where the potential V(x) is nonzero only
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within the finite interval [a, b]. The general solution to the
time-independent Schr€odinger equation,

� �h2

2m

d2

dx2
WðxÞ þ VðxÞWðxÞ ¼ EWðxÞ; (1)

in this case is

WðxÞ ¼
Aeik0x þ Be�ik0x x < a

WabðxÞ a < x < b

Ceik0x x > b;

8<
: (2)

where k0 ¼
ffiffiffiffiffiffiffiffiffi
2mE
p

=�h. The terms Aeik0x and Be�ik0x corre-
spond to incident and reflected waves, respectively, and
Ceik0x corresponds to the transmitted wave.1 The transmis-
sion coefficient is T ¼ jC=Aj2.

Using a matrix approach, Griffiths and Steinke thoroughly
analyzed the propagation of waves in locally periodic media
and derived closed-form results for an arbitrary number of
identical lattice sites.20 Here, to find T for arbitrary poten-
tials, we use the alternative and simple method introduced
by Khondker and colleagues, which is based on the concept
of generalized impedances.21 In this method, an analogy is
drawn between quantum transport and wave propagation
inside electrical transmission lines. Briefly, consider the
potential step consisting of two regions with constant poten-
tial values V1 ðx < 0Þ and V2 ðx > 0Þ. The quantum reflection
coefficient is given by

R ¼ k2 � k1

k2 þ k1

����
����
2

; (3)

where ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� ViÞ

p
=�h, i¼ 1, 2. In the case of voltage

and current waves propagating through transmission lines
[see Fig. 1(a)], the reflection coefficient due to an impedance
mismatch is given by

RL ¼
ZLOAD � Z0;LINE

ZLOAD þ Z0;LINE

����
����
2

; (4)

where ZLOAD and Z0;LINE are the load and characteristic
impedances of the transmission line, respectively.22 By com-
paring these two systems, Khondker and colleagues show
that the quantum wavefunction, the derivative of the wave-
function, and the quantum current density correspond to the
electrical current, the voltage, and the average power in a
transmission line, respectively. Therefore, it is possible to as-
sociate a logarithmic derivative of the wavefunction with the
ratio of voltage and current, thus defining the quantum me-
chanical impedance,

ZðxÞ ¼ � i�h

m

1

WðxÞ
d

dx
WðxÞ: (5)

To make operational use of this analogy, any arbitrary
potential is first approximated by N segments, each with a
potential value Vi (i¼ 1,…, N) that is regarded as constant.
For a given E, each segment has a characteristic impedance,

Z0;i ¼ �
i�hki

m
; (6)

which will contribute to the overall impedance of the whole
transmission line. The input impedance at the beginning of
the ith segment is calculated using21

Zinput;i ¼ Z0;i
Zload;icoshðkiliÞ � Z0;isinhðkiliÞ
Z0;icoshðkiliÞ � Zload;isinhðkiliÞ

; (7)

where Zload;i is the load impedance at the end of the ith seg-
ment and li is the length corresponding to the ith segment, as
shown in Fig. 1(b). To determine the overall load and charac-
teristic impedances of the complete potential, the following
iterative procedure is followed. Starting with the characteris-
tic impedance of the rightmost section (Z0 ¼ �i�hk0=m) as
the initial load (Zload;N), the input impedance at the beginning
of segment N is calculated using Eq. (7), yielding Zinput;N .
Next, the Nth input impedance is set as the (N � 1)th load
impedance (Zload;N�1 ¼ Zinput;N) and the input impedance at
the beginning of segment N � 1 is calculated using Eq. (7)
again. This process is repeated until the input impedance of
the first segment (Zinput;1) is obtained. Finally, the reflection
coefficient for the complete transmission line is found by
equating ZLOAD ¼ Zinput;1 and Z0;LINE ¼ Z0, and substituting
into Eq. (4). The quantum mechanical transmission coeffi-
cient is T ¼ 1� RL.

III. TRANSMISSION IN A PERIODIC LATTICE

We begin by considering a periodic potential on a finite
interval consisting of M identical lattice sites (a locally peri-
odic potential),

Fig. 1. Schematic of the generalized impedance method used to compute

quantum transmission over a finite potential barrier. (a) An electrical trans-

mission line of characteristic impedance Z0;LINE is terminated with a load

impedance ZLOAD. A wave of amplitude Vincident travelling to the right will

undergo reflection at the connection point. The amplitude of the reflected

wave is given by Eq. (4). (b) In the quantum mechanical problem of trans-

mission across a potential barrier, the generalized impedance method

regards the potential (thick solid line) as the load impedance ZLOAD. To

compute transmission, the potential barrier is approximated by N segments

of equal width (thin bars, V1…VN). Each segment (Vj) has a characteristic

impedance (Z0;j). Starting with the load impedance corresponding to the Nth

segment (Zload;N), the input impedance of the Nth segment (Zinput;N) is com-

puted using Eq. (7), which in turn is taken as the load impedance of segment

N � 1 (Zload;N�1). Then, an iterative procedure is followed until the load im-

pedance of the whole potential barrier (ZLOAD) is found. Finally, the quan-

tum reflection coefficient can be found by substituting ZLOAD and the

characteristic impedance Z0;LINE ¼ Z0 into Eq. (4). See text for details.
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VðxÞ ¼
ðV0=2Þðcos½ð2p=kÞðx� k=2Þ� þ 1Þ 0 � x � Mk

0 x < 0 or x > Mk;

�
(8)

where k is the period length and V0 is the peak-to-peak
amplitude (see Fig. 2). It is convenient to introduce the
dimensionless variable q¼E/U for the energy, where
U ¼ h2=ð2mk2Þ is the “natural” unit of energy. In this pa-
per, the parameter V0 is taken as equal to U, as we
found this is a good magnitude to illustrate the emer-
gence of allowed and forbidden bands in the periodic
case and the appearance of localization effects from the
introduction of disorder.

Figure 2 presents the results for the transmission coeffi-
cient as a function of q when the number of lattice sites is
varied. As M increases, three main features are to be
noticed from these graphs. First, a sharp resonance peak
appears at q � 0:5 when M¼ 2. This is expected, as two
lattice barriers in our potential define a single well, and
the peak at q � 0:5 is due to resonant tunneling to the low-
est, localized quasi-bound state of the well. Indeed, expan-
sion of the potential well in a Taylor series around x0 ¼ k
results in VðxÞ ’ ðV0=4Þð2p=kÞ2ðx� kÞ2. The correspond-

ing energy levels are �n=U ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0=U

p
ðnþ 1=2Þ, from where

�0=U ¼ 1=2, when V0=U ¼ 1. Second, there is an emer-
gence of allowed energy bands where the transmission
coefficient oscillates rapidly between 1 and lower but finite
values, separated by forbidden bands where the transmis-
sion coefficient tends toward zero for large M. These fea-
tures, as has already been pointed out,19 are precursors of
the familiar band structure of infinitely periodic lattices,
evident even for small numbers of lattice sites (M ’ 20).
Third, the number of transmission peaks or states in each
band, as energy bands develop, is equal to M � 1. This is
consistent with the expected result for large crystals
(M � 1), where the number of states per band is M.23 The
expected gap between the first allowed energy band and the
second one is Eg ¼ V0=2, also consistent with our numeri-
cal example (Eg=V0 ’ 0:5).

The locally periodic result can be directly compared with
the result from the actual band structure that is easily
obtained for an infinitely periodic lattice. To do this, we con-
sider the Schr€odinger equation with the potential of Eq. (8),
now valid for all x

� �h2

2m

d2

dx2
WðxÞ þ ððV0=2Þ

� ðcos½ð2p=kÞðx� k=2Þ� þ 1Þ � EÞWðxÞ ¼ 0: (9)

Using U and q, defined before, together with the change of
variables

z ¼ ðp=kÞðx� k=2Þ; (10)

a ¼ 4ðE=U � q=2Þ; (11)

reduces Eq. (9) to the canonical form of the Mathieu
equation,24

d2

dz2
WðzÞ þ ða� 2q cosð2zÞÞWðzÞ ¼ 0: (12)

The solutions WðzÞ are of the Bloch form: WðzÞ ¼ eikzwðzÞ,
where k is the normalized crystal momentum and w(z) is
periodic with period p. The characteristic values of a (corre-
sponding to the energies, for a given value of q) can be
found using standard, built-in routines of computational
software programs (such as Mathematica’s Mathieu-
CharacteristicA, which is the one used here). Figure 3
shows the resulting dispersion (energy versus normalized
crystal momentum) graph (taking V0=U ¼ 1) in the
reduced-zone scheme. The energy dispersion curves corre-
spond to allowed energies, and therefore define energy
bands where the transmission coefficient T is nonzero. Like-
wise, as the energy dispersion curves approach the edges of
the Brillouin zone (k ¼61) there are band gaps, regions
where T¼ 0. Figure 4 compares the results from the numeri-
cal computation corresponding to the finite lattice and the
T vs. E diagram derived from the Mathieu equation. The
energy band structure for the locally periodic potential is a

Fig. 2. Quantum transmission in a finite, periodic lattice. (a) The finite, peri-

odic lattice considered, consisting of M¼ 25 lattice sites in this case. (b) The

transmission coefficient T as a function of the dimensionless parameter q,

for an increasing number of lattice sites. See text for discussion of results.

To compute quantum transmission, each lattice site was divided into

N¼ 100 segments, and 3000 energy points were computed for each graph.
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precursor of the resulting band structure for the infinitely
periodic lattice.

IV. TRANSMISSION IN A QUASIPERIODIC

LATTICE

We construct a locally quasiperiodic potential by taking
the locally periodic potential of Eq. (8) and modulating the
amplitudes of the lattice sites in a quasiperiodic fashion.
To do this, we multiply the peak-to-peak amplitude V0 of
each lattice site by either 0 or 1, such that these multiplica-
tive factors form a quasiperiodic, Fibonacci sequence Xn

(see Fig. 5). The sequence Xn is thus composed of a succes-
sion of 0’s and 1’s that can be found using the following
rule:25

Xnþ1 ¼ XnXn�1; (13)

where the X’s are sequences of numbers and the operation of
the right-hand side of the equation is concatenation, as in the
following examples:

X0 ¼ f1g;
X1 ¼ f1; 0g;
X2 ¼ X1X0 ¼ f1; 0; 1g;
X3 ¼ X2X1 ¼ f1; 0; 1; 1; 0g;
X4 ¼ X3X2 ¼ f1; 0; 1; 1; 0; 1; 0; 1g;
X5 ¼ X4X3 ¼ f1; 0; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0g:

(14)

The length of each sequence Xn is given by the Fibonacci
numbers, 1, 2, 3, 5, 8, 13…. The sequences Xn present many
regularities: they are self-similar (redefining f1; 0g ! f1g
and f1g ! f0g in a given Xn produces Xn�1); the ratio of the
total number of 1’s to the number of 0’s in a given Xn

approaches the golden mean s ¼ 1þ 1=s ¼ ð
ffiffiffi
5
p
þ 1Þ=2 �

1:618 as n increases; and wave scattering from structures
based on Fibonacci sequences produces a spectrum filled in
a dense fashion, with sharp peaks whose spacing is related to
the golden mean (see Fig. 8).5,6,25 The sequence Xn is quasi-
periodic, meaning that it is periodic in a higher-dimensional
space (the sequence arises from the projection of a two-
dimensional periodic structure into one dimension).5,25

We computed the transmission versus energy curves for
increasing numbers of lattice sites (see Fig. 5). As in the per-
iodic case, it is possible to identify initial resonances with
the known energy levels of approximated potentials. The

Fig. 3. Energy band diagram corresponding to an infinite, periodic potential.

The characteristic values of the Mathieu equation (q, thick solid lines) are

displayed as a function of the quasimomentum (k) in the reduced-zone

scheme. The resulting energy levels define the familiar band structure. See

text for details.

Fig. 4. Comparison of quantum transmission for finite and infinite periodic

lattices. The quantum transmission coefficient T is displayed as a function of

the normalized energy q for finite (black, solid line) and infinite (gray,

dashed line) periodic potentials. The finite potential consisted of M¼ 30 lat-

tice sites, with each lattice site divided into 100 segments, and 3000 energy

points were computed within the interval shown; the infinite potential result

was derived from the energy band diagram of Fig. 3.

Fig. 5. Quantum transmission in a finite, quasiperiodic lattice. (a) The finite,

quasiperiodic lattice considered, consisting of the first M¼ 25 lattice sites.

(b) The transmission coefficient T as a function of the dimensionless param-

eter q, for an increasing number of lattice sites. See text for discussion of

results. To compute quantum transmission, each lattice site was divided into

100 segments, and 3000 energy points were computed for each graph.
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case M¼ 3 can be approximated as the infinite potential box
of width 2k, whose associated energy levels are �n ¼ h2n2=
ð32mk2Þ ¼ Un2=16. The first four levels (at normalized
energy values near 0.0625, 0.25, 0.56, and 1.0) can be identi-
fied in the transmission curve.

As the number of lattice sites increases, the resulting
transmission curves develop a structure that seems to have

energy bands and bandgaps. Indeed, theory and experiments
on light propagation through Fibonacci dielectric multilayers
have found that increasing the number of layers has the
effect of suppressing transmission in certain wavelength
regions, which have been called “pseudo band gaps” (to dis-
tinguish from true band gaps of periodic media).9,26,27 How-
ever, the transmission regions corresponding to energy
“bands” are not uniform. In fact, they consist of a rich struc-
ture that is expected to be fractal or self-similar. This last
property has been experimentally demonstrated (when a con-
dition to maximize the quasiperiodicity of the system is
satisfied).9

V. TRANSMISSION IN A RANDOM LATTICE

We generate the locally random potential by again taking
the locally periodic lattice, Eq. (8), and multiplying the peak-
to-peak amplitude of the ith lattice site now by a random
number that is between 0 and 1. The built-in routine enoi-
se()of the statistics software IGORPRO was used to generate a
set of evenly distributed, pseudo-random numbers (distribu-
tion shown in Fig. 6), while the routine SetRandomSeed
was used to obtain repeatable pseudo-random numbers.

Figure 7 shows the resulting lattice, together with the cor-
responding transmission vs. energy diagrams for a varied
number of lattice sites (M � 25). Contrary to the periodic
and quasiperiodic cases, there is no obvious emergence of
energy “gaps” or “pseudo-gaps.” Instead, initial resonance
peaks at small energies in the transmission probability pro-
gressively disappear when the number of lattice sites consid-
ered is increased. This trend is confirmed by computing

Fig. 6. Distribution of random numbers used to generate the random poten-

tial. To generate the set of pseudo-random numbers that are used to define

the amplitudes of the lattice sites in the random potential, the IgorPro com-

mand SetRandomSeed was set to 0.038 and the built-in routine

enoise() was used. A histogram corresponding to the first 2500 numbers

generated shows a uniform distribution.

Fig. 7. Quantum transmission in a finite, random lattice. (a) The finite, ran-

dom lattice considered, consisting of the first M¼ 25 lattice sites. (b) The

transmission coefficient T as a function of the dimensionless parameter q,

for an increasing number of lattice sites. See text for discussion of results.

To compute quantum transmission, each lattice site was divided into 100

segments, and 3000 energy points were computed for each graph.

Fig. 8. Fourier transform of the periodic, quasiperiodic, and random poten-

tials. A clear transition from a single frequency peak to a floor of noise is

observed as the degree of disorder is increased. For the quasiperiodic lattice,

the ratio a/b¼ b/c¼… is equal to the golden mean, reflecting the fractal na-

ture of this structure. To compute the corresponding Fourier transforms, a

total of M¼ 2500 lattice sites were considered in each case.
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transmission coefficients for M > 25 (see Fig. 9). We come
back to this point in the next section, when discussing local-
ization effects.

It is instructive to contrast the Fourier transform of the
random potential with the periodic and quasiperiodic cases
(see Fig. 8). As expected, the periodic case produces a single
peak centered at the reciprocal of the lattice constant (1=k).
This single peak establishes a well-defined condition for
Bragg diffraction during wave propagation. Although this
peak is also present in some degree for the other potentials
(reflecting the fact that we chose to have the same lattice site
length, k, for all types of structures), there are dominant fea-
tures that are lattice-specific. For a quasiperiodic lattice, a
multitude of well-defined, closely spaced peaks appear, with
positions that are related through the golden mean ratio.6

The presence of resonances indicates that, during wave prop-
agation, a process similar to Bragg diffraction is also
expected to occur here, although the resulting diffracted
spots are weaker and more densely spaced compared to the
periodic case. Finally, the random lattice has a Fourier trans-
form that, apart from the aforementioned peak corresponding
to the lattice site spacing, is characterized by a continuum of
“noise.” Nothing similar to Bragg diffraction is expected to
occur here, because resonances (a mechanism that can
enhance wave transmission) are suppressed. These features

directly lead to the emergence of wave localization effects as
the lattice changes from periodic to non-periodic.

VI. WAVE LOCALIZATION

The behavior of the transmission coefficient as a function
of incident energy is clearly distinct for the three types of
finite lattices presented here: periodic, quasiperiodic, and
random, when the number of lattice sites is small (M < 30).
When M is further increased in the computation of quantum
transmission (M¼ 50…500, see Fig. 9), we confirm that sig-
nificant differences remain, offering a perspective to appreci-
ate effects of the transition from order to disorder. In the
periodic potential case, the resulting energy band structure is
evident, becoming better defined as M increases. In contrast,
the transmission coefficient for the random lattice does not
show any allowed energy bands separated by forbidden
bands, irrespective of the value of M. An intermediate behav-
ior corresponds to the quasiperiodic lattice, where a band
structure (or the precursor thereof) is observed for small
energies and low M, but gradually disappears as M increases.
This latter behavior helps to illuminate one aspect of why
the term “pseudo band gap” is used for quasiperiodic lattices:
within the context of finite lattices, the band gaps do exist

Fig. 9. Quantum transmission coefficient behavior for the periodic, quasiperiodic, and random finite lattices in the case of large numbers of lattice sites. The

periodic potential case shows a clear energy band structure that is well-defined in all cases. In contrast, the quasiperiodic case does display energy band gaps,

but they tend to disappear when M is increased. Although weak resonances can be appreciated for the random case, there is no evidence of an energy band

structure. These characteristics help understand localization effects (see text). To compute quantum transmission, each lattice site was divided into 100 seg-

ments, and 3000 energy points were computed for each graph.
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but become less defined as more lattice sites are involved in
transmission.

The qualitative characteristics of transmission discussed
above provide us with the starting point to present quantita-
tive results on localization effects in non-periodic potentials.
From the discussion presented in the Introduction, increasing
the number of lattice sites of a random, one-dimensional
potential should lead to exponential decay of the transmis-
sion coefficient. To demonstrate this behavior, we compute
the average of the transmission coefficient within a given
interval of energies and display it as a function of the number
of lattice sites M (the “average transmissivity” concept dis-
cussed in Ref. 28). These conditions correspond to calculat-
ing the total transmission coefficient of a wavepacket,
square-shaped in energy space, incident on a 1D potential
(such a wavepacket could be prepared, for example, with
light passing through a band-pass filter). We also assume
that each spectral component of the wavepacket travels inde-
pendently of any other component. To avoid effects of triv-
ial, classical “localization,” we consider exclusively energies
above the maximum potential barrier height contained within
the overall potential.

Transmission coefficients averaged over the energy inter-
val q¼ [1, 2] are shown in Fig. 10, with M varied between 1
and 5000, demonstrating the appearance of wave localization

for both quasiperiodic and random potentials. The energy
interval considered covers parts of the second and third
energy bands for the periodic potential case (see Fig. 4). This
choice avoids trivial localization (by using q 	 1), captures
significant variations in the transmissivity curves for the
number of lattice sites considered (see Fig. 9), and optimizes
signal to noise of the average transmissivity. Averaging for
energies significantly greater than the heights of the poten-
tials increases the localization size, such that it becomes
impractical to observe in these finite models.

The transmission curve for the random potential decreases
exponentially as M is increased, and data are well fit using
two decay length constants: M1 ¼ 170 and M2 ¼ 2060 (fit-
ting not shown). More than one decay constant is involved
because of the averaging of the transmission coefficients over
a relatively broad energy interval (q¼ [1, 2]). In the quasi-
periodic potential case, data within the range M¼ [2, 5000]
are well fit by a simple power-law function, with exponent
b¼�0.15 (fitting not shown). The specific values of M1; M2,
and b are dictated by how the transmission curves are
affected within the averaged region as M increases. For
example, the transmission curve for the random lattice (see
Fig. 9) shows the onset of a marked decrease around q¼ 1
that starts when M ’ 200, thus explaining the value of M1

found in our case.
The transmission for the periodic case in Fig. 10 is inde-

pendent of the number of lattice sites. This implies unim-
peded transmission, which is consistent with electronic wave
functions propagating in a perfect periodic lattice. By con-
trast, for the random potential, Anderson localization is
observed. Localization is caused by above-the-barrier reflec-
tion and wave interference in the non-periodic structures.
Finally, it is striking to observe that the quasiperiodic lattice
also leads to localization—in this case “slower” than expo-
nential. Therefore, our computation helps identify the differ-
ence between power-law localization (corresponding to the
quasiperiodic potential) and exponential or “true” Anderson
localization. The term “weak localization” is also used in the
literature, simply meaning that the localization length
exceeds all other characteristic lengths of the system.29

The average transmission computed for the quasiperiodic
potential displays an additional, remarkable effect: the appear-
ance of a series of resonance peaks, occurring at the Fibonacci
values M¼ 1, 2, 3, 5, 8, 13… (see Fig. 11). Furthermore,

Fig. 10. (Color online) Emergence of localization effects for the quasiperi-

odic and random lattices. Transmission coefficients averaged over the

energy interval q¼ [1, 2] are shown with M varied between 1 and 5000, for

the periodic (black, dashed line), quasiperiodic (blue, solid line), and random

(red, dashed-point line) finite lattices. In the cases of the quasiperiodic and

random potentials the transmissivity decreases monotonically as the number

of lattice sites is increased. Decay is consistent with power-law (quasiperi-

odic potential) and exponential (random potential) dependence, as evidenced

by the same results displayed in log-linear (top graph) and log-log (bottom

graph) scales. The average transmissivity for the periodic lattice remains

constant beyond M ’ 10—identifying a point at which the finite periodic

lattice can be regarded as a sufficient approximation to its infinite counter-

part. In all cases V0=U ¼ 1 was used. To compute quantum transmission in

all cases, each lattice site was divided into 100 segments, and 4000 equally

spaced energy points within the interval E=U ¼ ½1; 2� were used to deter-

mine the average transmissivity.

Fig. 11. Self-similar resonances in the average transmissivity for the quasi-

periodic potential. The average transmissivity (black line) shows a number

of resonance peaks located wherever the number of lattice sites is equal to a

Fibonacci number (gray vertical lines, only lines corresponding to M¼ 89,

144, 233, 377, 610, 987 are shown). Additionally, smaller peaks can be dis-

tinguished between Fibonacci lines. All of the resonances locate at positions

that define distances (arrowed, horizontal gray lines) that are related through

the self-similarity property a=b ’ b=c ’ c=d ’ ð
ffiffiffi
5
p
þ 1Þ=2 � 1:618 char-

acteristic of the Fibonacci sequence.
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smaller, additional resonances can be discerned between the
main ones. All of the resonances distinguished are located at
positions that satisfy the Fibonacci condition: the ratio of one
Fibonacci value divided by its predecessor approximates the
golden mean. These resonances, which arise due to wave in-
terference, highlight the existence of long-range order in qua-
siperiodic structures, and reflect the self-similarity properties
of the underlying Fibonacci series. It can be inferred from
these observations that a quasiperiodic lattice is a true inter-
mediate between order and disorder, presenting wave localiza-
tion effects as well as the emergence of well-defined
resonances in a transmission spectrum.

VII. CONCLUSIONS AND FINAL REMARKS

We have presented a systematic approach to wave propa-
gation in periodic and non-periodic lattices. Using a simple
numerical method based on the analogy with electrical sig-
nals propagating in transmission lines, the quantum mechani-
cal transmission probability was computed for finite lattices.
The band structure characteristic of crystals was recovered
for a periodic potential, and the corresponding average trans-
mission was shown to be independent of the number of lattice
sites considered. These results provide a reference for com-
parison with subsequent analysis of non-periodic lattices.
When wave transmission in a quasiperiodic, Fibonacci lattice
was considered, the concepts of “quasi band gap,” self-
similarity, and quasi-localization naturally emerged. Finally,
the random potential case allowed for a simple, numerical ob-
servation of Anderson localization. This approach should pro-
vide students insight into how transport properties in finite
media behave as non-periodicity or randomness is introduced.
As has been emphasized,3 the extraordinary phenomenon of
localization is a general property of wave propagation that
results from interference effects during transmission—aspects
whose consequences can be followed in the computation of
transmission coefficients. A possible extension to this study
includes considering potentials with various degrees of ran-
domness or quasiperiodicity. Classroom experiments using
transmission of electronic signals across cable lines30 could
provide a framework to observe localization effects and to
compare with numerical computation results. The numerical
method used here to calculate quantum transmission proba-
bilities is general enough to be applied by students to a wide
variety of physical situations involving wave propagation
through arbitrary one-dimensional structures.
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