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Traditionally quantum tunneling in a superconducting quantum interference device �SQUID� is studied on
the basis of a classical trajectory in imaginary time under a two-dimensional potential barrier. The trajectory
connects a potential well and an outer region crossing their borders in perpendicular directions. In contrast to
that main-path mechanism, a wide set of trajectories with components tangent to the border of the well can
constitute an alternative mechanism of multipath tunneling. The phenomenon is essentially nonone-
dimensional. Continuously distributed paths under the barrier result in enhancement of tunneling probability. A
type of tunneling mechanism �main path or multipath� depends on character of a state in the potential well prior
to tunneling. A temperature dependence of the tunneling probability in a very asymmetric �different capaci-
tances� SQUID has a finite slope at zero temperature. A transition between thermally assisted tunneling and
pure activation can be not smooth depending on current through a very asymmetric SQUID.
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I. INTRODUCTION

Phases in Josephson junctions1 are usually treated as mac-
roscopic degrees of freedom. However they can exhibit
quantum properties.2 In particular, quantum tunneling of
those variables across a potential barrier is possible.3–6 Tun-
neling in a single Josephson junction is similar to a conven-
tional one-dimensional quantum-mechanical process. In this
case the tunneling mechanism is described by theory of
Wentzel, Kramers, and Brillouin �WKB�.7–10 Tunneling oc-
curs from a classically allowed region which is a conven-
tional potential well where energy levels are quantized.11–14

Quantum coherence between potential wells was
demonstrated.15–18

Besides single Josephson junctions, superconducting
quantum interference devices �SQUID� are also a matter of
active investigation for many years.19–27 A SQUID consists
of two Josephson junctions and, therefore, represents a two-
dimensional system where macroscopic quantum tunneling
is also possible. Tunneling in multidimensional systems is
well studied.28–32 There is the certain underbarrier path �or a
few paths� where a wave function is localized and it decays
along the path. This main-path tunneling is described by a
classical trajectory in imaginary time and it is analogous to a
conventional WKB mechanism.

In contrast to that, a different scenario of tunneling in a
static SQUID is possible. Instead of localization on a main
path an underbarrier state is distributed over a continuous set
of paths. Multipath tunneling cannot be described in terms of
a classical trajectory in imaginary time.

A realization of a particular tunneling mechanism �main
path or multipath� depends on type of a state in the potential
well prior to tunneling. Suppose, in the classical treatment, a
state in a well has a momentum component orthogonal at
some point to a border of the well �a normal reflection�. The
main path starts at that point and continues under the barrier.
When a state in the well has also a component which is
tangent to the border at some point �a particle hits the border
from some angle� a scenario is different. Around that point

there a set of continuously distributed classical paths which
go under the barrier.

The first goal of the paper is to propose a different aspect
of tunneling in a static SQUID, which is a multipath mecha-
nism. These results are presented in Ref. 33. See also Ref.
34. The phenomenon is essentially nonone-dimensional and
it occurs in a SQUID which is symmetric or at least not very
asymmetric. As shown in the paper, a multipath mechanism
can result in a larger probability of tunneling compared to
main path. Different paths interfere and a method of classical
trajectory in imaginary time, in contrast to main path, is not
valid. In experiments it is possible to determine a contribu-
tion of multipath effects to a total probability of tunneling. A
dc SQUID in zero magnetic field and without dissipation is
considered in the paper.

In Sec. II a formulation of the problem is given. In Sec.
III general arguments are used to explain multipath phenom-
enon and to estimate the effect. It is shown that multipath
tunneling through a two-dimensional static barrier in a not
very asymmetric SQUID is analogous to photon-assisted tun-
neling across a nonstationary one-dimensional barrier. In
Sec. IV an exact solution of the semiclassical problem is
done with the use of a certain model coupling between the
junctions in a symmetric SQUID. The exact calculations
confirm the estimate of the effect performed on the basis of
general arguments in Sec. III.

The second goal of the paper is to study tunneling in a
very asymmetric SQUID. Capacitances of two junctions in a
SQUID play a role of masses. When one capacitance is large
the masses become very different and one phase becomes
“heavy.” This provides an additional interest for study of an
asymmetric SQUID. A behavior of an asymmetric SQUID
after tunneling was investigated.27

During tunneling process a motion along the heavy coor-
dinate is weakly generated and the process of barrier cross-
ing becomes almost one-dimensional when the heavy phase
is fixed. This fixed value should be determined from a con-
dition of maximum of a tunneling probability.

That program has been performed in the paper. There are
two unusual features of results.
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First, the tunneling probability, as a function of tempera-
ture, has a finite slope at low temperature. This contrasts to a
temperature dependence for a one-dimensional barrier where
that slope is zero.

Second, a transition at a finite temperature between ther-
mally assisted tunneling and pure activation changes its char-
acter when current approaches the critical value. At those
currents temperature dependence of tunneling probability ex-
hibits a finite jump of slopes at the transition temperature.
When current is not too close to the critical value the transi-
tion is smooth as for a one-dimensional barrier.

In Sec. VI we apply to a SQUID a semiclassical formal-
ism of Hamilton-Jacobi. In Sec. VII the method of classical
trajectories in imaginary time is used which accounts for an
optimization of tunneling probability with respect to a value
of the heavy phase. In Sec. X it is argued that experimental
observations of the proposed phenomena in a SQUID are
real.

II. FORMULATION OF THE PROBLEM

We consider a dc SQUID, consisting of two Josephson
junctions with phases �1 and �2 with no dissipation when the
two junctions are inductively coupled. Critical currents of the
junctions are equal but capacitances C1 and C2 can be differ-
ent. We define the asymmetry parameter

M =
C2

C1
. �1�

A classical behavior of phases corresponds to conservation
of the total energy

E0 =
EJ

2�2�� ��1

�t
�2

+ M� ��2

�t
�2� + EJ�− cos �1 − cos �2

− j��1 + �2� +
1

2�
��1 − �2�2� , �2�

where the dimensionless current j= I /2Ic, the Josephson en-
ergy EJ=�Ic /2e, the plasma frequency �=�2eIc /�C1, and
the coupling parameter �=2�LIc /�0 are introduced. Here Ic
and L are critical current and inductance of each individual
junction. The magnetic flux quantum is �0=��c /e.

Below we consider large � and the total current I close to
its critical value, �1− j��1. New variables are introduced by
the relations

�1 =
�

2
+ �3x − 1��2�1 − j� +

3x

�
,

�2 =
�

2
+ �3y − 1��2�1 − j� +

3y

�
. �3�

Time is measured in the unit of

t0 =
�2�

�
� 	

1 + 	
, �4�

where the coupling parameter is

	 =
1

��2�1 − j�
. �5�

The energy in Eq. �2� takes the form

E0 =
�B

t0
�1

2
� �x

�t
�2

+
M

2
� �y

�t
�2

+ V�x,y�� , �6�

where

B =
B0

�2
�1 + 	

	
�5/2

, B0 =
9EJ

���5/2 . �7�

The potential energy is

V�x,y� = V0�x� + V0�y� −
2	xy

1 + 	
, �8�

where V0�x�=x2−x3. B in Eq. �6� is called semiclassical pa-
rameter. When B is large the phase dynamics is mainly clas-
sical. Below we consider that case, 1�B.

A classical dynamics of phases in a SQUID corresponds
to Eqs. �6� and �8�. The effective particle moves in the clas-
sically allowed region �in a vicinity of the point x=y=0�
which is restricted by the potential barrier. As known, the
particle can tunnel through the barrier resulting in experi-
mentally observable phase jumps. A tunneling scenario, as
shown in the paper, substantially depends on the asymmetry
parameter M.

III. TUNNELING IN A SYMMETRIC SQUID

Below, in Secs. III–V, we consider a symmetric SQUID,
M =1. The conclusions drawn relate also to the case of a not
very asymmetric SQUID, M �1.

A character of tunneling depends on coupling strength 	
between the two junctions. When the coupling is strong, 1
�	, one can easily show that the last term in the energy 	Eq.
�2�
 dominates.20 Therefore in this case the particle tunnels
along the direction x=y since fluctuations around this path
cost a large energy. In contrast, at a small coupling, 	�1,
the junctions are almost independent and there are two dif-
ferent tunneling paths, along the x or y direction.20

As follows, at a very strong and a very weak coupling
between two junctions the system behaves as effectively one-
dimensional. Essential features of two dimensions are exhib-
ited for an intermediate coupling, 	�1. Below we study a
formation of that regime starting from a region of small 	.

A. Uncoupled junctions

Let us consider first zero coupling between two junctions
�	=0�. In this case Eqs. �6� and �8� describe two indepen-
dent particles in one-dimension potentials shown in Fig. 1.
When the semiclassical parameter B is large the potential
barriers in Fig. 1 are hardly transparent and a number of
discrete levels in the wells is large.

Suppose tunneling to occur in the x direction. We intro-
duce the dimensionless energy E
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E0 =
�B

t0
E . �9�

The total particle energy E in Fig. 1 is a sum of ones corre-
sponding to motions in the x and y directions. A maximal
tunneling probability of a particle, with a fixed total energy
E, is realized when the energy of the x motion has a maximal
possible value. This situation is shown in Fig. 1. In this case
a motion in the direction perpendicular to tunneling �the y
direction� is not excited pertaining to a lowest level in y. In
the classical treatment, the particle hits a border of the well,
V�x ,y�=E, with zero tangent velocity.

For comparison, in Fig. 2 the total energy E is distributed
in a way that the y motion is excited. In the classical treat-
ment, the particle hits a border of the well with a finite tan-
gent velocity. This results in less probable tunneling in the x
direction since tunneling occurs from a lower level, E−
E,
as shown in Fig. 2. The part 
E of the total energy relates to
the tangent motion.

B. Weakly coupled junctions

Suppose the junctions are weakly coupled so that 	�1.
In this case a motion in the total potential 	Eq. �8�
 cannot be
reduced to two independent ones as in Figs. 1 and 2. Now
the entire system of levels in the total potential 	Eq. �8�


accumulates the levels of the x and y channels in Fig. 1. If
there are five discrete levels in each well, V0�x� and V0�y�,
then the potential V�x ,y� contains 25 levels.

Let us analyze specificity of two-dimensionality in tunnel-
ing. First, the coupling constant 	 is partly accounted for in
the parameter B in Eq. �7�. At a small 	 this leads to a linear
in 	 reduction of tunneling probability. The last term in the
potential 	Eq. �8�
 is proportional to 	2 since y�	. So we
calculate an 	2 correction to the tunneling probability. It is
small at 	�1 but it becomes significant at 	�1.

Below in this section we propose some nonrigorous argu-
ments which help to understand what happens under the bar-
rier in two dimensions. When a particle hits a border of the
well with zero tangent momentum, 
E=0, an underbarrier
wave function is localized on the certain classical trajectory
which is orthogonal to the borders of classical regions.28–32

This trajectory is shown in Fig. 3 by the arrowed curve. The
trajectory is driven by the y force directed away form the line
y=	x / �1+	� where it changes sign. That line is marked in
Fig. 3 as c. Not far from the outer region the x force, �V /�x,
attracts the particle to the line c as it is tilted.

A wave function is proportional to exp�iS /�� where S is a
classical action.10 According to Maupertuis’ principle,35

along the classical trajectory one should put S=Scl, where

Scl = i�B� dl�V�x,y� − E �10�

and dl is an element of the classical trajectory. This mecha-
nism can be called main path tunneling since another path
does not lead to the well in Fig. 3 deviating from it as the
classical trajectory shown by the dashed curve.30,31 Equation
�10� is analogous to a conventional WKB result if to consider
it along a curve but not a straight line.

A scenario changes when a particle hits the border of the
well with nonzero tangent momentum, 
E�0. Then an indi-
vidual trajectory, related to the regime of Eq. �10� and shown
by the arrowed curve in Fig. 4, is impossible at least in a
vicinity of the well where a tangent component of the mo-
mentum is finite

�S

�y
� �B�
E − V0�y� �11�

and the imaginary momentum in the x direction is

E

y

V (x) V (y)0

x

0

a a2 1

FIG. 1. Uncoupled junctions, 	=0. The total particle energy E is
fixed. The maximum tunneling probability in the x direction relates
to a maximum excitation of the y motion to provide a maximum
energy in the x direction.

y

V (x) V (y)0

x

0

E

E− Eδ

FIG. 2. Uncoupled junctions, 	=0. A part of the total energy E
is given up to an excitation of the y motion resulting in a reduced
tunneling probability in the x direction compared to Fig. 1.

c

x

y

well

FIG. 3. At 
E=0 the main path �arrowed curve� connects two
classically allowed domains, the potential well and the outer region.
The thick curves relate to the condition V�x ,y�=E. A deviation from
the main path �dashed curve� does not lead to the well. On the line
c the y component of a force is zero, �V /�y=0.
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�iS

�x
� − �B�V0�x� − E + 
E . �12�

In this case an attempt to adjust a classical trajectory to a
tangent component at the well border results in a deviating
curve similar to the dashed one in Fig. 3. Therefore an un-
derbarrier density cannot be localized on a particular classi-
cal trajectory along the entire underbarrier region. Close to
the well that trajectory goes over into a wide set of paths as
shown schematically in Fig. 4. According to Feynman,36 the
state related to Eqs. �11� and �12� is a superposition of a wide
set of classical paths.

One can note that in a one-dimensional case, when a
Hamiltonian is of a higher order than quadratic in momen-
tum, a few underbarrier paths are also possible.37,38 Interfer-
ence of those paths may result in an oscillatory density under
the barrier.

As follows from Eq. �12�, a finite 
E reduces the wave
function in a vicinity of the well. In contrast, far from the
well the wave function exp�iScl /�� on the arrowed curve in
Fig. 4 is larger compared to the dashed curve �
E=0� since
the former is closer to the line c where V�x ,y� is smaller. In
other words, the arrowed curve in Fig. 4 is shifted to a more
transparent part of the barrier.

When the energy E is close to the bottom of the well the
fraction of the trajectory above the curve c in Fig. 3 is small
because the well shrinks. As follows from above, there are
two opposite effects on tunneling when the total energy in
the well is redistributed between a normal �E−
E� and a
tangent �
E� motions. �i� The reduction in tunneling is con-
nected to a vicinity of well where the wave function is sup-
pressed due to a reduction in an energy level down to E
−
E. As follows from Eq. �12�, the exponential reduction in
the particle density is exp�−c1B
E�, where c1 is a positive
parameter. �ii� The enhancement of tunneling is due to a shift
of the subsequent trajectory to a more transparent part of the
barrier. A reduction in V�x ,y� in that region is proportional to
	xy. Since a typical x�1 and y��
E, the exponential en-
hancement of the particle density, according to Eq. �10�, can
be estimated as exp�2c2B	�
E�, where c2 is a positive pa-
rameter.

A total effect on the tunneling probability ��
E� is de-
fined by a product of the two exponents

��
E� � ��0�exp�− c1B
E�exp�2c2B	�
E� . �13�

At 
E�	2 the expression �13� reaches a maximum,
��0�exp�B	2c2

2 /c1�, which manifests an exponential en-
hancement of tunneling due to a finite 
E. The parameters c1
and c2 are approximately of the order of unity. Whereas 	 is
small the semiclassical combination B	2 is large. It is amaz-
ing, that the above conclusions, drawn on the basis of gen-
eral arguments, are confirmed �excepting some details� by
exact calculation in Sec. IV where the values of c1 and c2 are
specified.

C. Analogy with photon-assisted tunneling

Multipath tunneling through a two-dimensional static bar-
rier is similar to photon-assisted tunneling across a nonsta-
tionary one-dimensional barrier.39 The latter also consists of
two parts. The first one is an absorption of quanta with an
exponentially small probability analogous to the first expo-
nent in Eq. �13�. The second one is tunneling in a more
transparent part of the barrier �a higher energy� with an en-
hanced probability corresponding to the second exponent in
Eq. �13�. A total probability is also determined by a maxi-
mum of the product. In the both cases a particle finds a more
transparent part of a barrier being initially pushed either by a
tangent motion �at the end of the multipath region in Fig. 4�
or by quanta absorption.

IV. UNDERBARRIER WAVE FUNCTION IN A SYMMETRIC
SQUID

To quantitatively study the problem of two-dimensional
tunneling one should solve the Schrödinger equation with the
exact potential 	Eq. �8�
. Since the potential barrier is almost
classical one can apply a semiclassical method. With an ex-
ponential accuracy the wave function is

� � exp�iB�2� , �14�

where the exponent is a large classical action measured in the
units of Planck’s constant. As follows from Eq. �6�, �x ,y�
satisfies the Hamilton-Jacobi equation10,35

� �

�x
�2

+ � �

�y
�2

+ V0�x� + V0�y� − f�x�y = E , �15�

where f�x�=2	x / �1+	�. When 	=0 the variables in Eq.
�15� are separated and a solution can be easily obtained. In
our case there a substantial cross term f�x�y in Eq. �15�
which mixes the modes.

We consider a small coupling 	 when a deviation of the
variable y from the tunneling path is small. For convenience,
below a model coupling between the variables x and y is
introduced. Namely, instead of the linear in x function we
use

f�x� = 0 x � x0

2	 x0 � x ,
� �16�

where x0 is chosen between a2 and a1 in Fig. 1. The choice of
this form, Eq. �16�, does not contradict to main arguments of
Sec. III.

c

x

y

well

FIG. 4. Underbarrier paths at 
E�0 connecting two classically
allowed domains as in Fig. 3. A finite tangent component results in
the multipath region close to the well which goes over into the
subsequent path indicated by the arrowed curve. The main path of
Fig. 3 is shown by the dashed curve.

B. IVLEV AND J. P. PALOMARES-BÁEZ PHYSICAL REVIEW B 82, 184513 �2010�

184513-4



A. Hamilton-Jacobi approach

At a small coupling, 	�1, we consider a transition
through the barrier along the direction x. The transition oc-
curs with a small deviation of y from zero position. In this
case one can put V0�y�=y2 in Eq. �15�. The classically al-
lowed motion in the well V0�x�+y2�E is described by a real
action �x ,y�. The particle probes the potential in the classi-
cally allowed region where motions in x and y directions are
independent. Therefore the level quantization is determined
by two one-dimensional wells and the action is a sum of two
one-dimensional parts defined by a solution of Eq. �15� with
the condition �16� at x�x0. A continuation of this action
from the well to under the barrier at x�x0 results in

�x,y� = i�
x0

x

dx1
�V0�x1� − E + 
E + �

0

y

dy1
�
E − y1

2.

�17�

The part 
E of the total energy E relates to the tangent �per-
pendicular to the tunneling direction� motion. The fraction

E is determined by a state in the well from which tunneling
occurs. At a large B the energies E and 
E are almost con-
tinuous with a discreetness 1 /B.

A solution at x0�x can be found by the method of varia-
tion of constants.35 It has the form

�x,y� = i�
x0

x

dx1
�V0�x1� − E − 	2 + ��x,y�

+ �
	

y

dy1
���x,y� − �y1 − 	�2 + iF	��x,y�
, x0 � x .

�18�

For a given function F��� the function ��x ,y� is determined
by the condition � /��=0

2i
�F���

��
= i�

x0

x dx1

�V0�x1� − E − 	2 + �
+ �

	

y dy1

�� − �y1 − 	�2
,

�19�

which is independence of  on “constant” ��x ,y�. Now de-
rivatives of the action have the simple forms

��x,y�
�x

= i�V0�x� − E − 	2 + ��x,y� ,

��x,y�
�y

= ���x,y� − �y − 	�2. �20�

According to matching of ��x0 ,y� /�y given by Eqs. �17�
and �18�, ��x0 ,y�=
E+	2−2	y. This can be used to deter-
mined the function F��� if to express y through ��x0 ,y� and
to insert that into Eq. �19�. As a result, the function ��x ,y� is
defined by the condition

i�
x0

x dx1

�V0�x1� − E − 	2 + �
= �

y−	

�
E−	2−��/2	 dz
�� − z2

. �21�

B. Probability of tunneling

Not very close to the classical exit point a1, determined
by the condition V0�x��E, one can write the left hand side
of Eq. �21� as i��x�, where

��x� = �
x0

x dx1

�V0�x1� − E
. �22�

Now a solution of Eq. �21� can be easily obtained. At x0
�x

��y − 	�2 − � = ��y + 2	 sinh2 �/2�2 − 
E − 	 sinh � .

�23�

There is a remarkable underbarrier path, y�x�, where
��x ,y� /�y=0. According to Eq. �20�, at x0�x

y�x� = �	2 sinh2 ��x� + 
E − 		cosh ��x� − 1
 . �24�

The path y�x� is shown in Fig. 5 by thick curves. In Fig. 5�b�
this is the upper curve.

The region x�a2 in Fig. 5 pertains to the classical motion
in the well. At the classically forbidden region, a2�x�a1,
the wave function strongly depends on 
E. At 
E=0 the
wave function is localized at a close vicinity of the curve
y�x� in Fig. 5�a� �main-path tunneling�.

At 
E�0 the wave function is localized on the curve y�x�
at its part x0�x�a1 only. At the underbarrier region a2�x
�x0 the regime is different. At each fixed x the modulus of
the wave function is a constant, with the exponential accu-
racy, along the wide dashed region shown in Fig. 5�b� �mul-
tipath tunneling�. At a finite 
E there are real momenta under
the barrier according to Eq. �17�. At x=a1 the particle es-
capes from under the barrier.

Below it is convenient to introduce

(a)

(b)
a2

a 2
a1

a1

0

y

x

x

x

x 0

y

δ E1/2

−δ E1/2

FIG. 5. At the region a2�x�a1 the motion is classically for-
bidden. �a� Tunneling from a state with zero tangent momentum,

E=0. A particle density is localized on the thick curve which is the
main path. �b� Tunneling from a state with nonzero tangent momen-
tum, 
E�0. At each fixed x from the interval a2�x�x0 the modu-
lus of the wave function is a constant, within the exponential accu-
racy, at the entire dashed �multipath� region. Classical trajectories at
the well, x�a2, are shown.
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��x� = �	x,y�x�
 . �25�

As follows from Eqs. �23� and �24�

���x� = 	 cosh ��x� − �	2 sinh2 ��x� + 
E . �26�

We define probability of tunneling with a fixed energy E
and an exchange 
E as

��
E� = ��	a1,y�a1�

��a2,0�

�2

� exp�2iB�2�
a2

a1 �	x,y�x�

�x

dx� .

�27�

The definition, Eq. �27�, is analogous to Eq. �13�. It is
useful to consider the probability of tunneling ��0� at 
E
=0. To obtain it one has to expand the root in the first Eq.
�20� with respect to �−	2 and to substitute into Eq. �27�.
With the use of Eqs. �25� and �26� we obtain

��0� = �WKB expB	2

�2
	2��a1� − 1 + e−2��a1�
� , �28�

where

�WKB � exp�− 2B�2�
a2

a1

dx�V0�x� − E� �29�

is a one-dimensional WKB-like expression.

C. Tunneling from a state with nonzero tangent momentum,
�EÅ0

We consider weak tangent momenta related to the condi-
tion 
E�	2. According to Eqs. �20�, �26�, and �27�, at 
E
�	2 the tunneling probability is

��
E� = ��0�exp�− B
E�2���a2�� +
B
E
�2

ln
	2


E� . �30�

The first term in the exponent comes from a conventional
WKB reduction in tunneling probability at x�x0 when the
energy is reduced by 
E. The second term in the exponent is
due to the region x0�x where the trajectory goes in a more
transparent part of the barrier. The second term dominates at

E�	2 and increases the tunneling probability.

As follows from Eq. �26�, at 
E close to 	2, ��x�= �	
−�
E�2 /cosh2 ��x�. This means that the increase of the tun-
neling probability, associated with the region x0�x, is more
effective at 
E=	2. According to Sec. III, when E is not far
from the well bottom the crossover between two regimes is
shifted toward the point x=a2. For this reason, below we
choose the parameter x0 in Eq. �16� to be close to a2 for
simplicity. In this case, at 
E close to 	2, the tunneling prob-
ability is

��
E� = ��0�expB	2

�2
�1 − e−2��a1�

−
2

	2 �	 − �
E�2tanh ��a1��� . �31�

There is another expression of the probability which fol-
lows from Eqs. �28� and �31�

��
E� = �WKB expB	2�2���a1�

−
�	 − �
E�2

	2 tanh ��a1��� . �32�

The Gaussian form, Eq. �32�, is analogous to Eq. �13�. The
tunneling probability reaches a maximum at 
E=	2 as it has
been predicted in Sec. III. The modulus of the wave function
is plotted in Fig. 6, where y�x�=	 for all underbarrier track,
a2�x�a1. There are two branches under the barrier and an
outgoing wave after the exit indicated by the dashed line in
Fig. 6.

D. A relation between semiclassical approximation and WKB

In semiclassical approximation the wave function in a
problem of any dimension has the form10

� � exp�iS/�� , �33�

where S is a classical action satisfying Hamilton-Jacobi
equation.35

In the original papers by Wentzel,7 Kramers,8 and
Brillouin9 a static one-dimensional potential was considered
when the only solution of the Hamilton-Jacobi equation was
S=�pdx. This phase integral constitutes the basis of WKB
approach. So in a static one-dimensional case semiclassical
approximation is equivalent to WKB.

In a multidimensional case a situation is more compli-
cated. First, there are solutions of the Hamilton-Jacobi equa-
tion when a wave function under the barrier is localized on
the certain trajectory l��r�� �main path� in the multidimensional
space. The wave function decays along the main path accord-
ing to the form S=�p�dl� where p� is imaginary. This phase
integral is analogous to one in the one-dimensional problem
if to substitute a straight path by the curve l��r��. Therefore, in
this case semiclassical approximation and WKB are similar.
An example of this situation is Fig. 5�a�.

Second, some solutions of the Hamilton-Jacobi equation
are possible when the wave function is not localized on the
certain underbarrier trajectory. An example of this type is
Fig. 5�b� where the wave function is smeared out over a wide
�multipath� domain. This is an example of semiclassical ap-

[x,y(x)]|ψ |

x0a2 a1 x

FIG. 6. Modulus of the wave function at 
E=	2. In this case
y�x�=	 at all a2�x�a1.
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proximation which is not generic with a WKB-like phase
integral along a main path. See also Ref. 34. Therefore we
distinguish between the terms “semiclassical approximation”
and “WKB.”

V. TUNNELING IN A SYMMETRIC SQUID AT FIXED
TEMPERATURE AND CURRENT

For comparison with experiments one should express the
tunneling probability in terms of temperature and current.

A. Temperature dependence of tunneling probability

At a fixed particle energy E a tunneling probability is
determined by Eqs. �29� and �32� with 
E=	2. At a fixed
temperature all energies contribute to tunneling with Gibbs
factors exp�−E0 /T�. In the semiclassical limit, 1�B, there
are many levels in the well. Therefore one can treat E as a
continuous variable and to optimize the probability
	��
E�exp�−E0 /T�
 with respect to E accounting for Eq. �9�.
This procedure gives the certain optimal energy ET from
which tunneling occurs.2,3,28–31 If to omit the term propor-
tional to 	2 in ��
E�, Eq. �32�, an optimal energy ET is
determined by

��a1� =
�

t0T�2
. �34�

Imaginary time ��a1� is given by Eq. �22� where one should
put now x0=a2. It follows that at T=0 the optimal energy is
ET=0. ET at the barrier top in Fig. 2 corresponds, at small 	,
to the critical temperature T0=� /�t0

�2 when the decay oc-
curs solely due to thermal activation.

Now one can express the tunneling probability �T at a
fixed temperature in the form

�T = �T
�0� expB	2

�2
�1 − exp�−

2�T0

T
��� , �35�

where the exponential coincides with one of Eq. �31� if to
insert there 
E=	2 and the expression �34�. �T

�0� is a prob-
ability of a conventional tunneling when a tangent momen-
tum in the well is zero. As follows from the expression �35�,
�T

�0���T. This means that tunneling occurs from states with
a finite tangent momentum. Since energy E has to be larger
than 
E�=	2� temperature cannot be too low, 1 / ln�1 /	�
�T /Tc�1.

B. Dependence of tunneling probability on current

Let us consider first an almost continuous distribution of
levels in the well �1�B�. The coupling constant 	 is of the
order of unity at I= IR, where

�1 −
IR

2Ic
� =

1

�2 . �36�

Since currents are close to the critical value 2Ic the parameter
� is supposed to be large. A dependence of �T on current is
schematically shown in Fig. 7. The limit of a small 	, con-
sidered above and defined by Eq. �35�, corresponds to the

left part of the curves in Fig. 7. Parts of the curves in Fig. 7
closer to 2Ic pertain to a large 	. In this case tunneling oc-
curs symmetrically, x=y, since a deviation from this path
costs a lot of energy.20

The dashed curve in Fig. 7 is �T
�0�. It is very easy to

numerically calculate �T
�0� using a standard technique20 when

a two-dimensional trajectory is normal to classically allowed
regions.2,3,27–31 �T

�0� depends on parameters �coupling
strength, asymmetry of junctions, etc.� of a SQUID fabri-
cated for measurements. For comparison with experiments
one has to know those values exactly. For this reason, we
leave �T

�0� as a schematic dashed curve in Fig. 7 planning its
exact calculation in the nearest future for particular param-
eters of a SQUID with an intermediate effective coupling.

The curves in Fig. 7 are taken at a fixed temperature
which exceeds T0= 	2�1− I / Ic�
1/4�� /2� sufficiently close to
2Ic �large 	�.20 In other words, in a close vicinity of 2Ic the
decay is due to a thermal activation. We will consider details
elsewhere.

When the semiclassical parameter B is not too large a
tunneling probability still remains exponentially small but a
level distribution in the well becomes substantially discrete.
This is a typical experimental situation.11–14 The underbarrier
process sets the certain energy 
E=	2 which is given up to
the tangent motion. According to Eq. �31�, the tunneling
probability reaches a maximal value under that condition.
The energy exchange is similar to one illustrated in Fig. 2.

On the other hand, the optimal 
E may not be exactly
fitted by discrete energy levels in the well which can be
outside the Gaussian distribution 	Eq. �31�
. This contrasts to
a continuous distribution of levels at a large B when a proper
level always exists. A mismatch between 
E and the level
structure results in reduction in the tunneling probability.

For this reason, one can expect a “resonance” due to co-
incidence of 
E�=	2� with a distance between discrete lev-
els. There are no sharp peaks but rather a shallow wavy
structure in �T illustrated in Fig. 8. Each minimum results
from the resonance and is smeared out at the interval of
currents


I

2Ic − IR
�

1
�B

, �37�

which follows from the Gaussian distribution in Eq. �31�.
Under the condition �36� a depth of each minimum in Fig. 8

2I
I

c0

ln(1/Γ )T

RI

FIG. 7. Dependence of tunneling probability at a fixed tempera-
ture �T on current in the case of an almost continuous distribution
of levels in the well �see inset�. The dashed curve corresponds to the
conventional probability ln�1 /�T

�0��.
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is on the order of one. In Fig. 8 only two minima are shown.
Strictly speaking, the semiclassical theory is not applicable
to a case of moderate B and the above arguments are heuris-
tic.

VI. TUNNELING IN AN ASYMMETRIC SQUID

Below, in Secs. VI–IX, we consider the case of a very
asymmetric SQUID, 1�M, when the coordinate �2 in Eq.
�2� is heavy. A character of tunneling in an asymmetric case
also depends on coupling strength 	 between the two junc-
tions. At 	=0.90 the curves of equal potential, V�x ,y�=E,
are shown in Fig. 9. An effective particle tunnels from one
classically allowed region �the potential well� to another �the
outer region�.

To quantitatively study the problem of two-dimensional
tunneling one should solve the Schrödinger equation with the
exact potential in Eq. �8�. Since the potential barrier is al-
most classical one can apply a semiclassical method when a
wave function has the form

� � exp�iB� , �38�

where the classical action is �B.  satisfies the equation of
Hamilton-Jacobi10

1

2
� �

�x
�2

+
1

2M
� �

�y
�2

+ V�x,y� = E . �39�

We define the energy E by the relation

E0 =
�B

t0
. �40�

At a large M a solution of Eq. �39� can be written in the form
=0+1, where 1 is small and 0 is given by

0�x,y�
�2

= i�x

dx1�x1
2 − x1

3 −
2	x1y

1 + 	
− E + 
E�x1,y�

+ �M�y

dy1
�
E�x,y1� − y1

2 + y1
3, �41�

where 
E�x ,y� is some function to be specified. It is easy to
conclude that the correction 1 is small �proportional to
1 /�M� when the derivative �
E /�x is small �proportional to
1 /M�. So we consider below 
E�y�.

The function 
E�y� is determined by a state in the well
from which tunneling occurs. When the case of Fig. 10�a� is
realized the last term in Eq. �41� provides a Gaussian distri-
bution of density around the line y=y0 shown in Fig. 10�b�
for some x under the barrier. This is analogous to a conven-
tional scenario of tunneling in two dimensions �main
path�.30,31

In the case of 
E�y� of Fig. 11�a� at y0�y, due to the
second term in Eq. �41�, the density drops down under the
barrier as exp	−c�y−y0�3/2
, where c��M. At y�y0 a decay
of the density is provided by the first term of 0 in Eq. �41�
so a maximum of the density is reached at y=y0. At y�y0
there is an additional branch of the wave function with the
opposite sign of the second term in Eq. �41� related to the
opposite current in the y direction. This compensates a large
current in the y direction provided by the second term in Eq.
�41� at y�y0. Therefore the density becomes oscillatory at
y�y0 as shown in Fig. 11�b� for some x under the barrier.

The situations in Figs. 10 and 11 relate to different types
of states in the potential well from which tunneling occurs.
In the case of Fig. 10 a Gaussian distribution of density holds
in the well because the last term in Eq. �41� dominates. In the
case of Fig. 11 the distribution in the well is also oscillatory.

2I
I

c0

ln(1/Γ )T

RI

FIG. 8. Dependence of tunneling probability at a fixed tempera-
ture �T on current in the case of discrete levels in the well �see
inset�. The dashed curve is the same as in Fig. 7.

FIG. 9. �Color online� Curves of a constant energy V�x ,y�=E at
	=0.9. Tunneling occurs along the dashed line, y=y0, where an
underbarrier wave function is localized.

y
0

y2−y

y

(a)

(b)

E(y)δ

3

y
0

y

x,y|ψ( )|

FIG. 10. �a� Form of 
E�y�. �b� Corresponding density distribu-
tion is Gaussian. It is plotted for some x under the barrier.
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We do not analyze here details of the wave function in the
well.

As follows, in the both cases, Figs. 10 and 11, tunneling
occurs along the certain line y=y0 �Fig. 9� corresponding to
classical mechanics when a particle does not move along a
heavy direction. The line y=y0 is main path in spite of a
density distribution around the path can be non-Gaussian as
in Fig. 11�b�. A position of y0 should be determined from the
condition of maximum of a tunneling probability. With an
exponential accuracy a tunneling probability is the same for
the both cases.

VII. TUNNELING PROBABILITY IN AN ASYMMETRIC
SQUID

Since tunneling occurs along the line y=y0 one can use a
WKB approach as in a one-dimensional case. The probabil-
ity of tunneling with a fixed energy E is

��E� � exp	− 2BA�E�
 , �42�

where

A�E� = �2� dx�v�x� − E . �43�

The one-dimensional potential v�x� is given by

v�x� = x2 − x3 −
2	y0

1 + 	
x + y0

2 − y0
3. �44�

The integration in Eq. �43� is restricted by the classically
forbidden region where E�v�x�.

Tunneling probability at a fixed temperature accounts for
the Gibbs factor and is determined by

� � exp�− 2BA�E� −
E0

T
� �45�

with a subsequent optimization with respect to E. Taking Eq.
�40�, one can write Eq. �45� in the form

� � exp�− 2BAT� , �46�

where

AT = A�E� +
E

�
. �47�

The parameter � is connected with temperature

� =
2T��

��
� 2	

1 + 	
. �48�

Minimization of AT with respect to energy defines E by
the equation

1

�
=

1
�2
� dx

�v�x� − E
. �49�

The parameter y0 should be chosen to minimize AT.
By introducing imaginary time t= i� the action AT can be

written in the form

AT = �
0

1/�

d��1

2
� �x

��
�2

+ v�x�� , �50�

where the classical trajectory under the barrier is determined
by Newton’s equation

�2x

��2 = 2x − 3x2 −
2	y0

1 + 	
�51�

with zero velocities at the terminal points, �=0 and �=1 /�.
According to Eq. �49�, 1 /� is the underbarrier time of motion
between two terminal points. In terms of trajectories, the
condition of minimum AT with respect to y0 takes the form

2y0 − 3y0
2 =

2	�

1 + 	
�

0

1/�

xd� . �52�

For a strongly asymmetric SQUID, a large M, tunneling
occurs along a straight line y=y0 shown in Fig. 9. The action
in Eq. �50� depends on two parameters, 	 and T�� /��.

The tunneling probability satisfies the relation

1

B0
ln

1

�
= �2�1 + 	

	
�5/2

AT�	,T��/��� . �53�

A recipe of calculation of the action AT is the following. At
fixed 	, y0, and � one should find a solution of Eq. �51� with
zero velocities, �x /��=0, at �=0,1 /�. That solution has to
be inserted into the relation �52� which defines y0 at fixed �
and 	. The solution with the defined y0 should be substituted
into Eq. �50� which produces AT�	 ,T�� /���. We demon-
strate in Sec. VIII how this scheme works in the case of low
temperatures.

VIII. TUNNELING AT LOW TEMPERATURES
IN AN ASYMMETRIC SQUID

At low temperatures the energy E should be close to the
minimum of the potential v�x� providing a long underbarrier
time 1 /�. With the value of energy

y
0

y2−y

y

(a)

(b)

E(y)δ

3

y

x,y|ψ( )|

y
0

FIG. 11. �a� Form of 
E�y�. �b� Corresponding density distribu-
tion, plotted for some x under the barrier, is not Gaussian. See the
text.
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E =
1 + 2	

�1 + 	�2 y0
2 �54�

the action takes the form

AT =
4�2

15
−

2�2	y0

1 + 	
+

E

�
. �55�

A minimization with respect to y0 of the action in Eq. �55�,
accounting for Eq. �54�, is equivalent to Eq. �52�. The result-
ing action, at low dimensionless temperature �, is

AT =
4�2

15
−

2	2

1 + 2	
� . �56�

IX. RESULTS FOR AN ASYMMETRIC SQUID

We performed a numerical solution of Eq. �51�. The re-
sults for the tunneling probability are presented in Figs. 12
and 13 where temperature T is measured in the units of
�� /��. Each curve in Figs. 12 and 13 consists of two parts.
To the left of a dot each curve relates to above trajectory
calculations corresponding to thermally assisted tunneling.
To the right of a dot a curve is solely due to thermal activa-
tion

1

B0
ln

1

�
=

��

T��

2

27	3�1 − 	��1 + 2	�2 	 � 1/2
2 1/2 � 	 .

� �57�

The activation energy is given by the saddle point
V�xs ,ys� which coincides with the crossing point of two
curves in Fig. 9. The steepest descent in Fig. 9 goes along the
direction x=y. The saddle point �xs ,ys� is determined by the
conditions �V�x ,y� /�x=�V�x ,y� /�y=0. At 1 /2�	

xs = ys =
2

3�1 + 	�
�58�

and at 	�1 /2

xs,ys =
1 + 2	 � �1 − 4	2

3�1 + 	�
. �59�

At 	�1 /2 the transition to a pure activation regime is
smooth as in a one-dimensional case. It is analogous to
type-II phase transition. This corresponds to 2� �1− j��2 in
Figs. 12 and 13. At 1 /2�	 the transition to the activation
regime reminds type-I phase transition. A derivative with re-
spect to temperature jumps at those points which can be ob-
served in Fig. 13. Appearance of the jumps is a consequence
of two-dimensionality when the pure thermal activation does
not smoothly go over into a thermally assisted tunneling. In
this case a transition point between them corresponds to
equal tunneling probabilities of two different processes. In
one dimension they always merge smoothly when an opti-
mum in energy coincides with a barrier top.

Numerically calculated curves in Figs. 12 and 13 match at
low temperatures the analytical dependence followed from
Eqs. �53� and �56�. At low temperatures

1

B0
ln

1

�
=

8

15
�1 + 	

	
�5/2�1 −

T��

��

15	2�	

�1 + 2	��1 + 	
� .

�60�

We note that the slope in the temperature dependence in Eq.
�60� is finite at low temperatures. It is a consequence of
two-dimensionality since the activation energy E in that case
is proportional to T2. In one dimension it is exponentially
small as exp�−const /T�. This is due to proportionality of a
period of oscillations in one dimension, which is � /T, to
ln 1 /E as follows from classical mechanics.35

The tunneling probability � as a function of the parameter
�1− j��2 is plotted in Fig. 14 for different values of the di-
mensionless temperature T�� /��. This plot shows how �
depends on current at a fixed temperature.

X. DISCUSSIONS

Scenario of tunneling in a SQUID substantially depends
on that whether it is almost symmetric �M �1� or very asym-
metric �1�M�. A diagram of regimes, considered in the pa-
per, is sketched in Fig. 15 in the plane of asymmetry param-
eter M and coupling parameter 	. We discuss first an almost
symmetric SQUID. In that case effects of two-dimensionality
can be strongly pronounced.

Quantum tunneling across a one-dimensional static poten-
tial barrier is described by WKB theory. Tunneling through a
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FIG. 12. �Color online� � is tunneling probability in an asym-
metric SQUID. Temperature T is measured in the units of �� /��.
The numbers mark values of the parameter �1− j��2.
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FIG. 13. �Color online� Amplification of the lower set of curves
in Fig. 12 for an asymmetric SQUID. Left parts of the curves relate
to a thermally assisted tunneling and right parts pertain to pure
activation.
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multidimensional barrier is well studied.28–31 Accordingly,
the main contribution to a tunneling probability comes from
the extreme path linking two classically allowed regions. The
path is a classical trajectory with real coordinates which can
be parametrized by imaginary time. The underbarrier trajec-
tory is a solution of Newton’s equation in imaginary time.
The trajectory is given rise by a particle hitting normally
�with zero tangent momentum� a border of the classically
allowed region. In terms of discrete levels in the well tunnel-
ing occurs from a state with the analogous property. Under
the barrier the probability density reaches a maximum at
each point of the trajectory along the orthogonal direction
with respect to it. Along that direction the density has a
Gaussian distribution. Therefore around the trajectory, which
plays a role of a saddle point, quantum fluctuations are weak.
The wave function, tracked along that trajectory under the
barrier, exhibits an exponential decay generic with WKB be-
havior. This constitutes a conventional scenario of tunneling
in multidimensional case30,31 which can be called main-path
tunneling.37 This mechanism was explored for two-
dimensional tunneling in a symmetric SQUID in Ref. 20.

However, in some cases tunneling through multidimen-
sional barriers occurs according to a different scenario which
is not similar to a WKB-like phase integral along the certain
path. An example of such situation in a symmetric SQUID is
investigated in the paper.

When a state before tunneling has a tangent momentum
with respect to a border of the well there are no extreme
points on it since the derivative of the wave function along

the border is finite. This means that a tunneling probability is
no more determined by the main underbarrier path but comes
from a wide set of paths. Traditionally, a decay of a state
with a tangent momentum is not considered since it does not
correspond to a saddle point and, hence, the net contribution
is expected to be averaged down to a small value due to
mutual interference of trajectories.

It is shown in the paper by general arguments and exact
calculations that a nonzero tangent momentum does not re-
sult in reduction in tunneling probability. Moreover, a related
multipath mechanism can exponentially enhance barrier pen-
etration in a SQUID which is not very asymmetric. In con-
trast to main-path mechanism, multipath tunneling cannot be
calculated using a classical trajectory in imaginary time.
Such a trajectory, connecting two physical �real� points, does
not exist in that case.

A possible way of interpretation of multipath tunneling is
proposed in Sec. III. In a vicinity of an entrance under the
barrier it is locally less transparent. A wide distribution of
paths in that region goes over into the single path which
proceeds up to an end of the barrier. That path lies in a more
transparent part of the barrier resulting in enhancement of
tunneling probability.

Multipath tunneling through a two-dimensional static bar-
rier reminds photon-assisted tunneling across a nonstationary
one-dimensional barrier. In the both cases a particle finds a
more transparent part of a barrier being initially pushed ei-
ther by a tangent motion or by quanta absorption.

The total energy E of a state in the well is distributed as
E−
E for a motion in the tunneling direction and as 
E for
tangent one. For a small coupling constant 	 the maximal
tunneling probability corresponds to 
E�	2.

An analysis of experimental data allows to define a con-
tribution of multipath effects by separation of the conven-
tional probability �T

�0� from a total result. �T
�0� depends on

parameters �coupling strength, asymmetry of junctions, etc.�
of a particular SQUID fabricated for measurements.

Usually, in order to observe tunneling in a SQUID a cur-
rent should be close to the critical one to reduce the effective
action. The condition for multipath tunneling is a weak cou-
pling �1��� between junctions in a SQUID to provide an
intermediate value of the parameter 	 	Eq. �5�
. The effect
was not observed yet since � was not sufficiently large in
existing experiments.22–24 It was ��0.37 in Ref. 22, �
�0.3 in Ref. 23, and ��1.6 in Ref. 24. The calculations in
the paper are performed for zero magnetic field in a SQUID
but this is not a principle restriction for observation of mul-
tipath tunneling. A role of dissipation is to be studied.

We see that in a multidimensional system �a SQUID is a
two-dimensional example� tunneling mechanism can be dif-
ferent than one traditionally considered on the basis of main
path. The necessary condition for unusual tunneling is that it
should start not from a ground state, otherwise an energy
exchange is impossible.

One should expect a modified quantum tunneling at a fi-
nite temperature across a nonone-dimensional barrier. In this
case the conventional mechanism of a periodic trajectory in
imaginary time with the period � /T is substituted by multi-
path mechanism.

In a very asymmetric SQUID there is always main-path
tunneling along a line perpendicular to the heavy direction. It
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FIG. 14. �Color online� Tunneling probability � �for an asym-
metric SQUID� versus current for various values of the dimension-
less temperature T�� /��. The dashed curve separates thermally
assisted tunneling from a pure thermal activation.
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FIG. 15. A scheme of regimes of tunneling in a SQUID consid-
ered in the paper. The region in a vicinity of the point �M =1, 	
=0� corresponds to a symmetric SQUID in Secs. III–V. The dashed
domain, at approximately M �10, relates to an asymmetric SQUID
in Secs. VI–IX.
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is amazing that a density distribution around that line can be
substantially non-Gaussian depending on a state in the well
from which tunneling occurs. Regardless of a type of that
state the tunneling exponent is the same. In a very asymmet-
ric SQUID a barrier penetration is analogous to one-
dimensional tunneling when the heavy junction is at rest.
There is a continuous set of such paths in two dimensions
and one should choose only one of them which provides a
maximum of tunneling probability. Therefore, in a very
asymmetric SQUID the problem is not completely one-
dimensional.

We used a semiclassical approximation when there are
many levels in the well. This approach sometimes is not
appropriate in one-dimensional Josephson junctions where a
barrier is weakly transparent but nevertheless there is only a
few levels in the well �say, five�.5,6,11–13 In a SQUID based
on two such junctions the number of levels can be roughly
estimated as 5�5. In our case of a strongly asymmetric
SQUID that number should be multiplied by the large pa-
rameter �M. Therefore the approximation of a large number
of levels in the well is reasonable.

We propose two peculiarities of tunneling in a very asym-
metric SQUID which do not exist in a single junction and in
a not very asymmetric SQUID. One of them is temperature
dependence of tunneling probability at low temperature. Ac-
cording to Eq. �60�, the curves in Fig. 13 have a finite slope
at low temperature. In one dimension the slope is zero due to
the exponent exp�−const /T� instead of T in Eq. �60�.

The second peculiarity is an unusual transition between
thermally assisted tunneling and pure activation marked by
dots in Fig. 13. At 2� �1− j��2 the transition is smooth but at
�1− j��2�2 there are jumps of slopes in Fig. 13.

Low dissipation regime and parameters M �35 and �
�15 correspond to reality in experiments with SQUIDs and

fit the developed theory. It is more convenient in experiments
to obtain a set of curves as in Fig. 14 since usually measure-
ments are run at a fixed temperature. A dependence on tem-
perature, as in Fig. 13, also can be obtained. This would
provide an experimental check of the predicted dependences
on temperature and current

XI. CONCLUSION

Traditionally quantum tunneling in a static SQUID is
studied on the basis of a classical trajectory in imaginary
time under a two-dimensional potential barrier. The trajec-
tory connects a potential well and an outer region crossing
their borders in perpendicular directions. In contrast to that
main-path mechanism, a wide set of trajectories with com-
ponents tangent to the border of the well can constitute an
alternative mechanism of multipath tunneling. The phenom-
enon is essentially nonone-dimensional. Continuously dis-
tributed paths under the barrier result in enhancement of tun-
neling probability. A type of tunneling mechanism �main
path or multipath� depends on character of a state in the
potential well prior to tunneling. A temperature dependence
of the tunneling probability in a very asymmetric �different
capacitances� SQUID has a finite slope at zero temperature.
A transition between thermally assisted tunneling and pure
activation can be not smooth depending on current through a
SQUID.
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