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It has long been stated that there are profound analogies between fracture experiments and earthquakes;

however, few works attempt a complete characterization of the parallels between these so separate

phenomena. We study the acoustic emission events produced during the compression of Vycor (SiO2).

The Gutenberg-Richter law, the modified Omori’s law, and the law of aftershock productivity hold for a

minimum of 5 decades, are independent of the compression rate, and keep stationary for all the duration of

the experiments. The waiting-time distribution fulfills a unified scaling law with a power-law exponent

close to 2.45 for long times, which is explained in terms of the temporal variations of the activity rate.

DOI: 10.1103/PhysRevLett.110.088702 PACS numbers: 89.75.Da, 05.65.+b, 62.20.mm, 91.30.Dk

The mechanical failure of materials is a complex phe-
nomenon underlying many accidents and natural disasters
ranging from the fracture of small devices under fatigue to
earthquakes. Despite the vast separation of spatial, tempo-
ral, energy, and strain-rate scales [1,2], and the differences
in geometry, boundary conditions, loading, structure of
the medium, and interactions, it has been proposed that
laboratory experiments on brittle fracture in heterogeneous
materials can be a model for earthquake occurrence [3–5].
As the main stresses on Earth’s crust are compressive [2],
experiments of materials loaded under compression seem
the most suitable for drawing analogies with seismicity.
But because of the fact that compression stabilizes crack
propagation, traditional assumptions applied to samples
loaded under tension are not valid in compression,
making the compression problem much more challenging
conceptually [6].

Some fundamental findings of statistical seismology
have also been reported in compressive-failure experi-
ments. First, the Gutenberg-Richter law [7] states that the
number of earthquakes as a function of their radiated
energy E decreases as a power law, i.e., pðEÞdE /
E��dE (with � ¼ 1þ 2b=3 and b close to 1). Numerous
experiments on compressive failure report power-law dis-
tributions in some measure of the size of the events
[2,3,8,9]; however, there is considerable scatter in the
power-law exponents, which in addition can either
decrease with the evolution of the damage [8] or show
not so simple variations [2]. In general, external variables
have a strong influence on the experiment, mainly on
applied stress [2]. Nevertheless, it is possible that some
of the early results are artifacts due to low counts and poor
statistical analysis.

The existence of power-law distributions and therefore
of scale invariance has led some authors to relate fracture
with a second-order phase transition [5,6,8], although
others point toward a first-order transition [8,10], a debate
that replicates in earthquakes [1,10–12]. In any case, the
broad range of responses triggered by the usual slow
perturbation is the signature of crackling noise [13] (a
characterization that does not depend on the underlying
mechanisms generating the output of the system).
The (modified) Omori’s law [14] accounts for the fact

that the number of earthquakes per unit time decreases as a
power law since the sudden rise of activity provoked by a
‘‘mainshock,’’ with an exponent p around 1. The counter-
parts of this law in fracture have some problems of inter-
pretation (whole rupture of the sample is the mainshock [4]
versus similarity should hold also for microfracturing
bursts [15]). Further, sometimes it is not possible to
distinguish the decay from an exponential form [3,15],
or the resulting p is far from 1, although it has been
claimed that the p exponent decreases as the experiment
progresses [15].
The time between consecutive events, or waiting times,

have also been measured in experiments under compres-
sion [3,8]. The Omori’s law implies that the probability
density of these times should also follow a power-law
decay with an exponent close to 1 [16]. However, the
reciprocal is not true, since power-law waiting times do
not necessarily imply an underlying Omori’s law and there-
fore are not a proof of the fulfillment of this law.
A coherent picture of waiting times in statistical seis-

mology did not start to consolidate until Bak et al. pro-
posed their unified scaling law [17], measuring waiting
times above a minimum energy in different regions
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together. All the dependence on the size of the regions and
on the minimum energy turned out to be governed solely
by a unique parameter: the mean seismic activity rate hri,
in such a way that the waiting-time probability density
fulfills a scaling law, Dð�Þ ¼ hri�ðhri�Þ, with � the wait-
ing time and the scaling function � showing a power-law
decay with exponent 1� � around 1 for small arguments
and another power law with exponent 2þ � above 2 for
large arguments [18]. Although the first exponent is a
consequence of the Omori’s law, the second one is genu-
inely new, related to the distribution of background seismic
rates [16].

Compression experiments have shown good agreement
with a restricted version of this law [9], which considers
the special case of a single spatial region and a regime of
stationary seismicity (eliminating time periods with
Omori-like decay [19]). In this case the scaling function
turns out to be well approximated by a flatter power-law
decay (with 1� � around 0.3), followed by an exponential
decay [19,20].

Finally, another fundamental statistical law of seismic
occurrence is the productivity law [21], which establishes
that the rate of earthquakes (i.e., aftershocks) triggered by a

mainshock of energy E is proportional to E2�=3, with � ’
0:8. As far as we know this law has not been reproduced in
brittle fracture experiments but in plastic deformation [22].

Therefore, there is no single compressive-failure experi-
ment that reproduces simultaneously the above mentioned
fundamental laws of statistical seismicity (Gutenberg-
Richter, Omori, productivity, and the unified waiting-time
scaling law). The situation for tensile failure and other
types of tests is analogous [5,8,23,24], although the results
of Ref. [25] are particularly notable, including spatial
measurements.

In this Letter we report on the failure under compression
of a highly porous material, showing that the four main
laws of statistical seismicity hold, with unprecedented
statistics, and with robust exponents across different
experiments. In contrast to the other laws, the unified
scaling law, which yields the best quantitative agreement
with earthquakes, is not stationary but arises from the
temporal variations of the activity rate.

We perform uniaxial compression experiments of Vycor,
a mesoporous silica ceramics (40% porosity), loaded at a
constant compression rateR for three different experiments
at R ¼ 0:2, 1.6, and 12:2 kPa=s (considering that the sec-
tion of the sample keeps constant). Compression is applied
without lateral confinement until the shrinkage of the
samples is above 20%, leading to multifragmentation.
Simultaneous recording of acoustic emission (AE) is per-
formed by using a detector coupled to the upper compres-
sion plate. The signal is preamplified (60 dB), band filtered
(between 20 kHz and 2 MHz) and analyzed by means of a
PCI-2 acquisition system from Euro Physical Acoustics
(Mistras Group) working at 106 samples per second. An

AE avalanche event starts at the time ti when the preampli-
fied signal VðtÞ crosses a fixed threshold of 26 dB, and
finishes when the signal remains below threshold for more
than 200 �s. The energy Ei associated with each event i is
computed as the integral of V2ðtÞ for the duration of the
event divided by a reference resistance. More details of the
experiment can be found in Ref. [26].
Figure 1(a) shows an example of the raw results for the

experiment at R ¼ 1:6 kPa=s. The jerky evolution of the
specimen’s height is apparent, as well as the broad range of
values of the event energy detected at the transducer.
Another view of this intermittent dynamics is provided in
Fig. 1(b) by the AE activity rate rðtÞ (counting events every
60 s) and the cumulative number of events, NðtÞ ¼R
t
0 rðtÞdt. Despite an apparent correlation between the

most energetic events and large changes in height, one
also observes regions with high acoustic activity not asso-
ciated with noticeable sample shrinkage.
Figure 2 shows the histograms that estimate the proba-

bility densities of the energies [26,27], considering time
windows of 3� 103 s. All the distributions show a power-
law behavior pðEÞ / E��, with an exponent in the range
� ¼ 1:40� 0:05, stable for the whole experiment; this is
the signature of a remarkable stationarity in the energy
dissipation, which appears as independent of applied
stress, in contrast to previous works [8] (therefore, the
apparent nonstationarity of E in Fig. 1 is due to a much
larger number of events in the central part). The value of
the exponent, obtained by maximum likelihood (ML) es-
timation [27], holds for about 7 decades and is robust
against the thresholding of the data (fitting only values of
E larger than Emin) and quite independent of R, as shown in
the inset of Fig. 2 [26–28]. Although the resulting exponent
turns out to be below the most accepted value for
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FIG. 1 (color online). (a) Example of the outcome of a com-
pression experiment at R ¼ 1:6 kPa=s, showing the change in
the specimen’s height h versus time (proportional to stress) and
the energy of the AE avalanches, in logarithmic scale. (b) Time
evolution of the AE activity rate and of the total number
of events.
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earthquakes, � ’ 1:67, Kagan has noticed that this value is
inflated due to systematic biases and one could instead
expect � close to 1.5 (i.e., b ’ 3=4) [29]. Reciprocally,
systematic biases of the energy cannot be completely ruled
out in AE experiments [5,8].

The next step in our analysis has been the computation
of the number of aftershocks (AS) in order to compare it
with Omori’s law for earthquakes. We have considered as
mainshocks (MS) all the events with energies in a certain
predefined energy interval. After each MS we study the

sequence of subsequent events until an event with an
energy larger than the energy of the MS is found, which
finishes the sequence of AS. Then we divide the time line
from the MS toward the future in intervals, for which we
count the number of AS in each of them. Averages of the
different sequences corresponding to all MS in the same
energy range are performed, normalizing each interval by
the number of sequences that reached such a time distance.
The results presented in Figs. 3(a)–3(c) show that the
tendency to follow Omori’s law is clear, in some cases
for up to 6 decades, with an exponent p ¼ 0:75� 0:10.
(compare with Ref. [30]). Foreshocks, obtained in an
analogous way, show a similar behavior, with a slightly
smaller value of p.
The previous Omori’s plot allows us to also estimate the

exponent � of the productivity law, by rescaling the verti-

cal axis with E2�=3, finding the optimum � which leads to

the collapse of the data; i.e., rAS=E
2�=3 should be only a

function of the time since the mainshock. The results in
Fig. 3(d) show that � ¼ 0:5� 0:1. This is again somewhat
smaller than the counterpart for earthquakes, but the drift is
compatible with the one found for the energy distribution,
in other words, the ratio of exponents ð�� 1Þ=� is the
same. Remarkably, a collapse can be obtained not only for
mainshocks of different energies in the same experiment
but also across experiments with different R, rescaling rAS
as rASE

�2�=3=hrRi, and the time since the MS, t� tMS, as
ðt� tMSÞhrRi, with hrRi giving the mean number of events
per unit time.
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FIG. 3 (color online). (a)–(c) Number of aftershocks per unit time, r, as a function of the time distance to the main shock for different
compression rates in each panel, as indicated by the legend. MS are defined as the events in the energy range indicated by the legend. N
values indicate the number of sequences analyzed for each range. The dashed line indicates the Omori’s behavior with slope �0:75.
(d) Rescaled Omori plot showing the fulfillment of the productivity law, with � ’ 0:5.
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These results already suggest that there is a certain
similarity in the correlation between avalanches that
extends from geophysical scales of the order of hundreds
of kilometers to our small samples with cracks much
smaller than the mm scale. To deepen into the comparison
we have proceeded to the analysis of the interevent or
waiting times, defined as �j ¼ tj � tj�1, with j labeling

only the events with energy larger than a given Emin. The
estimations of the waiting-time probability densities,
Dð�;EminÞ, for different Emin and different experiments
are shown in Fig. 4(a), displaying a power-law decay
with exponent 1� � ¼ 0:93� 0:05 for most of the time
range, as implied by the Omori’s law. In order to compare
the shape of the distributions we rescale the axes as
hrðEminÞi� and Dð�;Emin; RÞ=hrðEminÞi, with hrðEminÞi giv-
ing the mean number of events per unit time with E �
Emin. Figure 4(b) shows how the different distributions
collapse into a single one, signaling the existence of a
scaling law; for a single experiment, as the activity rate
verifies the Gutenberg-Richter law, the collapse ‘‘unifies’’
this law with the temporal properties [17]. For different
experiments the collapse implies the similarity versus the
compression rate R. Moreover, the plot also shows that a
second power law emerges for the rightmost tail of the
distributions, with an exponent 2þ � ¼ 2:45� 0:08 [31].

To make clear the correspondence with earthquakes,
Fig. 4(b) also includes seismic data for different spatial
windows in Southern California [17,18]. Although the
previously reported value of � for earthquakes [18] is a
bit smaller than for the experiment, the similarity is
remarkable, taking into account that the earthquake mea-
surements are taken over different spatial windows,
whereas for the AE data we do not have access to such
degrees of freedom.

How then can we get essentially the same behavior in
such different situations? The answer lies in the variations
of the activity rate. Let us consider a single Omori
sequence, for which the waiting-time density depends on
the background activity rate� through a scaling form [16],

Dð�j�Þ ¼ �

ð��Þ1��
fð��Þ; (1)

where � is close to 0 and f can be a decreasing exponential,
or another function showing the same behavior at 0 and1.
If the background rate is not fixed but evolves during the
experiment, the resulting density will be

Dð�Þ /
Z �max

�min

d��ð�Þ�Dð�j�Þ; (2)

where �ð�Þ is the density of background rates. Substituting
the previous equation and considering that � is broadly
distributed between �min and �max with �ð�Þ / 1=�1��

leads to Dð�Þ / 1=�1�� for � � ��1
max (because the

rescaled integral goes to zero as �1þ�þ�) but Dð�Þ /
1=�2þ� for � � ��1

max (because the rescaled integral con-
verges to a constant). This behavior for �ðrÞ can arise from
a time evolution of the form �ðtÞ / t1=�, as �ð�Þ /
jdt=d�ðtÞj [16]. So, when the background rate varies
across different scales [as in Fig. 1(b)] and this takes place
through a power law, a second power law arises in Dð�Þ.
The experimental outcome suggests then � ’ 0:5. We have
simulated the epidemic type aftershock (ETAS) model
[32], defined by the fact that each earthquake i, with a
Gutenberg-Richter energy, triggers a sequence with a rate

equal to KE2�=3
i =ðcþ t� tiÞ1þ�, and the overall rate is the

linear superposition of these rates plus a background rate.
The ‘‘microscopic’’ exponent 1þ � corresponds to an
observable p ¼ 1� � [32]. Using as input the experimen-
tal values of �, p, and �, together with c ¼ 0:001 s, and �
increasing slowly as �ðtÞ / 1� cos!t (essentially a
power law with � ¼ 1=2), we obtain very good concord-
ancewith the previous calculations [see Fig. 1(b)] when the
branching ratio {given by Kb=½�c�ðb� �Þ�g is very close
to criticality, i.e., 0.99. In addition, the measurement of rðtÞ,
using different time intervals, leads to a distribution with a
power-law tail of the form 1=

ffiffiffi
r

p
for small r (not shown).

This explanation could hold also for Ref. [33].
In summary, we have presented experimental results on

the compression of a highly porous material, obtaining
good fulfillment of some fundamental laws of statistical
seismology. Laws involving the measurement of energy
and the Omori’s law show some bias in the exponent with
respect to the earthquake case, whereas for the unified
scaling law the quantitative agreement is much better.
However, the explanation of the emergence of a power-
law tail in the unified scaling law (exponent 2þ �) is
different from the one given in previous studies of earth-
quakes [16,18]. In our compression experiment the spatial
variation of the background activity (�) is not the cause of

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102 103 104 105

D
E

,R
(δ

) 
(s

-1
)

δ (s) 

0.2kPa/s   1.6kPa/s  12.2kPa/s

(a)

-(1-ν) = -0.93

E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ

E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ

E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ
10-10
10-9
10-8
10-7

10-6
10-5
10-4
10-3
10-2
10-1
100
101

102
103
104
105

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

<
r E

,R
>

-1
 D

E
,R

(δ
)

<rE,R> δ

Earthquakes in California (1981-2011)
P=32 m>3
P=32 m>2
P=16 m>3
P=16 m>2

P=8 m>3
P=8 m>2
P=4 m>3
P=4 m>2

                      

-(1-ν) = -0.93

-(2+ξ) = -2.45

           

R= 0.2kPa/s R = 1.6kPa/s  R = 12.2kPa/s
E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ

E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ

E>10-4pJ
E>10-3pJ
E>10-2pJ
E>0.1pJ

E>1pJ

           

ETAS Model
all

m>0.2
m>0.4

m>0.6
m>0.8
m>1.0

           

(b)

FIG. 4 (color online). (a) Distribution of waiting times for
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the power law, but instead its temporal variation�ðtÞ is the
cause. These broad variations of the activity rate were
filtered in previous compression experiments, thus render-
ing a different observed behavior. As our experiment does
not allow the measurement of the location of the events, it
has not been possible to test laws regarding spatial prop-
erties, which also constitute an important body of knowl-
edge for the characterization of seismicity [25]. This
should be undertaken in the future with the simultaneous
use of many AE sensors, which would allow a more
accurate comparison between failure under compression
and earthquakes.
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