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 23 
ABSTRACT 24 

In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in 25 
the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying 26 
Formation. Both fossils have similar size, funnel-in-funnel construction, and epibenthic lifestyle, 27 
but Cloudina is biomineralized whereas Conotubus is not. To provide environmental context for this 28 
evolutionary milestone, we conducted a high-resolution elemental and stable isotope study of the richly 29 
fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive 30 
carbonate carbon isotope excursion (up to +6‰) and an increase in the abundance and 34S composition of 31 
pyrite. In contrast, δ34S values of carbonate-associated sulfate (CAS) remain steady throughout the succession, 32 
resulting in anomalously large (>70‰) sulfur isotope fractionations in the lower half of the member. The 33 
fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved 34 
in the lower interval whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We 35 
speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase 36 
in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated 37 
primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in 38 
subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected 39 
to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for 40 
Conotubus and other soft-bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of 41 
ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the 42 
stage for an unprecedented geobiological response: the evolutionary novelty of animal biomineralization.   43 
 44 
INTRODUCTION 45 

One of the earliest animals to have developed a biomineralized carbonate exoskeleton is Cloudina — 46 
named after the famed Precambrian paleontologist Preston Cloud (1912–1991) and preserved in terminal 47 
Ediacaran (ca. 550–541 Ma) sedimentary successions worldwide (Conway Morris et al., 1990; Sour-Tovar et 48 
al., 2007; Gaucher and Germs, 2009; Cortijo et al., 2010; Zhuravlev et al., 2012). This animal, which is 49 
suggested to be an ancient cnidarian-grade (Grant, 1992; Cortijo et al., 2010) or lophotrochozoan animal (Hua 50 
et al., 2005; Zhuravlev et al., 2015), constructed a high-Mg calcitic tubular shell with nested funnels, had an 51 
epibenthic lifestyle with its apex attached to the substrate (Grant, 1990; Zhuravlev et al., 2012; Cai et al., 2014), 52 
and may have had both sexual and asexual reproductive strategies to aid in its broad ecological dispersal 53 
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(Cortijo et al., 2015). Cloudina was associated with microbial reefs, and may have been a reef builder like 54 
modern-day corals that inhabit oligotrophic shelf environments where they band together in search of hard 55 
substrates and for protection against predators (Penny et al., 2014; Wood and Curtis, 2015). 56 

 57 
Biomineralization of Cloudina is widely considered to have been a response to predation given the 58 

significant number of borings found on its fossil shells (Bengtson and Zhao, 1992; Hua et al., 2003; Porter, 59 
2011). In addition, some also have considered terminal Ediacaran biomineralization as a (toxico-)physiological 60 
response to regulate calcium concentrations in circulatory fluids (Simkiss, 1977; Kempe et al., 1989; Simkiss, 61 
1989; Brennan et al., 2004), or to environmental perturbations involving oscillations in atmospheric pCO2 and 62 
seawater chemistry (Knoll, 2003a; Knoll and Fischer, 2011). Environmental drivers, however, are particularly 63 
difficult to assess insofar as these should also have a broad effect on general biotic diversification and vice 64 
versa (Knoll, 2003b; Gaidos et al., 2007; Butterfield, 2009; Butterfield, 2011; Lenton et al., 2014; Erwin, 65 
2015). Insofar as there is a metabolic cost to biomineralization, the biological benefits to the organisms, 66 
including protection against predation and the physiological response of organisms to rapidly changing 67 
seawater chemistry in the terminal Ediacaran Period, should be balanced (Knoll, 2003a; Xiao, 2014). 68 

 69 
To this end, we investigated a Lagerstätte of Ediacaran animals in the Gaojiashan Member of the 70 

Dengying Formation in South China (Fig. 1) (Hua et al., 2007; Cai et al., 2010). Within the member’s 71 
repetitious limestone facies, the first appearance of Cloudina is immediately preceded by Conotubus, a soft-72 
bodied antecedent exquisitely preserved through pyritization with similar construction, size, and lifestyle (Cai 73 
et al., 2011; Cai et al., 2014). To explore this unique paleontological juxtaposition and provide environmental 74 
context for the earliest examples of animal biomineralization and pyritization, we sampled the Gaojiashan 75 
Member at high stratigraphic resolution for elemental and isotopic compositions. Our chemostratigraphic 76 
investigation reveals that these evolutionary and taphonomic events are associated with profound 77 
biogeochemical shifts in both the carbon and sulfur cycles, and speculate that they may have been facilitated 78 
by profound environmental perturbations in the marine realm ultimately driven by enhanced oxidative 79 
weathering of the continents. 80 
 81 
METHODS 82 

In this study, the Gaojiashan Member was systematically sampled at high resolution for integrated 83 
chemostratigraphic and geochronological investigations. Geochemical analyses were conducted in the 84 
Paleoclimate CoLaboratory at University of Maryland. Details of the methods used in the CoLaboratory can be 85 
found in previous publications (e.g. McFadden et al., 2008; Zhelezinskaia et al., 2014; Cui et al., 2015), but are 86 
briefly outlined below. 87 
 88 
Carbon and oxygen isotope analysis 89 

Rock samples were cut and polished for detailed petrographic observation and micro-drilling in order 90 
to obtain powders from the least-altered, least-recrystallized, and purest phases for carbonate carbon (δ13Ccarb) 91 
and oxygen (δ18Ocarb) isotope analysis. The powders were measured with a Multicarb inlet device in-line with 92 
an Elementar Isoprime continuous-flow isotope ratio mass spectrometer, and precision for both isotopes was 93 
routinely better than 0.1‰.  94 
 95 
Elemental analyses 96 

Major and trace elemental abundances in carbonates were analyzed in order to better evaluate the 97 
degree of diagenetic alteration. Aliquots of the micro-drilled carbonate powders were dissolved in 0.4 M HNO3, 98 
centrifuged, and only analyzed for the solutions. Petrographic observations indicate that these powders were 99 
largely free of siliciclastics; any clays, if present, would not have been dissolved by the dilute acid.  The 100 
resulting solutions were analyzed on a Thermo Scientific® iCAP-Q ICP-MS (Inductively Coupled Plasma – 101 
Mass Spectrometry) at the Carnegie Institution of Washington. Precision of these analyses as determined by 102 
repeated measurements of a house standard carbonate was < 5% (2σ) for major elements with high 103 
concentrations and < 10% (2σ) for the REEs.  104 
 105 
Orgnic carbon and paired sulfur isotope analyses 106 
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The organic carbon (δ13Corg), total sulfur (δ34STS of pyrite and trace amount of organic S) isotope 107 
compositions were measured by combustion of the decalcified residuals to CO2 or SO2 with a Eurovector 108 
elemental analyzer in-line with a second Elementar Isoprime isotope ratio mass spectrometer. Bulk carbonate 109 
powders were used for extraction of carbonate-associated sulfate (CAS). For the former, ~15 g of bulk crushed 110 
sample was acidified with 3 M HCl. These acidified residues were washed with ultra-pure Milli-Q (18MΩ) 111 
water, centrifuged, decanted, and dried. For the latter, ~100 g of crushed bulk sample, which were repeatedly 112 
leached with 10% NaCl solutions. To minimize the contamination of soluble non-CAS sulfate (Marenco et al., 113 
2008; Wotte et al., 2012; Peng et al., 2014; Schobben et al., 2015), bulk powders were leached by 10% NaCl 114 
solutions for at least 10 times with at least two hours for each time, and then washed with Milli-Q water for at 115 
least 3 times prior to acidification of the leached powders with 3 M HCl. CAS precipitates were then collected 116 
as BaSO4 three days after BaCl2 was added to the solution. The residues and the BaSO4 precipitates were 117 
packed into folded tin cups with V2O5 for combustion to CO2 or SO2 in a Eurovector elemental analyzer in-line 118 
with a second Elementar Isoprime isotope ratio mass spectrometer, which measured isotope abundances. 119 
Uncertainties for carbon and sulfur isotope measurements determined by multiple analyses of standard 120 
materials during analytical sessions are better than 0.1% and 0.3‰, respectively.  121 
 122 
Detrital zircon dating 123 

For all aspects of zircon dating we followed the procedures described in Martin et al. (2015). Zircon 124 
grains were isolated using conventional mineral separation techniques including rock pulverization by hand 125 
using a mortar and pestle, removal of silt and clay by hand panning in water, removal of magnetic grains using 126 
a Frantz magnetic barrier separator, and density separation using methylene iodide. Zircon grains were then 127 
poured onto double-sided tape and cast them in an epoxy disk along with approximately 10 shards of the Sri 128 
Lanka zircon standard (564±3 Ma) (Gehrels et al., 2008). After hand polishing to expose the interiors of the 129 
grains, we produced backscattered electron and cathodoluminescence images using the JEOL JXA-8900R 130 
electron probe microanalyzer at the University of Maryland. 131 

 132 
The cores of 49 and 175 zircon grains were dated from samples 09G-35.3 and 09G-37.9, respectively, 133 

by laser ablation–inductively coupled plasma–mass spectrometry in the Arizona LaserChron Center at the 134 
University of Arizona, taking care to avoid multiple cathodoluminescence zones, inclusions, and cracks. 135 
Ablation of the zircon was performed using a New Wave UP193HE Excimer laser and a spot diameter of 30 136 
μm. The ablated zircon was carried in helium into the plasma source of a Nu Plasma HR multi-collector mass 137 
spectrometer, and analyses followed the protocols described in Martin et al. (2015). 138 

 139 
Corrections for inter-element fractionation of Pb/U and common Pb, as well as other data reduction, 140 

were performed off-line using an Excel program developed at the Arizona LaserChron Center. We removed 141 
from further consideration analyses with: (1) high 204Pb, (2) greater than 5% error on the 206Pb/207Pb date, (3) 142 
greater than 5% error on the 206Pb/238U date, (4) greater than 25% normal discordance or 8% reverse 143 
discordance, (5) high U concentration, or (6) high U/Th ratio. The remaining analyses were used in our 144 
interpretations (Table S1; Fig. 3). Isoplot was used to calculate weighted means and to produce concordia and 145 
probability density plots (Ludwig, 2008). 146 

 147 
206Pb/238U dates are usually more precise than 206Pb/207Pb dates for zircon younger than about 1.4 Ga, 148 

whereas the reverse is true for older grains. However, 206Pb/207Pb dates are only minimally affected by recent 149 
lead loss, so in most cases they more closely indicate the time of crystallization for zircon older than about 1 150 
Ga. Therefore, during interpretation we used 206Pb/238U dates for grains younger than 1 Ga and 206Pb/207Pb 151 
dates for older zircon grains. 152 
 153 
STRATIGRAPHIC AND GEOCHRONOLOGICAL CONSTRAINTS 154 

Carbonates of the Dengying platform are sandwiched between the Ediacaran Doushantuo Formation 155 
(ca. 635-551 Ma) (Jiang et al., 2011) and the early Cambrian Kuanchuanpu Formation (Steiner et al., 2004) in 156 
the southern Shaanxi region (Fig. 1). The Dengying Formation at Gaojiashan is subdivided into three intervals, 157 
including the Algal Dolomite, Gaojiashan, and Beiwan members (Fig. 1C), which are generally correlated 158 
with Hamajing, Shibantan, and Baimatuo members, respectively, in the Yangtze Gorges area (Zhou and Xiao, 159 
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2007; Zhu et al., 2007; Duda et al., 2015). Based on the 551 Ma U-Pb zircon depositional age of a volcanic ash 160 
at the top of the Miaohe Member, which has historically been correlated with Doushantuo Member IV 161 
(Condon et al., 2005), and an estimated 541 Ma age for the Ediacaran-Cambrian boundary (Amthor et al., 2003; 162 
Chen et al., 2015), the >650 m thick Dengying Formation represents the last 10 million years of the Ediacaran 163 
Period. However, a recent chemostratigraphic study of the Miaohe Member (An et al., 2015) demonstrates that  164 
the 551 Ma ash bed lies between the Hamajing and Shibantan members of the Dengying Formation, and is thus 165 
not relevant to the biogeochemical anomaly (i.e. Shuram Excursion) preserved in the upper Doushantuo 166 
Formation (cf. Kaufman, 2005). 167 

 168 
At the studied section, the Gaojiashan Member is 55 m in thickness, including a siltstone interval in 169 

the lower part, repetitious siltstone-mudstone-limestone facies with cryptalgal crinkly laminations in the 170 
middle part, and a coarse sandstone/conglomerate at the top (Fig. 2) (Cai et al., 2010). The lower Gaojiashan 171 
Member contains the enigmatic fossil Shaanxilithes ningqiangensis preserved in siltstone facies (Meyer et al., 172 
2012). The middle Gaojiashan Member contains Conotubus hemiannulatus and Gaojiashania cyclus preserved 173 
in thin, normally graded calcisiltite-siltstone beds interpreted as distal event deposits (Cai et al., 2010), 174 
followed by the first appearance of the biomineralized animal Cloudina preserved in intraclastic limestones 175 
approximately 40 m above the base of the succession (Fig. 1). A distinctive horizon with bedded gypsum 176 
occurs in the upper part of the Gaojiashan Member (Figs. 1D, 2F-G). 177 

 178 
RESULTS 179 

Detrital zircon from two closely-spaced siltstone beds at 16.7 m (sample 09G-35.3) and 14.1 m 180 
(sample 09G-37.9) above the base of the Gaojiashan member yielded a youngest population of four U-Pb ages 181 
ranging from 543 to 550 Ma from sample 09G-37.9, with a weighted mean age of 548 ± 8 Ma (MSWD = 0.11) 182 
(Fig. 3, Table S1). This maximum depositional age based on detrital zircon ages is consistent with the 551 Ma 183 
age estimate for the Miaohe Member beneath the Gaojiashan equivalent Shibantan Member of the Dengying 184 
Formation based on U-Pb zircon age from the bedded ash layer (Amthor et al., 2003; Condon et al., 2005; 185 
Chen et al., 2015). However, most of the detrital zircons in this study had ages between 750 and 850 Ma, with 186 
a scattering of solitary dates spanning from 1300 to 2700 Ma.  187 
 188 

In total 113 limestone and calcareous siltstone samples from the Gaojiashan Member were analyzed 189 
for elemental abundances and isotopic compositions (Figs. 4-5; Tables S2-S4). Carbonate percentages in the 190 
samples are generally high (>90%), except in the lower member where limestones and siltstones are 191 
interbedded. The stratigraphic trend of δ13Ccarb variations reveals a positive carbon isotope excursion (up to 192 
+6‰) in the upper part of the Gaojiashan Member, coinciding with the fossil transition from Conotubus to 193 
Cloudina. Coupled with the positive δ13Ccarb event, δ13Corg data reveal a negative excursion (down to –30‰); 194 
calculated carbon isotope fractionations (Δδ13Ccarb-org) show peak values up to +36‰ in this interval. Pyrite S 195 
isotope (δ34Spyrite) values measured from bulk acidified residues (assuming pyrite S >> organic S) show a wide 196 
range from –30‰ to +30‰ in the Gaojiashan Member, with more negative values in the lower half of the 197 
section, and more positive values in the upper half. On the contrary, sulfur isotope compositions of carbonate-198 
associated sulfate (δ34SCAS) remain generally invariant around ca. +40‰ throughout the Gaojiashan Member. 199 
Both total sulfur (TS) and total organic carbon (TOC) are relatively low through most of the succession, but 200 
are elevated in the cloudinid interval. Mg/Ca ratios show the dominance of limestone in the Gaojiashan 201 
Member, with higher Mg/Ca, Mn/Sr and Rb/Sr ratios found only in dolostones interbedded with siltstones in 202 
the lower Gaojiashan Member. Sr/Ca ratios reveal a positive excursion in the upper section, mimicking the 203 
δ13Ccarb anomaly, whereas Ce/Ce* ratios through the section remain constant at values near to 0.5, with the 204 
exception of two samples at the top of the Gaojiashan Member with higher values. 205 
 206 
DISCUSSION 207 
Diagenesis  208 

Confidence in our ability to interpret environmental changes associated with the paleontological 209 
transitions in the Gaojiashan requires that we evaluate the degree of alteration of the limestone samples. Based 210 
on the low Mn/Sr and Rb/Sr, and the smooth temporal trends in other geochemical indicators defined by high-211 
resolution sampling, the limestones appear to be especially well preserved (Fig. 4). However, insofar as 212 
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carbonates are susceptible to isotopic exchange with meteoric or hydrothermal fluids after burial, stable isotope 213 
compositions of carbonate phases might reflect diagenetic overprints over depositional signatures. For example, 214 
the lithification of marine carbonates associated with the flushing of meteoric fluids could cause coupled 215 
depletions in both 13C and 18O, assuming the alkalinity was sourced from soil respiration (Knauth and Kennedy, 216 
2009). Isotopic coupling in carbonates might also result from burial diagenesis (Derry, 2010; Bristow et al., 217 
2011) assuming hot fluid temperatures and alkalinity formed through anaerobic processes. In either case the 218 
carbonates would be predictably recrystallized or contain appreciable amounts of neomorphic calcite. These 219 
petrographic features are not observed in the fine-grained Gaojiashan limestones, which reveal a significant 220 
positive δ13Ccarb excursion whereas δ18Ocarb values remain steady. A cross plot of the carbon and oxygen 221 
isotope abundances in these samples reveals no positive correlation (Fig. 5, lower panel). Insofar as oxygen 222 
isotopes would be more likely to be altered during water-rock interactions (Jacobsen and Kaufman, 1999), the 223 
δ13Ccarb excursion recorded in the Gaojiashan Member is likely to reflect true secular changes in seawater 224 
composition. 225 

 226 
The degree of carbonate preservation may also be evaluated through the analyses of CAS abundances 227 

and sulfur isotope compositions. Published studies have shown that CAS in marine carbonates may be affected 228 
by secondary processes related to pyrite oxidation (Marenco et al., 2008), which could occur in the outcrop or 229 
in the laboratory, or the addition of secondary atmospheric sulfate (SAS) to carbonates exposed in desert 230 
environments (Peng et al., 2014). On the other hand, CAS studies of modern carbonate sediments where there 231 
was active pore-water sulfate reduction indicate minimal alteration of bulk carbonate sulfur isotope 232 
compositions (Lyons et al., 2004). While Gaojiashan CAS abundances are generally low (ranging from near 0 233 
to 150 ppm), their δ34SCAS values are invariant at ca. +40‰ throughout the succession (Fig. 5F,G), suggesting 234 
excellent preservation of primary signals (Gill et al., 2008). The sulfur isotope invariance, which is notably 235 
consistent with δ34Ssulfate analyses of bedded anhydrites (ca. +40‰) in equivalent terminal Ediacaran strata 236 
from Oman (Fike and Grotzinger, 2008), supports the view that the Gaojiashan carbonates are exceptionally 237 
well preserved and likely reflective of global seawater conditions.   238 

 239 
To further evaluate diagenesis in the Gaojiashan Member samples we compared abundances of TOC 240 

and pyrite against each other, as well as with their carbon and sulfur isotope compositions, respectively. In 241 
neither case do we see a systematic relationship (Fig. 5 lower panel), although the two samples with the 242 
highest TOC do have the lowest δ13C signatures. TOC might change by either microbial (Borowski et al., 1996; 243 
Jørgensen et al., 2004; Ries et al., 2009; Borowski et al., 2013) or thermochemical (Cai et al., 2001; Cai et al., 244 
2003; Cai et al., 2004) sulfate reduction after deposition, which could result in progressive 34S-enrichment of 245 
product sulfide preserved as pyrite. However, the sedimentary rocks have not been buried deeply enough to 246 
drive the thermal reactions. Furthermore, we find no systematic relationship in TOC–TS or TOC–δ34S cross 247 
plots, suggesting that these secondary processes did not significantly impact the Gaojiashan samples. 248 

 249 
Redox constraints for the Gaojiashan Member 250 

Multiple lines of evidence suggest that the paleontological transition in the middle Gaojiashan 251 
Member is accompanied by strong ocean stratification (Figs. 5, 6). Support for this interpretation comes from 252 
the negative excursion in the 13C abundance of total organic carbon (TOC) – which mirrors the positive 253 
δ13Ccarb excursion – resulting in the greatest degree of Δδ13C in the Cloudina interval (Fig. 5 A-C). In light of 254 
the abundance of microbial fabrics in both the Gaojiashan Member (Cai et al., 2010) and the Nama group 255 
(Bouougri and Porada, 2007), these decoupled chemostratigraphic carbon isotope trends could plausibly have 256 
resulted from organic matter derived from benthic microbial mats where anaerobic chemoautotrophs utilized 257 
locally recycled 13C-depleted DIC to form biomass with lower δ13Corg values (Des Marais, 1990; Hayes, 1993; 258 
Falkowski et al., 2008; Houghton et al., 2014). Alternatively, there may have been an enhanced flux of organic 259 
matter derived from anoxygenic photoautotrophs such as green and purple sulfur bacteria that utilize H2S as a 260 
source of electrons during photosynthesis (Johnston et al., 2009). These photoautotrophs typically exist along 261 
redox chemoclines and utilize respired CO2, which is typically depleted in 13C relative to its atmospheric 262 
equivalent (e.g. Brocks et al., 2005). In either case, the spread of anoxic/euxinic conditions across the platform 263 
would have promoted organic matter burial (Hayes et al., 1983) and the positive δ13Ccarb excursion. High 264 
abundances of organic S compounds, indicative of euxinic conditions, are also revealed by biomarker studies 265 
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of the Gaojiashan-equivalent Shibantan Member (Duda et al., 2014). Further evidence for the spread of anoxia 266 
associated with the decoupled δ13C excursions is found in the profoundly negative δ238U signatures of 267 
Gaojiashan limestones (Zhang et al., 2015), and our sulfur isotope measurements. 268 

 269 
Chemostratigraphic analyses of the Gaojiashan Member reveal a profound rise in δ34Spyrite values from 270 

as low as –30‰ in the lower half of the member to peak values near +30‰ between 35 and 40 m before falling 271 
rapidly to values averaging around +10‰ in the Cloudina-bearing beds (Fig. 5G). In contrast, the δ34S of 272 
carbonate associated sulfate (CAS) remain steady at values of ca. +40‰ throughout the Gaojiashan Member. 273 
The calculated sulfur isotope contrasts (Δδ34S) range widely in the lower half of the succession, with a 274 
maximal value of 72‰, but in the upper half Δδ34S is relatively constant at ca. 30 – 35‰ (Fig. 5H). 275 
Interpreting the environmental significance of these remarkable stratigraphic variations requires the 276 
recognition that the δ34SCAS and δ34Spyrite signatures are inherited from different parts of the depositional basin. 277 
Sulfate incorporation into primary carbonate sediments would occur within the water column, whereas pyrite 278 
would form either in euxinic bottom waters or within sediments. Considering this spatial separation, local 279 
sulfate availability could dictate the δ34S isotopic difference between CAS and pyrite, particularly if pyrite is 280 
formed in non-bioturbated and microbially-sealed sediments where the water-sediment interface represents a 281 
significant diffusion barrier (Seilacher and Pflüger, 1994; Bottjer et al., 2000; Bouougri and Porada, 2007; Fike 282 
et al., 2008; Fike et al., 2009). While such a scenario might apply to discrete intervals within the Gaojiashan – 283 
including the Shaanxilithes and Conotubus zones (Fig. 5H) – other parts of the succession have measured 284 
Δδ34S differences that are significantly larger. Furthermore, the constancy of the δ34SCAS values through the 285 
Gaojiashan suggests that the perturbation in the terminal Ediacaran sulfur cycle did not involve changes in the 286 
marine sulfate isotopic composition. Thus, the ~60‰ shift in δ34S of pyrite from the lower to the upper 287 
Gaojiashan Member may require a change in biologically-induced fractionations involving both the reductive 288 
and oxidative paths of the sulfur cycle (i.e. bacterial S disproportionation, or BSD) (Canfield and Thamdrup, 289 
1994), or microbial sulfate reduction (MSR) with very low sulfate reduction rates (SRR) (Canfield et al., 2010; 290 
Leavitt et al., 2013; Wu and Farquhar, 2013; Wing and Halevy, 2014). 291 

 292 
In the case of BSD, sulfur is recyled via both reductive and oxidative pathways. On the reductive side, 293 

the magnitude of kinetic sulfur isotope fractionation (εSR) has been observed to correlate directly with 294 
extracellular sulfate concentrations. Experiments from pure cultures of sulfate reducers indicate maximal 295 
fractionation of 66‰ at sulfate concentrations similar to modern seawater at 28 mM (Sim et al., 2011), while 296 
εSR may be suppressed at very low sulfate abundances (<200 μM) (Habicht et al., 2002). On the oxidative side, 297 
the sulfide produced through MSR is typically re-oxidized to elemental sulfur, which is subsequently 298 
disproportionated to sulfate and sulfide, by coupling with the reduction of O2, NO3

-, or iron and manganese 299 
compounds (Canfield and Thamdrup, 1994). Disproportionation reactions thus can significantly augment the 300 
fractionations induced during MSR, resulting in isotopic contrasts between reactant sulfate and product sulfide 301 
of greater than 70‰ (Fig. 5H).  302 

Alternatively, very low rates of MSR may also lead to large fractionations. Recent studies of 303 
lacustrine euxinic systems indicate that >70‰ fractionations are achievable by both isolated and natural 304 
populations of sulfate reducers (Canfield et al., 2010; Gomes and Hurtgen, 2015). Furthermore, 305 
environmentally controlled experiments suggest that MSR-related fractionation could be strain specific 306 
(Bradley et al., 2016), or related to sulfate reduction rates that are dependent on the availability of organic 307 
substrates as electron donors (Canfield et al., 2010; Leavitt et al., 2013; Leavitt, 2014; Wing and Halevy, 2014; 308 
Gomes and Hurtgen, 2015). In this case the magnitude of fractionation is inversely correlated with the rate of 309 
sulfate reduction (e.g., Xiao et al., 2010). With these constraints in mind, the Δδ34S >70‰ in the lower interval 310 
of the Gaojiashan may reflect BSD coupled with MSR, or result solely from MSR with very low SRR. The 311 
former scenario is consistent with sulfide oxidation occurring along a chemocline above euxinic deep waters 312 
(Fig. 6A), which is our preferred interpretation for this marginal marine basin. 313 

Based on systematic studies of modern environments and Phanerozoic shales (Berner and Raiswell, 314 
1983; Berner and Raiswell, 1984), very low C/S ratios might indicate euxinic marine conditions. Although the 315 
C/S proxy is not well calibrated for carbonates, the preponderance of Gaojiashan limestones with values <1 316 
(Fig. 5 lower panel) suggests the possibility of euxinic conditions in the depositional basin. This view is 317 
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consistent with the high Ce/Ce* values in the upper Gaojiashan samples (Fig. 4H), although carbonates have 318 
notoriously low REE abundances and should thus be interpreted with caution. 319 
 320 
Global indicators of dynamic redox conditions   321 

Chemostratigraphic comparison of terminal Ediacaran successions in South China, Oman, and 322 
Namibia reveal both similarities and differences, suggesting local overprint of global signals in some basins 323 
(e.g., Loyd et al., 2013; Wood et al., 2015) (Fig. 7). Global conditions appear to be reflected in the similarity in 324 
the magnitude and direction of isotope trends in South China and Oman. For example, in the uppermost Buah 325 
Formation of Oman, paired CAS-pyrite measurements reveal large magnitude sulfur isotope fractionations 326 
(with maximal Δδ34S ~50‰) prior to the first occurrence of Cloudina (Conway Morris et al., 1990), just as we 327 
document for the lower Gaojiashan Member. The large fractionation seen in two basins suggests the 328 
dominanace of sulfur disproportionation reactions (Fike et al., 2006; Fike and Grotzinger, 2008), which is 329 
supported by a recent multiple sulfur isotope study indicating enhanced sulfide re-oxidation in the uppermost 330 
Buah (Wu et al., 2015). In this interval disproportionation reactions likely dominated over MSR insofar as the 331 
latter would bediscouraged if there was active photoautotrophic sulfide oxidation (Fig. 6A) (Habicht and 332 
Canfield, 2001). Stratigraphically higher in the Ara Formation where Cloudina occurs in carbonates 333 
interbedded with evaporites, the δ34S compositions of pyrite and CAS are notably invariant with a smaller 334 
magnitude of fractionation (ca. 30‰) (Fike and Grotzinger, 2008), again exactly matching our observations 335 
from the upper Gaojiashan. The 34S enrichments in pyrite and the smaller sulfur isotope differences between 336 
reduced and oxidized phases are best explained by high rate of MSR, which we view as the dominant sulfur 337 
metabolism associated with the spread of anoxic bottom waters (Figs. 6B-C). In sum, the correlated 338 
observations from South China and Oman indicate a global environmental control on biological sulfur 339 
fractionations.  340 
 341 

To the contrary, chemostratigraphic data from Cloudina-bearing strata of the Nama Group in southern 342 
Namibia provide a completely different pattern of 34S enrichments and fractionation. In this case strongly 343 
positive δ34Spyrite values are most-often paired with anomalously low and scattered δ34SCAS values, resulting in 344 
inversely fractionated Δδ34S values (Ries et al., 2009). Stratigraphically coherent CAS results are only seen in 345 
the Omkyk Member where there is a positive δ34SCAS shift from ca. +10 up to +40‰, which is similar to the 346 
trend encompassing the transition to the Cloudina-bearing beds in Oman and South China (Fig. 7), and in the 347 
uppermost Spitzkop Member below the Ediacaran-Cambrian boundary. In this case, however, the CAS sulfur 348 
isotope compositions are depleted in 34S by ~ 20‰ relative to equivalent upper Ara strata in Oman. Based on 349 
our experience with quantitative preparation techniques, it would appear that the Namibian CAS samples were 350 
not adequately leached of non-CAS components. In contrast to our extensive efforts to remove the non-351 
carbonate fraction (see Methods), Ries et al. (2009) leached the CAS powders with Milli-Q water only once, 352 
and this is unlikely to have removed sulfate on mineral surfaces formed through pyrite oxidation (Marenco et 353 
al., 2008) or secondary atmospheric sulfate (SAS) (Peng et al., 2014). The presence of these contaminants 354 
would cause δ34SCAS values to be more negative and hence would not reflect depositional signatures (Wotte et 355 
al., 2012). In our view the inversely fractionated sulfur isotopes from this succession should be interpreted 356 
with caution, although they do highlight the potential redox differences between equivalent terminal Ediacaran 357 
basins. 358 

 359 
In addition, there are notable contrasts in carbon isotope anomalies among the terminal Ediacaran 360 

successions in South China, Oman, and Namibia. Chemostratigraphic data from the Dengying Formation 361 
suggests the possibility of three separate positive excursions (Fig. 1), with their different stratigraphic expanses 362 
likely associated with varying sediment accumulation rates. In contrast, there is significant δ13Ccarb variability 363 
in the evaporite-rich succession from Oman (Fike and Grotzinger, 2008; Wu et al., 2015), including negative 364 
anomalies within the cloudinid interval interspersed with at least two positive excursions (Fig. 7). In Namibia 365 
there is only one post-Shuram positive δ13Ccarb excursion followed by a long plateau of moderately positive (ca. 366 
+1 to +3‰) values leading up to the Ediacaran-Cambrian boundary (Fig. 7) (Ries et al., 2009). Other terminal 367 
Ediacaran successions, including those in northern India, also reveal significant differences in carbon isotope 368 
stratigraphic profiles (Kaufman et al., 2006). Taken together, the inter-basinal variations in carbon and sulfur 369 
isotope compositions likely reflect redox differences in the depositional environments of the various basins. If 370 
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correct, the Ediacaran experiment in animal life must have been spread across a dynamic environmental 371 
landscape, which may help to explain the distribution of geographically unique assemblages (Narbonne et al., 372 
2014).. 373 
 374 
Enhanced alkalinity in the terminal Ediacaran ocean  375 

Compared with carbonates in the underlying Doushantuo Formation (e.g., McFadden et al., 2008), the 376 
generally lower TOC contents of the Gaojiashan limestones are notable, and may reflect either depositional or 377 
early diagenetic processes. For example, pervasive water column or sediment recycling of organic matter may 378 
have decreased original organic carbon contents in sediments.  In addition, the anaerobic conversion of simple 379 
organic compounds to alkalinity could have resulted in the formation of ubiquitous authigenic carbonates 380 
(Higgins et al., 2009; Schrag et al., 2013). Driven by iron or sulfate reduction of available organic substrates, 381 
the addition of authigenic carbonate to the sediments would, however, have resulted in a negative (rather than a 382 
positive) carbon isotope excursion. Alternatively, the generally lower TOC values may reflect significant 383 
dilution by abundant carbonate formed from highly alkaline seawater. In this case the source of the alkalinity 384 
was more likely to be from terrestrial weathering, as indicated by the significant rise in 87Sr/86Sr in the terminal 385 
Ediacaran Period (Kaufman et al., 1993; Kaufman et al., 1997; Halverson et al., 2007; Sawaki et al., 2010). 386 
The abundance and carbon isotopic composition of river-derived alkalinity in the Ediacaran Period was likely 387 
to be high variable, depending on the differential weathering of bedrock lithologies (e.g. carbonates vs. 388 
silicates). In the absence of land plants or extensive microbial surfaces, terrestrial sources of alkalinity need not 389 
have been significantly depleted in 13C.   Elevated seawater alkalinity at this time is consistent with the 390 
presence of aragonite crystal fans preserved in the time-equivalent Nama Group in Namibia (Grotzinger, 2000; 391 
Grotzinger et al., 2005; Hall et al., 2013), which records a singular Ediacaran positive δ13Ccarb excursion 392 
(Kaufman et al., 1991; Saylor et al., 1998). Overall high alkalinity is consistent with the dominance of 393 
carbonate in terminal Ediacaran successions worldwide, and may explain the extremely high accumulation rate 394 
estimated for the Dengying (i.e. >650 m in ~10 million years), as compared with the underlying Doushatuo (i.e. 395 
<200 m in ~84 million years) (Fig. 1). 396 

 397 
Enhanced terminal Ediacaran alkalinity may also be interpreted from our elemental results from the 398 

Gaojiashan, as well as inter- and intra-basinal equivalents. In particular the [Sr] and Sr/Ca data measured from 399 
the Gaojiashan limestones reveal positive excursions in step with the positive δ13Ccarb anomaly (Fig. 8). A 400 
similar [Sr] excursion coincident with peak δ13C compositions of carbonates is noted in the Gaojiashan-401 
equivalent Shibantan Member in the Yangtze Gorges area (Sawaki et al., 2010). A rise in [Sr] is also noted in 402 
the broadly equivalent Nama Group in southern Namibia (Ries et al., 2009) although this geochemical 403 
anomaly post-dates the first appearance of Cloudina and the singular positive δ13C excursion in the thick 404 
sedimentary succession. The apparent [Sr] rise in Namibia is potentially complicated by the admixture of 405 
siliciclastics within the carbonates by using aqua regia acid, which would attack both carbonate and siliclastic 406 
components in the dissolution procedure of Ries et al. (2009). Nonetheless, all sections show positive [Sr] 407 
excursion in Cloudina-bearing intervals. For the Gaojiashan, the invariantly low Mg/Ca values of samples 408 
suggests that dolomitization played no role in the elemental excursion (Fig. 4).  409 

 410 
Given that the dominant source of Sr in the ocean is from the chemical weathering of the continental 411 

crust (Shields, 2007; McArthur et al., 2012), including both silicates and carbonates, enhanced [Sr] and Sr/Ca 412 
values supports the view that terrestrial weathering and the delivery of alkalinity through riverine inputs 413 
buffered shallow ocean basins to variable degrees in the terminal Ediacaran Period. The weathering of Ca 414 
silicate minerals can be simply represented by the overall reaction (Berner, 2004): CO2 + CaSiO3 → CaCO3 + 415 
SiO2, which over geological time scales sequesters atmospheric CO2 into carbonate minerals by liberating Ca2+ 416 
and HCO3

- ions that are then carried to seawater by rivers. While terrestrial carbonate weathering is not a 417 
geological sink for atmospheric CO2, the resultant flux of alkalinity does effect overall carbonate saturation 418 
state (e.g., Kump et al., 1999; Hoffman and Schrag, 2002; Higgins and Schrag, 2003).  419 

 420 
Associated with higher alkalinity and higher carbonate saturation, it should be noted that Sr/Ca may 421 

also be controlled by precipitation rate. For biogenic carbonates (e.g., coccoliths) the ratio of Sr to Ca has been 422 
widely used as a productivity proxy (e.g., Stoll and Schrag, 2001; Stoll and Bains, 2003) insofar as there is a 423 
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strong link between Sr/Ca, export production, and calcification rate (Stoll and Schrag, 2001). Similarly, 424 
laboratory experiments reveal that rapid precipitation rates induce greater Sr partitioning into abiotic calcite 425 
(Lorens, 1981; Tesoriero and Pankow, 1996; Tang et al., 2008; DePaolo, 2011). Thus, the precipitation rate of 426 
carbonate in either Cloudina or in inorganic micrite may have additionally influenced the Sr/Ca ratios of the 427 
Gaojiashan limestones.  428 

 429 
Variable partitioning of strontium by aragonite and calcite relative to seawater may also have resulted 430 

in the observed variations of Sr/Ca in the Gaojiashan samples. Strontium has a crystal ionic radius larger than 431 
that of Ca2+ and thus prefers the more open octahedral crystal structure of aragonite over the smaller hexagonal 432 
structure of calcite (Wray and Daniels, 1957; Lorens, 1981). Thus on one hand, the enhancement in [Sr] in the 433 
Gaojiashan limestones and their equivalents might reflect a secular change from calcite to aragonite-dominated 434 
seas  (e.g., Stanley and Hardie, 1998), although the short stratigraphic interval represented by the Gaojiashan 435 
Member would seem to preclude this possibility. On the other, the [Sr] excursion might result from post-436 
depositional diagenesis, through which Sr was preferentially flushed from specific horizons in the Gaojiashan 437 
Member during neomorphic aragonite-to-calcite transformations (Katz et al., 1972). However, given the 438 
excellent petrographic and oxygen isotopic preservation of the samples, the absence of dolomitization, and 439 
smooth carbon and sulfur isotope trends, we attribute the elevated Sr/Ca ratios in the Cloudina interval to 1) 440 
elevated Sr flux from the continents to contemporaneous seawater, and/or 2) enhanced precipitation rate in a 441 
carbonate over saturated ocean.  442 

 443 
Emerging support for weathering-induced high alkalinity in terminal Ediacaran seawater may come 444 

from Ca isotope (δ44Ca) measurements of the Gaojiashan equivalent Shibantan Member. In this unit a sharp 445 
negative δ44Ca excursion (down to 0.3‰) has been interpreted to reflect anomalously high seawater Ca 446 
concentrations. The Ca isotope system has been used to make inferences regarding the seawater Ca cycle in 447 
deep time (DePaolo, 2004; Nielsen et al., 2011), with a special emphasis on perturbations of δ44Ca during 448 
chemical weathering events. Enhanced chemical weathering in the Cenozoic (between 40 and 10 Ma), for 449 
example, has been interpreted based on the presence of negative δ44Ca excursions (De La Rocha and DePaolo, 450 
2000; DePaolo, 2004). Similarly, a Cretaceous negative δ44Ca excursion believed to be related to enhanced 451 
weathering (Blättler et al., 2011)coincides with a positive δ13C anomaly and an Oceanic Anoxic Event, all of 452 
which match our observations of the Gaojiashan.  453 

 454 
In concert, the sedimentological and geochemical observations of Cloudina-bearing strata in South 455 

China and elsewhere suggest that the terminal Ediacaran ocean was highly alkaline. If correct, high 456 
concentrations of Ca and alkalinity well may have enabled   the earliest example of calcareous 457 
biomineralization by animals. 458 
 459 
Environmental context of pyritization and biomineralization 460 

Based on our chemostratigraphic observations of the Gaojiashan Member, the first appearance of 461 
Cloudina coincided with the development of anoxic and episodically euxinic conditions across the shelf 462 
environment. It is likely, however, that this first biomineralized metazoan lived in the oxidized shallower water 463 
column and was swept into deeper anoxic settings by storm events (Cai et al., 2010) (Fig. 5B). In contrast, our 464 
geochemical results suggest that Conotubus and other soft-bodied Ediacara biotas thrived at a time of more 465 
generally oxidizing conditions within the water column prior to the peak of the δ13C excursion. In the 466 
equivalent Shibantan Member in the Yangtze Gorges region, the soft-bodied organisms are preserved in 467 
subtidal environments and are closely associated with abundant bilaterian burrows, suggesting moderate levels 468 
of bioturbation (Chen et al., 2013; Chen et al., 2014a; Meyer et al., 2014). It is notable that Conotubus and 469 
many Ediacara remains, as well as the microbial surfaces, were preserved in these environments through 470 
pyritization (Gehling, 1999; Schiffbauer et al., 2014). In the “death mask” model, pyritization of a 471 
decomposing metazoan would stabilize its surface and allow the external form of the organism to be imprinted 472 
with exquisite detail; in the case of the Gaojiashan Member, similar pyritization process may have also molded 473 
Conotubus tubes from inside. Based on in-situ SIMS δ34S analyses, it has been proposed that pyritization of 474 
Conotubus was fueled by the degradation of labile organic tissues through MSR (Schiffbauer et al., 2014) near 475 
the sediment-water interface. Consistent with pyritization as a widespread fossilization pathway, many soft-476 
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bodied fossils and associated microbial surfaces in the Gaojiashan and Shibantan exposures are coated with 477 
iron oxides and jarosite (an iron-bearing sulfate mineral) that are the oxidative weathering products of early 478 
diagenetic pyrite (Hall et al., 2013).   479 

 480 
 The balance between the ecological pressures and physiological responses that resulted in the 481 
biomineralization of Cloudina are nicely viewed from the Gaojiashan Member and its equivalents in South 482 
China. On one hand, Hua et al. (2003) highlighted the large number of drill holes on Cloudina shells in the 483 
Dengying Formation and hypothesized that predation tipped the balance towards calcification as a means of 484 
protection. On the other, our results emphasize clear temporal changes in seawater chemistry that are 485 
associated with this evolutionary milestone. We interpret the geochemical trends to reflect enhanced terminal 486 
Ediacaran chemical weathering that introduced nutrients, which drove primary productivity, the spread of 487 
anoxia, and higher rates of organic carbon burial. Chemical weathering would also have delivered alkalinity 488 
and cations including calcium to seawater, promoting rapid carbonate accumulation in shallow marine settings. 489 
In addition, sulfate delivery would have further stimulated MSR, which would provide an additional source of 490 
seawater alkalinity depending on the extent of water column anoxia. Biomineralization could then have been a 491 
means to remove excess calcium from the newly-developed circulatory systems of evolving metazoans 492 
(Simkiss, 1977) in the context of higher overall seawater alkalinity in the terminal Ediacaran Period 493 
(Grotzinger et al., 2005). 494 
 495 

Studies of Phanerozoic biomineralization further highlight the effect of seawater chemistry on 496 
calcification. Although the secretion of biominerals often occurs in internal environments isolated from 497 
seawater (Weiner and Dove, 2003), seawater chemistry could indirectly determine skeletal mineralogy by 498 
affecting the physiological costs of biomineralization (Knoll, 2003a), thus resulting in distinct patterns of 499 
skeleton evolution through Earth history. Indeed, extensive compilation of non-skeletal carbonates and 500 
hypercalcifying animals in the Phanerozoic reveals that the Mg/Ca and [Ca] of seawater during periods of  501 
aragonite or calcite-dominated seas had a strong influence on skeletal mineralogy (Stanley and Hardie, 1998; 502 
Stanley, 2006; Porter, 2010). High-Mg calcite and aragonite shells appear to have dominated under aragonite 503 
seas, while shells composed of low-Mg calcite dominated under calcite seas. This pattern is also seen in the 504 
Cambrian Period when the first massive biodiversification of skeletal animals occured (Porter, 2007). In the 505 
terminal Ediacaran, the widespread appearance of seafloor aragonite fans (Grotzinger, 2000; Grotzinger et al., 506 
2005; Hall et al., 2013) and rapid accumulation of carbonates supports the aragonite sea hypothesis, and is 507 
consistent with the inferred high-Mg calcite mineralogy of Cloudina (Grant, 1990; Zhuravlev et al., 2012).  508 
 509 
Temporal growth in the oceanic sulfate reservoir 510 

Projected to the world stage and viewed through the long lens of Earth history, paired sulfur isotope 511 
data in the terminal Ediacaran Gaojiashan Member stand out among the highest δ34Ssulfate values (up to +40‰) 512 
and largest S isotope fractionations (ca. +70‰) for the whole Precambrian (Fig. 7). This pattern may reflect a 513 
strongly stratified ocean (e.g., Jiang et al., 2007; Shen et al., 2008; Li et al., 2010; Shen et al., 2010; Shen et al., 514 
2011), which would be particularly meaningful during the terminal Ediacaran when a putative atmospheric and 515 
oceanic oxygenation event occurred (i.e. Neoproterozoic Oxygenation Event, or NOE) (Kaufman et al., 2007; 516 
Shields-Zhou and Och, 2011; Och and Shields-Zhou, 2012; Lyons et al., 2014; Liu et al., 2016).  517 

 518 
Growth of the Ediacaran sulfate pool has been hypothesized to be associated with the NOE (Fike et al., 519 

2006), which occurred in the aftermath of the Marinoan ice age (ca. 635 Ma). A recent quantative model 520 
analysis based on sulfur isotope trends through the Ediacaran Period suggests that oceanic [SO4

2-] was low (<5 521 
mM) in the aftermath of the Marinoan glaciation, but then rose (>5 mM) across the Ediacaran-Cambrian 522 
boundary (Algeo et al., 2015). The inflection of sulfate concentrations may well have coincided with the 523 
middle Ediacaran Shuram Excursion, a  profound negative carbon isotope anomaly (Grotzinger et al., 2011) 524 
recognized in multiple sections across the globe including Shuram Formation in Oman and the upper 525 
Doushantuo Formation of South China (Cui et al., 2015). Sulfur isotope profiles in both regions reveal a 526 
parallel decrease in both δ34Spyrite and δ34SCAS (Cui et al., 2015) that likely reflect the significant growth of the 527 
Ediacaran sulfate pool (Fike et al., 2006; Halverson and Hurtgen, 2007; Kaufman et al., 2007; McFadden et al., 528 
2008). Consistent with this view, psuedomorphs of gypsum are found in the Shuram equivalent Wonoka 529 
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Formation in South Australia (Calver, 2000) and in the Doushantuo (Lu et al., 2013). Above the Shuram, an 530 
increasing number of bedded evaporite horizons have been discovered in terminal Ediacaran successions, 531 
including the Dengying (Siegmund and Erdtmann, 1994; Duda et al., 2015; and this study) and Ara formations 532 
(Fike and Grotzinger, 2010), as well as the Hanseran Evaporite Group in northwestern India (Strauss et al., 533 
2001; Mazumdar and Strauss, 2006).  534 

 535 
The trigger for the terminal Ediacaran rise in seawater sulfate remains a question of considerable 536 

debate. It has been proposed by Canfield and Farquhar (2009) that the emergence of bioturbation near the 537 
Ediacaran-Cambrian boundary was the proximate cause insofar as sediment mixing would result in enhanced 538 
sulfide oxidation and recycling (Bottjer et al., 2000; Meysman et al., 2006; Rogov et al., 2012; Chen et al., 539 
2014b). While bioturbation clearly modified ecosystems in the Fortunian Stage of the Cambrian Period 540 
(Bottjer et al., 2000; Meysman et al., 2006), there is little support for deep penetration by animals into 541 
sedimentary layers dominated by microbial mats in the Shuram or terminal Ediacaran intervals (e.g. Carbone 542 
and Narbonne, 2014; Meyer et al., 2014). Moreover, recent investigations have demonstrated that the mixing 543 
of sediments on marine shelves remained limited until at least the late Silurian, 120 million years after the 544 
Precambrian–Cambrian transition (Tarhan and Droser, 2014; Gingras and Konhauser, 2015; Tarhan et al., 545 
2015).  546 

 547 
Alternatively, it is likely that the increase in Ediacaran sulfate concentrations was driven by enhanced 548 

oxidative weathering of pyrite in continental and oceanic sediments exposed by sea level regression (Kaufman 549 
et al., 2007; Wang et al., 2016). This scenario is consistent with the profound increase in seawater 87Sr/86Sr 550 
(from ca. 0.7080 to 0.7090) recorded globally in carbonates deposited during the Shuram Excursion (Burns et 551 
al., 1994; Calver, 2000; Melezhik et al., 2009; Sawaki et al., 2010; Cui et al., 2015). The Sr isotope shift most 552 
likely accompanied enhanced silicate weathering (Kaufman et al., 1993; Halverson et al., 2007; Cui et al., 553 
2015), which led to an increase in the delivery of nutrient and sulfate to the oceans. By stimulating 554 
photosynthesis, these continental fluxes would on the one hand result in the oxidation of surface environments, 555 
while on the other, the remineralization of organic matter along marginal marine settings would simultaneously 556 
resulted in the expansion of oxygen minimum zones (OMZs). Oceanic redox stratification would have 557 
simultaneously stimulated the oxidative side of the sulfur cycle through widespread sulfur disproportionation 558 
along chemoclines (Canfield and Thamdrup, 1994; Fike et al., 2006; Wu et al., 2015) and the reductive side 559 
through microbial sulfate reduction within the anoxic plumes. Both microbial processes would have delivered 560 
32S sulfur as pyrite into the sediments and thereby drove oceanic sulfate compositions to positive δ34S extremes 561 
(Canfield, 2004).  562 
 563 
CONCLUSIONS 564 

Terminal Ediacaran strata of the Gaojiashan Member preserve a record of dynamic exogenic carbon 565 
and sulfur cycling ultimately driven by tectonic forces, a rise in atmospheric oxygen, and enhanced chemical 566 
weathering of the exposed continents. Data from South China suggest that the attendant flux of nutrients and 567 
alkalinity increased oceanic productivity and carbonate saturation state, resulting in a redox stratified ocean 568 
basin where animals evolved to form calcareous shells, through the combined ecological pressure of predation 569 
and the environmental pressure of high carbonate saturation, for the first time in Earth history.    570 
 571 
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SUPPORTING INFORMATION 585 
 586 
Table S1: U-Pb geochronologic analyses of two detrital zircon samples in the lower Gaojiashan Member. 587 
Table S2: Chemostratigraphic data of carbonate C isotopes of the Doushantuo and Dengying formations 588 
plotted in Figure 1.  589 
Table S3: Chemostratigraphic data of C, O, and S isotopes of the Gaojiashan Member. 590 
Table S4: Chemostratigraphic data of major and trace element concentrations of the Gaojiashan Member.  591 
 592 
FIGURES CAPTIONS 593 

 594 
Figure 1. (A) Tectonic framework of China, with the Yangtze Craton highlighted in yellow. (B) Ediacaran 595 
depositional environments on the Yangtze Craton (Jiang et al., 2011). (C) δ13Ccarb record of the Dengying 596 
Formation in the Gaojiashan section. GJS = Gaojiashan, KCP = Kuanchuanpu, GJB = Guojiaba; δ13Ccarb data 597 
for Doushantuo Formation are from McFadden et al. (2008). (D) Calcite pseudomorph after gypsum ca. 46.5 m 598 
above the base of the Gaojiashan Member. (E) Cloudina in the Gaojiashan Member ca. 42 m above the base. 599 
(F) Pyritized tubular fossil Conotubus hemiannulatus (Cai et al., 2011). (G) Enigmatic body fossil 600 
Shaanxilithes ningqiangensis (Meyer et al., 2012). 601 
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 602 
Figure 2: Field photographs of the Gaojiashan Member. Hammers or pencils for scale and meterages above 603 
the base of the unit. (A, B) An overview of the upper and lower section (each ca. 25 meters in thickness). (C) 604 
Boundary bewteen the Beiwan and Gaojiashan members. (D) Conglomerate in the uppemost interval. (E) 605 
Bedded limestone at 48 m. (F, G) Gypsum pseudomorphs at 46.5 m where crystals have been dissolved and 606 
replaced by calcite. (H, I) Organic-rich limestones with abudant microbial mats corresponding to the peak of 607 
the carbon isotope excursion at ca. 43 m. (J) Interbedded siltstone and limestone at 14 m. (K, L) Siltstones in 608 
the lower Gaojiashan Member. 609 
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 610 
Figure 3: (A) Field photo showing the position of the two detrital zircon samples (09G-35.3, 09G-37.9) in the 611 
lower Gaojiashan Member. The view is about 3 m wide. (B) Close view of bed 09G-37.9. (C) Separated and 612 
mounted detrital zircon from sample 09G-37.9. (D) Histogram and relative probability plot for detrital zircon 613 
ages from sample 09G-37.9. Best age is 206Pb/238U date for grains younger than 1 Ga and 206Pb/207Pb date for 614 
older zircon. Histogram bars represent 50 Ma intervals. Inset: 206Pb/238U ages for the four youngest analyses 615 
with uncertainties that overlap at the 1-sigma level. The weighted mean of these four ages is 548±8 Ma 616 
(MSWD=0.11) from which we interpret a maximum possible depositional age of 560 Ma. 617 
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 618 
Figure 4: Integrated litho-, bio-, and chemo-stratigraphy of the Gaojiashan Member, including fossil 619 
occurrences of Conotubus and Cloudina, as well as geochemical profiles of carbonate content (wt. %), 620 
carbonate carbon (δ13Ccarb, ‰ V-PDB) and oxygen (δ18Ocarb, ‰ V-PDB) isotopes, Sr/Ca, Mg/Ca, Rb/Sr, Mn/Sr, 621 
and Ce anomaly (Ce/Ce*) calculated using the formula Ce/Ce* = CePAAS /([Pr]2

PAAS/[Nd]PAAS) (Ling et al., 622 
2013). K = Kuanchuanpu, G = Guojiaba, Cam = Cambrian, BW = Beiwan, AD = Algal Dolomite. 623 

 624 
Figure 5: Integrated litho-, bio-, and chemo-stratigraphy of the Gaojiashan Member, including fossil 625 
occurrences of Conotubus and Cloudina, as well as geochemical profiles of carbonate carbon (δ13Ccarb, ‰ V-626 
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PDB) and organic carbon (δ13Corg, ‰ V-PDB) isotopes, carbon isotope fractionations (Δδ13Ccarb-org), pyrite 627 
sulfur (δ34STS, ‰ V- CDT) and CAS sulfur (δ13CCAS, ‰ V-CDT) isotopes, sulfur isotope fracionations 628 
(Δδ34SCAS-pyrite), total organic carbon content (TOC), total sulfur content (TS, dominated by pyrite with trace 629 
amount of organic S), carbonate-associated sulfate concentration ([CAS] in ppm). The small panels in the 630 
bottom are cross plots of δ13Ccarb–δ18Ocarb, TOC–TS, δ13Corg–TOC, δ34STS–TOC , δ34STS–TS , δ13Ccarb–Sr/Ca. 631 
BW = Beiwan, AD = Algal Dolomite. 632 

 633 
Figure 6. Conceptual weathering and biogeochemical model for the Gaojiashan Member. (A) During Stage 1 634 
the basin was stratified with oxic surface water above euxinic deep water. Bacterial S disproportionation (BSD) 635 
may be an important contributor to the sulfur cycle. (B) During Stage 2 the basin was strongly influenced by 636 
the spread of an oxygen minimum zone (OMZ) beneath oxic surface waters. This likely occurred as a result of 637 
sea level regression and enhanced continental weathering, which resulted in a larger sulfate pool in the ocean, 638 
elevated ocean alkalinity, and microbial sulfate reduction (MSR) as the dominant pathway for microbioal 639 
sulfur cycling. (C) Biogeochemical feedback that link the carbon and sulfur cycles to atmospheric oxygenation, 640 
animal evolution, and fossil preservation. 641 

 642 
Figure 7: Integrated carbon and sulfur isotopic profiles from late Ediacaran strata in Oman (Fike and 643 
Grotzinger, 2008) and Namibia (Ries et al., 2009). The remarkable difference in sulfur isotope trends between 644 
Oman and Namibia may result from effects of local conditions (e.g. different organic carbon flux, sulfate 645 
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concentration) on microbial sulfate reduction rate and sulfur isotope fractionations, but may also reflect 646 
analytical issues (see text). 647 

 648 
Figure 8. Integrated litho-, bio-, and chemo-stratigraphy of the terminal Ediacaran Gaojiashan Member in the 649 
study area, Yangtze Gorges area, and Namabia, including geochenical profiles of carbonate carbon isotopes 650 
(δ13Ccarb, ‰ V-PDB), strontium concentration ([Sr] in ppm, plotted in log scale), and δ44/42Ca (‰). Data for the 651 
section in Yangtze Gorges area are from Sawaki et al. (2010) and Sawaki et al. (2014). Data for the section in 652 
Namibia are from Ries et al. (2009). Note that the Sr concentrations are measured by using different acids in 653 
different studies. The negative δ44Ca excursion in the Gaojiashan-equivalent Shibantan Member has been 654 
interpreted to reflect high Ca concentration in terminal Ediacaran seawater (Sawaki et al., 2014). 655 

 656 
Figure 9. Evaporite, CAS, and pyrite sulfur isotope data through Earth history. Paired δ34S data are compiled 657 
from the literature [after (Canfield and Farquhar, 2009; Och and Shields-Zhou, 2012; Sahoo et al., 2012)]. 658 
Recently published Neoarchean δ34S data have also been included (e.g. Paris et al., 2014; Zhelezinskaia et al., 659 
2014). The sulfate concentration constraints are ca. 1-10 μM during Archean (Habicht et al., 2002; 660 
Zhelezinskaia et al., 2014), ca. 2.5 mM after the GOE (Shen et al., 2002; Canfield, 2004; Kah et al., 2004; 661 
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Hurtgen et al., 2005; Bekker et al., 2006; Canfield and Farquhar, 2009; Reuschel et al., 2012), and ca. 10 mM 662 
during NOE (Canfield and Farquhar, 2009; Algeo et al., 2015). δ34Ssulfate compostion of the terminal Ediacaran 663 
ocean (ca. +40‰) was determined by measurements of bedded evaporites in Oman (Fike and Grotzinger, 664 
2008). GOE = Great Oxidation Event; NOE = Neoproterozoic Oxidation Event. The four conceptual 665 
biogeochemical models for redox architectures of the ocean during Archean, GOE, NOE and Phanerozoic are 666 
shown in the panels beneath the time-series data. See the main text for detailed discussions.  667 
 668 
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