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Exponential Stability of Integral Delay Systems
with a Class of Analytic Kernels

Sabine Mondié and Daniel Melchor-Aguilar

Abstract�The exponential stability of a class of integral
delay systems with analytic kernels is investigated by using
the Lyapunov-Krasovskii functional approach. Suf�cient delay-
dependent stability conditions and exponential estimates for the
solutions are derived. Special attention is paid to the particular
cases of polynomial and exponential kernels.

Index Terms�Integral delay system, exponential stability,
Lyapunov-Krasovskii functionals.

I. INTRODUCTION

Integral delay systems play an important role in several
stability problems of time-delay systems. This class of systems
is found as delay approximations of the partial differen-
tial equations for describing the propagation phenomena in
excitable media [18], in the stability analysis of additional
dynamics introduced by some system transformations [3], [5],
[6], [7], in the internal stability problem of controllers used
for �nite spectrum assignment of time-delay systems [9], as
well as in the stability analysis of some difference operators
in neutral type functional differential equations [4], [8].
Lyapunov-Krasovskii theorems for integral delay systems

have been recently introduced in [12]. It has been shown there
that new type of Lyapunov-Krasovskii conditions are required
in order to properly address the dynamics of this class of
systems. General expressions of quadratic functionals with a
given time derivative are provided. The functionals are shown
to be useful in solutions of such problems as the estimations
of robustness bounds and calculations of exponential estimates
for the solutions of exponentially stable integral delay systems.
However, there are still some technical dif�culties, associ-

ated with the positivity check of such functionals, limiting their
practical application to the stability analysis of integral delay
systems. This motivated the work [13] where it was shown
that, based on the general expressions of functionals presented
in [12], various reduced type functionals can be constructed
to obtain stability conditions formulated directly in terms of
the coef�cients of some classes of integral delay systems.
In the present paper, we address the exponential stability

of a special class of integral delay systems with analytic
kernels. For such integral systems, we derive suf�cient delay-
dependent stability conditions, expressed in terms of linear
matrix inequalities, by using the Lyapunov-Krasovskii func-
tional approach.

This work was supported by CONACYT under Grants 131587 and 61076.
S. Mondié is with the Department of Automatic Control, CINVESTAV-IPN,

A.P. 14-740, 07300, México, DF, México. smondie@ctrl.cinvestav.mx
D. Melchor-Aguilar is with the Division of Applied Mathematics, IPICYT,

78216, San Luis Potosí, SLP, México. dmelchor@ipicyt.edu.mx

The special class of integral delay systems under consider-
ation includes those with polynomial and exponential kernels,
which found important applications in the internal stability
problem of controllers used for the �nite spectrum assignment
of input time-delay systems, a topic that has received a sus-
tained attention in the past few years, see for instance [2], [14],
[15], [16], [21], [22], and that was proposed as an interesting
open problem in the survey paper [20]. We here address
such a problem from a Lyapunov-Krasovskii framework and
develop a linear matrix inequalities formulation for it. More
explicitly, a design method guaranteeing a numerically safe
implementation of the controllers and a prescribed decay rate
of the closed-loop system solutions is proposed. We believe
that such an approach to the problem is completely new.
The paper is structured as follows: In section II, preliminar-

ies concerning the class of integral delay systems to be consid-
ered, basic facts about the solutions and Lyapunov-Krasovskii
stability conditions are introduced. The main results are given
in section III. First, we consider integral delay systems with
a general class of analytic kernels. Then, the special cases
of integral delay systems with polynomial and exponential
kernels are addressed. In all cases, exponential estimates and
delay-dependent conditions for the exponential stability are
expressed in terms of linear matrix inequalities. In section IV,
we apply the obtained results to the internal stability problem
of controllers used for the �nite spectrum assignment of time-
delay systems. Several concluding remarks end the paper.
Notation: Throughout the paper we will use the Euclidean

norm for vectors and the induced norm for matrices, both
denoted by k�k. We denote by AT the transpose of A, In and
0n stand for the identity and zero matrices of n�n dimension,
while �min(A) and �max(A) denote the smallest and largest
eigenvalues of a symmetric matrix A, respectively.

II. PRELIMINARIES

In this contribution we focus on the exponential stability
of the class of integral delay systems with analytic kernels
described by

x(t) =

Z 0

�h
GTB(�)x(t+ �)d�;8t � 0; (1)

where
GT =

�
GT0 GT1 � � � GTN

�
and

B(�)T =
�
B0(�)T B1(�)T � � � BN (�)T

�
;
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with G 2 Rn(N+1)�m and B(�) 2 Rn(N+1)�m a continuously
differentiable matrix function de�ned for � 2 [�h; 0] which
satis�es the following assumptions:
� There exists a matrix M 2 Rn(N+1)�n(N+1) such that

_B(�) =MB(�);8� 2 [�h; 0]: (2)

� There exists 
 > 0 such that for all � 2 [�h; 0]


 < �min
�
BT (�)B(�)

	
: (3)

Remark 1: Classes of kernels that satisfy the assumptions
(2) and (3) include those written in a polynomial basis as well
as transcendental kernels such as exponential ones.
Remark 2: It is important to point out that the special

class of functional difference equations (1), with analytic
kernels satisfying (2) and (3), belongs to the class of retarded
type delay system, see [12] for discussions and the section
below concerning solutions and stability concept. For the case
of functional difference equations of the neutral type, the
approach developed in [12] cannot be directly applied and
Lyapunov stability conditions as those proposed in [19] are
more appropriate.

A. Solutions and stability concept
In order to de�ne a particular solution of (1) an initial

vector function '(�); � 2 [�h; 0) should be given. We assume
that ' belongs to the space of piecewise continuous bounded
functions PC([�h; 0);Rm), equipped with the uniform norm
k'kh = sup�2[�h;0) k'(�)k.
Given any initial function ' 2 PC([�h; 0);Rm); there

exists a unique solution x(t; ') of (1) which is de�ned for all
t 2 [�h;1) with x(t; ') = '(t); t 2 [�h; 0) : This solution is
continuous and differentiable for all t 2 (0;1) ; and it suffers
a jump discontinuity given by

�x(0; ') = x(0; ')� x(�0; ')

=

Z 0

�h
GTB(�)'(�)d� � '(�0):

De�nition 3: [4] System (1) is said to be exponentially
stable if there exist � > 0 and � > 0 such that every solution
of (1) satis�es the inequality

kx(t; ')k � � k'kh e
��t; 8t � 0:

Remark 4: Notice that differentiation of the integral equa-
tion (1) is not an option for investigating its exponential
stability since the resulting differential system with distributed
delay

_x(t) = GTB(0)x(t)�GTB(�h)x(t� h)

�
Z 0

�h
GT _B(�)x(t+ �)d�;

is not exponentially stable as it admits any constant vector as
a solution, see [12] for a detailed analysis.
For any t � 0 we denote the restriction of the so-

lution x(t; ') on the interval [t � h; t) by xt(') =
fx(t+ �; '); � 2 [�h; 0)g. When the initial function is irrel-
evant, we simply write x(t) and xt instead of x(t; ') and
xt('):

B. Lyapunov stability conditions
The observation in Remark 4 motivated the authors of the

work [12] to derive new Lyapunov stability conditions for
integral delay systems of the form in (1). In particular, it
was there shown that integral type quadratic functions are
the natural lower bounds for the Lyapunov functionals in
contrast with quadratic lower bounds of Lyapunov functionals
for differential delay systems.
We here present a new formulation of the general result

on Lyapunov type conditions for the exponential stability of
integral delay systems given in [12]. This formulation, in the
spirit of the one introduced in [17] for retarded differential
delay systems, enhances the role of the exponential decay rate.
Following [12], by noting that for t 2 [0; h), xt(') belongs

to PC([�h; 0);Rm), and that for t � h; xt(') belongs to the
space of continuous vector functions C([�h; 0);Rm), it then
follows that, in a Lyapunov-Krasovskii functional framework,
the functionals should be de�ned on the in�nite-dimensional
space PC([�h; 0);Rm):
Theorem 5: [12] Let there exists a functional v :

PC([�h; 0);Rm)! R such that

�1

Z 0

�h
k'(�)k2 d� � v (') � �2

Z 0

�h
k'(�)k2 d�; (4)

for some 0 < �1 � �2: Given � > 0; if along solutions of
(1) the inequality

d

dt
v(xt (')) + 2�v(xt (')) � 0; 8t � 0; (5)

holds, then

kx(t; ')k � � k'kh e
��t; 8t � 0; (6)

where
� =

�
max

�2[�h;0]



GTB(�)

�hr�2
�1
: (7)

Based on this fundamental result, the following suf�cient
stability condition is obtained in [13] by using a particular
Lyapunov functional satisfying the Theorem conditions.
Lemma 6: [13] System (1) is exponentially stable if�

max
�2[�h;0]



GTB(�)

�h < 1: (8)

This inequality is valid for integral delay systems with
more general kernels than those satisfying the assumptions
(2) and (3). Indeed, the only assumption needed on the matrix
function B(�) is continuity on the interval [�h; 0]: However,
inequality (8) may be very conservative for kernels satisfying
the assumptions (2) and (3) as it has been illustrated in [13]
for the case of constant kernels. It is worth mentioning that
(8) can also be obtained via frequency-domain techniques, see
[10] and [11].

III. MAIN RESULTS
In this section, suf�cient delay-dependent conditions for the

exponential stability of integral delay systems of the form
of (1), with kernels satisfying (2) and (3), are obtained by
presenting a particular functional satisfying the conditions of
Theorem 5.
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Consider the functional candidate

v(') =

Z 0

�h
'T (�)BT (�)e2�� [P + (� + h)Q]B(�)'(�)d�;

(9)
where P;Q 2 Rn(N+1)�n(N+1) are positive de�nite matrices
and � is a positive constant.
From (9) it follows that

v(') � �max(P + hQ)

Z 0

�h
'T (�)BT (�)B(�)'(�)d�

� �max(P + hQ)

Z 0

�h
�max(BT (�)B(�)) k'(�)k2 d�;

and

v(') � e�2�h�min(P )

Z 0

�h
'T (�)BT (�)B(�)'(�)d�

� e�2�h�min(P )

Z 0

�h
�min(BT (�)B(�)) k'(�)k2 d�;

hence the functional (9) satis�es the following inequalities:

�1

Z 0

�h
k'(�)k2 d� � v(') � �2

Z 0

�h
k'(�)k2 d�;

with

�1 = e�2�h�min (P )

�
min

�2[�h;0]
�min(BT (�)B(�))

�
; (10)

�2 = �max (P + hQ)

�
max

�2[�h;0]
�max(BT (�)B(�))

�
: (11)

The time derivative of functional (9) along the trajectories of
system (1) is such that

d

dt
v(xt) + 2�v(xt) =

�Z 0

�h
GTB(�)x(t+ �)d�

�T
�BT (0) [P + hQ]B(0)

�Z 0

�h
GTB(�)x(t+ �)d�

�
�
Z 0

�h
xT (t+ �)BT (�)e2�� fQ+ [P + (� + h)Q]M)

+MT [P + (� + h)Q]
	
B(�)x(t+ �)d�

�xT (t� h)e�2�hBT (�h)PB(�h)x(t� h):

By using the Jensen integral inequality we have�Z 0

�h
GTB(�)x(t+ �)d�

�T
BT (0) [P + hQ]

�B(0)
�Z 0

�h
GTB(�)x(t+ �)d�

�
� h

Z 0

�h

�
xT (t+ �)B(�)TGBT (0) [P + hQ]

�B(0)GTB(�)x(t+ �)
	
d�:

We therefore get the following inequality for the derivative:
d

dt
v(xt) + 2�v(xt)

� �
Z 0

�h
e2��xT (t+ �)BT (�)�(�)B(�)x(t+ �)d�;

where

�(�) = Q+MT [P + (� + h)Q] + [P + (� + h)Q]M

�he�2��GBT (0) [P + hQ]B(0)GT :
Thus, if �(�) > 0;8� 2 [�h; 0] ; then the exponential stability
of (1) follows. Observing that

��
h
�(�h) + (� + h)

h
�(0)

= Q+MT [P + (� + h)Q] + [P + (� + h)Q]M

�
�
��
h
e2�h +

(� + h)

h

�
hGBT (0) [P + hQ]B(0)GT ;

and taking into account the convexity of the exponential
function

��
h
e2�h +

(� + h)

h
� e�2��;8� 2 [�h; 0] ;

one has that �(�) > 0;8� 2 [�h; 0] ; if and only if �(0) > 0
and �(�h) > 0:
Summarizing the above, we can state the following result.
Theorem 7: An integral delay system (1), with a kernel

satisfying (2) and (3), is exponentially stable with a de-
cay rate � if there exist positive de�nite matrices P;Q 2
Rn(N+1)�n(N+1) such that

Q+MT [P + hQ] + [P + hQ]M

� hGBT (0) [P + hQ]B(0)GT > 0; (12)

and

Q+MTP + PM � he2�hGBT (0) [P + hQ]B(0)GT > 0;
(13)

Furthermore, for any initial condition ' 2 PC([�h; 0);Rm);
the solution x(t; ') of (1) satis�es the exponential upper bound
(6), where �; �1 and �2 are determined by (7), (10) and (11),
respectively.

A. Integral delay systems with polynomial and exponential
kernels
For n = m and matrix functions B(�) of the form

B(�)T =
�
In In� � � � In�

N
�
; (14)

we get the following result.
Corollary 8: System (1) with a matrix function B(�) of the

form (14) is exponentially stable with a decay rate � if there
exists positive de�nite matrices P;Q 2 Rn(N+1)�n(N+1) such
that (12) and (13) holds, where the matrix M is given by

M =

26666664
0n 0n � � � � � � 0n
In 0n � � � � � � 0n

0n 2In
. . . 0n

...
. . . . . . . . .

...
0n � � � 0n NIn 0n

37777775 :
Note that in this particular case of polynomial kernels the

positive constants �1 and �2; respectively de�ned by (10) and
(11), take the form

�1 = e�2�h�min(P );

�2 = (1 + h2 + h4 + :::+ h2N )�max(P + hQ):
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TABLE I: Maximum delay value for different decays �
� 0 1 2 3

Corollary 9 1:99 0:7 0:426 0:349
Norm condition (8) 0:988 � � �

For m = n and kernels of the form GTB(�) = GT0 eA�; the
following result is obtained.
Corollary 9: System (1) with a matrix function B(�) of

the form (14) is exponentially stable if there exist positive
de�nite matrices P;Q 2 Rn�n such that (12) and (13) hold
with M = A:
Remark 10: In the case of integral delay systems with

constant kernels GTB(�) = GT0 ; suf�cient conditions for the
exponential stability can be derived either from Corollary 8
(N = 0) or Corollary 9 (A is the null matrix). In this case,
the conditions of Theorem 7 reduce to

Q� he2�hG0 [P + hQ]GT0 > 0:

For � = 0, these conditions are the same as those obtained in
[13].
Now we illustrate the main results by some examples.
Example 11: Consider the integral delay system

x(t) =

Z 0

�h
eA�x(t+ �)d�; (15)

where
A =

�
0 1
�2 3

�
:

For � = 0; by using Corollary 9, we found a feasible
solution of the matrix inequalities (12)-(13) for delay values
0 � h � 1:99: For instance, for h = 1:99 we obtain the
following numerical values for matrices P and Q:

P =

�
16:5037 �9:3259
�9:3259 5:7783

�
,

Q =

�
0:5736 �0:5738
�0:5738 0:5779

�
:

In Table I, we present the maximum delay value computed
by using Corollary 9, for different �: The results are less
conservative than the norm condition (8) which, in the case of
exponential kernels, provides always maximum delay values
less than one.
Example 12: Consider now the system (15) with

A =

�
0 1
0 0

�
:

Because of the particular form of matrix A; the critical delay
value can be computed analytically by using frequency-domain
techniques. Simple calculations based on the characteristic
function

f(s) =

�
s+ e�hs � 1

s

�2
show that (15) is exponentially stable for all delay values
h < 1: For this particular matrix A; eA� = I2 + A�; this
integral system can also be viewed as one having a polynomial
kernel GTB(�) with

GT =
�
I2 A

�
and B(�)T =

�
I2 �I2

�T
:

TABLE II: Maximum delay value for different decays �
� 0 1 2 3

Corollary 8 0:999 0:628 0:471 0:384
Corollary 9 0:999 0:567 0:426 0:349

Norm condition (8) 0:7070 � � �

For different �; by applying Corollaries 8 and 9, we obtain the
maximum delay value given in Table II. For � = 0; Corollaries
8 and 9 both give hmax = 0:999 which coincides with the
exact critical delay value and improves the maximum hmax =
0:7070 obtained from the norm condition (8). We also see that
in this case for � > 0; Corollary 8 provides less conservative
results than Corollary 9.
In order to illustrate the computation of the �-factor in-

volved in the exponential upper bound (6), let us consider,
in this numerical example, that � = 1 and h = 0:5: Direct
calculations derived from (7), (10) and (11) yield � = 8:7696;
�1 = 0:0129 and �2 = 2:4164; respectively.
Then, it follows that every solution x(t; ') of (15), ' 2

PC([�0:5; 0);R2); admits the exponential upper bound

kx(t; ')k � 8:7696 k'k0:5 e
�t;8t � 0:

IV. APPLICATION TO THE FINITE SPECTRUM ASSIGNMENT
PROBLEM

In this section, we apply the obtained results in developing
a design method for tackling the numerical implementation
problem of control laws with distributed delay which assign a
�nite spectrum to input delay systems.
This problem concerns systems of the form

_x(t) = Ax(t) +Bu(t� h); (16)

where A 2 Rn�n, B 2 Rn�m and h > 0 is the input delay.
The predictor like control law

u(t) = K

�
eAhx(t) +

Z 0

�h
e�A�Bu(t+ �)d�

�
(17)

assigns a �nite spectrum to the delay free closed-loop system
(16)-(17) which coincides with the spectrum of the matrix
A+BK, see [9].
The practical value of such a result is limited by the in-

stability phenomenon linked to the numerical implementation
of the integral term in (17). It has been shown in [2], [15],
[21] that if the integral is approximated by a �nite sum then
the resulting closed-loop delay system may become unstable
if the ideal controller is not internally stable.
A de�nite result has been demonstrated in [14]: a necessary

and suf�cient condition for a numerically safe implementation
(by using any type of numerical integration rule) of the
controller (17) is both the stability of the ideal closed-loop
system (16)-(17), i.e., A+BK is Hurwitz, and the stability of
the internal dynamics of the controller (17), i.e., the stability
of the integral delay system

z(t) =

Z 0

�h
Ke�A�Bz(t+ �)d�: (18)

Based on this observation, by combining known results on
matrix inequalities for guaranteeing that all eigenvalues of the
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matrix A+BK have real parts less than a certain prescribed
�� [1] with Theorem 7 applied to the integral delay system
(18), with GT = K;B(�) = e�A�B and M = �A; we easily
arrive at the following result.
Proposition 13: The input delay system (16), where with-

out loss of generality we can assume that the matrix B is full
column rank, admits a numerically safe implementation of the
control law (17) with a guaranteed decay rate � for the closed-
loop system solutions, if there exists a matrix K 2 Rm�n and
positive de�nite matrices R;P;Q 2 Rn�n such that

(A+BK + �I)TR+R(A+BK + �I) < 0; (19)

Q�AT [P + hQ]�[P + hQ]A�hKTBT [P + hQ]BK > 0;
(20)

Q�ATP � PA� he2�hKTBT [P + hQ]BK > 0: (21)

The controller synthesis conditions of Proposition 13 in-
volve nonlinear terms. Of course, condition (19) can be ex-
pressed as a linear matrix inequality: pre- and post multiplying
inequality (19) by the matrix S = R�1 and then setting
�K = KS yields

SAT +AS + �KTBT +B �K + 2�S < 0; (22)

which is linear in the variables S and �K:
As a consequence, an easy way to solve the synthesis

problem is �rst to �nd a feasible set (S; �K) satisfying in-
equality (22). Then set K = �KS�1 and solve the linear matrix
inequalities (20) and (21) for the variables P and Q: However,
with additional computational effort, the synthesis conditions
can be expressed as a set of linear matrix inequalities to be
solved simultaneously and for which better results can be
obtained as presented next.
First, by using the elimination procedure along with

Finsler's Lemma, the inequality (22) can be expressed as

SAT +AS + 2�S � �BBT < 0; (23)

for some scalar �, see [1], and if there exist positive de�nite
matrix S and a scalar � such that (23) holds, then a feedback
gain is given by

K = ��
2
BTS�1: (24)

Because of the homogeneity of (23) in S and �, we can assume
that � is positive and select � = 2: Substituting (24) into
inequalities (20) and (21) one obtains

Q�AT [P + hQ]� [P + hQ]A
� hS�1BBT [P + hQ]BBTS�1 > 0:

Q�ATP � PA� he2�hS�1BBT [P + hQ]BBTS�1 > 0:

Then, by introducing a new variable Y and a positive scalar �
such that Y > S�1 and (P + hQ)�1 > �I , respectively, the

TABLE III: Maximum delay value, feedback gain and ideal
closed-loop eigenvalues.

� 0 0:5 1 2
hmax 1 0:781 0:366 0:177
K (�0:0005;�0:0267) (�0:5004;�1:004) (�2:0015;�2:009) (�8:0170;�4:0044)
s1;2 �0:0134� 0:01762i �0:5002� 0:5002i �1:0004� 1:0003i �2:0022� 2:0022i

above two inequalities can be replaced by�
Q�AT [P + hQ]� [P + hQ]A Y BBT

BBTY �
hI

�
> 0; (25)�

Q�ATP � PA Y BBT

BBTY �
he

�2�hI

�
> 0; (26)�

Y I
I S

�
> 0; (27)

� (P + hQ) < I; (28)

where Schur complement has been applied to obtain the �rst
three inequalities while the last one directly follows by noting
that (P + hQ)�1 > �I is equivalent to � (P + hQ) < I:
Summarizing the above, if there exist positive de�nite matri-

ces P;Q; S; Y and a positive scalar � such that the inequalities
(23), (25)-(28) hold, then the feedback gain K = �BTS�1
achieves a successful numerical implementation of the con-
troller (17), with guaranteed decay rate � for the closed-loop
system solutions.
We use this linear inequality formulation in the following

illustrative examples.
Example 14: Let us consider the input delay system (16)

with system matrices

A =

�
0 1
0 0

�
and B =

�
0
1

�
:

The corresponding linear system represents a double integrator
with delayed input, which is commonly found in mechanical
systems.
The maximum delay value hmax and the corresponding feed-
back gain K; computed by solving (23), (25)-(28) for different
decays �, and the ideal closed-loop eigenvalues s1;2 are
displayed in Table 3. We see that for � = 0; a numerical
safe implementation of the controller (17) can be achieved for
any h satisfying 0 � h <1: In this particular case, in order to
illustrate that a feasible solution can be found for an arbitrarily
large delay, the feedback gain K and the corresponding ideal
closed-loop eigenvalues are computed for a delay value h = 10
in Table III.
The example that follows represents the linearization of a

�uid-�ow model for describing the behavior of some classes
of TCP/AQM networks, see [11] and the references therein for
details. For such a system, the application of the controller (17)
has been recently proposed in [11]. It was shown there that
for any given set of network parameters there always exists a
feedback gain such that a numerically safe implementation of
the controller (17) can be achieved. Such a result was proved
by using the suf�cient condition (8) which, unlike the present
approach, does not provide an estimate of the decay rate for
the closed-loop system solutions.
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TABLE IV: Feedback gain and ideal closed-loop eigenvalues
for different �
� 0 0:5 0:848
K (0:0147; 0:0001) (0:0328; 0:0003) (0:0585; 0:0009)
s1;2 �0:6479;�0:1856 �0:5949� 0:03945i �0:848� 0:5076i

Example 15: The linearized TCP/AQM network model of
the form (16) has system matrices

A =

�
� 2n
�2c 0
n
�c 0

�
and B =

�
� �c2

2n2

0

�
:

where n represents the number of TCP �ows, c is the link
capacity and � denotes the round-trip time (delay).
We here apply the results of this section in computing the
feedback gain for guaranteeing a numerical implementation
of the controller along with a certain prescribed decay rate
�: For network parameters n = 40; � = 0:7 and c = 300,
the inequalities (23), (25)-(28) are feasible for a maximum
decay rate �max = 0:848: The computed feedback gain and
the corresponding ideal closed-loop eigenvalues for different
� � �max are displayed in Table IV.

V. CONCLUDING REMARKS

In this paper, delay-dependent suf�cient conditions for the
exponential stability of some classes of integral delay systems
with analytic kernels, which found important applications in
several stability problems of time-delay systems, are given.
The results are obtained by using the Lyapunov-Krasovskii
functional approach recently developed in [12] and [13] for
integral delay systems. An application to the �nite spectrum
assignment problem of input delay systems is also presented.
As a result, a novel linear matrix inequality formulation
for guaranteeing a numerically safe implementation of the
controllers and a prescribed decay rate for the closed-loop
system solutions is proposed.
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