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This paper focuses on the stabilization problem of fluid-flow delay models of Transmission Control Protocol/Active Queue Management
(TCP/AQM) networks by using a proportional-integral (PI) controller as AQM strategy. More precisely, the complete set of PI controllers
that exponentially stabilizes the corresponding linear time-delay system is derived. Using the particular geometric properties of this set
of the controller parameters, the issues of robustness to uncertainty in the network parameters and to perturbation in the controller
coefficients are addressed. Then, a methodology to compute a non-fragile PI AQM controller is provided. Finally, exponential estimates
for the closed-loop system solutions, allowing to evaluate the performance of the corresponding PI-controlled closed-loop system, are
proposed by using a Lyapunov-Krasovskii functional approach. An illustrative example completes the presentation.

1 Introduction

In computer networks, the AQM mechanisms are employed by the routers to assist the TCP management
for congestion avoidance. Recently, based on the fluid-flow delay model representation introduced by Hollot
et al. (2002) for describing the behaviour of TCP in computer networks, several control structures have
been proposed as AQM strategies. Thus, for example, P, PI and H∞ controllers have been proposed by
Hollot et al. (2002) and Quet and Özbay (2004). Furthermore, it was shown in these studies that such
controllers improve the performance obtained with standard AQM schemes (e.g. based on Random Early
Detection (RED)).
Due to their simplicity, the P and PI controllers proposed by Hollot et al. (2002) have become a reference

for the development of new AQM controllers as they are currently implemented in the Network Simulator
(ns-2 ). However, the design of such controllers is based only on sufficient conditions for guaranteeing the
closed-loop stability of the linearization and, therefore, they do not provide the set of all stabilizing P and
PI gain values.
More recently, in Michiels et al. (2006), the complete set of P controllers stabilizing the linearized

system of a simplified version of the model was derived. Despite this result and to the best of the authors’
knowledge, there are no specific results for the problem of finding all stabilizing PI controllers for the
linearized model introduced by Hollot et al. (2002). This fact motivated us for searching a complete
solution to this problem. More precisely, for a given set of network parameters (round-trip time, number of
TCP loads and link capacity), we propose a complete characterization of the set of all PI controllers that
exponentially stabilize the linearized model. Some preliminary results in this direction were announced
in Melchor-Aguilar (2007) and Melchor-Aguilar and Castillo-Torres (2007) for simplified versions of the
model.
It is worth to mention that one of the most important AQM objectives is the robustness with respect

to network parameters uncertainty. This problem has been addressed by Hollot et al. (2002) and Quet
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and Özbay (2004), where some sufficient conditions for robust stabilization have been provided. On the
other hand, the implementation of AQM schemes is subject to round-off errors and finite word length.
Furthermore, it could be necessary to make an appropriate tuning of the controller’s coefficients around
a nominal design to obtain a desired closed-loop performance. Hence, the practical implementation of
such AQM controllers demands to be robust not only to network parameters uncertainty but also to
perturbations of the controller coefficients. A controller whose closed-loop system is destabilized by small
perturbations in the controller coefficients is said to be fragile, see, e.g. Keel and Bhattacharyya (1997).
As it has been widely discussed in Keel and Bhattacharyya (1997) and Mäkilä (1998), in general, it is
quite difficult to analyze the robustness properties of the methods for designing stabilizing controllers with
respect to both parameters uncertainty and controller coefficients perturbations.
In this context, and to the best of the authors’ knowledge, the fragility study of AQM controllers has

not received sufficient attention in the literature. However, a first attempt to tackle this problem can be
found in Üstebay and Özbay (2007), where a method to compute the largest available intervals for the PI
controller parameters, based on the linearization of a simplified version of the model, has been developed.
The approach proposed in this paper is quite different. More precisely, using the complete characterization
of the set of all stabilizing controllers and its corresponding geometry, we first develop a robust stability
analysis of the controllers with respect to network parameters uncertainty. The geometric properties of
the region defined by the stabilizing control parameters will give also a better insight on the existing
connections between delay, link capacity and TCP loads. We believe that such a result is completely
new. Next, we present a methodology to examine the fragility of a given stabilizing controller and give a
procedure to determine the controller coefficients providing the maximum c2 parametric stability margin in
the controller’s gains space. This procedure will allow us to obtain a non-fragile PI controller guaranteeing
simultaneously the robustness with respect to the uncertainty in the network parameters, but also the
robustness to the controller gains perturbation.
Finally, we consider the performance issue of the corresponding PI-controlled closed-loop system. To ad-

dress this, we characterize the exponential behaviour of the closed-loop system solutions from an analytical
approach of stability theory for time-delay systems. More explicitly, we compute exponential estimates
for the closed-loop system solutions by using the Lyapunov-Krasovskii functional approach to compute
exponential upper bounds of the solutions of exponentially stable linear time-delay systems developed
by Kharitonov and Hinrichsen (2004).
The remaining part of the paper is organized as follows. Section 2 introduces the mathematical model

and controller design via linearization in a time-domain setting. The complete characterization of PI
stabilizing controllers is given in Section 3. Sections 4 and 5 present the robust and fragility analysis,
respectively. Exponential upper bounds for the closed-loop system solutions are derived in Section 6. A
numerical example illustrates the results in Section 7. Concluding remarks end the paper.

2 Mathematical model and controller design via linearization

We consider the dynamic fluid-flow model introduced by Hollot et al. (2002) for describing the behaviour of
TCP/AQM networks. Such a model, relating the average values of key network variables of n homogeneous
TCP-controlled sources and a single router, is described by the following coupled nonlinear differential
equations including time-varying delays:(

ẇ(t) = 1
τ(t) −

1
2
w(t)w(t−τ(t))
τ(t−τ(t)) p(t− τ(t)),

q̇(t) = n(t)w(t)τ(t) − c,
(1)

where w(t) denotes the average of TCP windows size (packets), q(t) is the average queue length (packets)

in the router, τ(t) = q(t)
c + τp is the round-trip time (secs) with τp representing the propagation delay, c is

the link capacity (packets/sec), n(t) is the number of TCP sessions and p(·) is the probability of marking
packets function which represents the AQM control strategy.
As discussed in the literature, the system (1) describes accurately the congestion avoidance algorithm
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of the TCP/AQM scheme. More precisely, the first differential equation characterizes the TCP window
control dynamics as follows: the first term in the right-hand side corresponds to the window’s additive-
increase behaviour, and the second term to the multiplicative-decrease behaviour. The second equation
describes the dynamics of the bottleneck queue length as the difference between the packet arrival rate
and the link capacity, assuming that there is no internal dynamics in the bottleneck.
Following similar arguments to the ones proposed by Hollot et al. (2002), we assume that the number of

TCP sessions and the link capacity are constant, i.e., n(t) ≡ n and c(t) ≡ c. Then, for a desired equilibrium
q0, the unique equilibrium point (w0, q0, p0) of (1) is defined by

w20p0 = 2, w0 =
τc

n
and τ =

q0
c
+ τp.

We will consider network parameters (n, τ , c) such that w0 > 2. Since (1) describes the congestion avoidance
phase of TCP, the assumption on the equilibrium windows w0 can be made without any loss of generality.
In order to design a stabilizing PI controller via the linearization of (1), we assume, as in Hollot et al.

(2002), that the time-delay argument on the queue length q is fixed to t− τ , and introduce

σ(t) =

Z t

0
(q(s)− q0) ds.

We thus arrive at the following augmented system:⎧⎪⎪⎨⎪⎪⎩
ẇ(t) = 1

q(t)

c
+τp
− 1

2
w(t)w(t−τ)
q(t−τ)

c
+τp

p(t− τ),

q̇(t) = nw(t)
q(t)

c
+τp
− c,

σ̇(t) = q(t)− q0.

(2)

Now consider a PI controller of the form

p(t) = kpq(t) +
kp
Ti
σ(t), (3)

where kp
Ti
6= 0. It can be easily verified that the closed-loop system (2)-(3) has a unique equilibrium point

(w0, q0, σ0), where σ0 =
Ti
kp
(p0 − kpq0) .

The linearization of the closed-loop system (2)-(3) around the equilibrium (w0, q0, σ0) is of the form:

ξ̇(t) = Aξ(t) +Bξ(t− τ), (4)

where ξ(t) =

⎛⎝ w̃(t)
q̃(t)
σ̃(t)

⎞⎠ , A =

⎛⎝− n
τ2c −

1
cτ2 0

n
τ − 1τ 0
0 1 0

⎞⎠ , B =

⎛⎝− n
τ2c

1
cτ2 −

τc2

2n2kp −
τc2

2n2
kp
Ti

0 0 0
0 0 0

⎞⎠ , w̃(t) = w(t) − w0,

q̃(t) = q(t)− q0, and σ̃(t) = σ(t)− σ0.
Assume for the moment that it is possible to find controller’s gains that make (4) exponentially stable.

Then, it follows that all solutions of (2) starting sufficiently close to (w0, q0, σ0) will exponentially approach
it as t→∞, see, for instance, the arguments proposed by Melchor-Aguilar and Niculescu (2007) concerning
an explicit construction for the Lyapunov-Poincaré method in the case of time-delay systems.

Remark 1 It is important to point out that it is not possible to investigate directly the stability of (4) for
the delay-free case (τ = 0) since the matrices A and B depend explicitly on the parameter 1/τ , for which a
singular perturbation approach seems more appropriate (see, for instance, Niculescu (2008) for some ideas
in this direction). We will not focus on such a methodology in the sequel.

Remark 2 It is worth to mention that the approach developed by Silva et al. (2005), which is based on
first determining the set of PI stabilizing controllers for the delay-free case, cannot be directly applied to
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determine the complete set of PI stabilizing controllers for (4). In the context of some simplified models for
describing the behaviour of AQM networks, such a method was exploited by Al-Hammouri et al. (2006).
In the sequel, we will consider the problem under a different angle and we will try to better exploit the
properties of the system.

3 Complete characterization of PI stabilizing controllers

It is well known that (4) is exponentially stable if and only if the characteristic function (quasipolynomial)

f(s) = s3 +
1

τ

³
1 +

n

τc

´
s2 +

2n

τ3c
s+

∙
n

τ2c
s2 +

c2

2n
kp

µ
s+

1

Ti

¶¸
e−τs,

has no zeros with nonnegative real parts, see, e.g. Hale and Verduyn-Lunel (1993). It is worth to mention
that f has an infinite (countable) number of roots.

3.1 Boundary parametrization

The following result provides the complete characterization of the set of controller’s gains (Ti, kp) for which
(4) is exponentially stable.

Theorem 3.1 Given network parameters (n, τ , c), the system (4) is exponentially stable if and only if the
controller’s gains (Ti, kp) belong to the stability region Φ(n,τ,c), plotted in Fig. 1, whose boundary in the
controller’s gains space (Ti, kp) is described by

Ti(ω, n, τ , c) =

¡
ω2 − 2n

τ3c

¢
cos(ωτ) + ω

τ

¡
1 + n

τc

¢
sin(ωτ)

ω
£
ω
τ

¡
1 + n

τc

¢
cos(ωτ) +

¡
2n
τ3c − ω2

¢
sin(ωτ) + nω

τ2c

¤ ,
kp(ω, n, τ , c) =

2n

c2

∙µ
ω2 − 2n

τ3c

¶
cos(ωτ) +

ω

τ

³
1 +

n

τc

´
sin(ωτ)

¸
, ω ∈ (0, ω∗) , (5)

where ω∗ is the solution of

n

τ2cω
= h(ω, τ), ω ∈

³
0,

π

2τ

´
, (6)

where

h(ω, τ) =
τω sin(ωτ)− cos(ωτ)

τω (1 + cos(ωτ)) + 2 sin(ωτ)
.

Proof First, observe that since kp
Ti
6= 0, s = 0 is not a zero of f(s). Assume now that f(s) has a pure

imaginary zero s = iω 6= 0. Then, a direct calculation yields (5). The parametrization (5) defines a
countable number of curves in the controller’s gains space (Ti, kp) and each one of them is defined by
varying ω in the intervals

¡
ω∗k, ω

∗
k+1

¢
, k = 0, 1, 2, ..., where ω∗0 = 0 and ω∗k, k = 1, 2, 3, ... are solutions of

n

τ2cω
= h(ω, τ), ω ∈

µ
kπ

τ
,
(k + 1)π

τ

¶
, k = 0, 1, .... (7)

Since (7) is a transcendental equation we look directly for a numerical solution. This can be found by
plotting the two functions n

τ2cω and h(ω, τ), see Fig. 2. The curves divide the plane (Ti, kp) into a set of
connected domains. From the argument principle (see, e.g. Ahlfors (1979)), it is easy to show that for all
(Ti, kp) values inside the open domain Φ(n,τ,c), bounded by the curve obtained by varying ω in the interval
(0, ω∗1) and the coordinate axis kp = 0, the function f(s) has no zeros with strictly positive real part.
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Taking into account that w0 > 2, a simple inspection of the numerical solution of (7) shows that in fact
ω∗1 ∈

¡
0, π
2τ

¢
, which ends the proof.

Remark 1 The procedure above sends back to the D-decomposition method suggested by Neimark (1949)
in the 40s or to the so-called parameter space approach (see, for instance, Bhattacharyya et al. (1995);
Ackermann et al. (2002) and the references therein).

3.2 Geometric properties of the stability regions

If the ideas above for characterizing the boundary of the stability regions in closed-loop have been used in
the literature, however the geometric properties of such stability regions have not been fully exploited.
In the sequel, with the characterization above, we have the following result:

Proposition 3.2 The boundary of the stability region Φ(n,τ,c) has the following geometric properties:

(i) The functions Ti(ω, n, τ , c) and kp(ω, n, τ , c) are monotonically increasing functions of ω in the interval
(0, ω∗). Furthermore, it holds that Ti(ω, n, τ , c) → −∞ and kp(ω, n, τ , c) → kp(0, n, τ , c) = − 4n

τ3c3

when ω → +0, and Ti(ω, n, τ , c) → +∞ and kp(ω, n, τ , c) → kp(ω
∗, n, τ , c) when ω → −ω∗, where

0 < kp(ω
∗, n, τ , c) <∞.

(ii) The function kp(ω,n,τ,c)
Ti(ω,n,τ,c)

is strictly positive for all ω ∈ (0, ω∗).

Proof

(i) The first part of the assertion can be shown to be true by checking that the derivatives of the functions
w.r.t ω are strictly positive for all ω ∈ (0, ω∗). For the sake of brevity we omit here the technical details.
The second part of the assertion can be directly obtained from (5).

(ii) From (5) we get

kp(ω, n, τ , c)

Ti(ω, n, τ , c)
=
2nω

c2

∙
ω

τ

³
1 +

n

τc

´
cos(ωτ) +

µ
2n

τ3c
− ω2

¶
sin(ωτ) +

nω

τ2c

¸
that can be written as

kp(ω, n, τ , c)

Ti(ω, n, τ , c)
=
2nω2

τc2
[ωτ (1 + cos(ωτ)) + 2 sin(ωτ)]

h n

τ2cω
− h(ω, τ)

i
. (8)

Since n
τ2cω > h(ω, τ),∀ω ∈ (0, ω∗), see Fig. 2, and ωτ (1 + cos(ωτ)) + 2 sin(ωτ) > 0 for all ω ∈ (0, ω∗),

then the assertion follows.

Remark 2 When τ → +0, the stability region Φ(n,τ,c) tends to the whole first and third quadrants of the
plane (Ti, kp). In other words, for small round-trip time (delay), arbitrarily controller’s gains having the
same sign stabilizes the closed-loop system (4). Indeed, it is easy to see that such a conclusion follows from
the assertion (i) of proposition 3.2 and the fact that ω∗ → +∞ when τ → +0, see Fig. 2.

4 Robust Stability Analysis

In this section, we address the robustness of the controller to uncertainties in the network parameters. Let
us consider that the unknown parameters (n, τ , c) satisfy the following condition:

n ≥ n0, τ ≤ τ0 and c ≤ c0. (9)

Our goal here is to determine the complete set of PI controllers that exponentially stabilizes (4) for all
network parameters (n, τ , c) satisfying (9).
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Let ω∗0 and ω
∗ be the solutions of (6) corresponding to the parameters (n0, τ0, c0) and (n, τ , c) respectively.

Remark 1 For the network parameters (n0, τ0, c0) and (n, τ , c) satisfying (9), then the following inequality

ω∗0 ≤ ω∗

holds. Indeed, it is easy to see the validity of this inequality by simply inspecting the plots of the functions
involved in (6) corresponding to the parameters (n0, τ0, c0) and (n, τ , c) respectively, see Fig. 2.

The following result will play an essential role on deriving the robust stability conditions to network
parameters uncertainty.

Proposition 4.1 For network parameters (n0, τ0, c0) and (n, τ , c) satisfying (9), the following inequality

kp(ω, n, τ , c)

Ti(ω, n, τ , c)
≥ kp(ω, n0, τ0, c0)

Ti(ω, n0, τ0, c0)
(10)

holds for all ω ∈ (0, ω∗0).

Proof From Fig. 2, we obtain the following inequalities: h(ω, τ) ≤ h(ω, τ0),∀ω ∈
³
0, π
2τ0

´
and n

τ2cω ≥
n0

τ20c0ω
,∀ω > 0. Taking into account these inequalities in (8) we get that for all ω ∈ (0, ω∗0)

kp(ω, n, τ , c)

Ti(ω, n, τ , c)
≥ 2nω

2

τc2
[ωτ (1 + cos(ωτ)) + 2 sin(ωτ)]

∙
n0

τ20c0ω
− h(ω, τ0)

¸
.

Since 1 + cos(ωτ) ≥ 1 + cos(ωτ0) and sin(ωτ)
τ ≥ sin(ωτ0)

τ0
,∀ω ∈

³
0, π
2τ0

´
, we have

kp(ω, n, τ , c)

Ti(ω, n, τ , c)
≥ 2n0ω

2

τ0c20
[ωτ0 (1 + cos(ωτ0)) + 2 sin(ωτ0)]

∙
n0

τ20c0ω
− h(ω, τ0)

¸
,

which implies (10).

Theorem 4.2 Given network parameters (n0, τ0, c0) and (n, τ , c) satisfying (9), the following property
holds

Φ(n0,τ0,c0) ⊆ Φ(n,τ,c).

Proof Obviously, Φ(n0,τ0,c0) = Φ(n,τ,c) when n = n0, τ = τ0 and c = c0. Note that in order to get the
general non trivial result, it suffices to prove that the stability regions inclusion holds for some para-
meters (n1, τ1, c1) satisfying n1 > n0, τ1 < τ0 and c1 < c0, since we can use a continuation procedure
by redefining n1 = n0, τ1 = τ0 and c1 = c0. Thus, let us consider parameters (n1, τ1, c1) such that
(Ti (ω

∗
0, n1, τ1, c1) , kp(ω

∗
0, n1, τ1, c1)) belongs to the first quadrant of the plane (Ti, kp) and denote by ω∗1

the solution of (6) for such parameters.
From (10) and the properties of the boundary of the stability regions we get that, by sweeping ω in the

interval (0, ω∗0), the stability region Φ(n0,τ0,c0) is partially contained in the stability region Φ(n1,τ1,c1).
Thus, it remains to prove that by sweeping ω in the interval [ω∗0, ω

∗
1) , the stability region Φ(n1,τ1,c1) still

contains to the stability region Φ(n0,τ0,c0). To prove this, consider now a pair (Ti0, kp0) belonging to the
boundary of Φ(n0,τ0,c0), where Ti0 > Ti (ω

∗
0, n1, τ1, c2) .

From (5) it follows that there exists a unique ω0 ∈ (0, ω∗0) such that Ti0 = Ti(ω0, n0, τ0, c0) and
kp0 = kp(ω0, n0, τ0, c0). Since kp(ω, n1, τ1, c1) and Ti(ω, n1, τ1, c1) are monotonically increasing functions
as functions w.r.t. the variable ω, when ω goes from ω∗0 to ω

∗
1, there exist ω̂ ∈ (ω∗0, ω∗1) and ω̆ ∈ (0, ω̂) such
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that

kp(ω̂, n1, τ1, c1)

Ti(ω̂, n1, τ1, c1)
=

kp(ω0, n0, τ0, c0)

Ti(ω, n0, τ0, c0)
and kp(ω̆, n1, τ1, c1) = kp(ω0, n0, τ0, c0). (11)

Since for all ω ∈ [ω̆, ω̂] the slope of the boundary of Φ(n1,τ1,c1) is monotonically decreasing we have

kp(ω̆, n1, τ1, c1)

Ti(ω̆, n1, τ1, c1)
>

kp(ω̂, n1, τ1, c1)

Ti(ω̂, n1, τ1, c1)
.

From (11) and the above it follows that Ti(ω̆, n1, τ1, c1) < Ti(ω0, n0, τ0, c0). The monotonically increasing
property of Ti(ω, n1, τ1, c1) w.r.t. ω implies that there exists ω̃ ∈ (ω̆, ω∗1) such that Ti(ω̃, n1, τ1, c1) =
Ti(ω0, n0, τ0, c0). On the other hand, the monotonically increasing property of kp(ω, n1, τ1, c1) w.r.t. ω
implies that

kp (ω̃, n1, τ1, c1) > kp (ω̆, n1, τ1, c1) = kp(ω0, n0, τ0, c0) = kp0.

So, we conclude that (Ti0, kp0) ∈ Φ(n1,τ1,c1).
As a consequence of this last property, we have the following:

Corollary 4.3 Assume that a controller (3) locally stabilizes the equilibrium point of (2) with network
parameters (n0, τ0, c0). Then it locally stabilizes the equilibrium point of (2) with network parameters
(n, τ , c) satisfying (9).

Remark 2 It is important to point out the links between the Corollary 4.3 and Proposition 2 from Hollot
et al. (2002). Although some similarities exist, however, the analytical treatment and the final results here
are basically different. First, we arrive at the result from the exact knowledge of the set of all stabilizing
controllers and its geometric properties. This leads to improved robust stability conditions, where the
controller’s gains can be chosen based on the exact robust stability region, not on an estimate of it. In
addition, our approach does not impose any stability condition on the controller as occurs in Hollot et al.
(2002).

Remark 3 Assume that the network parameters (n, τ , c) are constants satisfying

n ∈ [n1, n2] , τ ∈ [τ1, τ2] and c ∈ [c1, c2] . (12)

Then from the geometry property stated in theorem 4.2 it follows that Φ(n1,τ2,c2) ⊆ Φ(n,τ,c) for all network
parameters (n, τ , c) satisfying (12). In other words, by designing the PI controller for the largest expected
values of τ and c, and the smallest expected value of n yields a robust stabilizing controller.

Finally, in this section we would like to note that the above analysis have been developed without
imposing restrictions on the controllers gains since we wanted to illustrate the real complete set of PI
controllers that exponentially stabilizes (4). Of course, from the application point of view, the parameters
of the AQM controllers should be positive and, therefore, one needs to restrict the controller gains to be
only positive.

5 Fragility Analysis. A geometric approach

Now, we address the robustness to perturbations in the controller gains, i.e., the fragility of the PI AQM

controller. In order to simplify our subsequent analysis we define kp = kp and ki =
kp
Ti
, as the authors of

Silva et al. (2005), and restrict the controller gains to be positive.
Thus, we consider controller’s gains (kp, ki) belonging to the stability region Γ(n,τ,c), see Fig. 3, whose

boundary in the controller’s gains space (kp, ki) is determined by the coordinate axes kp = 0 and ki = 0,
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Figure 1. Stability region Φ(n,τ,c) for (n, τ, c) and (n0, τ0, c0) satisfying (9).

n
0
/τ

0
2c

0
ω

h(ω,τ
0
)

n/τ2cω 
h(ω,τ)

π/2τ
o
 π/2τ 0 ω

o
*  ω* 

Figure 2. Numerical Solution of (6) for network parameters (n, τ, c) and (n0, τ0, c0) satisfying (9).

and the curve defined by

kp(ω) =
2n

c2

∙µ
ω2 − 2n

τ3c

¶
cos(ωτ) +

ω

τ

³
1 +

n

τc

´
sin(ωτ)

¸
ki(ω) =

2nω

c2

∙
ω

τ

³
1 +

n

τc

´
cos(ωτ) +

µ
2n

τ3c
− ω2

¶
sin(ωτ) +

nω

τ2c

¸
, ω ∈ [ω̄, ω∗] , (13)

where ω∗ is the solution of (6) and ω̄ is the solution of

tan(ωτ) =
2n
τ3c − ω2

ω
τ

¡
1 + n

τc

¢ , ω ∈ ³0, π
2τ

´
. (14)

The fragility problem can be formulated as follows: given nominal controller’s gains (kp0, ki0) ∈ Γ(n,τ,c),
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Figure 3. Stability regions Φ(n,τ,c) and Γ(n,τ,c) in the (kp, ki) space for (n, τ, c) and (no, τ0, c0) satisfying (9).

find the maximum ρ0 > 0 such that for any kp ≥ 0 and ki > 0 the following condition holds:

Bρ0(kp0, ki0) =

½
(kp, ki) :

q
(kp − kp0)

2 + (ki − ki0)
2 < ρ0

¾
⊂ Γ(n,τ,c).

The problem is equivalent to finding the minimum distance between (kp0, ki0) and Γ(n,τ,c). Let C denotes
the curve determined by varying ω in the interval [ω̄, ω∗] in (13). The distance from the point (kp0, ki0) to
the curve C is given by

d(ω) =

q
(kp(ω)− kp0)

2 + (ki(ω)− ki0)
2, ω ∈ [ω̄, ω∗] .

Since ω → d(ω) is a continuous function of ω, there exists always a ω̂ ∈ [ω̄, ω∗] such that d(ω̂) ≤ d(ω), for
all ω ∈ [ω̄, ω∗] . It is easily seen that the minimum distance from the given point (kp0, ki0) to Γ(n,τ,c) is

ρ0 = min {kp0, ki0, d(ω̂)} . (15)

Formula (15) determines a procedure to compute the c2 parametric stability margin around the nominal
point (kp0, ki0), which allows us to examine the fragility of a given stabilizing controller.
With this tool in our hands, we address now the problem of choosing the controller’s gains (kp0, ki0)

inside the stabilizing region Γ(n,τ,c) at the centre of the circle Bρ0(kp0, ki0) of maximum ρ0 > 0 such that
Bρ(kp0, ki0) ⊂ Γ(n,τ,c). The radius of this circle represents the maximum c2 parametric stability margin in
the controller’s gains space, see, for instance, Keel and Bhattacharyya (1997).
In order to achieve such a goal, we select kp0 as the centre of the interval of allowable kp gains and then

we do a sweeping on the interval of allowable ki gains. Thus, we choose kp0 =
kp(ω∗)
2 and compute ρ0 > 0,

according to (15), by sweeping ki0 in the interval (0, ki(ω̃)) , where ω̃ ∈ [ω̄, ω∗] is such that kp(ω̃) = kp(ω∗)
2 .

This procedure determines a family of circles having different radii and centers of which we select the
one with the maximum radius. Finally, we choose ki0 to be at the center of this circle.
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6 Exponential estimates for the closed-loop system solutions

In this section, we compute exponential estimates for the closed-loop system solutions to evaluate the
performance of PI stabilizing controllers.
From our results in Section 3, we have that, for any given stabilizing controller, the closed-loop system

(4) is exponentially stable. Then, according to the definition of exponential stability for time-delay systems,
there exist constants µ ≥ 1 and α > 0 such that the following exponential upper bound holds:

kξ(t, ϕ)k ≤ µe−αt kϕkτ , t ≥ 0, (16)

for every solution ξ(t, ϕ) of (4), see Hale and Verduyn-Lunel (1993). Here it is assumed that the initial
function ϕ belongs to C

¡
[−τ , 0] ,R3

¢
, the space of continuous functions mapping [−τ , 0] to R3 equipped

with the uniform norm kϕkτ = maxθ∈[−τ,0] kϕ(θ)k .
As it is well known the exponential bound (16) is governed by the infinite number of zeros of the

characteristic function of (4), whereas the exponential decay rate α is determined by the real part of the
rightmost zero, see Hale and Verduyn-Lunel (1993). Several contributions addressing the computation of
an estimate for the lower bound of the decay rate can be found in the literature referred to as α-stability,
see, for instance, Mori et al. (1982) and Niculescu (1998).
Recently, an interesting method of computing simultaneously a lower bound for the decay rate α and

an upper bound for µ of a given exponentially stable linear time-delay system has been developed by
Kharitonov and Hinrichsen (2004). To have estimates for both constants µ and α it provides the complete
characterization of the exponential behaviour of a solution, where not only an estimate for the exponential
decay rate but also an upper bound for the transient response of the solutions are explicitly determined.
The method developed by Kharitonov and Hinrichsen (2004) makes use of the fact that associated

to an exponentially stable system (4), there exists always a quadratic Lyapunov-Krasovskii functional
v : C

¡
[−τ , 0] ,R3

¢
→ R of the form

v(ϕ) = ϕT (0)U(0)ϕ(0) + 2ϕT (0)

Z 0

−τ
U(−τ − θ)Bϕ(θ)dθ (17)

+

Z 0

−τ

Z 0

−τ
ϕT (θ1)B

TU(θ1 − θ2)Bϕ(θ2)dθ1dθ2 +

Z 0

−τ
ϕT (θ) [W1 + (τ + θ)W2]ϕ(θ)dθ,

where matrix function U(·) is a solution of the second-order differential equation

Ü(ζ) = U̇(ζ)A−AT U̇(ζ) +ATU(ζ)A−BTU(ζ)B (18)

with the boundary conditions

U̇(0) = U(0)A+ UT (τ)B, (19)

−W = U̇(0) + U̇T (0). (20)

Here W = W0 + W1 + τW2 with Wj , j = 0, 1, 2, any positive definite matrices, see Kharitonov and
Hinrichsen (2004) for details.
When (4) is exponentially stable, then given positive definite matrices Wj , j = 0, 1, 2, there exists a

unique solution of (18) satisfying (19) and (20) for which a piecewise linear approximation on the interval
[0, τ ] can be computed, see Kharitonov and Plischke (2006).
The following proposition is directly obtained from Theorem 4 in Kharitonov and Hinrichsen (2004),

where we use k·k to denote both the Euclidean norm for vector and the induced matrix norm for ma-
trices, λmin(A) and λmax(A) to designate the smallest and largest eigenvalues of a symmetric matrix A,
respectively.
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Proposition 6.1 Let system (4) be exponentially stable. Given any positive definite matrices Wj , j =
0, 1, 2 the solution ξ(t, ϕ) with initial condition ϕ ∈ C([−τ , 0],R3) satisfies the following exponential upper
bound:

kξ(t, ϕ)k ≤ µe−αt kϕkτ , t ≥ 0, (21)

where

µ =

r
α2
α1

and α =
β

2κ
,

with

β = min {λmin(W0), λmin(W2)} ,
κ = max {u0 (1 + τ kBk) , u0 kBk (1 + τ kBk) + kW1 + τW2k} ,
u0 = max

θ∈[0,τ ]
kU(θ)k ,

α2 ≥ κ (1 + τ) ,

and α1 > 0 such that

λmin(W0)− α1 (2 kAk+ kBk) > 0,
λmin(W1)− α1 kBk > 0.

By combining the above result with the knowledge of the complete set of PI controllers that exponentially
stabilizes (4), one can evaluate the time-domain responses of the closed-loop system solutions for a given set
of PI stabilizing controllers. More explicitly, we first choose a set of positive definite matricesWj , j = 0, 1, 2,
and then compute the corresponding exponential upper bound (21) for each controller of the given set of
stabilizing controller.
It is important to note that, as a Lyapunov-based approach, the exponential upper bounds determined by

the Proposition 6.1 may be conservative estimates of the actual exponential upper bound for the solutions.
As the estimates (21) depend on the choice of the matrices Wj , j = 0, 1, 2, these matrices can be used as
free parameters to improve such estimates.

7 Example

Let us consider network parameters in the same setup as in Hollot et al. (2002), where the operation point
is q0 = 200 packets, n = 60 TCP flows, c = 3750 packets/sec, τp = 0.1927 sec, so τ = 0.246 sec. Following
Hollot et al. (2002), for a pair (Ti, kp) designed according to the rules

Ti =
τ2c

2n
and kp =

2n

τ2c2
β

q
1 + β2, where β = 0.13, (22)

the corresponding PI controller locally stabilizes the equilibrium point. On the other hand, following
Üstebay and Özbay (2007), the local stabilization of the equilibrium point is achieved for a PI controller
with a pair (Ti, kp) satisfying

Ti = 16τ and kp =
n

2τ2c2
. (23)
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Thus, for this example, from (22) and (23) we obtain the pairs H = (kp0, ki0) =¡
1.8485× 10−5, 9.7749× 10−6

¢
and O = (kp0, ki0) =

¡
3.5252× 10−5, 8.9564× 10−6

¢
, respectively.

In Fig. 4 we plot the stability region Γ(n,τ,c) together with the pairs H and O in the controller’s gains

space (kp, ki). As expected, the PI controllers proposed in Hollot et al. (2002) and Üstebay and Özbay
(2007) belong to the complete set of PI controllers that exponentially stabilizes (4).
Now let us examine the fragility of the controllers mentioned above. Using (15) we get ρ0 = 9.7749×10−6

for the pair H and ρ0 = 8.9564×10−6 for the pair O. Fig. 4 shows that the PI controllers designs proposed
by Hollot et al. (2002) and Üstebay and Özbay (2007) are close to the stability boundary. Therefore, in
this case, the resulting PI controllers are fragile controllers.
By applying the methodology proposed in section 5, we obtain that the pair M = (kp0, ki0) =¡
9.1044× 10−5, 6.8× 10−5

¢
provides ρ0 = 6.7411 × 10−5, which is the maximum c2 parametric stabil-

ity margin in the controller’s gains space, see Fig. 4.
We now compute the exponential upper bound (21) for the above stabilizing controllers. Let us choose

W0 = 180I,W1 = 0.1I and W2 = 180I, where I denotes the identity matrix of 3 × 3 dimension. Then,
a direct application of proposition 6.1 leads to the following estimates of the constants µ and α : µH ≈
2.67 × 103 and αH ≈ 4.25 × 10−5 for the pair H, µO ≈ 2.27× 103 and αO ≈ 5.88 × 10−5 for the pair O,
while for the pair M we get µM ≈ 1.40× 103 and αM ≈ 1.53× 10−4.
The computed exponential estimates show that the PI controller for the pairM provides a faster closed-

loop response than the PI controllers for the pairs H and O. This is corroborated by a Matlab/Simulink
simulation performed on the nonlinear model (2), see Fig. 5. The faster response time of the PI controller
for the pairM is clearly observed. Hence, for this example, the pairM determines a non-fragile PI controller
having a good transient response. In addition, such a controller satisfies the robust stabilization properties
mentioned in Corollary 4.3 and Remark 3.
In doing the simulations, we have not implemented any scheme to avoid the well-known phenomenon

of windup when using an integral term in the controller, see for instance Astrom and Hagglund (1995),
which certainly is a possibility in AQM control where the control signal takes values only in [0, 1]. As
it can be seen in Fig. 6, for this example where the control signals have been fixed to zero when taking
negative values, the probability of marking packets functions p(t) satisfy the requested property, that is
to be bounded by 0 and 1.
Finally, it is important to point out that the computed constant µ can be useful for determining an

upper bound for the buffer capacity to avoid overflow, and thus lost packets and undesired retransmissions,
towards an efficient queue utilization.

8 Conclusions

In this paper, we addressed the stabilization problem of fluid-flow delay models of TCP/AQM networks
by using a PI controller as AQM strategy. The complete characterization of the set of controllers that
exponentially stabilizes the linearized system is obtained in counterpart with the existing works in the
literature which give only estimates of this set. We showed how the knowledge of the set of all stabilizing
controller can be exploited to analyze the robustness of the controllers with respect to both network
parameters uncertainty and controller coefficients perturbations. As a consequence, a simple procedure to
compute the controller gains providing a non-fragile PI controller which admits uncertainty in the network
parameters as well as controller coefficients perturbations is provided. We have computed exponential
estimates for the closed-loop system solutions to evaluate the performance of a PI stabilizing controller. Our
contribution demonstrates that we are now able to choose the PI controller gains to maintain the desired
stability despite varying network conditions with a sufficient margin of tolerance around the controller
design and thus to achieve better performance as compared with other typical AQM schemes. Extensions
of this work to networks with heterogeneous round-trip times, multiple bottleneck links, and uncertain
routing topologies deserve further study.
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Figure 4. Fragility comparison of the PI controllers proposed in Hollot et al. (2002), Üstebay and Özbay (2007) (pairs
H = 1.8485× 10−5, 9.7749× 10−6 and O = 3.5252× 10−5, 8.9564× 10−6 respectively) and the method developed in this paper

(pair M = 9.1044× 10−5, 6.8× 10−5 ).
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Figure 5. Closed-loop responses of q(t) for the PI controllers corresponding to the pairs H (- .), O (- -) and M (-).
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