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Abstract 1 

Biological hydrogen production is an active research area due to the importance of this gas as 2 

an energy carrier and the advantages of using biological systems to produce it. A cheap and 3 

practical on-line hydrogen determination is desired in these processes. In this study, an artificial 4 

neural network (ANN) was developed to estimate the hydrogen production in fermentative 5 

processes. A back propagation neural network (BPNN) of one hidden layer with 12 nodes was 6 

selected. The BPNN training was done using the conjugated gradient algorithm and on-line 7 

measurements of dissolved CO2, pH and oxidation-reduction potential during the fermentations 8 

of cheese whey by Escherichia coli ∆hycA ∆ lacI (WDHL) strain with or without pH control. 9 

The correlation coefficient between the hydrogen production determined by gas 10 

chromatography and the hydrogen production estimated by the BPNN was 0.955. Results 11 

showed that the BPNN successfully estimated the hydrogen production using only on-line 12 

parameters in genetically modified E. coli fermentations with or without pH control. This 13 

approach could be used for other hydrogen production systems. 14 

 15 

Keywords: back propagation neural network, dissolved CO2, hydrogen, redox potential, pH, 16 
cheese whey. 17 

18 
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1. Introduction 19 

Hydrogen is considered as a good choice as future energy carrier since it has the highest energy 20 

content per weight unit and its utilization either via combustion or fuel cells results in pure 21 

water [1]. Among the hydrogen production processes, the biological production is an attractive 22 

method because it is carried out at ambient pressure and temperature, therefore consumes less 23 

energy than chemical or electrochemical processes [2]. The fermentative hydrogen production 24 

is a promising method since it has the higher production rate; it does not need light and utilizes 25 

a wide range of carbon sources [2-5]. In the dark fermentation, several microorganisms can use 26 

carbohydrate rich substrates. From the enterobacteria, Escherichia coli is the main 27 

microorganism used for studies of hydrogen production, since its genetic and metabolism are 28 

well documented [6-12]. Under anaerobic conditions and in absence of external electron 29 

acceptors E. coli converts sugars to pyruvate that may be converted to lactate or broken into 30 

formate and acetyl-coenzyme A (acetyl-CoA), which is converted to acetate or ethanol, 31 

whereas formate is metabolized to hydrogen and CO2 (Fig. 1). 32 

 33 

The on-line hydrogen determination is strongly desired to establish feedback or feed forward 34 

control algorithms. However, the most common method to determine hydrogen is by gas 35 

chromatography (GC) off-line [13-19]. This method is very useful, accurate and sensitive to 36 

determine hydrogen, but requires equipment and specific installations. Another method used is 37 

the gas displacement using a solution of NaOH, however the solution could be saturated and 38 

confirmation by GC is still needed [20-24]. Massanet-Nicolau et al. [25] measured the 39 

composition of the gas produced by the fermentation of sewage biosolids with hydrogen, CO 2 40 

and CH4 sensors. Ferchichi et al. [26] used a solution of 30% of KOH to remove CO2, and the 41 
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residual gas was channeled into a bubble counter for the measurement of hydrogen and it was 42 

confirmed by a specific hydrogen sensor. The counter was linked to a computer and the on-line 43 

hydrogen production was recorded. 44 

Until now, there are few parameters for on-line monitoring in bioreactors, the most frequents 45 

are temperature, pH, oxidation-reduction potential, dissolved oxygen and dissolved CO2. 46 

Therefore, a useful approach is the use of mathematical models with these on-line 47 

determinations for the estimation of the fermentative products. For this purpose, the Artificial 48 

neural networks (ANNs) have been successfully used, since they are based on the connectivity 49 

of biological neurons that have an incredible capability for emulation, analysis, prediction, 50 

association and adaptation [6, 27]. For instance, Poirazi et al. [28] used pH, temperature and 51 

NaCl concentration to predict the maximum specific growth rate and bacteriocin production 52 

using feed-forward ANNs in Streptococcus macedonicus ACA-DC 198 cultures. Chen et al. 53 

[27] used the dissolved oxygen, feed rate and liquid volume to determine the biomass 54 

concentration in Saccharomyces cerevisiae  cultures using a recurrent neural network. 55 

Escalante-Minakata et al. [29] used the oxidation-reduction potential and a back propagation 56 

neural network to estimate the ethanol and biomass production in non-axenic cultures. 57 

The aim of this work is to develop an ANN to estimate the hydrogen production in genetically 58 

modified E. coli fermentations based on the on-line measurements of the oxidation-reduction 59 

potential, pH, and dissolved CO2. 60 

 61 

2. Materials and methods 62 

 63 
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2.1 Strain and culture media 64 

Escherichia coli ∆hycA ∆lacI (WDHL) a hydrogen overproducing strain was used in this study. 65 

A complete description of this strain can be found elsewhere [14]. For hydrogen production, 66 

inocula were grown overnight in Luria Bertani (LB) medium at 37°C and shaken at 200 rpm , 67 

afterwards added to fresh LB medium and cultured in closed twist cover bottles at 37°C for 48 68 

h. Fermentations were done in hydrogen production (HP) medium described elsewhere [14]. 69 

HP medium was pasteurized at 65°C during 25 m in and chilled 20 min on ice. Cheese whey 70 

powder (Land O´Lakes, Arden Hills, Minnesota) at 20 g L-1  was used as carbon source. 71 

 72 

2.2 Batch cultures in bioreactor 73 

Pre-inocula was harvested, washed once and inoculated into 1 L bioreactor (Applikon, Foster 74 

City, CA) equipped with two six-blade Rushton turbines. Oxidation-reduction potential (ORP), 75 

pH and dissolved CO2 (DCO2) were monitored using autoclavable electrodes (Applikon) 76 

connected to B ioconsole ADI 1035/Biocontroller ADI 1030 (Applikon). The ORP and DCO2 77 

electrodes were calibrated according to the manufacturers at 215 mV using the reference 78 

solution HI7020 (Hanna Instruments, Armazem, Portugal) and using 100% of CO2 gas 79 

saturation at a tmospheric pressure, respectively. BioXpert 1.3 software (Applikon) for data 80 

acquisition was used. The cultures were performed at 37°C and stirred at 175 rpm. Culture 81 

samples were periodically taken from the bioreactor, and centrifuged at 11,500 x g for 5 min. 82 

The supernatants were filtered through a 0.22 µm filter (Millipore) before the analysis of 83 

fermentation products. 84 

 85 
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2.3 Analytical methods 86 

The gas was measured by water displacement in an inverted burette connected to the bioreactor 87 

with rubber tubing and a needle. The hydrogen content in the gas phase, was determined in a 88 

Gas Chromatograph 6890 N (Agilent technologies, Wilm ington, DE) as described elsewhere 89 

[30]. Ethanol was measured by GC as described by De Leon-Rodriguez et al [31]. Organic 90 

acids and carbohydrates were analyzed by isocratic liquid chromatography using a Waters 600 91 

HPLC system and UV-Vis 2487 detector (Waters) at wavelenght-190 nm. Samples of 20 µL 92 

were separated on a Rezex ROA H+ column (300 mm x 7.8 mm, 8 µm) from Phenomenex 93 

(Torrance, CA) at 60ºC and using 0.005N H2S04 at 0.6 mL/min as mobile phase. 94 

 95 

2.4 Structure of ANN 96 

To predict the hydrogen production through the on-line measurements of pH, dissolved CO 2 97 

and ORP, a back propagation neural network (BPNN) was chosen. The model was structured as 98 

follows: 99 

H2= F (pH, DCO2, ORP, W) 100 

Where ORP is the oxidation-reduction potential in mV, DCO2 is the % of dissolved CO2, pH is 101 

the H+ potential and W is the vector of adjustable parameters of the network or weight. The 102 

variable of response H2 is the hydrogen produced in mL. The selected architecture was a 103 

standard network of one hidden layer with 12 nodes [32]. The structure of the BPNN is shown 104 

in Fig. 2. The output layer had a node that predicted the value of hydrogen production whereas 105 

the input layer consisted on 3 nodes for pH, DCO2 and ORP. All the neurons of hidden layer 106 
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were non-linear with sigmoid activation function. The output layer neuron had a lineal 107 

activation function. The BPNN was trained on a Matlab platform R2008 (MathWorks, Inc.). 108 

 109 

2.5 BPNN Training 110 

One hundred and two data of 7 different experiments were used for the BPNN training. The 111 

characteristics of the experiments are shown in Table 1. The data of the input variables were 112 

scaled in the range (-1, +1) and the output variable was scaled in the range (0, +1). The training 113 

was made by minimal squares methodology with respect to error function as follow: 114 

 115 

 116 

 117 

Where (H2)exp
i is the experimental value for the i-point, (H2)i is the value estimated by the 118 

network, p is the number of data. The network training was done using the conjugated gradient 119 

algorithm [33]. The BPNN parameters W were randomly assigned in the range of (-0.5, +0.5). 120 

25 full cycles of conjugated gradient were needed to reach convergence and the error was 121 

0.0016. 122 

 123 

3. Results and discussion 124 

 125 

3.1 Hydrogen production by E. coli 126 

A typical batch culture of E. coli WDHL at pH 5.5 is showed in Fig. 3. Cultures at other 127 

operational conditions showed similar trends as those in Fig. 3, although rates of the various 128 
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parameters measured, their maximum concentrations, and times to reach them were different in 129 

each case. Lactose was consumed quickly and was undetectable after 18 h of fermentation (Fig. 130 

3A). Only a slight increment on the biomass was observed and the maximum concentration was 131 

1.16 g/L and dropped gradually after 10 h of culture (Fig. 3A). In the Fig. 3B the production of 132 

organic acids and ethanol are shown. Lactate was the main organic acid produced essentially in 133 

the first 12 h and reached a maximum of 5 g/L in this fermentation. Succinate, propionate and 134 

acetate were also produced and each acid reached around 1.6 g/L at 30 h. Only slight amount 135 

below of 0.2 g/L of formate was detected in the experiment, because it was rapidly used to 136 

produce hydrogen and CO2 as soon as is produced. Ethanol was also produced and the final 137 

concentration was 0.75 g/L. Fig. 3C shows the hydrogen and the DCO2 profile. A fast increase 138 

on DCO2 was observed on the first 10 h as result of metabolically activity, reached 90% and 139 

then remained constant at this value. Since inoculation, the hydrogen production was observed 140 

and became slow according the lactose concentration decreased. For this culture, the maximum 141 

hydrogen production was 745 mL. The hydrogen and DCO2 trends are sim ilar (Fig. 3C) and it 142 

is explained because the production of hydrogen and CO2 are linked, formate is broken down to 143 

give one mole of hydrogen per mole of CO2 (Fig. 1). The relation should be direct if no other 144 

reactions involve CO2 production or degradation, but oxaloacetate is formed by the 145 

condensation of phosphoenolpyruvate and CO2 [34]. The initial pH was 7.5 and dropped to 5.5 146 

at 2.5 h because the accumulation of organic acids then it was automatically controlled at this 147 

value with NaOH (Fig. 3D). The pH is one of the most important parameters in hydrogen 148 

production by different microorganisms. For instance, Li et al. [35] reported a direct 149 

relationship between initia l pH of 5-7 and hydrogen production rate using glucose in non-150 

axenic cultures. Davila-Vazquez et al. [30] reached the highest hydrogen molar yield at pH of 151 

7.5 and 6.5 using lactose and cheese whey respectively. Working with axenic cultures, the 152 
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highest hydrogen production rate was attained at initial pH of 6 by Clostridium 153 

saccharoperbutylacetonicum using cheese whey as substrate [26], whereas the maximum 154 

hydrogen production was reached at initia l pH of 6.5 and 7.5 by metabolically engineered E. 155 

coli strains using glucose [36] and CW [14] respectively. The role of the pH on the hydrogen 156 

production in E. coli is explained because the metabolism and the import-export of formate are 157 

pH-dependent. Moreover, the transcription of the FHL complex which converts formate to 158 

hydrogen and CO2 depends on the acidic pH of the growth medium [37]. The fermentative 159 

metabolism had an effect on ORP and its drops at the beginning of fermentation and then 160 

remained constant around -500 mV (Fig. 3D). The global measured ORP corresponds to the 161 

sum of the all redox species. Table 2 shows the standard reduction potentials of main redox 162 

pairs involved in the hydrogen metabolism by E. coli. The ORP has been considered as a 163 

variable related to hydrogen production. For instance, Hussy et al. [19] reported that ORP was 164 

negatively related to hydrogen production rate in a continuous process with non-axenic 165 

cultures. Ren et al. [38] found that ORP and pH determined to fermentation type in a 166 

continuous flow reactor with non-axenic cultures and the best condition for hydrogen 167 

production occurred in the alcoholic fermentation at ORP and pH below of -217 mV and 4.5, 168 

respectively. Rosales-Colunga et al. [14] related the ORP with the cell-growth in a batch 169 

processes using a hydrogen over-producer E. coli strain. 170 

 171 

ORP, dissolved CO2 and pH are important parameters in hydrogen production as discussed 172 

above and can be easily measured on-line. By these reasons the three parameters were chosen 173 

to estimate the hydrogen production by the BPNN. 174 

 175 



 10 

3.2 Prediction of hydrogen production using a BPNN 176 

The final parameters of the BPNN after training are shown in table 3. The weights between the 177 

input layer and the hidden layer are represented by the W1 values, whereas W 2 represents the 178 

weights between the hidden layer and the output layer. The BPNN was used with theses 179 

parameters to estimate H2 for the new values of pH, CO2 and ORP. The comparison between 180 

experimental hydrogen values and predicted values based on the BPNN for the cultures at pH 181 

5.5 and 6 is shown in Fig. 4. In both cultures, there is a good fit in the trends between the 182 

predicted and the experimental data. Similar behavior was observed for the cultures without pH 183 

control (data not shown). BPNN application was in off-line mode, however, the BPNN can be 184 

applied on-line mode by the incorporation of a subroutine on the acquisition software. The Fig. 185 

5 shows the correlation between the hydrogen production determined experimentally by GC 186 

and the hydrogen estimated by the BPNN for all experiments with or without control of pH. 187 

The R2 value of 0.955 confirms that the model can predict the hydrogen production well. ANNs 188 

have been used in another hydrogen production processes (Table 4). For instance, Nikhil et al. 189 

[39] reported a BPNN to predict the hydrogen production rate in a Continuous S tirred Tank 190 

Reactor (CSTR) using sucrose as substrate. Shi et al.  [40] reported a similar system but using 191 

kitchen wastes as substrate. Mu and Yu [41] used a neural network and genetic algorithm to 192 

predict the hydrogen production and the steady-state of an Upflow Anaerobic Sludge Blanket 193 

(UASB) reactor at various sucrose concentration and hydraulic retention times. Guo et al. [42] 194 

estimated hydrogen yield and the chemical oxygen demand through a BPNN in an Expanded 195 

Granular Sludge Bed (EGSB) reactor using starch as substrate. Therefore, BPNNs are useful 196 

for prediction of hydrogen production, since their ability to learn complex non-linear input-197 

output relationships, use sequential training procedures and adapt themselves to data [39-43]. 198 
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Aforementioned works were for non-axenic cultures and they used off-line data such as 199 

alkalinity, substrate or metabolites concentration as input variables, and only when the BPNNs 200 

were chosen, additional on-line variables were included. To our knowledge, this is the first 201 

report on the use of BPNN to estimate the hydrogen production by genetically m odified 202 

microorganisms and using only on-line variables. 203 

 204 

4. Conclusions 205 

There are few methods for hydrogen determination. The on-line determination can be 206 

performed using expensive devices. Thus, cheap and practical approaches for hydrogen 207 

determination are necessary. According to the results, the BPNN predicted successfully the 208 

hydrogen production using only on-line parameters in E. coli fermentations with or without 209 

control of pH. This approach could be used for other hydrogen production systems. The BPNN 210 

can be applied in off-line mode as showed here and in on-line mode by incorporation a 211 

subroutine in the acquisition software. 212 

 213 

Acknowledgements 214 
 215 
L.M. Rosales thanks CONACyT for him scholarship No. 174494. The authors acknowledge the 216 

technical assistance of Leandro G. Ordoñez- Acevedo. 217 

 218 

References 219 



 12 

[1] Claassen PAM, Van Lier JB, Lopez Contreras AM, Van Niel EWJ, Sijtsma L, Stams 220 

AJM, de Vries SS, Weusthuis RA. Utilisation of biomass for the supply of energy carriers. 221 

Appl Microbiol Biotechnol 1999;52:741-55. 222 

[2] Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. 223 

Appl Microbiol Biotechnol 2004;65:520-29. 224 

[3] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb 225 

Technol 2006;38:569-82. 226 

[4] Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to 227 

practical application. Int J Hydrogen Energy 2004;29:173-85. 228 

[5] Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Crit Rev 229 

Microbiol 1998;24:61-84. 230 

[6] Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way 231 

forward? Trends in Biotechnol 2009;27:287-97. 232 

[7] Davila-Vazquez G, Arriaga S, Alatriste-Mondragón F, De León-Rodríguez A, Rosales-233 

Colunga LM, Razo-Flores E. Fermentative biohydrogen production: trends and perspectives. 234 

Rev Environ Sci Biotechnol 2008;7:27-45. 235 

[8] Kim S, Seol E, Oh Y-K, Wang GY, Park S. Hydrogen production and metabolic flux 236 

analysis of metabolically engineered Escherichia coli strains. Int J Hydrogen Energy 237 

2009;34:7417-27. 238 

[9] Mathews J, Wang GY. Metabolic pathway engineering for enhanced biohydrogen 239 

production. Int J Hydrogen Energy 2009;34:7404-16. 240 

[10] Seol E, Kim S, Raj SM, Park S. Comparison of hydrogen-production capability of four 241 

different Enterobacteriaceae strains under growing and non-growing conditions. Int J 242 

Hydrogen Energy 2008;33:5169-75. 243 



 13 

[11] Vardar-Schara G, Maeda T, Wood TK. Metabolically engineered bacteria for producing 244 

hydrogen via fermentation. Microb Biotechnol 2008;1:107-25. 245 

[12] Haller T, Buckel T, Retey J, Gerlt JA. Discovering new enzymes and metabolic  246 

pathways: Conversion of succinate to propionate by Escherichia coli. Biochem 2000;39:4622-247 

29. 248 

[13] Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM, De León-Rodríguez A, 249 

Razo-Flores E. Continuous biohydrogen production using cheese whey: Improving the 250 

hydrogen production rate. Int J Hydrogen Energy 2009;34:4296-304. 251 

[14] Rosales-Colunga LM, Razo-Flores E, Ordoñez LG, Alatriste-Mondragón F, De León-252 

Rodríguez A. Hydrogen production by Escherichia coli ∆hycA ∆lacI using cheese whey as 253 

substrate. Int J Hydrogen Energy 2010;35:491-99. 254 

[15] Turcot J, Bisaillon A, Hallenbeck PC. Hydrogen production by continuous cultures of 255 

Escherchia coli under different nutrient regimes. Int J Hydrogen Energy 2008;33:1465-70. 256 

[16] Bisaillon A, Turcot J, Hallenbeck PC. The effect of nutrient limitation on hydrogen 257 

production by batch cultures of Escherichia coli. Int J Hydrogen Energy 2006;31:1504-08. 258 

[17] Yoshida A, Nishim ura T, Kawaguchi H, Inui M, Yukawa H. Enhanced hydrogen 259 

production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli 260 

strains. Appl Environ Microbiol 2005;71:6762-8. 261 

[18] Maeda T, Vardar G, Self W, Wood T. Inhibition of hydrogen uptake in Escherichia coli 262 

by expressing the hydrogenase from the cyanobacterium  Synechocystis sp. PCC 6803. BMC 263 

Biotech 2007;7:25. 264 

[19] Hussy I, Hawkes FR, Dinsdale R, Hawkes DL. Continuous fermentative hydrogen 265 

production from sucrose and sugarbeet. Int J Hydrogen Energy 2005;30:471-83. 266 



 14 

[20] Penfold DW, Forster CF, Macaskie LE. Increased hydrogen production by Escherichia 267 

coli strain HD701 in com parison with the wild-type parent strain MC4100. Enzyme Microb 268 

Technol 2003;33:185-89. 269 

[21] Redwood MD, Macaskie LE. A two-stage, two-organism process for biohydrogen from 270 

glucose. Int J Hydrogen Energy 2006;31:1514-21. 271 

[22] Penfold DW, Macaskie LE. Production of H2 from sucrose by Escherichia coli strains 272 

carrying the pUR400 plasmid, which encodes invertase activity. Biotechnol Lett 2004;26:1879-273 

83. 274 

[23] Klibanov AM, Alberti BN, Zale SE. Enzymatic synthesis of formic acid from H2 and 275 

CO2 and production of hydrogen from formic acid. Biotechnol Bioeng 1982;24:25-36. 276 

[24] Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. Dissecting the roles of 277 

Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 2008;278:48-278 

55. 279 

[25] Massanet-Nicolau J, Guwy A, Dinsdale R, Premier G, Esteves S. Production of 280 

hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention 281 

time and sparging. Int J Hydrogen Energy;35:469-78. 282 

[26] Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A. Influence of initial pH on 283 

hydrogen production from cheese whey. J Biotechnol 2005;120:402-09. 284 

[27] Chen L, Nguang S, Li X, Chen X. Soft sensors for on-line biomass measurements. 285 

Bioprocess Biosyst Eng 2004;26:191-95. 286 

[28] Poirazi P, Leroy F, Georgalaki MD, Aktypis A, De Vuyst L, Tsakalidou E. Use of 287 

artificial neural networks and a gamma-concept-based approach to model growth of and 288 

bacteriocin production by Streptococcus macedonicus ACA-DC 198 under simulated 289 

conditions of kasseri cheese production. Appl Environ Microbiol 2007;73:768-76. 290 



 15 

[29] Escalante-Minakata P, Ibarra-Junquera V, Rosu H, De León-Rodríguez A, González-291 

García R. On-line monitoring of Mezcal fermentation based on redox potential measurements. 292 

Bioprocess Biosyst Eng 2009;32:47-52.  293 

[30] Davila-Vazquez G, Alatriste-Mondragón F, De León-Rodríguez A, Razo-Flores E. 294 

Fermentative hydrogen production in batch experiments using lactose, cheese whey and 295 

glucose: Influence of initial substrate concentration and pH. Int J Hydrogen Energy 296 

2008;33:4989-97. 297 

[31] De Leon-Rodriguez A, Gonzalez-Hernandez L, Barba de la  Rosa AP, Escalante-298 

Minakata P, Lopez MG. Characterization of volatile compounds of mezcal, an ethnic alcoholic 299 

beverage obtained from Agave salmiana. J Agric Food Chem 2006;54:1337-41. 300 

[32] Lapedes A, Farber R. Nonlinear signal processing using neural networks: Prediction and 301 

system modelling, Technical Report LA-UR-87-2662, Los Alamos National Laboratory 1987. 302 

[33] Rumelhart DE, McClelland JL, Pdp Research Group, editors. Parallel distributed 303 

processing: explorations in the microstructure of cognition, vol. 1: Foundations: MIT Press, 304 

Cambridge, MA, 1986: 318-362 305 

[34] Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiol Lett 306 

1989;63:223-34.  307 

[35] Li Z, Wang H, Tang Z, Wang X, Bai J. Effects of pH value and substrate concentration 308 

on hydrogen production from the anaerobic fermentation of glucose. Int J Hydrogen Energy 309 

2008;33:7413-18. 310 

[36] Ghosh D, Hallenbeck PC. Fermentative hydrogen yields from different sugars by batch 311 

cultures of metabolically engineered Escherichia coli DJT135. Int J Hydrogen Energy 312 

2009;34:7979-82. 313 



 16 

[37] Sawers RG. Formate and its role in hydrogen production in Escherichia coli. Biochem 314 

Soc Trans 2005;33:42-46. 315 

[38] Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N. Assessing optimal 316 

fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Biores 317 

Technol 2007;98:1774-80. 318 

[39] Nikhil, Özkaya B,Visa A, Lin CY, Puhakka JA, Yli-Harja O. An artific ial neural 319 

network based model for predicting H2 production rates in a sucrose-based bioreactor system . 320 

World Academy of Science, Engineering and Technology 2008:20-25. 321 

[40] Shi Y, Zhao Xt, Cao P, Hu Y, Zhang L, Jia Y, Lu Z. Hydrogen bio-production through 322 

anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 323 

2009;31:1327-33. 324 

[41] Mu Y, Yu HQ. Simulation of biological hydrogen production in a UASB reactor using 325 

neural network and genetic algorithm. Int J Hydrogen Energy 2007;32:3308-14. 326 

[42] Guo W Q, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J. Simultaneous 327 

biohydrogen production and starch wastewater treatment in an acidogenic expanded granular 328 

sludge bed reactor by mixed culture for long-term operation. Int J Hydrogen Energy 329 

2008;33:7397-404. 330 

[43] Effendi Z, Ramli R, Ghani JA. A Back Propagation neural networks for grading  331 

Jatropha curcas fruits maturity. Am J Appl Sci 2010;7:390-394 332 

333 



 17 

Legends of Figures 334 

 335 

Fig. 1. Schematic  representation of the fermentative pathways in  Escherichia coli. Final 336 

products are framed. 337 

Fig. 2. Structure of the Artificial Neural Network used in this work. A standard network of one 338 

hidden layer with 12 nodes was selected. The continuous lines represent adjustable 339 

parameters W; dashed lines are for W<0. The ANN training was done using on-line 340 

measurements of ORP, DCO2 and pH during the fermentations of cheese whey by 341 

Escherichia coli WDHL strain. 342 

Fig. 3. Typical batch culture of E. coli WDHL during the hydrogen production using cheese 343 

whey as substrate at pH 5.5. A) Lactose and biomass concentration; B) Metabolites; C) 344 

Hydrogen production and dissolved CO2; D) ORP and pH. 345 

Fig. 4. Comparison between the experimental data of hydrogen production measured 346 

experimentally by gas chromatography (closed symbols) and the prediction based on the 347 

BPNN model (continuous line). A) Culture at pH 5.5. B) Culture at pH 6. 348 

Fig. 5. Correlation between the hydrogen measured experimentally and the values estimated by 349 

the BPNN. The lineal regression is y = 0.9005x+189.85 and r2 = 0.955. 350 
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