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Braid solutions to the a
tion of the Gin enzymeBy Hugo Cabrera Ibarra† and David A. Lizárraga Navarro‡Applied Mathemati
s DivisionInstituto Potosino de Investiga
ión Cientí�
a y Te
nológi
a, IPICYTCamino a la Presa San José 205578216, San Luis Potosí, S.L.P., Méxi
o(Re
eived )Abstra
tThe topologi
al analysis of enzymes, a 
urrently a
tive resear
h topi
, allowed thededu
tion of the a
tion me
hanism of several enzymes, modelled as 2-string tangles, by anappli
ation of the tangle model of Ernst and Sumners. In this arti
le we analyse knottedand linked produ
ts of site-spe
i�
 re
ombination mediated by the Gin DNA invertase,an enzyme whi
h involves 3-string tangles, and give two families of solutions to its a
tionin both, the dire
tly and inversely repeated sites 
ases, whenever the 3-tangles involvedare 3-braids. For ea
h 
ase, one of the given solutions had not previously been reportedin the related literature. In addition, a detailed pseudo-
ode algorithm is presented whi
hallows one to 
ompute solutions under the assumption that the produ
t of two or morerounds of re
ombinations are known.
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abrera�ipi
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ket Polynomial, enzyme a
-tions.
1. Introdu
tionTangles, as mathemati
al obje
ts, were introdu
ed by J. Conway in [4℄ and have provedto be useful tools in the study of knots and links, for example in the 
lassi�
ation of 2-bridge and Montesinos knots [1, 13℄, and in appli
ations of knot theory to mole
ularbiology [6, 9℄. In turn, the tangle model, introdu
ed by Sumners et al. in [15℄, wasapplied under reasonable biologi
al assumptions to model the site-spe
i�
 re
ombinaseTn3 resolvase, as well as other enzymes su
h as λ-Int [6℄ and Xer [16℄. It is worthmentioning that su
h 
ases involved a
tions of enzymes on 2-tangles, a quite favourablesituation sin
e a 
omplete 
lassi�
ation of rational 2-tangles exists in the literature. Someenzymes, however, su
h as Gin and Hin integrase re
ombinases, a
t on 3-tangles insteadof 2-tangles. In [17℄, Vazquez and Sumners gave a solution to the a
tion of the Gin enzymewith inversely and dire
tly repeated sites. Their result is based on the appli
ation of thetangle model under the additional assumption that one of the strings involved remains
ompletely �xed by Fis, an a

essory protein, and hen
e that the presen
e of this string
an be negle
ted, thereby obtaining a 2-tangle.In DNA site-spe
i�
 re
ombination, a re
ombination enzyme atta
hes to a pair of DNAspe
i�
 sites, breaks both, and re
ombines them to di�erent ends, thereby modifying theoriginal topology of the mole
ule. Ele
tron mi
rographs of re
ombinases bound to DNAshow the enzyme as a blob from whi
h two or three DNA loops emerge, depending on



Braid solutions to the a
tion of the Gin enzyme 3the enzyme. In the spe
i�
 
ase of the Gin enzyme, three DNA loops sti
k out of theblob, thus making of the theory of 3-tangles a parti
ularly powerful analysis tool.Regarding 3-tangles, a 
lassi�
ation of a subset of the set of rational 3-tangles, bymeans of the Kau�man bra
ket polynomial and 
ertain invariant matri
es, is des
ribedin [2, 3℄. What is more, the results in [2℄ provide a 
omplete 
lassi�
ation of the set B3of rational 3-braids�a spe
ial 
ase of rational 3-tangles.Building on the theory and results developed in [2℄, in this paper we exploit the proper-ties of standard braid diagrams and apply the main ideas of the tangle model in order toanalyse knotted produ
ts of site-spe
i�
 re
ombination mediated by the Gin enzyme. Asa result, we obtain two solutions to its a
tion in both the dire
tly and inversely repeated
ases, under the assumption that the tangles involved are 3-braids. It is interesting tomention that two of the four given solutions, one for ea
h 
ase, were not previously avail-able in the relevant literature. Moreover, we des
ribe an algorithm to 
ompute solutionswhen the produ
t of two rounds of re
ombinations are equal to known 2-bridge knots(also referred to as 4-plats). In more mathemati
al terms, our algorithm permits thesolution of equations involving braids whose 
losures equal the given 2-bridge knots. Itis worth mentioning that in [7, 8℄, an analysis is made of tangle equations whi
h arethe numerators of sums of 2-tangles and whose produ
ts are either 4-plats or Montesinosknots.The organisation of the paper is as follows. In Se
tions 2 and 3 we re
all the de�nitionand basi
 properties of 3-braids, whi
h are spe
ial 
ases of rational tangles, as well as thebra
ket polynomial applied to tangles. We also give a 
hara
terisation of a matrix M1asso
iated to a braid. In Se
tion 4, we study some of the properties of a given 3-tangleinvariant F , obtained from the matrix M1. In Se
tion 5 those results are applied to the



4 H. Cabrera Ibarra and D.A. Lizárraga Navarroanalysis of the a
tion of the gin enzyme in both the dire
tly and inversely repeated sites
ases. Se
tion 6 
ontains a pseudo-
ode listing of our algorithm to solve braid equationsusing the results in previous se
tions.2. Preliminaries2·1. TanglesAn n-tangle is a pair (B3, T ), where B3 is the 3-ball and T is a set of n disjoint properlyembedded ar
s in B3. An n-tangle (B3, T ) is 
alled rational if there is a homeomorphismof pairs from (B3, T ) to (D,P )× I, where D is the unit disk, P is any set of n points inthe interior of D and I is the 
losed unit interval. A tangle diagram is the proje
tion ofthe tangle onto the yz-plane.In this work we shall only deal with rational 3-tangles, and refer to them simply astangles. A

ordingly, we shall write T for a tangle (B3, T ). Two n-tangles T and T ′ aresaid to be equivalent, denoted T = T ′, if there is a homeomorphism of pairs h : T −→ T ′su
h that h restri
ted to ∂B3 is the identity fun
tion or, equivalently, if one 
an transform
T into T ′ by repeatedly performing Reidemeister moves in B3 (
.f. Figure 1), keeping
∂B3 �xed. Given two tangle diagrams TD1 and TD2, their sum TD1 + TD2 is obtained

Fig. 1. Reidemeister moves.by 
on
atenation (or juxtaposition), as shown in Figure 2.It was shown in [2, 3℄, by an appli
ation of Kau�man's bra
ket polynomial to tangles,that every tangle diagram TD has �ve asso
iated Laurent polynomials invariant under
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TD1

TD1TD1

TD2

TD2TD2

TD1 + TD2Fig. 2. The diagrams of TD1, TD2 and TD1 + TD2.regular isotopy. For ea
h tangle diagram TD of a tangle T , these polynomials allow oneto de�ne, in turn, two polynomial matri
esM1(TD) andM2(TD). It turns out that M2,along with a 
ertain equivalen
e 
lass [M1] of M1, 
onstitute ambient isotopy invariantswhi
h provide a 
lassi�
ation of a subset of rational 3-tangles, namely the set B3 of3-braids. More spe
i�
ally, given a 3-braid T ∈ B3 and its related matri
es M1(T ) and
M2(T ), one easily 
omputes the standard diagram AD+kE asso
iated with T , 
onsistingof the sum of an alternating diagram AD and k 
opies of a (nonalternating) 3-braid E.On the other hand, whether su
h matrix invariants 
ompletely 
lassify the set of 3-tanglesis still an open question.2·2. 3-BraidsAn n-braid 
an be de�ned as a set of n strings atta
hed to verti
al bars at their left andright endpoints (see Figure 3(a)), with the property that ea
h string heads rightwardsat every point as it is traversed from left to right. The n-braids form a parti
ular 
lassof rational n-tangles (Figure 3(b)). Sin
e in this paper we deal ex
lusively with 3-braids,we shall drop the pre�x `3-' and refer to any of them simply as `braid.'

(a) (b)Fig. 3. (a) A 3-braid, and (b) the tangle indu
ed by it.A braid diagram is said to be non-alternating if any of its strings, as traversed



6 H. Cabrera Ibarra and D.A. Lizárraga Navarrofrom left to right, exhibits two 
onse
utive overpasses or two 
onse
utive underpasses.A diagram is alternating if it fails to be non-alternating. The braid in Figure 3(a), forinstan
e, is non-alternating. For a detailed introdu
tion to braids see [12, 14℄.As a matter of notation, we write T(a1, . . . , an), aj ∈ Z, to denote either of the followingbraid diagrams, a

ording to whether n is odd or even:
a1a1

a2a2

a3a3 an−1

an−1 an

an

n odd n evenIn the above diagrams, ea
h box of the form n or n 
omprises |n| two-string
rossings a

ording to the following 
onventions:
n =























































n > 0

n = 0

n < 0

n =























































n > 0

n = 0

n < 0. (2·1)
Note that for any braid T we have an asso
iated diagram T(a1, . . . , an) for some aj ∈ Z,

j = 1, . . . , n. Also note that, with our 
onvention, T(a1, . . . , an) is an alternating diagramif, and only if, either ai ≥ 0, i = 1, . . . , n or ai ≤ 0, i = 1, . . . , n. An example of analternating diagram is depi
ted in Figure 4.Fig. 4. Example of an alternating diagram: T (3, 2, 1, 2, 2)An important 
lass of non-alternating braid diagrams is generated by E and −E, whi
hare diagrams de�ned as follows
E = T (1,−1, 1) = T (0,−1, 1,−1) and − E = T (−1, 1,−1) = T (0, 1,−1, 1).



Braid solutions to the a
tion of the Gin enzyme 7Given k ∈ Z, we let
kE =



































E + E + · · · + E, (k times), k > 0;
T (0), k = 0;

−E − E − · · · −E, (|k| times), k < 0.A braid diagram B is said to be standard if has the form B = AD + kE, with ADalternating and k ∈ Z. It was shown in [2℄ that every braid admits a unique standarddiagram:Lemma 2·1 For every braid T ∈ B3 there exists a unique alternating diagram AD anda unique integer k ∈ Z su
h that a diagram of T equals AD + kE.The proof is simple and the underlying intuition is exempli�ed in Figure 5: Starting witha tangle diagram, one �twists� all the strands at pla
es where two 
onse
utive overpassesor underpasses o

ur, then 
ompensates that twist by another in the opposite dire
tionat the rightmost end of the diagram. Following [10℄, we shall refer to this pro
edure as a�ype move . For 3-tangles, a �ype move is related to appli
ation of Lagrange's rule (
f.the des
ription of Apply-Lagrange-At in Se
tion 6).2·3. Kau�man bra
ket polynomials and the invariant M1.The Kau�man bra
ket is a fun
tion from unoriented link diagrams to Laurent poly-nomials with integer 
oe�
ients in an indeterminate a. It maps a diagram D to 〈D〉 ∈

Z[a, a−1] and is 
hara
terised by the following three 
onditions:(K1) 〈 〉

= 1(K2) 〈

TD ⊔
〉

= −(a2 + a−2) 〈TD〉(K3) 〈 〉

= a
〈 〉

+ a−1
〈 〉
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T (−2,−1, 3, 4, 2,−4)

T (−2,−1 + 1,−1,−3 + 1,−4,−2, 4, 0, 1,−1, 1)

T (−3,−2,−4,−2, 4, 0, 1,−1, 1)

T (−3,−2,−4,−2 + 1,−1,−4 + 1, 0, 1,−1, 1, 0, 1,−1, 1)

T (−3,−2,−4,−1,−1,−3, 0, 1,−1, 1, 0, 1,−1, 1)Fig. 5. Deformation of T (−2,−1, 3, 4, 2,−4) into the standard diagram
T (−3,−2,−4,−1,−1,−3) + 2E. At ea
h pla
e indi
ated by a dotted line, a full 3-string twist(show in red) is introdu
ed; in order to preserve the braid, the twist is 
ompensated at the endof the diagram by adding an E summand of the opposite sign (also shown in red). The resultof these two �ype moves appears as a 2E summand, shown in blue in the last diagram.In this de�nition, is the diagram of the unknot, with no 
rossings, and TD ⊔is the diagram 
onsisting of the diagram TD together with an extra 
losed 
urvethat 
ontains no 
rossings at all, neither with itself nor with TD. In 
ondition (K3),the formula refers to three link diagrams that are exa
tly the same ex
ept near a pointwhere they di�er as indi
ated. It is well known that the Kau�man bra
ket satis�es thefollowing relations [10℄:

(i) 〈 〉

= −a3
〈 〉; 〈 〉

= −a−3
〈 〉

(ii) 〈 〉

=
〈 〉

(iii) 〈 〉

=
〈 〉These identities show that the bra
ket polynomial is an invariant of knots under relations

(ii) and (iii), i.e., it is invariant under regular isotopy.Given a tangle diagram TD, we de�ne the bra
ket polynomial of TD by
〈TD〉 = α(TD)

〈 〉

+ β(TD)
〈 〉

+ δ(TD)
〈 〉

+

χ(TD)
〈 〉

+ ψ(TD)
〈 〉

, (2·2)



Braid solutions to the a
tion of the Gin enzyme 9where the 
oe�
ients α(TD), β(TD), δ(TD), χ(TD) and ψ(TD) are polynomials in aand a−1 that are obtained by using formulas (K2) and (K3) re
ursively on TD until one
omes up with a diagram 
ontaining only 
ombinations of the �ve tangles that appear in(2·2). Note that these polynomials, any of whi
h may be zero, are also invariant underregular isotopy.One asso
iates, with a given tangle diagram TD, the following matrix:
M(TD)(a) =



















α(TD) + χ(TD) β(TD) 0

δ(TD) α(TD) + ψ(TD) 0

0 0 α(TD)



















,where the 
orresponding polynomial entries are taken from Equation (2·2). Again,M(TD)(a)is an invariant under regular isotopy. We have the following result, proved in [2℄.Theorem 2·2 [2℄ Given two tangle diagrams TD1 and TD2,
M(TD1 + TD2)(a) = M(TD1)(a)M(TD2)(a)

−(a2 + a−2)



















χ1 β1 0

δ1 ψ1 0

0 0 0





































0 1 0

1 0 0

0 0 0





































χ2 β2 0

δ2 ψ2 0

0 0 0



















,with αi = α(TDi), βi = α(TDi), . . . ψi = ψ(TDi), i = 1, 2.With a tangle diagram TD we asso
iate the matrix M1(TD) = M(TD)(
√
i), whi
hresults from evaluatingM(TD) at a =

√
i. Sin
e (

√
i)2 +(

√
i)−2 = 0,M1(TD) obviouslyhas the following property:Lemma 2·3 For any two tangle diagrams TD1 and TD2 one has M1(TD1 + TD2) =

M1(TD1)M1(TD2).



10 H. Cabrera Ibarra and D.A. Lizárraga NavarroFrom Property (i) of the Kau�man bra
ket it follows that
TD1 = TD2 =⇒M(TD1)(a) = (−a)3zM(TD2)(a)for some z ∈ Z whi
h depends on the number of loops in the diagrams. As a 
onsequen
e,

M1(TD) is not a tangle invariant. An invariant may be obtained from M1, however, by
onsidering the following relation on M3×3(C):
A1 ∼ A2 ⇐⇒ A1 = (−

√
i)3zA2 for some z ∈ Z. (2·3)One easily shows that this is in fa
t an equivalen
e relation. Moreover:Lemma 2·4 The equivalen
e 
lass [M1(TD)] is a tangle invariant.Clearly, if two tangle diagrams TD1 and TD2 are equivalent, then

[M1(TD1)] = [M1(TD2)]and, by Lemma 2·3, we have [M1(TD1 · TD2)] = [M1(TD1)][M1(TD2)]. In the sequelwe shall only deal with su
h equivalen
e 
lasses, denoting [M1(TD)] simply by M1(TD)and en
losing its entries using (square) bra
kets.2·4. Continued Fra
tionsHere we brie�y re
all basi
 fa
ts on 
ontinued fra
tions, to be used in the remainderof the paper. Given a1, . . . , an ∈ C, let
N [a1] = a1 D[a1] = 1

N [a1, a2] = a2N [a1] + 1 D[a1, a2] = a2D[a1]

N [a1, a2, a3] = a3N [a1, a2] +N [a1] D[a1, a2, a3] = a3D[a1, a2] +D[a1].



Braid solutions to the a
tion of the Gin enzyme 11If we de�ne N [a−1] = 0, D[a−1] = 1, N [a0] = 1, and D[a0] = 0, we have the followingre
ursive formulæ
N [a1, . . . , an] = anN [a1, . . . , an−1] +N [a1, . . . , an−2], n ≥ 1,

D[a1, . . . , an] = anD[a1, . . . , an−1] +D[a1, . . . , an−2], n ≥ 1.

(2·4)Note that
N [a1]

D[a1]
=
a1

1
,
N [a1, a2]

D[a1, a2]
= a1 +

1

a2
,
N [a1, . . . , an]

D[a1, . . . , an]
= a1 +

1

a2 +
1

· · · + 1

an

.We denote N [a1, . . . , an]/D[a1, . . . , an] simply by [a1, . . . , an], that is,
[a1, . . . , an] = a1 +

1

a2 +
1

· · · + 1

an

,and de�ne a
0 = ∞, ∞ · a = ∞ = ∞ + a, and a

∞ = 0, where a ∈ C with a 6= 0. Using thenotation An = [a1, . . . , an], the formulæ in (2·4) take the form
NAn = anNAn−1 +NAn−2, DAn = anDAn−1 +DAn−2, n ≥ 1,when
e NAn/DAn = An.An n-tuple [a1, . . . , an] is said to be a 
ontinued fra
tion expansion ; if, moreover,sign(aj) ·sign(aj+1) ≥ 0 for j = 1, . . . , n−1, [a1, . . . , an] is referred to as a stri
t 
ontin-ued fra
tion expansion. As mentioned above, it is easy to see that T(a1, . . . , an) is analternating diagram if, and only if, [a1, . . . , an] is a stri
t 
ontinued fra
tion expansion.2·5. Computation of M1 for braidsHere we develop some results that shall allow us to readily 
ompute the matrixM1(T )for a braid T .



12 H. Cabrera Ibarra and D.A. Lizárraga NavarroLemma 2·5 For every n ∈ Z,
M1(T(n)) =



















1 0 0

n
i

1 0

0 0 1



















and M1(T(0, n)) =



















1 −n
i

0

0 1 0

0 0 1



















.Proof. One 
learly has
M1(T(0)) =



















1 0 0

0 1 0

0 0 1



















, M1(T(1)) =



















1 0 0

1
i

1 0

0 0 1



















, M1(T(−1)) =



















1 0 0

−1
i

1 0

0 0 1



















.Thus, from Lemma 2·3 we obtain, for n > 0,
M1(T (n)) =



















1 0 0

1
i

1 0

0 0 1



















n

=



















1 0 0

n
i

1 0

0 0 1



















and M1(T (−n)) =



















1 0 0

−n
i

1 0

0 0 1



















,Hen
e
M1(T(n)) =



















1 0 0

n
i

1 0

0 0 1



















.In a similar manner, one proves that the given expression forM1(T(0, n)) is valid as well.Using the previous notation, in general we have the following Lemma:Lemma 2·6 Given a1, . . . , an ∈ C, the following statements hold:If n is odd, then 

















1 0 0

a1 1 0

0 0 1





































1 a2 0

0 1 0

0 0 1



















. . .



















1 0 0

an 1 0

0 0 1



















=



















DAn DAn−1 0

NAn NAn−1 0

0 0 1



















.



Braid solutions to the a
tion of the Gin enzyme 13If n is even, then 

















1 0 0

a1 1 0

0 0 1





































1 a2 0

0 1 0

0 0 1



















. . .



















1 an 0

0 1 0

0 0 1



















=



















DAn−1 DAn 0

NAn−1 NAn 0

0 0 1



















.This lemma may be used to determine M1(TAn), as pointed out by the following result.Lemma 2·7 Given T(a1, . . . , an) one has:
M1(T(a1, . . . , an)) =









































































































DAi
n DAi

n−1 0

NAi
n NAi

n−1 0

0 0 1



















=



















DAn
−1
i
DAn−1 0

1
i
NAn NAn−1 0

0 0 1



















, for odd n;


















DAi
n−1 DAi

n 0

NAi
n−1 NAi

n 0

0 0 1



















=



















DAn−1
−1
i
DAn 0

1
i
NAn−1 NAn 0

0 0 1



















, for even n,
where ai ∈ Z, An = [a1, . . . , an] and Ai

n =

[

a1

i
, −a2

i
, . . ., (−1)

n+1
an

i

]

.3. The invariant FRe
all that, given a tangle T , we have the equivalen
e 
lass
M1(T ) =



















α+ χ β 0

δ α+ ψ 0

0 0 α

















whereas Lemma 2·7 gives us an easy way to 
ompute the matrix asso
iated to a braiddiagram T (a1, . . . , an). We shall use these fa
ts in order to obtain another invariant and



14 H. Cabrera Ibarra and D.A. Lizárraga Navarrosimplify our tasks. De�ne a mapping F by
F (T ) =

(

M1(T )21
M1(T )11

,
M1(T )22
M1(T )12

)

=

(

δ

α+ χ
,
α+ ψ

β

)

,whi
h is a tangle invariant (in fa
t, any quotient among linear 
ombinations of the entriesof M1(T ) is also an invariant). We have the following Theorem, a dire
t 
onsequen
e ofLemma 2·7 and of the properties of 
ontinued fra
tions:Theorem 3·1 One has
F (T (a1 . . . , an)) =















(

1
i
[a1, . . . , an], 1

i
[a1, . . . , an−1]

)

, for n odd;
(

1
i
[a1, . . . , an−1],

1
i
[a1, . . . , an]

)

, for n even.Let us remark that, while the 
ontinued fra
tions [a1, . . . , an], [a1, . . . , an−1] de�nedby the 
rossings of a tangle diagram T (a1, . . . , an) need not be stri
t, the invariant Funiquely determines a 
ouple of stri
t 
ontinued fra
tions [q1, . . . , qn−1] and [q1, . . . , qn],
q1, . . . , qn ∈ Z, su
h that if we let (1

i
a
b
, 1

i
c
d
) = F (T (a1, . . . , an)) then

(

1

i

a

b
,
1

i

c

d

)

=















(1
i
[q1, . . . , qn], 1

i
[q1, . . . , qn−1]), n odd;

(1
i
[q1, . . . , qn−1],

1
i
[q1, . . . , qn]), n even.If T (a1, . . . , an) is an alternating diagram, then [a1, . . . , an] and [a1, . . . , an−1] are stri
t
ontinued fra
tion expansions. Conversely, a pair of stri
t 
ontinued fra
tion expansions

[a1, . . . , an] and [a1, . . . , an−1] determine a unique alternating diagram T (a1, . . . , an).Re
alling, from Lemma 2·1, that every tangle T may represented in the standard form
T = AD + kE, the following lemma asserts that F (T ) determines the alternating part
AD.



Braid solutions to the a
tion of the Gin enzyme 15Lemma 3·2 For any two alternating braid diagrams T1 and T2, one has T1 = T2 if, andonly if, F (T1) = F (T2). In parti
ular T1 = T2 if, and only if, M1(T1) = M1(T2).Proof. If T1 = T2, it 
learly follows that F (T1) = F (T2) and M1(T1) = M1(T2). Toprove the 
onverse impli
ation, from the ordered pair (1
i

a
b
, 1

i
c
d
) we obtain a pair of stri
t
ontinued fra
tion expansions [a1, . . . , an−1] and [a1, . . . , an] whi
h, in turn, uniquely de-termine an alternating diagram T (a1, . . . , an). Sin
e T1 and T2 are alternating diagrams,it follows that T1 = T (a1, . . . , an) = T2. On the other hand, M1(T1) =M1(T2) implies

F (T1)=F (T2) and hen
e T1 = T2.From the proof of Lemma 3·2 we see that the asso
iation of rationals and alternatingbraid diagrams is reversible in the sense that, given a pair of rationals that are equalto the invariant F of an alternating braid diagram T , the latter may be re
onstru
tedwithout ambiguity.We shall now turn to studying the invariantM1 asso
iated to a non-alternating diagram
kE. Using Lemma 2·7 we obtain:
M1(E) =



















0 1
i

0

1
i

0 0

0 0 1



















, M1(2E) =



















-1 0 0

0 -1 0

0 0 1



















, M1(3E) =



















0 -1
i

0-1
i

0 0

0 0 1



















, M1(4E) = I3.(3·1)Sin
e M1(4E) is the identity matrix, the proof of following Lemma is straightforward:Lemma 3·3 For any tangle diagram T ,
M1(T + lE) = M1(T +mE) ⇐⇒ l ≡ m mod 4.



16 H. Cabrera Ibarra and D.A. Lizárraga NavarroApplying this result to F , and using the expressions for M1(E) and M1(2E) one has:Lemma 3·4 Let T ∈ B3 be su
h that F (T ) = (1
i

c
a
, 1

i
d
b
). Then we have

F (T + nE) =















(1
i

c
a
, 1

i
d
b
), n even;

(1
i

d
b
, 1

i
c
a
), n odd.Given a braid B = AD + kE, Lemma 3·4 and the remarks after Theorem 3·1 imply,in parti
ular, that F (B) determines the alternating part AD as well as whether k is oddor even. Using lemmas 3·2 and 3·4, we get:Lemma 3·5 Let be T1, T2 ∈ B3 then(i) If F (T1)=(1

i
c
a
, 1

i
d
b
) = F (T2), then T1 = T2 + 2kE for some k ∈ Z.(ii) If F (T1)=(1

i
c
a
, 1

i
d
b
) and F (T2)=(1

i
d
b
, 1

i
c
a
), then T1 = T2+(2k+1)E for some k ∈ Z.Proof. (i) Sin
e F (T1) = F (T2), by Lemma 3·4 we have T1 = AD + k1E and T2 =

AD + k2E for some k1, k2 ∈ Z. Sin
e F (T1) = F (T2), then k1 and k2 are both even orboth odd. Therefore
T1 = AD + k1E = AD + k2E + (k1 − k2)E = T2 + (k1 − k2)E,with (k1 − k2) even. The proof of (ii) is similar, mutatis mutandis.Remark 3·6An additional matrix is introdu
ed in [2℄, namely M2(TD) = M(TD)(1+i

√
3

2 ). It turnsout that M2 is a tangle invariant with the property that
M2(T + rE) = M2(T + sE) ⇐⇒ r = s.



Braid solutions to the a
tion of the Gin enzyme 17Using this fa
t, one 
on
ludes that the matri
es M1(·) and M2(·) 
ompletely 
lassify thebraid group B3, as stated in the following result.Theorem 3·7 Given T1, T2 ∈ B3, one has T1 = T2 if, and only if, M1(T1) = M1(T2)and M2(T1) = M2(T2). 4. DNA and 2-bridge knotsThe family of knots and links known as 2-bridge knots has been largely studied, to thepoint that it is 
ompletely 
lassi�ed. This family is 
losely related to rational 2-tangles[1, 4, 14℄ and, as we will see, to the set of 3-braids as well. A standard diagram of a2-bridge knot has the form shown in Figure 6, and it 
an be proved that every 2-bridgeknots admits an alternating diagram [14℄. A 2-bridge knot having a standard regulardiagram as in Figure 6, with the ex
eption that signs of 
rossings follow the opposite
onvention to that adopted in this paper (
f. 2·1), is said to have type b(a, b), where
a
b

= [b1, . . . , bn] is a stri
t 
ontinued fra
tion expansion and n is odd.
b1

b2

b3

bn−1

bnFig. 6. Standard diagram of a 2-bridge knot.As mentioned above, 2-bridge knots have been 
ompletely 
lassi�ed:Theorem 4·1 Suppose that K and K ′ are 2-bridge knots of types b(a, b) and b(a′, b′),respe
tively. Then K and K ′ are equivalent if, and only if,(i) a = a′ and(ii) b ≡ b′ mod a or bb′ ≡ 1 mod a.Note that, as depi
ted in Figure 7, the standard diagram of a 2-bridge knot 
an be



18 H. Cabrera Ibarra and D.A. Lizárraga Navarroregarded as the 
losure of a braid T(a1, . . . , an), denoted A(T(a1, . . . , an)), under theproviso that n be odd and [a1, . . . , an] be a stri
t 
ontinued fra
tion expansion.
a1

a2

a3

an−1

anFig. 7. The 
losure A(T(a1, . . . , an)) of a tangle diagram T(a1, . . . , an).As a 
onsequen
e of a diagram having non-alternating part equal to 2kE, we have thefollowing lemma.Lemma 4·2 The 
losure operator A satis�es:(i) For every tangle B and every integer k ∈ Z, A(B + 2kE) = A(B).(ii) Given a2, . . . , an ∈ Z, A(T(0, a2, a3, . . . , an)) = A(T(a3, . . . , an)).Proof. (i) follows, by indu
tion on k, from the diagram redu
tion shown in Figure 8.(ii) follows immediately from Figure 7 by letting a1 = 0.
PSfrag

B BB

EEE

≃≃Fig. 8. Illustration of the fa
t that A(B + 2E) = A(B).Remark 4·3A

ording to Lemma 4·2, when taking the A 
losure of a diagram T (a1, . . . , an), nogenerality is lost by assuming, as we shall do in the sequel, that a1 6= 0 and n is odd.If, moreover, [a1, . . . , an] is a stri
t 
ontinued fra
tion expansion and F (T (a1, . . . , an)) =

(1
i

a
b
, 1

i
a′

b′
), then |a

b
| ≥ 1.A relation between 2-bridge knots and 3-braids is des
ribed in the following theorem.Theorem 4·4 The following hold:(i) Every 2-bridge knot is the A 
losure of some 3-braid.



Braid solutions to the a
tion of the Gin enzyme 19(ii) The A 
losure of any 3-braid is a 2-bridge knot, or the unknot, or the 2-
omponentunlink.Proof. (i) Assume that a 2-bridge knot K has type (a, b), so that K = b(a, b) with
gcd(a, b)=1. Let [a1, . . . , an] (n odd) be a stri
t 
ontinued fra
tion expansion su
h that
a
−b

= [a1, . . . , an] and assume, without loss of generality, that a1 6= 0 (
f. Remark 4·3).Hen
e, by de�nition of type of a 2-bridge knot:
b(a, b) = A(T(a1, . . . , an)).(ii) is obvious.Lemma 4·5 Let B ∈ B3 and assume that F (B) = (1

i
a
b
, 1

i
a′

b′
) with 1 <| a

b
|< ∞. Then

A(B) = b(a,−b).Proof. Sin
e a unique stri
t 
ontinued fra
tion expansion [b1, . . . , bn] 
an be obtainedfrom F (B), from Lemma 3·5 we have B = T(b1, . . . , bn) + kE, for some k ∈ Z. Supposethat n is odd and k even. By Lemma 4·2 we have
A(T (b1, . . . , bn) + kE) = A(T (b1, . . . , bn)) = b1

b2

b3

bn−1

bn

Be
ause of the assumption that |a
b
| = |[b1, b2, . . . , bn]| > 1, one has b1 6= 0. From the
lassi�
ation of the 2-bridge knots and Lemma 4·2, it follows that

A(T(b1, . . . , bn) + kE) = A(T(b1, . . . , bn)) = b(a,−b),where the sign in −b is due to the usual sign 
onvention for 2-bridge knots, [1, 14℄. Theother 
ases are analogous.



20 H. Cabrera Ibarra and D.A. Lizárraga NavarroUsing the above lemmas and the 
lassi�
ation theorem for 2-bridge knots, we have:Theorem 4·6 Let T be a braid su
h that F (T ) = (1
i

α1

β1
, 1

i

α′

1

β′

1

). One has A(T ) = b(α2,−β2)if, and only if,(i) α1 = α2 and(ii) β1 ≡ β2 mod α1 or β1β2 ≡ 1 mod α1.Proof. From Lemma 4·5, one gets A(T ) = b(α1,−β1) whereas, by assumption, A(T ) =

b(α1,−β1) = b(α2,−β2). Now, a

ording to the 2-bridge knots 
lassi�
ation theorem,the latter equation holds if, and only if, α1 = α2 and (β1 ≡ β2 mod α1 or β1β2 ≡ 1

mod α1).Note that the previous result does not apply to the unknot; 
on
erning the latter,however, we have:Theorem 4·7 Let T be a braid su
h that F (T ) = (1
i

α1

β1
, 1

i

α′

1

β′

1

) with | α1

β1
|≥ 1. Then

A(T ) = Unknot ⇐⇒
∣

∣

∣

∣

α1

β1

∣

∣

∣

∣

= 1 or ∣

∣

∣

∣

α1

β1

∣

∣

∣

∣

= ∞.Proof. Suppose that A(T ) is the unknot and that T = AD + kE, where AD =

T (a1, . . . , an) and [a1, . . . , an] is a stri
t 
ontinued fra
tion expansion. From Theorem 3·1,Lemma 3·4 and the de�nition of 
ontinued fra
tion, if T (a1, . . . , an) with n ≥ 3 and
F (T (a1, . . . , an)) = (1

i
α1

β1
, 1

i

α′

1

β′

1

), then |α1

β1
| > 1. By Lemma 4·5, if 1 < |α1

β1
| < ∞ then

A(B) = b(a1,−b1) whi
h, by the 2-bridge knots 
lassi�
ation theorem, is not the unknot.Whenever n ≤ 2 we have the following 
ases:(i) F (T (a1) + kE) =
(

∞, 1
i
[a1]

) for k odd. Here |α1

β1
| = ∞.(ii) F (T (a1) + kE) =

(

1
i
[a1],∞

) for k even. Here |α1

β1
| = 1 if, and only if, a1 = ±1.(iii) F (T (a1, a2) + kE) =

(

1
i
[a1, a2],

1
i
[a1]

) for k odd. Here |α1

β1
| > 1.



Braid solutions to the a
tion of the Gin enzyme 21(iv) F (T (a1, a2) + kE) =
(

1
i
[a1],

1
i
[a1, a2]

) for k even. Here |α1

β1
| = 1 if, and only if,

a1 = ±1.One readily 
he
ks that the A 
losure of the knots involved in 
ase (i), and in 
ases (ii)and (iv) when a1 = ±1, are equal to the unknot.5. Appli
ation to the a
tions of the Gin enzymeAs mentioned in the introdu
tion, an appli
ation of topology to mole
ular biologyis the tangle model for re
ombination [9℄, where knotted and linked produ
ts of site-spe
i�
 re
ombination mediated by an enzyme are analysed and, by appli
ation of thetangle model, possible solutions to its a
tion are given. Whilst some of the enzymesthat have been studied involve rational 2-tangles [15, 16℄, in this paper we deal withtwo known a
tions of the Gin invertase enzyme, 
orresponding to the 
ases of inverselyand dire
tly repeated sites, both of whi
h involve 3-tangles. The topologi
al approa
hto enzymology is the study of enzymes a
ting on, and thereby modifying the topologyof, 
ir
ular unknotted DNA mole
ules. Su
h enzymati
 a
tions are typi
ally produ
edexperimentally by in
ubating a substrate of 
ir
ular unknotted DNA and mixing it witha solution of the enzymes under study. A s
hemati
 representation of this pro
ess isillustrated in Figure 9. For a more detailed and motivated introdu
tion to the topologi
alapproa
h to enzymology and the tangle model, see e.g. [9, 15, 6℄.
writhing recombination

enzymeFig. 9. Illustration of the a
tion of an enzyme a
ting on a 
ir
ular, unknotted DNA mole
ule.Ele
tron mi
rographs of the enzyme-DNA 
omplex show the Gin enzyme with three



22 H. Cabrera Ibarra and D.A. Lizárraga Navarroloops of DNA sti
king out, whi
h suggests that the 
lassi�
ation of rational 3-tanglesmight be an appropriate tool in order to apply the tangle model. On the other hand,experimental results indi
ate that under 
ertain biologi
al assumptions, the a
tion of Ginon initially unknotted DNA mole
ules with inversely repeated sites is a pro
ess whoseessential topologi
al features are 
aptured by the model depi
ted in Figure 10, where
O, S and T represent 3-tangles. It is reasonable to expe
t that O, S and T are indeedbraids, so we shall assume that it is indeed the 
ase and provide solutions under thisassumption.

≃≃

≃≃

O SS

SS

T

TTTTT

A(S + O) A(S + T )

A(S + 2T ) A(S + 3T )Fig. 10. Repeated a
tion of the Gin enzyme on an initially unknotted DNA mole
ule.Using the previous notation, the experimental data in Figure 10 
an be translated intothe three equations:
A(S + T ) = Unknot, A(S + 2T ) = b(3, 1), A(S + 3T ) = b(5, 2). (5·1)In order to solve these equations for S and T , it is 
onvenient to start manipulating these
ond one. Indeed, by virtue of Theorem 4·6, if X is any braid su
h that A(X) = b(3, 1),its invariant F (X) = (1

i
a
b
, 1

i
a′

b′
) satis�es a = 3 and b ≡ −1 mod 3. Now, the 
ondition

|a
b
|>1 translates into the 
onstraint |b| < 3, whi
h, along with the previous requirements



Braid solutions to the a
tion of the Gin enzyme 23on b, implies that b = −1 or b = 2. Hen
e, X should satisfy
1) F (X) =

(

1

i

3

−1
,
1

i

a′

b′

) or 2) F (X) =

(

1

i

3

2
,
1

i

a′

b′

)

.Sin
e the only stri
t 
ontinued fra
tion expansions for 3
−1 are [−3] and [−2,−1] whereasthose for 3

2 are [1, 2] and [1, 1, 1], by Lemma 4·2 we have the following sets (or families)of solutions:
X1 = T (−3,−a1) + 2c1E X2 = T (−2,−1,−a2) + (2c2 + 1)E

X3 = T (1, 2, a3) + (2c3 + 1)E X4 = T (1, 1, 1, a4) + 2c4where ai, cj ∈ Z, ai ≥ 0. For the third equation we pro
eed similarly: If a braid Y satis�es
A(Y ) = b(5, 2) and F (Y ) = (1

i
c
d
, 1

i
c′

d′
), then it must be that c = 5 and (d ≡ −2 mod 5or −2d ≡ 1 mod 5). Sin
e |d| < 5, if d ≡ −2 mod 5, then d = −2 or d = 3. If, on theother hand, −2d ≡ 1 mod 5, then d = −3 or d = 2. Hen
e, in this 
ase our solutions are:

Y1 = T (−2,−2,−b1) + (2d1 + 1)E Y2 = T (−2,−1,−1,−b2) + 2d2E

Y3 = T (1, 1, 2, b3) + 2d3E Y4 = T (1, 1, 1, 1, b4) + (2d4 + 1)E

Y5 = T (2, 2, b5) + (2d5 + 1)E Y6 = T (2, 1, 1, b6) + 2d6E

Y7 = T (−1,−1,−2,−b7) + 2d7E Y8 = T (−1,−1,−1,−1,−b8) + (2d8 + 1)E,with bk, dl ∈ Z, bk ≥ 0.The previous analysis shows that, if B1, B2 ∈ B3 satisfy A(B1)= b(3, 1) and A(B2)=

b(5, 2), then B1 ∈ Xi and B2 ∈ Yj for some i = 1, 2, 3, 4 and j = 1, . . . , 8. On the otherhand, by the tangle model it is assumed that B1 and B2 are of the form S + 2T and
S + 3T , respe
tively. Therefore, in order to pro
eed with the solution, for ea
h pair ofsets Xi and Yj we need to �nd families Sij and Tij su
h that the following set equalities
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Sij + 2Tij = Xi and Sij + 3Tij = Yj .Considering the group stru
ture on B3, the 
ombination of these two equations yields

Xi + Tij = Yj , whi
h in turn implies
Tij = −Xi + Yj and Sij = Xi + 2(−Yj +Xi).The latter equations indi
ate that, for ea
h pair of sets Xi and Yj , there is a pair offamilies of solutions Sij and Tij . Performing the required 
omputations, with the aidof the algorithm outlined in Se
tion 6, one 
omes up with 32 pairs of families Sij , Tijlisted in standard form. For ea
h of these pairs, we must 
he
k that the �rst equationin (5·1), i.e., A(Sij + Tij) = Unknot, is a
tually satis�ed. By Theorem 4·7, in order forthis equation to hold it is enough to ensure that |α1

β1
| = 1 or |α1

β1
| = ∞. As applied tothe previously obtained solutions, these 
onstraints yield the following families of pairsof solutions

S1 = T (0,−2,−1,−a1) + 2k1E T1 = T (0, a1, 1, 3, a1) + (2ℓ1 + 1)E

S2 = T (0,−3,−a2) + (2k2 + 1)E T2 = T (0,−a2,−3,−1,−a2) + (2ℓ2 + 1)E

S3 = T (−1,−1 + a3) + 2k3E T3 = T (0, 1 − a3,−1 − a3) + (2ℓ3 + 1)E

S4 = T (−1,−2 − a4) + 2k4E T4 = T (0, 2 + a4, a4) + (2ℓ4 + 1)E

S5 = T (2 − a5) + (2k5 + 1)E T5 = T (0, 1 − a5,−1 − a5) + (2ℓ5 + 1)E

S6 = T (3 + a6) + (2k6 + 1)E T6 = T (0, 2 + a6, a6) + (2ℓ6 + 1)E,

(5·2)
with ai ≥ 0 and ki, ℓi ∈ Z for i = 1, . . . , 6. An interesting fa
t, as proved in following
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tion of the Gin enzyme 25theorem, is that in addition to solving (5·1), these families solve the equations for allrounds of re
ombinations involved in the tangle model, in
luding the fourth and beyond.Theorem 5·1 The pairs of families of solutions (Sk, Tk) given in ( 5·2) satisfy, for every
k ∈ {1, . . . , 6} and n ≥ 1:

A(Sk + nTk) =















Unknot, n = 1;
b(2n− 1, 2n− 3), n > 1.Proof. Let k = 1. From the de�nition of M1(·) we get, by indu
tion on n:

M1(S1) = σ1



















3 −i(3a1 + 2) 0

i 1 + a1 0

0 0 σ1



















,

M1(nT1) = σ2



















2n+ 1 + 4a1n −ni(1 + 4a1(1 + a1)) 0

−4ni 1 − 2n− 4na1 0

0 0 σ2



















,where σ1, σ2 are powers of −1 whi
h depend on the parity of k1 and ℓ1, the 
oe�
ientsof E in the diagrams of S1 and T1. As des
ribed in Se
tion 3, these matri
es allow us to
ompute F (S1 + nT1), the �rst 
omponent of whi
h is given by
F (S1 + nT1)1 =

1

i

(

2n− 1

3 − 2n

)

.A

ording to Theorem 4·6, the A 
losure of S1 +nT1 is the 2-bridge knot of type b(2n−
1, 2n−3), as stated. The 
ases 
orresponding to other 
hoi
es of k follow by using similararguments along with Theorem 4·1.This theorem implies in parti
ular that our solutions satisfy A(S + 4T ) = b(7, 3),
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h is not present in (5·1), is in a

ordan
e withthe produ
t obtained in the fourth round in an experiment involving the Gin invertaseenzyme for a substrate with inversely oriented gix sites, [15℄. These fa
ts validate the
laim that the tangle model based on 3-braids predi
ts any re
ombination.At this point, it is natural to wonder about the smallest number of essentially di�erentfamilies that 
ontain the solutions listed in (5·2). In view of the above theorem, for every
n ∈ Z, the 
losure A(Si + nTi) is independent of the parameters ai, ki, ℓi, whi
h in
ludethe 
oe�
ients of E in the standard diagrams of Si and Ti. One may thus relax therequirement that the ais be nonnegative or, equivalently, that the diagrams of Si and
Ti be standard, by permitting the ais to take negative values. As we shall see shortly,this allows one to merge some families, thus redu
ing the number of di�erent solutions.Another observation is helpful to merge further solutions, to wit, S always appears in(5·2) as the �rst (leftmost) summand, to whi
h a number of T s are appended. Therefore,if S = T (a1, a2, a3, . . . , an) + kE �starts� with a zero entry, i.e. a1 = 0, the 
losure of
S+nT is una�e
ted if one repla
es S by S′ = T (a3, . . . , an)+kE. These remarks motivatethe following de�nition and lemma.De�nition 5·2 Let ∼ denote the relation de�ned on pairs of braids by setting (S, T ) ∼

(S′, T ′) if, and only if, there exist integers a0, a1, . . . , an, k1, k2 su
h that T = T ′ + 2k2Eand either(i) S = T (a1, . . . , an) and S′ = T (0, a0, a1, . . . , an) + 2k1E, or(ii) S = T (0, a0, a1, . . . , an) + 2k1E and S′ = T (a1, . . . , an).Lemma 5·3 The relation ∼, as de�ned above, is an equivalen
e relation.Proof. That ∼ is re�exive and symmetri
 is obvious. To prove transitivity, suppose
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tion of the Gin enzyme 27that (S, T ) ∼ (S′, T ′) and (S′, T ′) ∼ (S′′, T ′′). From the eight possible 
ases allowed bythe de�nition of ∼, we shall only work one out in detail; the rest follow by analogousarguments. Thus, assume that there exist integers a0, . . . , an, b0, . . . , bm ki, ℓi su
h that
T = T ′ + 2k2E, T ′ = T ′′ + 2ℓ2E and both of these 
onditions hold:(i) S = T (a1, . . . , an) and S′ = T (0, a0, a1, . . . , an) + 2k1E,(ii) S′ = T (b1, . . . , bm) and S′′ = T (0, b0, b1, . . . , bm) + 2ℓ1E.Clearly, T = T ′′+2(ℓ2+k2)E. Also, sin
e S′ = T (0, a0, a1, . . . , an)+2k1E = T (b1, . . . , bm),we 
on
lude that S′′ = T (0, b0, 0, a0, a1, . . . , an)+2(k1+ℓ1)E = T (0, b0+a0, a1, . . . , an)+

2(k1 + ℓ1)E. Therefore (S, T ) ∼ (S′′, T ′′).An interesting result is that, modulo this equivalen
e relation, there exist two essen-tially di�erent families of solutions.Theorem 5·4 Modulo the relation ∼ of De�nition 5·2, there exist two di�erent 
lassesof solutions to the braid equations ( 5·1), namely (Sα, Tα) and (Sβ , Tβ) as in Figure 11,where a, b and k1, . . . , k4 are integers:
a

a

b
b

b

b
b

−b

Sα Tα

Sβ Tβ

2k1E (2k2 + 1)E

(2k3 + 1)E (2k4 + 1)EFig. 11. The two di�erent families of solutions to equations (5·1)Proof. The proof pro
eeds in two steps: First we identify families with like 
lasses under
∼, denoted with square bra
kets [·], then prove that the two 
lasses thus obtained aredi�erent.Sin
e −1 + a3 = −2 − a4 is equivalent to a3 = −a4 − 1, substituting this value of a3in the expressions for S3 and T3, we get [(S3, T3)] = [(S4, T4)]. For the third and �fth



28 H. Cabrera Ibarra and D.A. Lizárraga Navarrofamilies, we observe that by taking ℓ3 = ℓ5 we get T3 = T5 and, by appli
ation of a �ypemove:
S3 = T (−1,−1 + a3) + 2k3E

= T (−1 + 1,−1, 1− a3 + 1) + (2k3 − 1)E

= T (0,−1, 2− a3) + (2k3 − 1)E.Setting a3 = a5 we 
on
lude that [(S3, T3)] = [(S5, T5)]. Similarly, for the fourth andsixth families we take ℓ4 = ℓ6 to get T4 = T6 and then apply a �ype move to S4:
S4 = T (−1,−2 − a4) + 2k4E

= T (−1 + 1,−1, a3 + 2 + 1) + (2k4 − 1)E

= T (0,−1, a4 + 3) + (2k4 − 1)E.Letting a4 = a6 we 
on
lude that [(S4, T4)] = [(S6, T6)]. Thus (Si, Ti) belong to the same
lass for i = 3, . . . , 6. Note that
[(S4, T4)] = [T (−1,−2 − a4) + 2k4E, T (0, 2 + a4, a4) + (2ℓ4 + 1)E)]

= [(T (0, a,−1,−2− a4) + 2k4E, T (0, 2 + a4, a4) + (2ℓ4 + 1)E]

= [(Sα, Tα)],that is, the 
lass of the �rst family in Figure 11. Now, applying a �ype move to an element



Braid solutions to the a
tion of the Gin enzyme 29of S2 we obtain
S2 = T (0,−3,−a2) + (2k2 + 1)E

= T (0,−3 + 1,−1, a2 + 1) + (2k2 + 2)E

= T (0,−2,−1, a2 + 1) + 2(k2 + 1)E,whi
h is 
he
ked to belong to family S1 by taking a1 = −a2 − 1 and k1 = k2 + 1.Substituting the 
orresponding value a2 = −a1−1 in the expression for T2, and applyingfurther �ype moves we get:
T2 = T (0, a1 + 1,−3,−1, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1 + 1 − 1, 1, 3− 1, 1,−a1 − 1) + 2ℓ2E

= T (0, a1, 1, 2, 1,−a1 − 1) + 2ℓ2E

= T (0, a1, 1, 2 + 1,−1,−1 + 1, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1, 1, 3,−1, 0, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1, 1, 3, a1) + (2ℓ2 + 1)E,
learly an element of T1. Thus [(S1, T1)] = [(S2, T2)]. Sin
e the �rst box in the diagramof S2 equals 0, we get
[(S2, T2)] = [(T (−a2) + (2k2 + 1)E, T2)]

= [(T (0, a, b) + (2k2 + 1)E, T (0, b,−3,−1, b) + (2ℓ2 + 1)E)]

= [(Sβ , Tβ)],that is, the se
ond family in Figure 11.



30 H. Cabrera Ibarra and D.A. Lizárraga NavarroTo prove that the two families are di�erent, 
onsider (T (b)+E, T (0, b,−3,−1, b)+E),a representative of [(Sβ , Tβ)]. In parti
ular, for b = 0 we get (T (0)+E, T (0, 0,−3,−1, 0)+

E) = (E, T (−3,−1) + E) ∈ [(Sβ , Tβ)]. We shall show that, for every b and k2 in Z, onehas T (−3,−1)+E 6= B(b, k2) := T (0, b+2, b)+(2k2+1)E so that [(E, T (−3,−1)+E)] 6=

[(Sα, Tα)]. To this aim, note that T (−3,−1)+E is in standard form, and so is B(b, k2) if
b < −2 or b > 0; di�ering in their standard diagrams, these braids are therefore unequal.Now, if b = −1,

B(−1, k2) = T (0, 1,−1) + (2k2 + 1)E

= T (0, 1 − 1, 1, 1 − 1) + 2k2E

= T (1) + 2k2E,whi
h is in standard form. Thus T (−3,−1) + E 6= B(−1, k2). Analogously, if b = −2,then B(−2, k2) = T (−2) + (2k2 + 1)E and hen
e T (−3,−1) + E 6= B(−2, k2). This�nishes the proof.5·1. Gin a
ting on substrates with dire
tly repeated sitesIt was shown in [11℄ that, under 
ertain 
onditions, the Gin enzyme also a
ts insubstrates with dire
tly repeated sites, a 
ase whi
h was analysed in [17℄ under the as-sumption that the tangles involved were 2-string tangles. In order to apply our algorithmbased on 3-braids, and in view of the experimental data, the equations to be 
onsideredin this 
ase are
A(S + T ) = b(3, 1), A(S + 2T ) = b(7, 3) and A(S + 3T ) = b(11, 9). (5·3)



Braid solutions to the a
tion of the Gin enzyme 31Applying the methodology des
ribed above, one �nds that the families of solutions are
S1 = T (0,−2,−1,−a1) + 2k1E T1 = T (0, a1, 1, 1, 1, 2, a1) + (2ℓ1 + 1)E

S2 = T (0,−3,−a2) + (2k2 + 1)E T2 = T (0,−a2,−2,−1,−1,−1,−a2) + (2ℓ2 + 1)E

S3 = T (−1,−1 + a3) + 2k3E T3 = T (0, 1 − a3,−1,−1,−a3) + (2ℓ3 + 1)E

S4 = T (−1,−2 − a4) + 2k4E T4 = T (0, 1 + a4, 1, 1, a4) + (2ℓ4 + 1)E

S5 = T (2 − a5) + (2k5 + 1)E T5 = T (0, 1 − a5,−1,−1,−a5) + (2ℓ5 + 1)E

S6 = T (3 + a6) + (2k6 + 1)E T6 = T (0, 1 + a6, 1, 1, a6) + (2ℓ6 + 1)E

S7 = T (0,−1,−1,−a7) + 2k7E T7 = T (0, a7, 1, 1, 1, 2, a7) + (2ℓ7 + 1)E

S8 = T (0,−2,−a8) + (2k8 + 1)E T8 = T (0,−a8,−2,−1,−1,−1,−a8) + (2ℓ8 + 1)E,(5·4)with ai ≥ 0 and ki, ℓi ∈ Z for i = 1, . . . , 8. An argument analogous to the one in theproof of Theorem 5 shows that, modulo the relation ∼ from De�nition 5·2, these familiesfall into the two 
lasses (Sα, 2Tα) and (Sβ , 2Tβ) depi
ted in Figure 12, where Sα, Sβ, Tαand Tβ 
orrespond to the solutions found in the previous 
ase.
a

a

b
b

b
b

b

−b

Sα 2Tα

Sβ 2Tβ

2k1E (2k2 + 1)E

(2k3 + 1)E (2k4 + 1)EFig. 12. The two di�erent families of solutions to equations (5·3)6. AlgorithmThe following is an algorithm to solve tangle equations using the results des
ribedabove. Spe
i�
 implementations (in a variety of 
omputer languages) may easily be ob-tained from the listed pseudo-
ode, whi
h adheres to the 
onventions set forth in [5℄.As an additional 
onvention, if A is an array, A[j . . k] denotes the (�nite) sequen
e
A[j], A[j+1], . . . , A[k]. Due to spa
e limitations, the pro
edures do not in
lude any datavalidation or ex
eption handling. Here is a brief des
ription of the pro
edures involved:

• Append(A, x) Appends the element x at the end of array A.
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• Con
atenate(A,B) Con
atenates arrays A and B, in that order.
• Get-CF-Expansion(n, long-format) Gets the 
ontinued fra
tion expansion of arational n. The argument long-format indi
ates whether the long or short formatis required.
• Solve-2BK-Congruen
es(α, β) Returns an array of 
ouples of integers [a, b]that solve the two-bridge knot 
ongruen
es: a = α and (b ≡ β mod α or
bβ ≡ 1 mod α).

• Get-Solution-Expansion(α, β,X) Returns an array of braids. Ea
h braid B instandard form and satis�es (F (B))1 ≥ 1. These braids represent the totality ofsolutions to equation A(B) = b(α,−β).
• Apply-Lagrange-At(F, k, plus-to-minus) Applies Lagrange's rule to the 
ontin-ued fra
tion F , represented as an array of integers, at position k ∈ {1, . . . , length[F ]}.If plus-to-minus = true, the rule a+ 1

−b
= a−1+ 1

1+ 1
b−1

is applied, so that if F =

[f1, . . . , fk−1, a,−b, fk+2, . . . , fn], it returns [f1, . . . , fk−1, a−1, 1, b−1,−fk+2, . . . ,−fn].If plus-to-minus = false, the rule −a+ 1
b

= −a+1+ 1
−1+ 1

−b+1

is applied, so thatif F = [f1, . . . , fk−1,−a, b, fk+2, . . . , fn], it returns [f1, . . . , fk−1,−a+ 1,−1,−b+

1,−fk+2, . . . ,−fn].
• Strip-Zeroes(F ) Returns an array that di�ers from the array of integers F inthat it 
ontains no zero entry.
• Remove-Zeroes(F ) Takes a 
ontinued fra
tion F , represented as an array, thenremoves zeros and simpli�es a

ording to the rules of 
ontinued fra
tions.
• Dete
t-Sign(P,X) Takes a degree-one multinomial P = a0 + a1X [1] + · · · +

alength[X]X [length[X ]] in the indeterminates X [i] and returns a stru
ture indi
at-ing whether P is sign-de�nite and, in su
h 
ase, sign(P ). Sign-de�niteness is testedunder the assumption that the indeterminates take stri
tly positive values.
• Dete
t-Sign-Change(A, I,X) Takes an array A of multinomials in the inde-terminates X and, starting from the Ith position, determines whether there is asign 
hange. In su
h 
ase, the position p at whi
h it o

urred, and the sign of A[p]are also returned. Sign-dete
tion is based on the rules applied by Dete
t-Sign.
• Get-Standard-Form(B,X)Takes a braidB, given by T (fraction [B])+index [B]Eand puts it in the standard form AD+kE. fraction [B] is an array on multinomialsin the indeterminates X .
• Con
atenate-Braids(A,B,X) Takes braidsA andB (
f.Get-Standard-Form

(B,X) for the des
ription of braids) and 
on
atenates (i.e., adds) them, expressingthe result in standard form.
• Invert-Braid(A) Inverts braid A (
f. Get-Standard-Form(B,X) for the de-s
ription of braids) under the 
on
atenation operation in the braid group.
• Get-P-and-Q(A,B) Given two 2-bridge knots b(A[1], A[2]) and b(B[1], B[2]),returns braid families P andQ su
h thatA(P+Q) = b(A[1], A[2]) andA(P+2Q) =

b(B[1], B[2]).Append(A, x)1 return [A[1 . . length [A]], x]Con
atenate(A,B)1 return [A[1 . . length [A]], B[1 . . length [B]]]



Braid solutions to the a
tion of the Gin enzyme 33Get-CF-Expansion(n, long-format)1 R← sign(n)GetContinuedFra
tion(|n|)2 if long-format3 then R[length [R]]← R[length [R]]− sign(n):4 R← Append(R, sign(n))5 return RSolve-2BK-Congruen
es(α, β)1 T ← {β}2 if |α + β| < α3 then T ← T ∪{α + β}4 if | − α + β| < α5 then T ← T ∪{−α + β}6 for ℓ← −|β| to |β|7 do b← α

β
ℓ + 1

β8 if b ∈ Z and |b| < |α|9 then T ← T ∪{b}10 
reate array R of size [1 . . length [T ]]11 for i← 1 to length [R]12 do a[R[i]]← α13 b[R[i]]← T [i]14 return RGet-Solution-Expansion(α, β, x)1 C ← Solve-2BK-Congruen
es(α, β)2 R← [ ]3 for i← 1 to length [C]4 do5 F ←
a[C[i]]

b[C[i]]6 for j ← 1 to 27 do8 if j = 19 then fraction [S]← Get-CF-Expansion(F, false)10 else fraction [S]← Get-CF-Expansion(F,true)11 fraction [S]← Append(fraction [S], sign(F )x)12 index [S] = length [fraction [S]] mod 213 R← Append(R, S)14 return RApply-Lagrange-At(F, k, plus-to-minus)1 n← length [F ]2 if n < 2 or k 6∈ {1, . . . , n− 1}3 then return F4 if plus-to-minus5 then return [F [1 . . k − 1], F [k]− 1, 1,−F [k + 1]− 1,−F [k + 2 . . n]]6 else return [F [1 . . k − 1], F [k] + 1,−1,−F [k + 1] + 1,−F [k + 2 . . n]]Strip-Zeroes(F )1 R← [ ]2 for i← 1 to length[F ]3 do if F [i] 6= 04 then R← Append(R, F [i])5 return R



34 H. Cabrera Ibarra and D.A. Lizárraga NavarroRemove-Zeroes(F )1 R← F2 last-zero ← 33 while length [R] > 1 and any entry of R[last-zero . . length [R]− 1] equals 04 do n← length [R]5 for i← last-zero −1 to n− 16 do if R[i] = 07 then R← [R[1 . . i− 2], R[i− 1] + R[i + 1], R[i + 2..n]]8 last-zero ← max{i, 3}9 break � Breaks the for loop and jumps to 310 if length [R] > 1 and R[length [R]] = 011 then R← [R[1.. length [R]− 1]]12 return RDete
t-Sign(P, X)

� P is assumed to be given by P = a0 + a1X[1] + · · ·+ alength[X]X[length [X]]
� It is assumed that sign(n) = 0 if and only if n = 01 s = [sign(a0), . . . , sign(alength[X])]2 s← Strip-Zeroes(s)3 if length [s] = 04 then is-definite[R]← true5 sign[R]← 06 else7 m← min{s[1 . . length [s]]}8 M ← max{s[1 . . length [s]]}9 if m = M10 then is-definite[R]← true11 sign[R]← m12 else is-definite[R]← false13 sign[R]← 014 return RDete
t-Sign-Change(A, I, X)1 sign-changed [R]← false2 position[R]← 03 plus-to-minus[R]← false4 if length [A] ≤ 15 then return R6 
reate array s of size [1 . . length [A]− I + 1]7 for i← I to length [A]8 do s[i− I + 1]← Dete
t-Sign(A[i], X)9 for i← 2 to length [s]10 do if is-definite [s[i]]11 then12 � Dete
t �rst A[j℄ to the left of A[i℄ with de�nite sign and 
ompare13 for j ← i− 1 downto 114 do if is-definite[s[j]] and sign[s[j]] 6= 015 then16 if sign [s[j]] 6= sign[s[i]]17 then sign-changed [R]← true18 position [R]← i + I − 119 if sign[s[j]] > sign[s[i]]20 then plus-to-minus[R]← true21 return R22 return R



Braid solutions to the a
tion of the Gin enzyme 35Get-Standard-Form(B, X)1 n← length[fraction [B]]2 F ← Remove-Zeroes(fraction[B])3 a← 04 ℓ← 45 c← Dete
t-Sign-Change(F, ℓ− 3, X)6 while sign-changed [c]7 do F ← Remove-Zeroes(Apply-Lagrange-At(F, position [c]− 1, plus-to-minus[c]))8 if plus-to-minus[c]9 then a← a + (−1)position[c]10 else a← a− (−1)position[c]11 ℓ← max{position [c], 4}12 c← Dete
t-Sign-Change(F, ℓ− 3, X)13 fraction[R]← F14 index [R]← index [B] + a15 return RCon
atenate-Braids(A,B, X)1 fa ← fraction [A]; fb ← fraction [B]; na ← length [fa]; nb ← length [fb]2 index [R]← index [A] + index [B]3 if index [A] ∈ 2Z4 then if na ∈ 2Z5 then fraction [R]← Con
atenate(fa, fb)6 else fraction [R]← [fa[1 . . na − 1], fa[na] + fb[1], fb[2 . . nb]]7 else if na ∈ 2Z8 then fraction [R]← [fa[1 . . na − 1], fa[na]− fb[1],−fb[2 . . nb]]9 else fraction [R]← Con
atenate(fa,−fb)10 return Get-Standard-Form(R)Invert-Braid(A)1 n← length[fraction [A]]2 k← index [A]3 F ← [ ]4 if k ∈ 2Z5 then if n ∈ 2Z6 then F ← [0]7 F ← Append(F, [− fraction [A][n . . 1]])8 else if n ∈ 2Z + 19 then F ← [0]10 F ← Append(F, [fraction [A][n . . 1]])11 fraction[R]← Remove-Zeroes(F )12 index [R]← −k13 return RGet-P-and-Q(A, B)1 Xs ← Get-Solution-Expansion(A[1], A[2], a)2 Ys ← Get-Solution-Expansion(B[1], B[2], b)3 
reate array R of size [1 . . length [Xs], 1 . . length [Ys ]]4 for i← 1 to length [Xs ]5 do for j ← 1 to length [Ys ]6 do Q← Con
atenate-Braids(Invert-Braid(Xs [i]), Ys[j], [a, b])7 P ← Con
atenate-Braids(Xs[i], Invert-Braid(Q), [a, b])8 X[R[i, j]]← Xs[i]9 Y [R[i, j]]← Ys [j]10 P [R[i, j]]← P11 Q[R[i, j]]← Q12 return R
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