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Abstract

The topological analysis of enzymes, a currently active research topic, allowed the
deduction of the action mechanism of several enzymes, modelled as 2-string tangles, by an
application of the tangle model of Ernst and Sumners. In this article we analyse knotted
and linked products of site-specific recombination mediated by the Gin DNA invertase,
an enzyme which involves 3-string tangles, and give two families of solutions to its action
in both, the directly and inversely repeated sites cases, whenever the 3-tangles involved
are 3-braids. For each case, one of the given solutions had not previously been reported
in the related literature. In addition, a detailed pseudo-code algorithm is presented which
allows one to compute solutions under the assumption that the product of two or more
rounds of recombinations are known.
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1. Introduction

Tangles, as mathematical objects, were introduced by J. Conway in [4] and have proved
to be useful tools in the study of knots and links, for example in the classification of 2-
bridge and Montesinos knots [1, 13], and in applications of knot theory to molecular
biology [6, 9]. In turn, the tangle model, introduced by Sumners et al. in [15], was
applied under reasonable biological assumptions to model the site-specific recombinase
Tn3 resolvase, as well as other enzymes such as A-Int [6] and Xer [16]. It is worth
mentioning that such cases involved actions of enzymes on 2-tangles, a quite favourable
situation since a complete classification of rational 2-tangles exists in the literature. Some
enzymes, however, such as Gin and Hin integrase recombinases, act on 3-tangles instead
of 2-tangles. In [17], Vazquez and Sumners gave a solution to the action of the Gin enzyme
with inversely and directly repeated sites. Their result is based on the application of the
tangle model under the additional assumption that one of the strings involved remains
completely fixed by Fis, an accessory protein, and hence that the presence of this string
can be neglected, thereby obtaining a 2-tangle.

In DNA site-specific recombination, a recombination enzyme attaches to a pair of DNA
specific sites, breaks both, and recombines them to different ends, thereby modifying the
original topology of the molecule. Electron micrographs of recombinases bound to DNA

show the enzyme as a blob from which two or three DNA loops emerge, depending on
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the enzyme. In the specific case of the Gin enzyme, three DNA loops stick out of the
blob, thus making of the theory of 3-tangles a particularly powerful analysis tool.

Regarding 3-tangles, a classification of a subset of the set of rational 3-tangles, by
means of the Kauffman bracket polynomial and certain invariant matrices, is described
in [2, 3]. What is more, the results in [2] provide a complete classification of the set B
of rational 3-braids—a special case of rational 3-tangles.

Building on the theory and results developed in [2], in this paper we exploit the proper-
ties of standard braid diagrams and apply the main ideas of the tangle model in order to
analyse knotted products of site-specific recombination mediated by the Gin enzyme. As
a result, we obtain two solutions to its action in both the directly and inversely repeated
cases, under the assumption that the tangles involved are 3-braids. It is interesting to
mention that two of the four given solutions, one for each case, were not previously avail-
able in the relevant literature. Moreover, we describe an algorithm to compute solutions
when the product of two rounds of recombinations are equal to known 2-bridge knots
(also referred to as 4-plats). In more mathematical terms, our algorithm permits the
solution of equations involving braids whose closures equal the given 2-bridge knots. It
is worth mentioning that in [7, 8|, an analysis is made of tangle equations which are
the numerators of sums of 2-tangles and whose products are either 4-plats or Montesinos
knots.

The organisation of the paper is as follows. In Sections 2 and 3 we recall the definition
and basic properties of 3-braids, which are special cases of rational tangles, as well as the
bracket polynomial applied to tangles. We also give a characterisation of a matrix M;
associated to a braid. In Section 4, we study some of the properties of a given 3-tangle

invariant F', obtained from the matrix M. In Section 5 those results are applied to the
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analysis of the action of the gin enzyme in both the directly and inversely repeated sites
cases. Section 6 contains a pseudo-code listing of our algorithm to solve braid equations

using the results in previous sections.

2. Preliminaries
2-1. Tangles

An n-tangle is a pair (B3, T), where B3 is the 3-ball and T is a set of n disjoint properly
embedded arcs in B3. An n-tangle (B3, T) is called rational if there is a homeomorphism
of pairs from (B3,T) to (D, P) x I, where D is the unit disk, P is any set of n points in
the interior of D and I is the closed unit interval. A tangle diagram is the projection of
the tangle onto the yz-plane.

In this work we shall only deal with rational 3-tangles, and refer to them simply as
tangles. Accordingly, we shall write T for a tangle (B3,T). Two n-tangles T and T" are
said to be equivalent, denoted T' = T”, if there is a homeomorphism of pairs h : T — T’
such that h restricted to B3 is the identity function or, equivalently, if one can transform
T into T’ by repeatedly performing Reidemeister moves in B3 (c.f. Figure 1), keeping
0B3 fixed. Given two tangle diagrams T'D; and T D,, their sum T Dy 4+ T D is obtained

N -
=)~
P (N
Qo e Q

IX\ <> \X,

Fig. 1. Reidemeister moves.

by concatenation (or juxtaposition), as shown in Figure 2.
It was shown in [2, 3], by an application of Kauffman’s bracket polynomial to tangles,

that every tangle diagram 7D has five associated Laurent polynomials invariant under
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TD1 TD2 TDl + TD2
Fig. 2. The diagrams of T'D1,T D2 and T'D1 + T D-.

regular isotopy. For each tangle diagram T'D of a tangle T, these polynomials allow one
to define, in turn, two polynomial matrices M7 (T D) and Mo (T D). It turns out that Mo,
along with a certain equivalence class [M;] of M7, constitute ambient isotopy invariants
which provide a classification of a subset of rational 3-tangles, namely the set B3 of
3-braids. More specifically, given a 3-braid T' € B3 and its related matrices M;(T) and
M>(T), one easily computes the standard diagram AD+kE associated with T, consisting
of the sum of an alternating diagram AD and k copies of a (nonalternating) 3-braid E.
On the other hand, whether such matrix invariants completely classify the set of 3-tangles

is still an open question.

2-2. 3-Braids

An n-braid can be defined as a set of n strings attached to vertical bars at their left and
right endpoints (see Figure 3(a)), with the property that each string heads rightwards
at every point as it is traversed from left to right. The n-braids form a particular class
of rational n-tangles (Figure 3(b)). Since in this paper we deal exclusively with 3-braids,

we shall drop the prefix ‘3-’ and refer to any of them simply as ‘braid.’

oA

(a) (b)

Fig. 3. (a) A 3-braid, and (b) the tangle induced by it.

A braid diagram is said to be non-alternating if any of its strings, as traversed
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from left to right, exhibits two consecutive overpasses or two consecutive underpasses.
A diagram is alternating if it fails to be non-alternating. The braid in Figure 3(a), for
instance, is non-alternating. For a detailed introduction to braids see [12, 14].

As a matter of notation, we write 7(aq, ..., a,), a; € Z, to denote either of the following

braid diagrams, according to whether n is odd or even:

ay a3 Qn ay as Qp—1]

n odd n even

In the above diagrams, each box of the form or comprises |n| two-string

crossings according to the following conventions:

-
K
A Y

n>0 n>0

N
N

=
I
3
I
(@)
=]
I
3
Il
(@)
o
=
N

TS n<0 c.x n<o.
Note that for any braid 7" we have an associated diagram 7(a,...,a,) for some a; € Z,
j=1,...,n. Also note that, with our convention, 7(ay, . ..,a,) is an alternating diagram
if, and only if, either a; > 0,4 =1,...,nor a; < 0,7 = 1,...,n. An example of an

alternating diagram is depicted in Figure 4.

0000

Fig. 4. Example of an alternating diagram: 7(3,2,1,2,2)

An important class of non-alternating braid diagrams is generated by E and —F, which

are diagrams defined as follows

E=T(1,-1,1)=7(0,-1,1,-1) and —E=7T(-1,1,—-1)=7(0,1,-1,1).
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Given k € Z, we let

E+E+---+E, (ktimes), k>0;

—~E—E—---—E, (|k| times), k< 0.

A braid diagram B is said to be standard if has the form B = AD + kFE, with AD
alternating and k € Z. It was shown in [2] that every braid admits a unique standard

diagram:

Lemma 2-1 For every braid T € B3 there exists a unique alternating diagram AD and

a unique integer k € Z such that a diagram of T equals AD + kE.

The proof is simple and the underlying intuition is exemplified in Figure 5: Starting with
a tangle diagram, one “twists” all the strands at places where two consecutive overpasses
or underpasses occur, then compensates that twist by another in the opposite direction
at the rightmost end of the diagram. Following [10], we shall refer to this procedure as a
flype mowe. For 3-tangles, a flype move is related to application of Lagrange’s rule (cf.

the description of APPLY-LAGRANGE-AT in Section 6).

2-3. Kauffman bracket polynomials and the invariant M.

The Kauffman bracket is a function from unoriented link diagrams to Laurent poly-
nomials with integer coefficients in an indeterminate a. It maps a diagram D to (D) €
Zla,a~!] and is characterised by the following three conditions:

(K1) (O) =1
(K2) (TDu Q) =—(a*+a"?)(TD)

(K3) OX)=a () +a7" (X)
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PO s
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Fig. 5. Deformation of 7T(-2,-1,3,4,2,—4) into the standard diagram
T(-3,-2,—4,—-1,—1,-3) 4+ 2E. At each place indicated by a dotted line, a full 3-string twist
(show in red) is introduced; in order to preserve the braid, the twist is compensated at the end
of the diagram by adding an E summand of the opposite sign (also shown in red). The result
of these two flype moves appears as a 2F summand, shown in blue in the last diagram.

In this definition, O is the diagram of the unknot, with no crossings, and 7D U O
is the diagram consisting of the diagram T'D together with an extra closed curve O
that contains no crossings at all, neither with itself nor with TD. In condition (K3),
the formula refers to three link diagrams that are exactly the same except near a point
where they differ as indicated. It is well known that the Kauffman bracket satisfies the
following relations [10]:

@) (Q)=-a® (1) (Q) == (V)

(i) () =00

(i) (3¢) = (%)
These identities show that the bracket polynomial is an invariant of knots under relations
(ii) and (iii), i.e., it is invariant under regular isotopy.

Given a tangle diagram T'D, we define the bracket polynomzial of T D by

(D) = a(TD) () + B(TD) () +3(TD) (€F) +
ATD) (69) +w(TD) (E73), (2:2)
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where the coefficients a(T'D), B(T'D), §(TD), x(T' D) and (T D) are polynomials in a

and a1 that are obtained by using formulas (K2) and (K3) recursively on T'D until one
comes up with a diagram containing only combinations of the five tangles that appear in
(2-2). Note that these polynomials, any of which may be zero, are also invariant under
regular isotopy.

One associates, with a given tangle diagram 7'D, the following matrix:

a(TD) + x(TD) 3(TD) 0
M(TD)(a) = §(TD) o(TD) +¢(TD) 0 :
0 0 a(TD)

where the corresponding polynomial entries are taken from Equation (2-2). Again, M (T D)(a)

is an invariant under regular isotopy. We have the following result, proved in [2].

Theorem 2-2 [2] Given two tangle diagrams T Dy and T Do,

M(TDy + TDs)(a) = M(TD1)(a)M(TD2)(a)

x1 B1 0 010 X2 B2 0
—(@+a?) | 5 ¢ 0 100 5 s 0 |
0 0 0 00 0 0 0 0

with Q; = a(TDl), ﬁi = Oé(TDi), . ’L/Jl = ’Q/J(TDZ), = 1, 2.

With a tangle diagram T'D we associate the matrix M,(T D) = M(TD)(v/i), which
results from evaluating M (T'D) at a = v/i. Since (v/i)? + (v/i) 2 = 0, M1 (T D) obviously

has the following property:

Lemma 2-3 For any two tangle diagrams T Dy and T Dy one has M1(T Dy, + TD2) =

M (TD1)M1(TD5).
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From Property (i) of the Kauffman bracket it follows that

TDy =TDy = M(TD;)(a) = (—a)**M(TDs)(a)

for some z € Z which depends on the number of loops in the diagrams. As a consequence,
M;(TD) is not a tangle invariant. An invariant may be obtained from M, however, by

considering the following relation on Msx3(C):

Ay ~ Ay <= A} = (—Vi)3* Ay for some z € Z. (2:3)

One easily shows that this is in fact an equivalence relation. Moreover:

Lemma 2-4 The equivalence class [M1(T D)) is a tangle invariant.

Clearly, if two tangle diagrams 7'D; and T D5 are equivalent, then

[M1(T'Dy)] = [M1(TD2)]

and, by Lemma 2-3, we have [M1(T'Dy - TD3)] = [M1(TD1)][M:1(TD3)]. In the sequel
we shall only deal with such equivalence classes, denoting [M7 (T D)] simply by M;(T D)

and enclosing its entries using (square) brackets.

2-4. Continued Fractions

Here we briefly recall basic facts on continued fractions, to be used in the remainder

of the paper. Given aq,...,a, € C, let

N[al] = a1 D[al] =1
N[al, a2] = azN[al] +1 D[al, a2] = azD[al]

Nlay,az,a3] = azN|a1, as] + Nai] Dlay, as,a3] = azDlay, az] + Dla1].
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If we define N[a_1] = 0,D[a_1] = 1, N[ag] = 1, and D[ag] = 0, we have the following

recursive formulae

Nlai,...,an] = anNlay,...,an-1]+ Nla1,...,an—2], n>1,
(24)
Dlay,...,an] = apDla1,...,an-1] + Dla1,...,an—2], n>1.
Note that
N Nias, 1 Nia,....a, 1
[al]:ﬂ, [a1 a2]=a1+—, [a1 a]:a1+ -
Dlas] 1’7 Dlas,as) as’ Dlay,...,ay] as +
1
..+_
Qnp

We denote Nlay,...,a,]/Dlai,...,ay] simply by [a1,...,a,], that is,

4 —
425

and define § = 00, 00 -a =00 =00 +a, and = 0, where a € C with a # 0. Using the

notation A, = [ai,...,a,], the formule in (2-4) take the form

NAn = CLnNAn,1 + NAH,Q, DAn = CLnDAn,1 + DAn,Q, n Z 1

3

whence NA, /DA, = A,.

An n-tuple [aq,...,a,] is said to be a continued fraction expansion; if, moreover,
sign(a;)-sign(a;y1) > 0forj=1,...,n—1, [a1,...,a,] is referred to as a strict contin-
ued fraction expansion. As mentioned above, it is easy to see that 7(aq,...,ay) is an

alternating diagram if, and only if, [ay,...,a,] is a strict continued fraction expansion.

2-5. Computation of My for braids

Here we develop some results that shall allow us to readily compute the matrix M, (T

for a braid T.
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Lemma 2-5 For every n € Z,

1 0 0
My(1(n)) =
0 0 1
Proof. One clearly has
1 00 1

0 01 0

Thus, from Lemma 2-3 we obtain, for n > 0,

-1 0 0_ _1 0 0—
Mi(T(n)) =L 1 o] =|2 1 0
00 1 0 0 1
Hence
1

My(T(n) = |2

0

and Mi(T(—n))= =2 1 o,

0

no10 and  My(7(0,n)) = [0 1 0

1

0 0 1
1 0 0
S OMUT-1) = =t g
0 0 1
1 0 0

In a similar manner, one proves that the given expression for M;(7(0,n)) is valid as well.

Using the previous notation, in general we have the following Lemma:

Lemma 2-6 Given aq,...,a, € C, the following statements hold:

If n is odd, then ap 1 0 0O 1 0

0 0 DA, DA,_1 0
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1 0 O 1 a2 O 1 a, O DA,_1 DA, 0
If n is even, then a; 1 0 o0 1 o|l---lo 1 o|l=|NA4,, N4, 0
0 0 1 0 0 1 0 0 1 0 0 1

This lemma may be used to determine M;(7A,,), as pointed out by the following result.

Lemma 2-7 Given T(aq,...,a,) one has:
DA} DA | 0 DA, =DA,-1 0
NA, NA,_, 0| =|iNA, NA,, of. foroddn;
0 0 1 0 0 1
Ml(T(al,...,an)): r 9 r 9
DAi_, DA 0 DA, 1 =DA, 0
NA, | NA, 0| =|iNA,_, NA, of. forevenn,
0 0 1 0 0 1
X 1 n+1
where a; € Z, A, = [a1,...,a,] and A, = %7—;127”_’(*)%

3. The invariant F

Recall that, given a tangle T, we have the equivalence class

a+x I] 0

M(T) = 0 a+vy 0

whereas Lemma 2-7 gives us an easy way to compute the matrix associated to a braid

diagram 7T (ay, ..., ay). We shall use these facts in order to obtain another invariant and
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simplify our tasks. Define a mapping F' by

ro= (S wime) - (75

which is a tangle invariant (in fact, any quotient among linear combinations of the entries
of My(T) is also an invariant). We have the following Theorem, a direct consequence of

Lemma 2-7 and of the properties of continued fractions:

Theorem 3-1 One has

(Ha1,...,an], a1,...,an-1]), forn odd;

(%[al, ey Op—1], %[al, o an]), for n even.
Let us remark that, while the continued fractions [a1,...,a,], [a1,...,a,—1] defined
by the crossings of a tangle diagram 7 (aq,...,a,) need not be strict, the invariant F'
uniquely determines a couple of strict continued fractions [q1,...,qn—1] and [q1, ..., qn],

q1,--..qn € Z, such that if we let (1%,1¢) = F(T (ai,...,a,)) then

1a 1¢ (%[q17'-'7Qn]7%[qla--~aqn71])7 n odd;
ivid) ") 1
(#lar -+ qn-1)s 5la1, - - qn]), n even.
If 7(aq,...,a,) is an alternating diagram, then [ai,...,a,] and [a1,...,a,—1] are strict

continued fraction expansions. Conversely, a pair of strict continued fraction expansions

[a1,...,a,] and [aq,...,a,—1] determine a unique alternating diagram 7 (a1, ..., ay).
Recalling, from Lemma 2-1, that every tangle T" may represented in the standard form

T = AD + kE, the following lemma asserts that F(T') determines the alternating part

AD.
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Lemma 3-2 For any two alternating braid diagrams Ty and Ts, one has T = Ty if, and

only if, F(Ty) = F(T3). In particular Ty = T5 if, and only if, My (Th) = M1(T2).

Proof. If Ty = Ty, it clearly follows that F(Ty) = F(T») and M;(Ty) = M1(T»). To
prove the converse implication, from the ordered pair (%%, %g) we obtain a pair of strict
continued fraction expansions [aq,...,a,—1] and [a1, ..., ay] which, in turn, uniquely de-
termine an alternating diagram 7 (ay,...,a,). Since Ty and T are alternating diagrams,
it follows that Ty = T (a1, ...,a,) = Ta. On the other hand, M;(Ty) = M;(Tz) implies
F(Ty1)=F(T>) and hence T = T5.

From the proof of Lemma 3-2 we see that the association of rationals and alternating
braid diagrams is reversible in the sense that, given a pair of rationals that are equal
to the invariant F' of an alternating braid diagram 7, the latter may be reconstructed
without ambiguity.

We shall now turn to studying the invariant M; associated to a non-alternating diagram

kE. Using Lemma 2-7 we obtain:

0 1 0 -10 0 0 =

—
o

<

Mi(E)= |1 o o|,M@2E)= |0 -1 of,MBE)=|1 o of.MUE)=1I.

(3-1)

Since M;(4F) is the identity matrix, the proof of following Lemma is straightforward:

Lemma 3-3 For any tangle diagram T,

Mi(T +1E) = Mi(T+mE) < 1l=m mod 4.
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Applying this result to F', and using the expressions for M;(E) and M;(2FE) one has:

Lemma 3-4 Let T € B3 be such that F(T) = (1£,14). Then we have

%

Given a braid B = AD + kE, Lemma 3-4 and the remarks after Theorem 3-1 imply,
in particular, that F(B) determines the alternating part AD as well as whether k is odd

or even. Using lemmas 3-2 and 3-4, we get:

Lemma 3-5 Let be 11,15 € B3 then
@) If F(Tl):(%g, %%) = F(T5), then Th = Ty + 2kE for some k € Z.

(i) IfF(T)=(3%,14) and F(Ty)=(34,1%), then Ty = To+ (2k+1)E for some k € Z.

%

Proof. (i) Since F(Ty) = F(Ts), by Lemma 34 we have Ty = AD + k1 FE and Ty =
AD + ko F for some ky,ke € Z. Since F(T1) = F(T5), then k; and ks are both even or

both odd. Therefore
Ty =AD + k1E =AD + koE + (k1 — ko)E =To + (k1 — ko) E,

with (k; — k2) even. The proof of (ii) is similar, mutatis mutandis.

Remark 3-6

An additional matrix is introduced in |2], namely Ms(TD) = M(TD)(H;‘/g). It turns

out that Ms is a tangle invariant with the property that

My(T +7E)=My(T +sE) < r=s.
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Using this fact, one concludes that the matrices M(-) and Ma(-) completely classify the

braid group Bs, as stated in the following result.

Theorem 3-7 Given T1,T> € Bs, one has Th = Ts if, and only if, M1(Th) = M1(T3)

and MQ(Tl) = MQ(TQ)

4. DNA and 2-bridge knots

The family of knots and links known as 2-bridge knots has been largely studied, to the
point that it is completely classified. This family is closely related to rational 2-tangles
[1, 4, 14] and, as we will see, to the set of 3-braids as well. A standard diagram of a
2-bridge knot has the form shown in Figure 6, and it can be proved that every 2-bridge
knots admits an alternating diagram [14]. A 2-bridge knot having a standard regular
diagram as in Figure 6, with the exception that signs of crossings follow the opposite
convention to that adopted in this paper (cf. 2-1), is said to have type b(a,b), where

2 = [b1,...,by] is a strict continued fraction expansion and n is odd.

G . )

bl b3 bn

C—e— """ )

Fig. 6. Standard diagram of a 2-bridge knot.

As mentioned above, 2-bridge knots have been completely classified:

Theorem 4-1 Suppose that K and K' are 2-bridge knots of types b(a,b) and b(a’,b’),
respectively. Then K and K’ are equivalent if, and only if,
(i) a=a and

(i) b=b moda orbd =1 mod a.

Note that, as depicted in Figure 7, the standard diagram of a 2-bridge knot can be
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regarded as the closure of a braid 7(as,...,a,), denoted A(7(a1,...,a,)), under the

proviso that n be odd and [a4, ..., a,] be a strict continued fraction expansion.

Fig. 7. The closure A(7(ai,...,an)) of a tangle diagram 7(ai, ..., an).

As a consequence of a diagram having non-alternating part equal to 2kE, we have the

following lemma.

Lemma 4-2 The closure operator A satisfies:
(i) For every tangle B and every integer k € Z, A(B + 2kE) = A(B).

(ii) Given ag,...,an € Z, A(T(0,az2,a3,...,a,)) = A(T(as,...,an)).

Proof. (i) follows, by induction on k, from the diagram reduction shown in Figure 8.

(ii) follows immediately from Figure 7 by letting a1 = 0.

E E E

Fig. 8. Illustration of the fact that A(B + 2FE) = A(B).

Remark 4-3

According to Lemma 4-2, when taking the A closure of a diagram 7 (aq,...,a,), no
generality is lost by assuming, as we shall do in the sequel, that a; # 0 and n is odd.
If, moreover, a1, ..., a,] is a strict continued fraction expansion and F(7 (aq,...,a,)) =

(34,12, then [ > 1.

A relation between 2-bridge knots and 3-braids is described in the following theorem.

Theorem 4-4 The following hold:

(i) Every 2-bridge knot is the A closure of some 3-braid.
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(ii) The A closure of any 3-braid is a 2-bridge knot, or the unknot, or the 2-component

unlink.

Proof. (i) Assume that a 2-bridge knot K has type (a,b), so that K = b(a,b) with
ged(a,b)=1. Let [a1,...,a,] (n odd) be a strict continued fraction expansion such that
< =|a1,...,a,] and assume, without loss of generality, that a; # 0 (cf. Remark 4-3).

Hence, by definition of type of a 2-bridge knot:
b(a,b) = A(T(a1,...,an)).
(ii) is obvious.

Lemma 45 Let B € B3 and assume that F(B) = (14, %Z—,,) with 1 <|%|< oo. Then

A(B) = b(a, —b).

Proof. Since a unique strict continued fraction expansion [b1,...,b,] can be obtained
from F(B), from Lemma 3-5 we have B = 7(by,...,b,) + kE, for some k € Z. Suppose

that n is odd and k even. By Lemma 4-2 we have

A(T (b1, ...,bp) +kE) = A(T (by,...,bn)) =

Because of the assumption that || = [[b1,b2,...,b,]| > 1, one has b; # 0. From the

classification of the 2-bridge knots and Lemma 4-2, it follows that

A(T(by,...,by) + kE) = A(T(b1, . ..,by)) = b(a, —b),

where the sign in —b is due to the usual sign convention for 2-bridge knots, [1, 14]. The

other cases are analogous.
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Using the above lemmas and the classification theorem for 2-bridge knots, we have:

Theorem 4-6 Let T be a braid such that F(T) = (3 3*, 1 3+). One has A(T) = b(az, —32)
if, and only if,

(i) a1 = ag and

(ii) B1 = P2 mod a1 or f102 =1 mod a;.

Proof. From Lemma 4-5, one gets A(T") = b(a1, —31) whereas, by assumption, A(T) =
b(ay,—B1) = b(az, —f2). Now, according to the 2-bridge knots classification theorem,
the latter equation holds if, and only if, @1 = ag and (/1 = B2 mod ay or /16 = 1
mod aq).

Note that the previous result does not apply to the unknot; concerning the latter,

however, we have:

Theorem 4-7 Let T be a braid such that F(T) = (%ﬁ—l %ﬁ—/l) with | 1 |> 1. Then
A(T) = Unknot <— Mg o |2
B B

Proof. Suppose that A(T) is the unknot and that T = AD + kFE, where AD =
T(a1,...,ay) and [a1, ..., ay,] is a strict continued fraction expansion. From Theorem 3-1,
Lemma 3-4 and the definition of continued fraction, if 7 (a1,...,a,) with n > 3 and
F(T(a1,...,ay)) = (%ﬂ,%ﬁ—;) then |3t > 1. By Lemma 4-5, if 1 < [§![ < oo then
A(B) = b(a1, —b1) which, by the 2-bridge knots classification theorem, is not the unknot.
Whenever n < 2 we have the following cases:

(i) F(T(a1) + kE) = (00, +[a1]) for k odd. Here | 5] = oc.

(i) F(7(a1) +kE) = (3[a1],00) for k even. Here |§t| = 1 if, and only if, ay = £1.

(ii) F(7 (a1,a2) + kE) = ([a1, as], +a1]) for k odd. Here |5 > 1.
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(iv) F(T(a1,a2) + kE) = (}[a1], 1[a1, as]) for k even. Here |5 = 1 if, and only if,

a1 = +1.
One readily checks that the A closure of the knots involved in case (i), and in cases (ii)

and (iv) when a; = %1, are equal to the unknot.

5. Application to the actions of the Gin enzyme

As mentioned in the introduction, an application of topology to molecular biology
is the tangle model for recombination [9], where knotted and linked products of site-
specific recombination mediated by an enzyme are analysed and, by application of the
tangle model, possible solutions to its action are given. Whilst some of the enzymes
that have been studied involve rational 2-tangles [15, 16|, in this paper we deal with
two known actions of the Gin invertase enzyme, corresponding to the cases of inversely
and directly repeated sites, both of which involve 3-tangles. The topological approach
to enzymology is the study of enzymes acting on, and thereby modifying the topology
of, circular unknotted DNA molecules. Such enzymatic actions are typically produced
experimentally by incubating a substrate of circular unknotted DNA and mixing it with
a solution of the enzymes under study. A schematic representation of this process is
illustrated in Figure 9. For a more detailed and motivated introduction to the topological

approach to enzymology and the tangle model, see e.g. [9, 15, 6].

writhing m recombination ﬂ
enzyme

Fig. 9. Illustration of the action of an enzyme acting on a circular, unknotted DNA molecule.

Electron micrographs of the enzyme-DNA complex show the Gin enzyme with three
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loops of DNA sticking out, which suggests that the classification of rational 3-tangles

might be an appropriate tool in order to apply the tangle model. On the other hand,
experimental results indicate that under certain biological assumptions, the action of Gin
on initially unknotted DNA molecules with inversely repeated sites is a process whose
essential topological features are captured by the model depicted in Figure 10, where
O, S and T represent 3-tangles. It is reasonable to expect that O, S and T are indeed

braids, so we shall assume that it is indeed the case and provide solutions under this

assumption.
FHep-O LHR-O
A(S+0) A(S+T)
RN [ 1 e
A(S +2T) A(S + 3T)

Fig. 10. Repeated action of the Gin enzyme on an initially unknotted DNA molecule.

Using the previous notation, the experimental data in Figure 10 can be translated into

the three equations:
A(S+T) =Unknot, A(S+2T)=0b(3,1), A(S+3T)=10(5,2). (5-1)

In order to solve these equations for S and 7', it is convenient to start manipulating the
second one. Indeed, by virtue of Theorem 4-6, if X is any braid such that A(X) = b(3,1),

its invariant F(X) = (32, %Z—:) satisfies a = 3 and b = —1 mod 3. Now, the condition

|71>1 translates into the constraint |[b| < 3, which, along with the previous requirements
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on b, implies that b = —1 or b = 2. Hence, X should satisfy
13 1d 13 1d
1) F(X)—<;_—1,;§) or 2) F(X)_(;E,EF>,

Since the only strict continued fraction expansions for % are [—3] and [—2, —1] whereas
those for 2 are [1,2] and [1,1, 1], by Lemma 4-2 we have the following sets (or families)

of solutions:

Xl = T(—g, —al) + 261E XQ = T(—2, —1, —(1,2) + (262 + 1)E

Xs=T(1,2,a3) + (2cs + VE Xy =T(1,1,1,a4) + 2¢4
where a;,c; € Z, a; > 0. For the third equation we proceed similarly: If a braid Y satisfies
A(Y) =0(5,2) and F(Y) = (%5, %2—:), then it must be that ¢ = 5 and (d = -2 mod 5

or —2d =1 mod 5). Since |d| < 5, if d = —2 mod 5, then d = —2 or d = 3. If, on the

other hand, —2d =1 mod 5, then d = —3 or d = 2. Hence, in this case our solutions are:

Vi =T(=2,-2,—b1) + (2dy + 1)E Yy =T (=2, -1, -1, —by) + 2doE
Yy =T(1,1,2,bs) + 2ds E Yy =T(1,1,1,1,by) 4+ (2ds + 1)E
Ys = T(2,2,b5) + (2ds + 1)E Yo =T(2,1,1,b) + 2dg E

~1,-1

Y =T(-1,-1,-2,—b7) + 2dE Ys=T7(-1,-1 ,—bg) + (2ds + 1)E,

3 3

with b, d; € Z, b, > 0.

The previous analysis shows that, if By, Bz € B3 satisfy A(By)=05(3,1) and A(B2)=
b(5,2), then By € X; and By € Y; for some ¢ = 1,2,3,4 and j = 1,...,8. On the other
hand, by the tangle model it is assumed that By and Bs are of the form S + 27 and
S + 3T, respectively. Therefore, in order to proceed with the solution, for each pair of

sets X; and Y; we need to find families S;; and Tj; such that the following set equalities
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hold

S;j+2T;;=X; and S;;+3T;,; =Y.

Considering the group structure on Bg, the combination of these two equations yields

X; 4+ Tj; =Y}, which in turn implies

Tij =-X;+ }/J and Sij =X; + 2(—)6 + XZ)

The latter equations indicate that, for each pair of sets X; and Y, there is a pair of
families of solutions S;; and Tj;. Performing the required computations, with the aid
of the algorithm outlined in Section 6, one comes up with 32 pairs of families S;;, T;;
listed in standard form. For each of these pairs, we must check that the first equation
in (5-1), i.e., A(S;; + T3;) = Unknot, is actually satisfied. By Theorem 4-7, in order for
this equation to hold it is enough to ensure that [3L[ = 1 or [§!] = oco. As applied to
the previously obtained solutions, these constraints yield the following families of pairs

of solutions

S1=7(0,-2,-1,—a1) +2k1E Ty, =T7(0,a1,1,3,a1) + (26, + 1)E

Sy =T7(0,-3,—az) + 2k + 1)E To =T7(0,—as,—3,—1,—as) + (2o + 1)FE
S3=T(-1,-1+a3) +2ksE T3 =T7(0,1—a3,—1—a3)+ (23 +1)F 52)
Sy =T(—1,-2—ay) + 2k4E Ty =T(0,2+as,a4) + (204 + 1)E
Ss=T(2—as)+ (2ks + 1)E Ts =T7(0,1—as,—1—as)+ (265 +1)E

S = 7(3 + ag) + (2k6 + 1)E T = T(O, 2+ ag, CLG) + (266 + 1)E,

with a; > 0 and k;,¢; € Z for i = 1,...,6. An interesting fact, as proved in following
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theorem, is that in addition to solving (5-1), these families solve the equations for all

rounds of recombinations involved in the tangle model, including the fourth and beyond.

Theorem 5-1 The pairs of families of solutions (Sk, Tk) given in (5-2) satisfy, for every

ke{l,...,6} andn > 1:

Unknot, n=1
A(Sk +nTy) =

b(2n —1,2n—3), n>1.

Proof. Let k = 1. From the definition of M;(-) we get, by induction on n:

3 —i3a1+2) 0
Mi(S1) =01 | 14 a K

0 0 01

2n+ 1+ 4ain —ni(l1+4a1(14+a1)) 0

M;(nTy) = o9 —4ni 1—2n—4na; 01>

0 0 lop)

where o1, 09 are powers of —1 which depend on the parity of k1 and ¢1, the coefficients
of F in the diagrams of S; and Tj. As described in Section 3, these matrices allow us to

compute F(S1 + nT}), the first component of which is given by

1 /2n—1
F Ty), == .
($1+nTih = 5 (3—2n>

According to Theorem 4-6, the A closure of S; + nTj is the 2-bridge knot of type b(2n —
1,2n—3), as stated. The cases corresponding to other choices of k follow by using similar

arguments along with Theorem 4-1.

This theorem implies in particular that our solutions satisfy A(S + 4T) = b(7,3),
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the (—5)-twist knot. This equation, which is not present in (5-1), is in accordance with
the product obtained in the fourth round in an experiment involving the Gin invertase
enzyme for a substrate with inversely oriented giz sites, [15]. These facts validate the
claim that the tangle model based on 3-braids predicts any recombination.

At this point, it is natural to wonder about the smallest number of essentially different
families that contain the solutions listed in (5-2). In view of the above theorem, for every
n € Z, the closure A(S; + nT;) is independent of the parameters a;, k;, ¢;, which include
the coefficients of E in the standard diagrams of S; and 7;. One may thus relax the
requirement that the a;s be nonnegative or, equivalently, that the diagrams of S; and
T; be standard, by permitting the a;s to take negative values. As we shall see shortly,
this allows one to merge some families, thus reducing the number of different solutions.
Another observation is helpful to merge further solutions, to wit, S always appears in
(5-2) as the first (leftmost) summand, to which a number of T's are appended. Therefore,
if S =7 (a1,az2,as,...,a,) + kE “starts” with a zero entry, i.e. a; = 0, the closure of
S+nT is unaffected if one replaces S by S’ = 7 (as, . .., a,)+kE. These remarks motivate

the following definition and lemma.

Definition 5-2 Let ~ denote the relation defined on pairs of braids by setting (S,T) ~
(S, T") if, and only if, there exist integers ag,ai, ..., an, k1, ks such that T =T’ + 2k FE
and either

(i) S=7(a1,...,an) and 8" =7T(0,a0,a1,...,a,) + 2k1 E, or

(il) S=7(0,a0,a1,...,an)+2k1E and 8" =T (a1,...,a,).

Lemma 5-3 The relation ~, as defined above, is an equivalence relation.

Proof. That ~ is reflexive and symmetric is obvious. To prove transitivity, suppose
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that (S,T) ~ (S',T") and (S',T") ~ (S”,T"). From the eight possible cases allowed by

the definition of ~, we shall only work one out in detail; the rest follow by analogous
arguments. Thus, assume that there exist integers ag, ..., an, bo, ..., by ki, ¢; such that
T =T +2koE, T" =T" + 2¢5F and both of these conditions hold:
(i) S=7(a1,...,an) and 8" =7T(0,a0,a1,...,0n) + 2k1 E,
(i) 8" =T (b1,...,bm) and S”" =T (0,bg,b1,...,bm) + 201 E.
Clearly, T = T"+2({a+k2)E. Also, since S’ = T (0, ag, ai,...,an)+2k1E =T (b1, ..., bm),
we conclude that S” = 7(0,bo, 0, a9, a1,...,an)+2(k1+01)E =T (0,bg+ag,a1,...,a,)+
2(k1 + ¢1)E. Therefore (S,T) ~ (S”,T").

An interesting result is that, modulo this equivalence relation, there exist two essen-

tially different families of solutions.

Theorem 5-4 Modulo the relation ~ of Definition 5-2, there exist two different classes
of solutions to the braid equations (5-1), namely (S, Ta) and (Sg,T3) as in Figure 11,

where a,b and k1, ..., ky are integers:

Ei\m 2% E E wﬂ_(2k2+1)E
T,

Sa o

(23 + 1)E —ﬂf@\ 2k + 1)E

S B TB

Tl

T

Fig. 11. The two different families of solutions to equations (5-1)

Proof. The proof proceeds in two steps: First we identify families with like classes under
~, denoted with square brackets [], then prove that the two classes thus obtained are
different.

Since —1 4+ a3 = —2 — a4 is equivalent to a3 = —ay4 — 1, substituting this value of ag

in the expressions for S3 and T3, we get [(S3,T5)] = [(S4,T4)]. For the third and fifth
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families, we observe that by taking ¢3 = ¢5 we get T3 = T5 and, by application of a flype

move:

S =T(—1,—1+ a3) + 2ksE
—T(-141,-1,1—a3+1) + (2ks — )E

= T(O, —1, 2— CLg) + (2]{33 - l)E

Setting as = as we conclude that [(Ss,T3)] = [(Ss,T5)]. Similarly, for the fourth and

sixth families we take ¢4 = {5 to get T, = Ts and then apply a flype move to Sy:

S4 = T(—l, -2 — CL4) + 2]{34E
=T(-1+1,-1,a3+2+1)+ (2ks — )E

=T7(0,—1,a4+3)+ (2ks — 1)E.

Letting ay = ag we conclude that [(Sg, Ty)] = [(Se, Ts)]- Thus (S;, T;) belong to the same

class for ¢ = 3,...,6. Note that

[(54, T4)] = [T(—l, -2 — a4) + 2]€4E, T(O, 2+ a4, a4) + (2(4 + 1)E)]
= [(T(O, a,—1,—-2— a4) + 2k4F, T(O, 2+ ay, a4) + (2[4 + 1)E]

= [(SaaTa)]a

that is, the class of the first family in Figure 11. Now, applying a flype move to an element
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of Sy we obtain

Sy =17(0,-3, —az) + (2k2 + 1)E
=T7(0,-3+1,-1,a2+ 1)+ (2k2 +2)F

=T7(0,-2,—1,a2+ 1)+ 2(ka + 1)E,

which is checked to belong to family S; by taking a; = —as — 1 and k; = ko + 1.
Substituting the corresponding value as = —a; — 1 in the expression for 75, and applying

further flype moves we get:

To=7(0,a1 +1,-3,—1,a1 + 1)+ (2o + 1)E
—T(0,a1 +1-1,1,3—1,1,—a;1 — 1) + 26,E
=7(0,a1,1,2,1,—a; — 1) + 205F
= T(0,a1,1,2+ 1, —1, 1+ Lay + 1) + (265 + 1)E
= T(0,a1,1,3,~1,0,a1 + 1) + (262 + 1)E

= T(O, ai, 1,3, al) + (2[2 + 1)E,

clearly an element of T7. Thus [(S1,T1)] = [(S2,T2)]. Since the first box in the diagram

of Sy equals 0, we get

[(S2,T)] = (7 (—a2) + (2k2 + 1) E, T3)]
=[(7(0,a,b)+ (2ka + 1)E,T(0,b,—3,—1,b) + (2¢5 + 1) E)]

= (S5, T5)],

that is, the second family in Figure 11.
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To prove that the two families are different, consider (7 (b)+ E,7(0,b,—3,—1,b)+ E),

arepresentative of [(Sg, T3)]. In particular, for b = 0 we get (7(0)+E,7(0,0,—-3,—1,0)+
E)=(E,T(-3,-1)+ E) € [(S3,T3)]. We shall show that, for every b and ks in Z, one
has T (—3, 1)+ E # B(b, ky) 1= T(0,0+2,b)+ (2ka+1)E so that [(E, T (=3, —1)+E)] #
[(Sa,Tw)]- To this aim, note that 7(—3, —1) + E is in standard form, and so is B(b, ko) if
b < —2 or b > 0; differing in their standard diagrams, these braids are therefore unequal.

Now, if b= —1,

B(=1,ky) =T(0,1,-1) + (2ky + )E
=T(0,1-1,1,1—1) + 2koE

=T(1) + 2k,

which is in standard form. Thus 7(—3,—1) + E # B(—1,k2). Analogously, if b = —2,
then B(—2,ks) = T(—2) + (2k2 + 1)E and hence T(—3,—1) + E # B(—2,k2). This

finishes the proof.

5-1. Gin acting on substrates with directly repeated sites

It was shown in [11] that, under certain conditions, the Gin enzyme also acts in
substrates with directly repeated sites, a case which was analysed in [17] under the as-
sumption that the tangles involved were 2-string tangles. In order to apply our algorithm
based on 3-braids, and in view of the experimental data, the equations to be considered

in this case are

AS+T)=b(3,1), A(S+2T)=5b(7,3) and A(S+3T)=0b(11,9).  (53)
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Applying the methodology described above, one finds that the families of solutions are

S1=T7(0,-2,-1,—a1) +2ksE Ty =7(0,a1,1,1,1,2,a1) + (26 + 1)E

So=7(0,-3,—a2) + (ke + )E T =7(0,—az,—2,—1,-1,—1,—as) + (2l + 1)E

S3 =T (-1,-1+a3) + 2k E T3 =T7(0,1—a3,—1,-1,—a3) + (23 + 1)E

Sy =T(~1,-2— a4) + 2k4E Ty =T(0,1+as,1,1,a4) + (204 + 1)E

Ss=T(2—as)+ (2ks + 1)E Ts =T(0,1—as,—1,-1,—as) + (205 + 1)E

Se =T(B+as)+ (2k¢ + 1)E T =T7(0,1+ag,1,1,a6) + (26 +1)E

S; =T(0,—1,-1,—a7) + 2k;E  Tr =T(0,a7,1,1,1,2,a7) + (26 + 1)E

Ss=7(0,-2,—ag)+ (2ks + )E T5=7(0,—as,—2,—1,—1,—1,—ag) + (2ls + 1)E,

(5-4)

with a; > 0 and k;,¢; € Z for i = 1,...,8. An argument analogous to the one in the
proof of Theorem 5 shows that, modulo the relation ~ from Definition 5-2, these families
fall into the two classes (S, 2T,) and (Ss,213) depicted in Figure 12, where Sy, Sg, Ta

and T correspond to the solutions found in the previous case.

:Ei\m mE | :EI_TJ@:M_(%QH)E

Tl

S, o7,
(2k:3 +1)Ef Tror C\—J@(m +1)EE
S/j 2Tﬁ

Fig. 12. The two different families of solutions to equations (5-3)

6. Algorithm

The following is an algorithm to solve tangle equations using the results described
above. Specific implementations (in a variety of computer languages) may easily be ob-
tained from the listed pseudo-code, which adheres to the conventions set forth in [5].
As an additional convention, if A is an array, A[j..k] denotes the (finite) sequence
Alj], Alj +1],..., Alk]. Due to space limitations, the procedures do not include any data
validation or exception handling. Here is a brief description of the procedures involved:

e ApPPEND(A,x) Appends the element = at the end of array A.
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o CONCATENATE(A, B) Concatenates arrays A and B, in that order.

e GET-CF-EXPANSION(n, long-format) Gets the continued fraction expansion of a
rational n. The argument long-format indicates whether the long or short format
is required.

e SOLVE-2BK-CONGRUENCES(av, ) Returns an array of couples of integers [a, D]
that solve the two-bridge knot congruences: ¢ = « and (b = 8 mod a or
b =1 mod a).

e GET-SOLUTION-EXPANSION(«v, 3, X ) Returns an array of braids. Each braid B in
standard form and satisfies (F(B))1 > 1. These braids represent the totality of
solutions to equation A(B) = b(a, —f).

o ApPpPLY-LAGRANGE-AT(F, k, plus-to-minus) Applies Lagrange’s rule to the contin-
ued fraction F, represented as an array of integers, at position k € {1, ..., length[F]}.
If plus-to-minus = TRUE, the rule a+ _lb = a—1+—L1— is applied, so that if F =

[f1s s fom1,a, =b, frgo, ..., ful,itreturns [f1, ..., fie1,a—1,1,0=1, — fry2, ..., — ful.

If plus-to-minus = FALSE, the rule —a + % =—a+1+ ﬁ is applied, so that
b+l

it F=1(f1, .., fe—1,—a,b, fut2,..., fn], it returns [f1,..., fek—1,—a+1,—1,—b+

1= farore-or— )

e STRIP-ZEROES(F') Returns an array that differs from the array of integers F' in
that it contains no zero entry.

¢ REMOVE-ZEROES(F') Takes a continued fraction F', represented as an array, then
removes zeros and simplifies according to the rules of continued fractions.

e DETECT-SIGN(P, X) Takes a degree-one multinomial P = ag + a1 X[1] + --- +
Qength[x]X [length[X]] in the indeterminates X [i] and returns a structure indicat-
ing whether P is sign-definite and, in such case, sign(P). Sign-definiteness is tested
under the assumption that the indeterminates take strictly positive values.

e DETECT-SIGN-CHANGE(A, I, X') Takes an array A of multinomials in the inde-
terminates X and, starting from the Ith position, determines whether there is a
sign change. In such case, the position p at which it occurred, and the sign of A[p]
are also returned. Sign-detection is based on the rules applied by DETECT-SIGN.

e GET-STANDARD-FORM(B, X) Takes a braid B, given by T (fraction|B])+indez[B]E
and puts it in the standard form AD+kE. fraction[B] is an array on multinomials
in the indeterminates X.

o CONCATENATE-BRAIDS(A, B, X)) Takes braids A and B (cf. GET-STANDARD-FORM
(B, X) for the description of braids) and concatenates (i.e., adds) them, expressing
the result in standard form.

e INVERT-BRAID(A) Inverts braid A (cf. GET-STANDARD-FORM(B, X) for the de-
scription of braids) under the concatenation operation in the braid group.

e GET-P-AND-Q(A, B) Given two 2-bridge knots b(A[1], A[2]) and b(B[1], B[2]),
returns braid families P and @ such that A(P+Q) = b(A[1], A[2]) and A(P+2Q) =
b(BI[1], B[2)).

APPEND(A, )

1 return [A[l..length[A]], z]
CONCATENATE(A, B)

1 return [A[l..length[A]], B[1..length[B]]]



Braid solutions to the action of the Gin enzyme

GET-CF-EXPANSION(n, long-format)

1
2
3
4
5

R « sign(n) GETCONTINUEDFRACTION(|n|)
if long-format
then R[length[R]] — R[length[R]] — sign(n):
R — APPEND(R,sign(n))

return R

SoLvE-2BK-CONGRUENCES(«, 3)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

T — {5}
if o+ 0] <a
then 7 — TU{a + 5}
if | —a+f<a
then 7 — TU{—a+ 3}
for ¢ — —|f]| to |3
do b %4 + %
if b€ Z and b < |of
then 7 «— TU{b}
create array R of size [1..length[T]]
for i — 1 to length[R]
do a[R[i]] — «
b[R[i] < TJi]

return R

GET-SOLUTION-EXPANSION(q, 3, x)

1
2
3

14

C «— SowveE-2BK-CONGRUENCES(a, (3)

R[]
for i — 1 to length[C]
do
a[C[i
F — ot
for j «— 1 to 2
do
ifj=1
then fraction[S] < GET-CF-EXPANSION(F, FALSE)
else fraction[S] «— GET-CF-EXPANSION(F, TRUE)
fraction[S] < APPEND(fraction[S], sign(F')z)
index[S] = length[fraction[S]] mod 2
R — AppPEND(R, S)
return R

APPLY-LAGRANGE-AT(F, k, plus-to-minus)

1
2
3
4
5
6

n « length[F)

ifn<2ork¢g{l,...,n—1}
then return F

if plus-to-minus
then return [F[1..k—1),F[k]-1, 1,—-F[k+1]—1,—F[k+2..n]|
else return [F[1..k—1],F[k]+1,-1,—F[k+1]+1,—F[k+2..n]]

STRIP-ZEROES(F')

1
2
3
4
5

R[]
for i — 1 to length[F]
do if Fli] £ 0
then R — APPEND(R, F'[i])

return R

33
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REMOVE-ZEROES(F)
R—F
last-zero «— 3
while length[R] > 1 and any entry of R[last-zero ..length[R] — 1] equals 0
do n « length|R)]
for ¢ < last-zero —1 ton — 1
doif R[i] =0
then R — [R[1..¢—2],R[i — 1] + R[i + 1], R[i + 2..n]]

last-zero «— max{i, 3}

break > Breaks the for loop and jumps to 3
10 if length[R] > 1 and R[length[R]] =0
11 then R «— [R[1.. length[R] — 1]]
12 return R
DETECT-SIGN(P, X)

> P is assumed to be given by P = ao + a1 X[1] + - - - + aiengenx) X [length [ X]]
> It is assumed that sign(n) = 0 if and only if n =0

© 00O UL W -

1 s= [Sign(a0)7 B Sign(alength[X])

2 s < STRIP-ZEROES(S)

3 if lengthls] =0

4 then is-definite[R] < TRUE

5 sign|R] < 0

6 else

7 m «— min{s[1..length[s]]}

8 M «— max{s[l..length[s]]}

9 ifm=M
10 then is-definite[R] < TRUE
11 sign|R] «— m
12 else is-definite[R] < FALSE
13 sign|R] < 0
14 return R

DETECT-SIGN-CHANGE(A, I, X)
1 sign-changed[R] < FALSE

2 position|R] < 0

3 plus-to-minus[R] < FALSE

4 if length[A] <1

5 then return R

6 create array s of size [1..length[A] — I + 1]

7 for i « I to length[A]

8 do s[i — I + 1] — DeTECT-SIGN(AJi], X)
9 for i — 2 to length[s]

10 do if is-definite[s[i]]

11 then

12 > Detect first A[j] to the left of Afi] with definite sign and compare
13 for j < i —1 downto 1

14 do if is-definite[s[j]] and sign[s[j]] # O

15 then

16 if sign[s[j]] # sign[s[i]]

17 then sign-changed[R] < TRUE

18 position[R] «— i+ 1 —1

19 if sign[s[j]] > sign[s[i]]

20 then plus-to-minus[R] < TRUE
21 return R

22 return R
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GET-STANDARD-FORM(B, X)
n « length|fraction|B]]
F «— REMOVE-ZEROES(fraction|B])
a0
{—4
¢ «— DETECT-SIGN-CHANGE(F, ¢ — 3, X)
while sign-changed|c]
do F — REMOVE-ZEROES(APPLY-LAGRANGE-AT(F, position[c] — 1, plus-to-minus[c]))
if plus-to-minus|c|
9 then a — a -+ (_1)position[c]

RO O W -

10 else a«—a— (_1)vaition[c]
11 £ «— max{position[c], 4}
12 ¢ «— DETECT-SIGN-CHANGE(F, { — 3, X)

13 fraction[R] «— F
14  indez|R] < index|B] + a
15 return R
CONCATENATE-BRAIDS(A, B, X)
1 fa < fraction[A]; fo < fraction[B]; ne < length[fa]; no < length[fy)]
2 indez|R] < index[A] 4+ indez[B|
3 if indez[A] € 2Z
then if n, € 27
then fraction|[R] < CONCATENATE( fa, f3)
else fraction[R] < [fa[l..na — 1], fa[na] + fo[1], fo[2. . 1]
else if n, € 27
then fraction[R] « [fa[l..na — 1], fa[na] — fo[1], —fb[2 . - 1]
else fraction[R] < CONCATENATE( fa, — f3)
10 return GET-STANDARD-FORM(R)

© 00~ O Ut~

INVERT-BRAID(A)

1 n « length|fraction[A]]
2 k<« index[A]
3 F—]]
4 if ke2Z
5 then if n € 2Z
6 then F' — [0]
7 F «— APPEND(F, [— fraction[A][n . .1]])
8 else if ne2Z+1
9 then F' — [0]
10 F — APPEND(F, [fraction[A][n .. 1]])
11  fraction|R] < REMOVE-ZEROES(F)
12 index[R] — —k
13 return R
GET-P-AND-Q(A4, B)
1 Xs <« GET-SoLUTION-EXPANSION(A[1], A[2], a)
2 Ys «— GET-SoLUTION-EXPANSION(B([1], B[2], b)
3 create array R of size [1..length[Xs],1..length[Ys]]
4 for i < 1 to length[Xs]
5 do for j < 1 to length[Ys]
6 do Q — CONCATENATE-BRAIDS(INVERT-BRAID(Xs[i]), Ys[j], [a, b])
7 P «— CONCATENATE-BRAIDS(Xs[i], INVERT-BRAID(Q), [a, b])
8 X[R[i,§]] — Xs[i
9 YI[Rfi, ] — Ys[j]
10 P[R[i,j]] — P
11 QIR[i,j]] < @
12

return R
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