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Robust Stability of Integral Delay Systems with
Exponential Kernels

D. Melchor-Aguilar and A. Morales-Sánchez

Abstract In this chapter the stability analysis via Lyapunov-Krasovskii method is
extended to perturbed integral delay systems with exponential kernels. Several suf-
ficient robust stability conditions given in the form of linear matrix inequalities are
derived.

1 Introduction

There are several stability problems in differential delay systems which involve the
stability of a special class of dynamic systems which are described by integral de-
lay equations. Problems such as the stability of additional dynamics introduced by
some system transformations [2], [5–7] and the stability of some difference opera-
tors in neutral functional differential equations [3] are examples where the stability
of integral delay equations play an essential role.

Another source of problems where integral delay equations can be found is in
the design of feedback schemes involving delay compensation as the finite spectrum
assignment [9], stabilization problems [10], [20], and optimal control [19], [14], [12]
of differential delay systems.

In these feedback schemes the compensators necessarily include an infinite-
dimensional dynamic governed by an integral delay equation and it has been shown
that the practical implementation of the compensators demand their internal stabil-
ity, i.e., the stability of the corresponding integral delay equation, see [1, 8, 15] for
details.

Recently in [11], Lyapunov-Krasovskii theorems for the exponential stability of
integral delay systems have been introduced. It has been shown there that a new
type of Lyapunov functionals is required in order to properly address the dynamics
of such class of systems. A constructive converse Lyapunov theorem was also pre-

Division of Applied Mathematics, IPICYT, 78216, San Luis Potosı́, SLP, México e-mail:
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sented and general expressions of quadratic functionals with a given time derivative
were provided. The proposed functionals were used for calculations of robustness
bounds and exponential estimates for the solutions of exponentially stable integral
delay systems.

However, there are still some technical problems associated with the positivity
check of such functionals limiting their practical application to the stability analysis
of integral delay system. Motivated from these limitations some reduced type func-
tionals were constructed in [13] to obtain stability conditions formulated directly in
terms of the coefficients of integral delay systems. Following these works the recent
paper [16] applies the Lyapunov-Krasovskii functional approach to some classes
of integral delay systems with analytic kernels and delay-dependent conditions for
unperturbed systems were provided.

In this chapter, we continue in the direction of [13], [16] and extend to perturbed
integral delay systems with exponential kernels the Lyapunov-Krasovskii method-
ology. Some preliminary results in this direction has been reported in [17].

The chapter is organized as follows: Section 2 presents the problem formulation.
Some preliminaries are introduced in section 3. The main results are given in section
4. Illustrative examples are given in section 5, and some concluding remarks end the
contribution.

Notation: Throughout this chapter, the Euclidean norm for vectors and the in-
duced matrix norm for matrices are used, both denoted by ‖·‖ .We denote byAT the
transpose of A, Ip stands for the p× p identity matrix, while λmin(A) and λmax(A)
denote the smallest and largest eigenvalues of a symmetric matrix A, respectively.
For a real symmetric matrix Q, the standard notation Q > 0 (respectively, Q < 0)
is used to denote that Q is positive (respectively negative) definite.

2 Problem Formulation

We consider the following class of integral delay systems:

x(t) =

∫ 0

−h
CeAθBx(t+ θ)dθ, ∀t ≥ 0, (1)

where C ∈ Rm×n, A ∈ Rn×n, B ∈ Rn×m and h > 0.
As it is mentioned in the introduction section, integral delay systems with expo-

nential kernels of the form in (1) play a fundamental role in the internal stability
problem of feedback schemes involving delay compensation.

One of such problems that has received a sustained attention during the last years,
see for instance [1,8,15], and that was proposed as an interesting open problem in the
survey paper [18], is the internal stability problem of the finite spectrum assignment
scheme for input delay systems.

This problem concerns with input delay systems of the form
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ẋ (t) = Ax (t) +Bu (t− h) , (2)

where x (t) ∈ Rn is the state and u(t) ∈ Rm represents the control input. The
control law

u (t) = C

(
eAhx (t) +

∫ 0

−h
e−AθBu (t+ θ) dθ

)
(3)

assigns a finite spectrum to the delay free closed-loop system (2)-(3) which, under
the absence of perturbations, coincides with the spectrum of the matrixA+BC [9].

It was demonstrated in [1] that if the integral is approximated by a finite sum
(by using any type of integration rule) then the closed-loop system may become
unstable if the ideal controller is not internally stable.

Indeed, it results that the stability of the integral delay system (1) and that of
the ideal closed-loop system, i.e., A + BC is a Hurwitz matrix, is a necessary and
sufficient condition for a numerically safe implementation of the controller [8].

In this context, if one aims at applying the control law (3) to real systems of the
form (2) then one needs to assure the robust stability of the internal dynamics of the
controller (3). In other words, in practical applications, we affront the exponential
stability problem of integral delay systems of the form

y(t) =

∫ 0

−h
(C +∆C) e(A+∆A)θ (B +∆B) y(t+ θ)dθ, (4)

where ∆A, ∆B and ∆C are unknown constant matrices satisfying

‖∆A‖ ≤ ρA, ‖∆B‖ ≤ ρB and ‖∆C‖ ≤ ρC . (5)

To consider uncertainties on the matrices A and B obey to the fact that these matri-
ces come from the input delay system (2) and they depend on physical parameters
which may be subject to uncertainties and perturbations.

On the other hand, the motivation of considering uncertainties on the matrix C
is due to the fact that, in practice, it could be necessary to adjust the nominal de-
signed feedback gain in order to achieve a desired closed-loop performance and also
consider possible round errors and finite length word implementation on a digital
computer of the controller. This issue of sensitivity on the gain matrix C is referred
to as fragility analysis in the control literature, see for instance [4].

Our goal is to derive conditions guaranteeing the exponential stability of (4)
for all perturbations ∆A, ∆B and ∆C satisfying (5) by means of the Lyapunov-
Krasovskii functional methodology.

3 Preliminaries

In order to define a particular solution of (1) an initial vector function ϕ (θ) , θ ∈
[−h, 0) should be given. We assume thatϕ ∈ PC ([−h, 0) ,Rm) , the space of piece-
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wise continuous bounded functions mapping the interval [−h, 0) to Rm, equipped
with the norm of uniform convergence ‖ϕ‖h = supθ∈[−h,0) ‖ϕ(θ)‖ .

Given any initial function ϕ ∈ PC ([−h, 0) ,Rm) , there exists a unique solution
x(t, ϕ) of (1) which is defined for all t ∈ [−h,∞) . This solution is continuous for
all t > 0 and at t = 0 presents a jump discontinuity given by

∆x(0, ϕ) , x(0, ϕ)− x(−0, ϕ) =
∫ 0

−h
CeAθBϕ(θ)dθ − ϕ(−0).

Definition 1. [3] System (1) is said to be exponentially stable if there exist α > 0
and µ > 0 such that every solution of (1) satisfies the inequality

‖x(t, ϕ)‖ ≤ µe−αt ‖ϕ‖h , ∀t ≥ 0.

In order to present the Lyapunov-Krasovskii conditions for the exponential sta-
bility of (1) given in [11] we need to introduce a little of terminology.

As usual, we define the natural state of (1) by

xt(θ, ϕ) , x(t+ θ, ϕ), θ ∈ [−h, 0) .

Due to the jump discontinuity of the solutions at t = 0, it follows that xt (θ, ϕ) ∈
PC ([−h, 0) ,Rm) for t ∈ [0, h) , while xt (θ, ϕ) ∈ C ([−h, 0) ,Rm) for t ≥ h. As
a consequence, in a Lyapunov-Krasovskii setting, the functionals should be defined
on the infinite-dimensional space PC ([−h, 0) ,Rm) .

For simplicity of the notation, one writes xt(ϕ) instead of xt(θ, ϕ), θ ∈ [−h, 0) .
Also when the initial function is irrelevant from the context, we simply write x(t)
and xt instead of x(t, ϕ) and xt(ϕ).

Theorem 1. [11] System (1) is exponentially stable if there exists a continuous
functional v : PC ([−h, 0) ,Rm)→ R such that t→ v(xt(ϕ)) is differentiable and
the following conditions hold:

1. α1

∫ 0

−h ‖ϕ(θ)‖
2
dθ ≤ v(ϕ) ≤ α2

∫ 0

−h ‖ϕ(θ)‖
2
dθ, for some constants 0 < α1 ≤

α2,

2. d
dtv(xt(ϕ)) ≤ −β

∫ 0

−h ‖x(t+ θ, ϕ)‖2 dθ, for a constant β > 0.

4 Main Results

Constructing Lyapunov functionals for the perturbed system (4) is rather difficult
due to the multiplicative way that the perturbations are involved in the exponential
kernel. Therefore, we will consider an alternative perturbed system which is equiv-
alent to (4) from the stability point of view and it has a more suitable form for the
analysis by means of Lyapunov functionals.

Given matrices A,B and C, let us consider the integral delay system
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z(t) =

∫ 0

−h
BCeAθz(t+ θ)dθ, (6)

Lemma 1. The spectrums of (1) and (6) are equal.

Proof. The characteristic function associated to (1) is

f(s) = det (Im − CM(s)B) ,

where M(s) =
∫ 0

−h e
(sI+A)θdθ. By the properties of the determinant we have that

det (Im − CM(s)B) = det (In −BCM(s)) = g(s)

Since g(s) is the characteristic function associated to (6) it then follows that the
spectrums of (1) and (6) are equal. ut

The above Lemma implies that in despite of the fact that the systems (1) and
(6) evolve in different functional spaces, xt(ϕ) ∈ PC ([−h, 0) ,Rm) while zt(ϕ̃) ∈
PC ([−h, 0) ,Rn) , they are equivalent from the stability point of view.

Thus, based on these observations, instead of considering the perturbed system
(4) we consider the following one:

z(t) =

∫ 0

−h
(B +∆B) (C +∆C) e(A+∆A)θz(t+ θ)dθ, (7)

where ∆A,∆B and ∆C are unknown constant matrices satisfying (5).

Proposition 1. The perturbed system described by (7) and (5) is exponentially sta-
ble if there exist positive definite matrices P,Q,X, Y, and positive scalars γ1, γ2, γ3
such that

Nn1(P,Q,X, Y )− γ1Np1 (ρA)− γ2Np2 (ρB , ρC)− γ3Np3 (ρB) > 0, (8)
Nn2(P,Q,X, Y )− γ1Np1 (ρA)− γ2Np2 (ρB , ρC)− γ3Np3 (ρB) > 0, (9)(

X M
M γ2In −M

)
> 0, (10)(

Y M+X
M+X γ3In −M−X

)
> 0, (11)

γ1In −M > 0, (12)

whereM = P + hQ and
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Nn1
(P,Q,X, Y ) = Q+ATM+MA− hCTBT [M+X + Y ]BC, (13)

Nn2(P,Q,X, Y ) = Q+ATP + PA− hCTBT [M+X + Y ]BC, (14)
Np1 (ρA) = 2ρAIn, (15)

Np2 (ρB , ρC) = hρ2C

(
‖B‖2 + 2ρB ‖B‖+ ρ2B

)
In, (16)

Np3 (ρB) = hρ2B ‖C‖
2
In. (17)

Proof. For any arbitrary ϕ ∈ PC ([−h, 0) ,Rn) , let us consider the following func-
tional:

v(ϕ) =

∫ 0

−h
ϕT (θ)

(
e(A+∆A)θ

)T
[P + (θ + h)Q] e(A+∆A)θϕ(θ)dθ, (18)

where P and Q are n× n positive definite matrices. From (18) it follows that

v(ϕ) ≤ λmax (P + hQ)

∫ 0

−h
λmax

((
e(A+∆A)θ

)T
e(A+∆A)θ

)
‖ϕ(θ)‖2 dθ,

and

v(ϕ) ≥ λmin (P )

∫ 0

−h
λmin

((
e(A+∆A)θ

)T
e(A+∆A)θ

)
‖ϕ(θ)‖2 dθ.

Since e(A+∆A)θ is nonsingular for all θ ∈ [−h, 0] and any matrices A and ∆A, we
have

λmax

((
e(A+∆A)θ

)T
e(A+∆A)θ

)
≥ λmin

((
e(A+∆A)θ

)T
e(A+∆A)θ

)
> 0

and, therefore, the functional (18) satisfies the inequalities

α1

∫ 0

−h
‖ϕ(θ)‖2 dθ ≤ v(ϕ) ≤ α2

∫ 0

−h
‖ϕ(θ)‖2 dθ,

with 0 < α1 ≤ α2 given by

α1 = λmin (P ) min
θ∈[−h,0]

{
λmin

((
e(A+∆A)θ

)T
e(A+∆A)θ

)}
,

α2 = λmax (P + hQ) max
θ∈[−h,0]

{
λmax

((
e(A+∆A)θ

)T
e(A+∆A)θ

)}
.

The time derivative of the functional (18) along the solutions of (7) is
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dv(zt)

dt
= −

∫ 0

−h
ξT (θ)

{
Q+ATM(θ) +M(θ)A

}
ξ(θ)dθ

+

(∫ 0

−h
(B +∆B) (C +∆C) ξ(θ)dθ

)T
M(0)×

×
(∫ 0

−h
(B +∆B) (C +∆C) ξ(θ)dθ

)
−zT (t− h)

(
e−(A+∆A)h

)T
P
(
e−(A+∆A)h

)
z(t− h)

−
∫ 0

−h
ξT (θ)

{
(∆A)

TM(θ) +M(θ) (∆A)
}
ξ(θ)dθ.

whereM(θ) = P +(θ + h)Q, θ ∈ [−h, 0] . Here, in order to simplify the notation,
we have defined

ξ(θ) , e(A+∆A)θz(t+ θ), θ ∈ [−h, 0] .

Now we will derive an upper estimation of the terms involving perturbations in the
derivative of the functional. Let us start with the perturbed integral term

IP1 , −
∫ 0

−h
ξT (θ)

{
(∆A)

TM(θ) +M(θ) (∆A)
}
ξ(θ)dθ.

We have

−ξT (θ)
{
(∆A)

TM(θ) +M(θ) (∆A)
}
ξ(θ) ≤ 2 ‖(∆A) ξ(θ)‖ ‖M(θ)ξ(θ)‖ .

(19)
Let γ1 > 0 such that

M(θ) < γ1In,∀θ ∈ [−h, 0] . (20)

Then the following inequality holds:

‖M(θ)ξ(θ)‖ ≤ γ1 ‖ξ(θ)‖ .

Using the above inequality and the upper bound for the matrix ∆A in (19) we get
the following estimation:

IP1 ≤ 2ρAγ1

∫ 0

−h
‖ξ(θ)‖2 dθ. (21)

We now consider the perturbed integral term

IP2 ,

(∫ 0

−h
(B +∆B) (C +∆C) ξ(θ)dθ

)T
M(0)×

×
(∫ 0

−h
(B +∆B) (C +∆C) ξ(θ)dθ

)
.
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By using the Jensen integral inequality, the inequality

IP2 ≤ h
∫ 0

−h
ξT (θ) (C +∆C)

T
(B +∆B)

TM(0) (B +∆B) (C +∆C) ξ(θ)dθ

holds. Let

χ(θ) , ξT (θ) (C +∆C)
T
(B +∆B)

TM(0) (B +∆B) (C +∆C) ξ(θ).

We have

χ(θ) = ξT (θ)CT (B +∆B)
TM(0) (B +∆B)Cξ(θ)

+2ξT (θ)CT (B +∆B)
TM(0) (B +∆B) (∆C) ξ(θ)

+ξT (θ) (∆C)
T
(B +∆B)

TM(0) (B +∆B) (∆C) ξ(θ).

Observing that for any positive definite matrix X the inequality

2ξT (θ)CT (B +∆B)
TM(0) (B +∆B) (∆C) ξ(θ)

≤ ξT (θ)CT (B +∆B)
T
X (B +∆B)Cξ(θ)

+ ξT (θ) (∆C)
T
(B +∆B)

TM(0)X−1M(0) (B +∆B) (∆C) ξ(θ)

holds, we have

χ(θ) ≤ ξT (θ)CTBT [M(0) +X]BCξ(θ)

+ 2ξT (θ)CTBT [M(0) +X] (∆B)Cξ(θ)

+ ξT (θ) (∆C)
T
(B +∆B)

T [M(0) +M(0)X−1M(0)
]
(B +∆B) (∆C) ξ(θ)

+ ξT (θ)CT (∆B)
T
[M(0) +X] (∆B)Cξ(θ). (22)

Using the inequality

2ξT (θ)CTBT [M(0) +X] (∆B)Cξ(θ) ≤ ξT (θ)CTBTY BCξ(θ)
+ξT (θ)CT (∆B)

T
(M(0) +X)Y −1 (M(0) +X) (∆B)Cξ(θ),

where Y is any positive definite matrix, in (22) we get the following estimation for
χ(θ):

χ(θ) ≤ ξT (θ)CTBT [M(0) +X + Y ]BCξ(θ)

+ ξT (θ)CT (∆B)
T [M(0) +X + (M(0) +X)Y −1 (M(0) +X)

]
(∆B)Cξ(θ)

+ ξT (θ) (∆C)
T
(B +∆B)

T [M(0) +M(0)X−1M(0)
]
(B +∆B) (∆C) ξ(θ).

(23)

Let γ2 > 0 and γ3 > 0 such that
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M(0) +M(0)X−1M(0) < γ2In, (24)

M(0) +X + (M(0) +X)Y −1 (M(0) +X) < γ3In. (25)

Then, the inequalities

ξT (θ)CT (∆B)
T [M(0) +X + (M(0) +X)Y −1 (M(0) +X)

]
(∆B)Cξ(θ)

≤ γ3 ‖(∆B)Cξ‖2 ≤ γ3ρ2B ‖C‖
2 ‖ξ‖2 (26)

and

ξT (θ) (∆C)
T
(B +∆B)

T [M(0) +M(0)X−1M(0)
]
(B +∆B) (∆C) ξ(θ)

≤ γ2ξT (θ) (∆C)T (B +∆B)
T
(B +∆B) (∆C) ξ(θ)

≤ γ2 ‖B (∆C) ξ(θ)‖2 + 2γ2 ‖B (∆C) ξ(θ)‖ ‖(∆B) (∆C) ξ(θ)‖

+ γ2 ‖(∆B) (∆C) ξ(θ)‖2

≤ γ2ρ2C ‖B‖
2 ‖ξ(θ)‖2 + 2γ2ρ

2
CρB ‖B‖ ‖ξ(θ)‖

2
+ γ2ρ

2
Bρ

2
C ‖ξ(θ)‖

2 (27)

hold. Taking into account the inequalities (26) and (27) into (23) we obtain the
following estimation for χ(θ):

χ(θ) ≤ ξT (θ)CTBT [M(0) +X + Y ]BCξ(θ)

+ γ2ρ
2
C

(
‖B‖2 + 2ρB ‖B‖+ ρ2B

)
‖ξ(θ)‖2 + γ3ρ

2
B ‖C‖

2 ‖ξ(θ)‖2 ,

which implies that

IP2 ≤ h
∫ 0

−h
ξT (θ)

{
CTBT [M(0) +X + Y ]BC

+γ3ρ
2
B ‖C‖

2
In + γ2ρ

2
C

(
‖B‖2 + 2ρB ‖B‖+ ρ2B

)}
ξ(θ)dθ.

From this inequality and (21) we arrive at the following upper bound for the deriva-
tive of the functional:

dv(zt)

dt
≤ −

∫ 0

−h
ξT (θ)

{
Q+ATM(θ) +M(θ)A

}
ξ(θ)dθ

+h

0∫
−h

ξT (θ)
{
CTBT [M(0) +X + Y ]BC + γ3ρ

2
B ‖C‖

2
In

+γ2ρ
2
C

(
‖B‖2 + 2ρB ‖B‖+ ρ2B

)
In

}
ξ(θ)dθ + 2ρAγ1

∫ 0

−h
‖ξ(θ)‖2 dθ

that can be rewritten as
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dv(zt)

dt
≤ −

∫ 0

−h
ξT (θ)Γ (θ)ξ(θ)dθ,

where Γ (θ) ∈ Rn×n for θ ∈ [−h, 0] is given by

Γ (θ) = Q+ATM(θ) +M(θ)A− hCTBT [M +X + Y ]BC − γ1Np1 (ρA)
−γ2Np2 (ρB , ρC)− γ3Np2 (ρB) ,

with Np1 (ρA) ,Np2 (ρB , ρC) and Np2 (ρB) defined by (15), (16) and (17), respec-
tively.

Clearly, if Γ (θ) > 0,∀θ ∈ [−h, 0] , then there exists

β = min
θ∈[−h,0]

{
λmin

(
e(A+∆A)θ

)T
Γ (θ)e(A+∆A)θ

}
> 0

such that
dv(zt)

dt
< −β

∫ 0

−h
‖z(t+ θ)‖2 dθ,

and the exponential stability of the perturbed system is assured.
Now since(

θ + h

h

)
Γ (0) +

(
− θ
h

)
Γ (−h) = Γ (θ),∀θ ∈ [−h, 0] ,

it follows that Γ (θ) > 0,∀θ ∈ [−h, 0] , if, and only if, Γ (0) > 0 and Γ (−h) > 0.
By evaluating Γ (θ) for θ = 0 and θ = −h we have

Γ (0) = Nn1
(P,Q,X, Y )− γ1Np1 (ρA)− γ2Np1 (ρB , ρC)− γ3Np2 (ρB) ,

Γ (−h) = Nn2
(P,Q,X, Y )− γ1Np1 (ρA)− γ2Np1 (ρB , ρC)− γ3Np2 (ρB) ,

where Nn1(P,Q,X, Y ) and Nn2(P,Q,X, Y ) are defined by (13) and (14) respec-
tively.
Γ (0) > 0 and Γ (−h) > 0 lead to the inequalities (8) and (9).
Observing that, by Schur complement, the inequalities (24) and (25) are respec-

tively equivalent to (10) and (11), and that the inequality (12), i.e.,

M(0) =M = P + hQ < γ1In,

implies (20) the proof ends. ut

Remark 1. Note that the functional (18) involves an exponential matrix depending
not only on the nominal matrix A but also on the perturbation matrix ∆A. This
special characteristic of the functional allows us to derive robust stability conditions
for any arbitrary perturbation matrix∆Awith the only assumption of being bounded
in norm.
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4.1 Nominal Case

In the nominal case, when (7) does not have uncertainty

z(t) =

∫ 0

−h
BCeAθz(t+ θ)dθ, (28)

we have the following result:

Corollary 1. The integral delay system (28) is exponentially stable if there exist
positive definite matrices P and Q such that

Q+ATM+MA− hCTBTMBC > 0, (29)
Q+ATP + PA− hCTBTMBC > 0, (30)

whereM = P + hQ.

Proof. Since we have that ρA = ρB = ρC = 0 then it follows from (15), (16) and
(17) that the matrices Np1 (ρA) , Np2 (ρB , ρC) and Np3 (ρB) are equal to zero and,
therefore, the inequalities (8) and (9) hold for any arbitrary positive constants γ1, γ2
and γ3.

Selecting γ1 sufficiently large the restriction imposed on matrix M by the in-
equality (12), i.e.,

γ1In >M,

can be removed. Now, by Schur complement, the inequality (10) is equivalent to

γ2In >M+MX−1M.

Since γ2 can be arbitrarily chosen then the above inequality holds forX = ε1I with
ε1 > 0 sufficiently small and γ2 > 0 sufficiently large.

Similarly, the inequality (11) is equivalent to

γ3In > (M+X) + (M+X)Y −1 (M+X) .

Again, since γ3 can be arbitrarily chosen then the above inequality holds for Y =
ε2I with ε2 > 0 sufficiently small and γ3 > 0 sufficiently large.

By doing ε1 → +0 and ε2 → +0, the restrictions given by the inequalities (10)
and (11) can be removed while the matricesNn1

(P,Q,X, Y ) andNn2
(P,Q,X, Y )

respectively become (29) and (30). ut

The Proposition 1 provides robust stability conditions when there exist perturba-
tions on all system matrices while Corollary 1 does in the nominal case when there
are not perturbations on the system matrices. Of course, in certain applications, one
could have the situation when not all system matrices but only some of them are sub-
ject to perturbations and it is hence convenient to have the explicit robust stability
conditions for such cases.
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In the following we establish robust stability conditions for all possible combi-
nations of perturbations on system matrices. In all the cases the results are directly
derived from Theorem 1 and the proof of Corollary 1 by considering as zero the
corresponding combination of perturbations.

4.2 Case ρA = 0

Corollary 2. The perturbed system described by (7) and (5), where ρA = 0, is
exponentially stable if there exist positive definite matrices P,Q,X, Y and positive
constants γ1, γ2 such that

Nn1(P,Q,X, Y )− γ1Np2 (ρB , ρC)− γ2Np3 (ρB) > 0,

Nn2(P,Q,X, Y )− γ1Np2 (ρB , ρC)− γ2Np3 (ρB) > 0,(
X M
M γ1In −M

)
> 0,(

Y M+X
M+X γ2In −M−X

)
> 0,

where M = P + hQ and Nn1
(P,Q,X, Y ), Nn2

(P,Q,X, Y ), Np2 (ρB , ρC) ,
Np3 (ρB) are respectively given by (13), (14), (16) and (17).

4.3 Case ρA = ρB = 0

Corollary 3. The perturbed system described by (7) and (5), where ρA = ρB = 0,
is exponentially stable if there exist positive definite matrices P,Q,X and a positive
constant γ such that

Q+ATM+MA− hCTBT (M+X)BC − γhρ2C ‖B‖
2
In > 0,

Q+ATP + PA− hCTBT (M+X)BC − γhρ2C ‖B‖
2
In > 0,(

X M
M γIn −M

)
> 0.

4.4 Case ρA = ρC = 0

Corollary 4. The perturbed system described by (7) and (5), where ρA = ρC = 0,
is exponentially stable if there exist positive definite matrices P,Q, Y and a positive
constant γ such that
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Q+ATM+MA− hCTBT (M+ Y )BC − γhρ2B ‖C‖
2
In > 0,

Q+ATP + PA− hCTBT (M+ Y )BC − γhρ2B ‖C‖
2
In > 0,(

Y M
M γIn −M

)
> 0.

4.5 Case ρB = ρC = 0

Corollary 5. The perturbed system described by (7) and (5), where ρB = ρC = 0,
is exponentially stable if there exist positive definite matrices P,Q and a positive
constant γ such that

Q+ATM+MA− hCTBTMBC − 2γρAIn > 0,

Q+ATP + PA− hCTBTMBC − 2γρAIn > 0,

γIn −M > 0.

4.6 Case ρB = 0

Corollary 6. The perturbed system described by (7) and (5), where ρB = 0, is
exponentially stable if there exist positive definite matrices P,Q, Y and positive
constants γ1 and γ2 such that

Q+ATM+MA− hCTBT (M+X)BC − 2γ1ρAIn − γ2hρ2C ‖B‖
2
In > 0,

Q+ATP + PA− hCTBT (M+X)BC − 2γ1ρAIn − γ2hρ2C ‖B‖
2
In > 0,(

X M
M γ2In −M

)
> 0,

γ1In −M > 0.

4.7 Case ρC = 0

Corollary 7. The perturbed system described by (7) and (5), where ρC = 0, is
exponentially stable if there exist positive definite matrices P,Q, Y and positive
constants γ1 and γ2 such that
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Table 1 Maximum ρA for different delay values

h 0.2 0.5 1.1

ρA 2.325 0.704 0.104

Q+ATM+MA− hCTBT (M+ Y )BC − 2γ1ρAIn − hγ2ρ2B ‖C‖
2
In > 0,

Q+ATP + PA− hCTBT (M+ Y )BC − 2γ1ρAIn − hγ2ρ2B ‖C‖
2
In > 0,(

Y M
M γ2In −M

)
> 0,

γ1In −M > 0.

5 Examples

In this section, we will present two numerical examples illustrating the main results.
The first one is only for academic purposes while the second one comes from certain
mathematical models found in mechanical systems.

Example 1. Consider the following perturbed integral delay system:

z (t) =

∫ 0

−h
e(A+∆A)θz (t+ θ) dθ, (31)

where

A =

(
0 1
−2 3

)
and ∆A is an unknown matrix satisfying ‖∆A‖ ≤ ρA.

Clearly, system (31) is a particular case of the perturbed system (7) whenm = n,
B = C = In and ρB = ρC = 0. The corresponding nominal system has been
studied in [16].

By using Corollary 1 we found that the corresponding nominal system of (31)
is exponentially stable for all constant delay values 0 ≤ h ≤ 1.999, a result which
coincides with that reported in [16].

In Table 1 we present the maximum bound for ρA computed for different delay
values by means of Corollary 5. It can be seen that the maximum bound for ρA
decreases when the delay value increases.

Example 2. Let us consider the following nominal integral delay system:

z (t) =

∫ 0

−h
CeAθBz (t+ θ) dθ, (32)

where
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Table 2 Maximum ρC for different delay values

h 2 5 10

ρC 0.1439 0.0219 0.00441

A =

(
0 1
0 0

)
, B =

(
0
1

)
and C =

(
c1 c2

)
.

For these matrices A,B and C, the corresponding system (2) represents a double
integrator with a delay in the input which it is very commonly found in mechani-
cal systems. The integral delay system (32) describes the internal dynamics of the
controller (3).

Let c1 = −0.0005 and c2 = −0.0267 be the nominal gains. For this vector gain
the ideal controller (3) assigns the eigenvalues λ1,2 = −0.0134 ± 0.0179i to the
ideal closed-loop system.

By using Corollary 1 we found that the system (32) is exponentially stable for all
constant delay values 0 ≤ h ≤ 24.375.

Now let us consider the perturbed integral delay system

y (t) =

∫ 0

−h
(C +∆C) eAθBy (t+ θ) dθ, (33)

where ∆C is an unknown vector satisfying ‖∆C‖ ≤ ρC .
For the perturbed system (33), we compute the maximum bound ρC for different

delay values by using Corollary 3. The results are presented in Table 2.
For instance for h = 5, the above results imply that for any constant vector C =(
c1 c2

)
belonging to the ball with center at C =

(
−0.0005 −0.0267

)
and radius

ρC = 0.0219, the corresponding nominal integral delay system (32) is exponentially
stable.

Let us now to complicate the robust stability problem by considering perturba-
tions not only on the matrix C but also on the matrix B.

Namely, we consider the perturbed integral system

y (t) =

∫ 0

−h
(C +∆C) eAθ (B +∆B) y (t+ θ) dθ, (34)

where ∆C,∆B are unknown vectors satisfying ‖∆C‖ ≤ ρC and ‖∆B‖ ≤ ρB .
For the perturbed system (34) the Corollary 2 can be used. To solve this problem

we fix a delay h > 0 and an upper bound ρC > 0, for which we know from the
previous analysis that the perturbed system is stable when ρB = 0, and then search
for an upper bound ρB > 0 such that the inequalities in Corollary 2 are feasible.

For instance, for h = 5 and ρC = 0.002 we found that the exponential stability
of the perturbed system (34) is assured for ρB ≤ 0.5696.

Finally, let us consider the more complicated problem when we have perturba-
tions on all system matrices A,B and C that yields at the perturbed integral delay
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system

y (t) =

∫ 0

−h
(C +∆C) e(A+∆A)θ (B +∆B) y (t+ θ) dθ, (35)

where ∆C,∆B are unknown vector satisfying ‖∆C‖ ≤ ρC , ‖∆B‖ ≤ ρB and ∆A
is an unknown matrix satisfying ‖∆A‖ ≤ ρA.

We address the problem as above and fix a delay h > 0, upper bounds ρC , ρB >
0, for which we have stability of the perturbed system when ρA = 0, and then search
for an upper bound ρA > 0 such that the inequalities in Proposition 1 are feasible.

Thus, for h = 5, ρC = 0.002 and ρB = 0.05 we found that the perturbed system
(35) is exponentially stable for ρA ≤ 0.0015.

6 Conclusions

The robust exponential stability of integral delay systems with kernels of expo-
nential type subject to norm bounded uncertainties is investigated. New delay-
dependent robust stability conditions expressed in terms of linear matrix inequalities
are derived by using the Lyapunov-Krasovskii functional approach.

The robust stability results found important application in several stability prob-
lems of differential delay systems as well as in the internal stability of feedback
schemes involving delay compensation.
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