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Exponential stability of some linear continuous time
di¤erence systems
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Abstract

In this paper, we consider some classes of linear continuous time di¤erence
systems with discrete and distributed delays. For these in�nite-dimensional
systems, we derive new su¢ cient delay-dependent conditions for the exponen-
tial stability and exponential estimates for the solutions by using Lyapunov-
Krasovskii functionals.
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1. Introduction

Continuous time di¤erence systems play a fundamental role in investigat-
ing the stability properties of neutral type delay systems, whereas stability of
the di¤erence system is a necessary condition for stability of the correspond-
ing neutral delay system [2], [9]. There are also a number of applications such
as in economics, gas dynamics, lossless propagation, and models of heredity
where the stability of continuous time di¤erence systems is so important [13].
In this context, stability properties of linear continuous time di¤erence sys-
tems have been widely studied and several stability conditions based on the
spectral radius and norm of matrices have been reported [2], [9].
Lyapunov theorems for continuous time di¤erence systems with discrete

time delays have been introduced in [14], [15] and [16]. As such class of sys-
tems can be regarded like discrete time equations evolving on an appropriate
in�nite-dimensional space [2], the results in [14], [15], and [16] propose Lya-
punov functions satisfying along solutions a �rst di¤erence type condition.
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However, there are some di¢ culties in the application of these Lyapunov
approaches to more general continuous time di¤erence systems as, for in-
stance, those including both discrete and distributed delay terms. The main
reason of this is that the proposed functions are such that their �rst dif-
ference type condition, along solutions of such class of systems, include not
only discrete delay terms but also distributed delay terms whose negativity
cannot be directly assured.
In this paper, we propose a Lyapunov-Krasovskii approach for investigat-

ing the exponential stability of linear continuous time di¤erence systems with
discrete and distributed delay terms. We address this problem as a robust
stability one. More precisely, by assuming only the stability of the discrete
delay part of the system and interpreting the distributed delay term as a
perturbation, we present Lyapunov-Krasovskii functionals guaranteeing the
exponential stability of the whole system. Our contribution is based on the
recent papers [11] and [12], where we have introduced Lyapunov-Krasovskii
theorems for integral delay systems.
The paper is structured as follows: Section 2 presents the problem for-

mulation. Some preliminary results are provided in section 3. Basic facts
about solutions are given and Lyapunov-Krasovskii type stability conditions
are introduced. The main results are given in section 4. First, we consider
a general case for which a delay-dependent stability condition is derived.
Next, a particular case of continuous time di¤erence systems with constant
but uncertain system matrices is addressed. In this case, delay-dependent
conditions for the exponential stability and exponential estimates for the
solutions are expressed in terms of linear matrix inequalities. Examples il-
lustrating the results are provided in section 5. Concluding remarks end the
paper.
Notation: Throughout this paper, the Euclidean norm for vectors and the

induced matrix norm for matrices are used, both denoted by k�k :We denote
by AT the transpose of A; I stands for the identity matrix, while �min(A) and
�max(A) denote the smallest and largest eigenvalues of a symmetric matrix
A; respectively. For a real symmetric matrix Q; the standard notation Q >
0 (respectively, Q < 0) is used to denote that Q is positive (respectively
negative) de�nite.
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2. Problem Formulation

Consider the following continuous time di¤erence system:

x(t) = Ax(t� h) +

Z 0

�h
G(�)x(t+ �)d�; t � 0; (1)

where A 2 Rn�n and the matrix function G(�) has piecewise continuous
bounded elements de�ned for � 2 [�h; 0] :
Systems of the form of (1) can be found as delay approximations of the

partial di¤erential equations for describing the propagation phenomena in ex-
citable media [1], in the stability analysis of additional dynamics introduced
by some system transformations [6], in delay-dependent stability analysis of
neutral type systems [4], [10], as well as in the stability analysis of some
di¤erence operators in neutral type functional di¤erential equations [2], [9].
For the sake of simplicity of the problem formulation, let us consider that

the matrix function G(�) is a n � n constant matrix, i.e., G(�) � G; 8� 2
[�h; 0] : In this case, it is known that (1) is asymptotically stable if the
inequality

kAk+ h kGk < 1
holds, see for instance [9]. WhenG = 0; the above inequality leads to kAk < 1
which is evidently more restrictive than Schur stability of the matrix A (all
eigenvalues of the matrix lie in the open unit disc of the complex plane).
This naturally raises the following question: Is it not possible to obtain

less conservative conditions by assuming that matrix A is Schur stable and
considering the integral delay term as a perturbation?
Some di¢ culties occur if we address the problem from existing Lyapunov

results for di¤erence systems in continuous time. First we note that by the
change of time t0 = t� h; the corresponding system can be written as

x(t0 + h) = Ax(t0) +G

Z t0+h

t0
x(�)d�; t0 � h: (2)

Following [14], [15], and [16], when G = 0 and matrix A is Schur stable,
the function v(t0) = xT (t0)Px(t0); where P is the unique positive de�nite
solution of the Lyapunov matrix equation: ATPA � P = �Q; for a given
positive de�nite matrix Q; is a Lyapunov function for the corresponding
system. In particular, in this case, we have �v(t0) , v(t0 + h) � v(t0) =
xT (t0)

�
ATPA� P

�
x(t0) = �xT (t0)Qx(t0):
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It is clear that one cannot conclude directly the stability of (2) by using
the function v(t0) as a Lyapunov function candidate for the system since its
�rst di¤erence type condition along solutions of (2) includes products of x(t0)
and

R t0+h
t0 x(�)d� which can not be compensated for negativity of �v(t0):

We will introduce below a Lyapunov-Krasovskii approach that will give
a positive answer to the above question. The method consists in a combina-
tion of the Lyapunov-Krasovskii approach that we have recently developed
for integral delay systems and stability properties of linear continuous time
di¤erence systems with a discrete pure delay.

3. Preliminaries

3.1. Solutions and stability concept
In order to determine a particular solution of (1) an initial vector function

'(�); � 2 [�h; 0); should be given. We assume that ' belongs to the space
of continuous vector functions C ([�h; 0) ;Rn) ; equipped with the uniform
convergence norm k'kh = sup�2[�h;0) k'(�)k :
For a given initial function ' 2 C ([�h; 0) ;Rn) ; let x(t; '); t � 0; be the

unique solution of (1) satisfying x(t; ') = '(t); t 2 [�h; 0) : This solution has
a jump discontinuity at t = 0 given by

�x(0; ') = x(0; ')� x(�0; ') = A'(�h) +
Z 0

�h
G(�)'(�)d� � '(�0):

As a neutral delay system, this discontinuity is propagated along the solution
leading to jump discontinuities at time instants multiple of h: Except at
the time instants t = jh; j = 0; 1; 2; :::; the solution x(t; ') is a continuous
function of t. Clearly, if the condition

A'(�h) +
Z 0

�h
G(�)'(�)d� = '(�0)

holds, then the solution x(t; ') is continuous for all t � �h:
When matrix function G(�) is continuously di¤erentiable on the interval

[�h; 0], where a right-hand side continuous derivative at �h and a left-hand
side continuous derivative at 0 are assumed to exist, the solutions of (1) can
be related with particular solutions of some neutral functional di¤erential
equations and coupled systems described by retarded functional di¤erential
equations and functional di¤erence equations.
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More precisely, consider the neutral functional di¤erential equation

d

dt
[z(t)� Az(t� h)] = G(0)z(t)�G(�h)z(t�h)�

Z 0

�h
_G(�)z(t+ �)d�; (3)

and the coupled system

_y1(t) = G(0)y2(t)�G(�h)y2(t� h)�
Z 0

�h
_G(�)y2(t+ �)d�; (4)

y2(t) = Ay2(t� h) + y1(t): (5)

Denote by z(t;  ); t � 0; the solution of (3) satisfying z(t;  ) =  (t); t 2
[�h; 0]; where  belongs to the space of piecewise continuous vector functions
PC ([�h; 0] ;Rn) ; see [2].
Similarly, denote by y1(t; ~'1); y2(t; ~'2); t � 0; the solutions of (4) and

(5) satisfying y1(t; ~'1) = ~'1(t); y2(t; ~'2) = ~'2(t); t 2 [�h; 0]; where ~'1; ~'2 2
PC ([�h; 0] ;Rn) ; see [5].

Lemma 1.

(i) Assume in (1) that matrix function G(�) is continuously di¤erentiable
on [�h; 0]: For a given initial function ' 2 C ([�h; 0) ;Rn) ; de�ne the
function

 (�) =

�
'(�); � 2 [�h; 0) ;
A'(�h) +

R 0
�hG(�)'(�)d�:

Then x(t; ') = z(t;  ):
(ii) For a given initial function  2 PC ([�h; 0] ;Rn) ; de�ne the functions

~'2(�) =  (�); � 2 [�h; 0] ; and ~'1 2 PC ([�h; 0] ;Rn) such that

~'1(0) =  (0)� A (�h):

Then z(t;  ) = y2(t; ~'2):

Proof. See Appendix.
For matrix functions G (�) being continuously di¤erentiable on [�h; 0];

the result of (i) relates the solutions of (1) with some particular solutions
of (3). The result of (ii) relates the solutions of (3) with some particular
solutions of the coupled system described by (4) and (5).
From Lemma 1 we may deduce immediately the existing relationship

between special solutions of (1) and some particular solutions of the coupled
system described by (4) and (5).
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Lemma 2. Assume in (1) that matrix function G(�) is continuously di¤er-
entiable on [�h; 0]: For a given initial function ' 2 C ([�h; 0) ;Rn) ; de�ne
the functions

~'2 (�) =

�
'(�); � 2 [�h; 0) ;
A'(�h) +

R 0
�hG(�)'(�)d�; � = 0;

and ~'1 2 PC ([�h; 0] ;Rn) such that ~'1(0) =
R 0
�hG(�)'(�)d�: Then x(t; ') =

y2(t; ~'2):

In the sequel, we shall use the following concept of stability.

De�nition 1. [2] System (1) is said to be exponentially stable if there exist
� > 0 and � > 0 such that any solution of (1) satis�es the inequality

kx(t; ')k � �e��t k'kh ; 8t � 0: (6)

Remark 1. Neither the neutral functional di¤erential equation (3) nor the
coupled system described by (4) and (5) are exponentially stable. Indeed, any
constant vector is a solution of (3) and therefore, by virtue of (ii) in Lemma
1, the coupled system described by (4) and (5) also admits constant solutions.

The remark implies that, even in the particular case when matrix function
G(�) is continuously di¤erentiable on [�h; 0], existing stability results for
neutral functional di¤erential equations [3] and coupled systems described by
retarded functional di¤erential equations and functional di¤erence equations
[5] cannot be directly applied to the stability analysis of (1).

3.2. A Lyapunov type theorem
For any t � 0 we denote the restriction of the solution x(t; ') on the

interval [t� h; t) by xt(') = x(t+�; '); � 2 [�h; 0) :When the initial function
' is irrelevant we simply write x(t) and xt instead of x(t; ') and xt('):
The jump discontinuities of the solutions of (1) imply that xt(') 2

PC ([�h; 0) ;Rn) for t � 0: This means that in a Lyapunov-Krasovskii func-
tional setting, the functionals should be de�ned on the in�nite-dimensional
space PC ([�h; 0) ;Rn) :

Theorem 3. Let system (1) be given and assume that matrix A is Schur
stable. System (1) is exponentially stable if there exists a continuous func-
tional v : PC ([�h; 0) ;Rn) ! R such that t ! v(xt(')) is di¤erentiable for
all t � 0 and satis�es the following conditions:
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1. �1
R 0
�h k'(�)k

2 d� � v (') � �2
R 0
�h k'(�)k

2 d�; for some constants 0 <
�1 � �2;

2. d
dt
v(xt(')) � ��

R 0
�h kx(t+ �; ')k2 d�; for some � > 0:

Proof. Given any initial function ' 2 C ([�h; 0) ;Rn) ; it follows from the
Theorem conditions that for 2� = ���12 the following inequality:

d

dt
v(xt(')) + 2�v (xt(')) � 0;8t � 0;

holds. This inequality leads to

v(xt(')) � e�2�tv (') ;8t � 0:

Thus it follows that for t � 0

�1

Z 0

�h
kx(t+ �; ')k2 d� � �2e

�2�t
Z 0

�h
k'(�)k2 d�: (7)

From (1) one gets

kx(t; ')� Ax(t� h; ')k2 �
�
mg

Z 0

�h
kx(t+ �)k d�

�2
� m2

gh

Z 0

�h
kx(t+ �)k2 d�; (8)

where the last inequality has been obtained by using the Cauchy-Schwarz
inequality in L2 ([�h; 0) ;R) and

mg = sup
�2[�h;0]

kG(�)k :

Combining the inequalities (7) and (8) one obtains

kx(t; ')� Ax(t� h; ')k �
r
�2
�1
mgh k'kh e��t;8t � 0:

This inequality implies

x(t; ')� Ax(t� h; ') = f(t); (9)
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where f 2 C ([0;1) ;Rn) satis�es

kf(t)k � � k'kh e��t; 8t � 0;

with

� =

r
�2
�1
mgh:

Since A is Schur stable, then there exist  > 0 and � > 0 such thatAk � e��(kh); k = 0; 1; 2; : : : :

From the Lemma 6 in [7] it follows that the inequality

kx(t; ')k � � k'kh e��t; 8t � 0;

holds for the solutions x(t; ') of (9) with

� = 
�
1 + �+

�

he"

�
and � = min f�; �g � ";

where " 2 (0;min f�; �g) : This implies the exponential stability of (1).

Remark 2. In spite of the fact that the state xt(') 2 PC ([�h; 0) ;Rn) ; the
Theorem conditions guarantee the exponential stability of (1) by means of
continuous and di¤erentiable functionals.

4. Main Results

4.1. A general case
We begin with a general case for which a simple-to-check delay-dependent

stability condition is derived in the following:

Proposition 4. Let system (1) be given and assume that matrix A is Schur
stable. System (1) is exponentially stable if there exist positive de�nite ma-
trices W0 and W1 such that

h

 
sup

�2[�h;0]
kG(�)k

!2
<

�min(W1)

�max
�
P + PAW�1

0 ATP
� ; (10)

with P the positive de�nite solution of the matrix Lyapunov equation

ATPA� P = � (W0 + hW1) : (11)
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Proof. Consider the following functional:

v(') =

Z 0

�h
'T (�)

�
ATPA+W0 + (� + h)W1

�
'(�)d�; (12)

where W0;W1 are positive de�nite matrices and P is the positive de�nite
solution of (11).
The functional (12) satis�es the following inequalities:

�1

Z 0

�h
k'(�)k2 d� � v(') � �2

Z 0

�h
k'(�)k2 d�; (13)

with 0 < �1 � �2 given by

�1 = �min (W0) and �2 = �max (P ) :

The time derivative of the functional (12) along solutions of (1) is

dv(xt)

dt
= �xT (t� h)W0x(t� h) + 2xT (t� h)ATP

Z 0

�h
G(�)x(t+ �)d�

+

�Z 0

�h
G(�)x(t+ �)d�

�T
P

�Z 0

�h
G(�)x(t+ �)d�

�
�
Z 0

�h
xT (t+ �)W1x(t+ �)d�:

Using the Jensen integral inequality the following inequality:�Z 0

�h
G(�)x(t+ �)d�

�T
P

�Z 0

�h
G(�)x(t+ �)d�

�
� h

Z 0

�h
xT (t+ �)GT (�)PG(�)x(t+ �)d� (14)

holds. As a consequence we obtain the following upper bound for the deriv-
ative:

dv(xt)

dt
� �

Z 0

�h

�
xT (t� h) xT (t+ �)

�
N (�)

�
x(t� h)
x(t+ �)

�
d�;

where

N (�) =
�

1
h
W0 �ATPG(�)
�GT (�)PA W1 � hGT (�)PG(�)

�
:
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If the inequality (10) holds then

� = �min(W1)� h�max
�
P + PAW�1

0 ATP
� 

sup
�2[�h;0]

kG(�)k
!2

> 0;

which in turn implies

W1 � hGT (�)
�
P + PAW�1

0 ATP
�
G (�) > 0;8� 2 [�h; 0] :

The above inequality is equivalent to N (�) > 0;8� 2 [�h; 0] ; by Schur
complement. Thus, if (10) holds then

dv(xt)

dt
� ��

Z 0

�h
kx(t+ �)k2 d�;

and the exponential stability of (1) follows.

Remark 3. W0 and W1 are free positive de�nite matrices which can be used
to improve the right-hand side of inequality (10).

4.2. A particular case
Now let us consider the following continuous time di¤erence system:

x(t) = (A+�A)x(t� h) + (G+�G)

Z 0

�h
x(t+ �)d�; (15)

where A;G 2 Rn�n are known and �A;�G are unknown constant matrices
satisfying

k�Ak � � and k�Gk � �: (16)

We here assume that the matrix A + �A remains Schur stable for all �A
satisfying (16).

Proposition 5. The uncertain system (15) is exponentially stable for all
unknown matrices �A and �G satisfying (16) if there exist positive de�nite
matrices P;W0;W1 and scalar � > 0 such that the following inequalities hold:

Mn(P;W0;W1)� �Mp1 (�; �)� �Mp2 (�) > 0; (17)

ATPA+ �� (2 kAk+ �) I � P + (W0 + hW1) < 0; (18)

�I � P > 0; (19)
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where

Mn(P;W0;W1) =

�
1
h
W0 �ATPG
�GTPA W1 � hGTPG

�
; (20)

Mp1 (�; �) = (� kAk+ � kGk+ ��)

�
I 0
0 I

�
; (21)

Mp2 (�) = h�
�
2
GT+ �

� � 0 0
0 I

�
: (22)

Proof. Consider the following functional:

v(') =

Z 0

�h
'T (�)

h
(A+�A)T P (A+�A) +W0 + (� + h)W1

i
'(�)d�;

(23)
where W0;W1 are positive de�nite matrices and P is the positive de�nite
solution of the Lyapunov inequality

(A+�A)T P (A+�A) + (W0 + hW1) < P: (24)

From (23) we get the following inequalities for the functional:

�1

Z 0

�h
k'(�)k2 d� � v(') � �2

Z 0

�h
k'(�)k2 d�;

where 0 < �1 � �2 are determined by

�1 � �min(W0); (25)

�2 � �max(P ) (kAk+ k�Ak)2 + �max (W0 + hW1) : (26)

The time derivative of the functional (23) along solutions of (15) is

dv(xt)

dt
= �

Z 0

�h
xT (t+ �)W1x(t+ �)d�

+xT (t)
h
(A+�A)T P (A+�A) +W0 + hW1

i
x(t)

�xT (t� h)
h
(A+�A)T P (A+�A) +W0

i
x(t� h):

Taking into account the inequality (24), substituting the right-hand side of
(15), and then applying the inequality (14) with G(�) = G + �G; one can
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easily arrive at the following upper bound for the derivative:

dv(xt)

dt
� �

Z 0

�h

�
xT (t� h) xT (t+ �)

�
�

� (Mn(P;W0;W1)�Mp(�A;�G))

�
x(t� h)
x(t+ �)

�
;

whereMn(P;W0;W1) is de�ned by (20) and

Mp(�A;�G) =

�
0 ATP (�G) + (�A)T PG+ (�A)T P (�G)

� 2hGTP (�G) + h (�G)T P (�G)

�
:

Here � denotes the symmetric entry of the symmetric matrix.
Using Lemma 7 in the Appendix for bounding the terms involving per-

turbation in the matrixMp(�A;�G) we obtain

dv(xt)

dt
� �

0Z
�h

�
xT (t� h) xT (t+ �)

�
fMn(P;W0;W1)

��Mp1 (�; �)� �Mp2 (�)g
�
x(t� h)
x(t+ �)

�
d�;

whereMp1 (�; �) andMp2 (�) are respectively de�ned by (21) and (22), and
� > 0 is such that (19) holds. Clearly, if (17) holds then

dv(xt)

dt
� ��

Z 0

�h
kx(t+ �; ')k2 d�;

where
� = �min (Mn(P;W0;W1)� �Mp1 (�; �)� �Mp2 (�)) ; (27)

and the exponential stability of the perturbed system (15).
Noting that the inequality (18) subject to the restriction (19) implies (24)

the proof ends.

Corollary 6. If there exist positive de�nite matrices P;W0;W1 and scalar
� > 0 such that the matrix inequalities (17)-(19) hold, then an exponential
estimate for the solutions of the uncertain system (15) is given by

kx(t; ')k � � k'kh e��t;8t � 0;
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with
� = 

�
1 + �+

�

he"

�
and � = min f�; �g � ";

where " 2 (0;min f�; �g) : Here  > 0 and � > 0 are such that(A+�A)k � e��(kh); k = 0; 1; 2; :::; (28)

and

� = h

r
�2
�1
(kGk+ k�Gk) and 2� = ���12 ;

with �1; �2 and � given respectively by (25), (26) and (27).

Proof. Given positive de�nite matrices P;W0;W1 and scalar � > 0 satisfy-
ing the inequalities (17)-(19), we calculate the positive constants �1; �2 and
� determined by (25), (26) and (27).
Noting that

mg = sup
�2[�h;0]

kG(�)k = kG+�Gk � kGk+ k�Gk ;

and that Schur stability of A+�A implies the existence of  > 0 and � > 0
such that (28) holds, the result follows directly from the proof of the Theorem
3.

Remark 4. Note that the integral form of the proposed functionals (12) and
(23) guarantees that along the solutions of (1) and (15), the corresponding
functions t! v (xt (')) are continuous and di¤erentiable for all t � 0:

Remark 5. It is important to point out the dependence of the functional
(23) on both the nominal and uncertain matrices A and �A of the perturbed
system. This special feature of the functional, which allows it to adapt the
perturbation by exploiting the Schur stability of A+�A; is in the same spirit
of that introduced in [7] and [8] for investigating the robust stability of neutral
delay systems having uncertainty in the corresponding di¤erence term.

Remark 6. In the nominal case, when (15) does not have uncertainty

x(t) = Ax(t� h) +G

Z 0

�h
x(t+ �)d�; (29)
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delay-dependent su¢ cient conditions for the exponential stability can be di-
rectly derived from Proposition 5. Thus, it follows that (29) is exponentially
stable if there exist positive de�nite matrices P;W0 and W1 such that�

1
h
W0 �ATPG
�GTPA W1 � hGTPG

�
> 0; (30)

ATPA� P + (W0 + hW1) < 0: (31)

Remark 7. When A = 0 in (29), delay-dependent conditions for the expo-
nential stability of the integral delay system

x(t) = G

Z 0

�h
x(t+ �)d�; (32)

are directly obtained from the matrix inequalities (30) and (31). Indeed, from
(30) and (31) it follows that (32) is exponentially stable if there exist positive
de�nite matrices P;W0 and W1 such that

W1 � hGTPG > 0 and P > W0 + hW1:

By combining these two inequalities we arrive at the result that (32) is ex-
ponentially stable if there exist positive de�nite matrices W0 and W1 such
that

W1 � hGT (W0 + hW1)G > 0:

This stability condition coincides with that obtained in [12].

5. Illustrative Examples

Example 1. Consider the system (29) where

A =

�
0:2 1
�0:1 �0:2

�
:

Matrix A is Schur stable and kAk = 1:0424: Then, in principle, the known
results cannot be applied to investigate the stability of (29) since the inequality
kAk + h kGk < 1 does not hold for any delay value h > 0 and matrix G 2
R2�2:
However, as suggested by a reviewer, by using similarity transformations

it is still possible to use the known results for obtaining stability conditions.
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Let S be a similarity transformation matrix for A and apply the state
transformation x = Sy: Then, in the new variable, (29) is of the form

y(t) = Dy(t� h) + S�1GS

Z 0

�h
y(t+ �)d�;

where D = S�1AS is similar to A. By using standard calculations, one can
�nd that

S =

�
0:9535 0
�0:1907 0:2335

�
leads to

D =

�
0 0:2449

�0:2449 0

�
:

Since kDk = 0:2449 then the known results can now be applied. The trans-
formed system, and hence (29), is exponentially stable if

kDk+ h
S�1GS � kDk+ h

S�1 kGk kSk < 1
holds. For h = 1; the above condition holds if G 2 R2�2 is such hat kGk <
0:1774: For this delay value, by selecting matrices W0 = I and W1 = 1:2I;
we get from the inequality (10) of Proposition 4 that (29) is exponentially
stable if G 2 R2�2 is such that kGk < 0:2082 which signi�cantly improves
the obtained by using the known stability condition combined with similarity
transformations.

Example 2. Consider now the uncertain system (15) with nominal system
matrices

A =

�
�0:2 0
0:2 �0:1

�
and G =

�
�1:1 �0:2
�0:1 �1:1

�
; (33)

and unknown constant matrices �A;�G satisfying

k�Ak � 0:2 and k�Gk � 0:3: (34)

This nominal system is found in Example 2 of [4] and [10] as a di¤erence
operator of a neutral type delay system. Such neutral system is obtained
by a model transformation technique which transform the original neutral
system with discrete delay to a neutral system with distributed delay for delay-
dependent stability conditions, see [10] for details.
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From Remark 6 we found that the nominal system is exponentially stable
for all delay values 0 < h � 0:7435 that is signi�cantly better that the result
obtained from the inequality kAk+h kGk < 1 which leads to 0 < h < 0:5658:
Using Proposition 5 we found that the uncertain system (15) remains

exponentially stable for all matrices �A;�G satisfying (34) if the delay value
0 < h � 0:382:
Now we illustrate how exponential estimates for the solutions of the per-

turbed system (15) can be computed by using Corollary 6. For h = 0:3 and
� = 0:1; we obtain the following solutions of the matrix inequalities (17),
(18) and (19):

W0 =

�
0:0245 �0:0001
�0:0001 0:0244

�
;W1 =

�
0:1177 0:0066
0:0066 0:1208

�
;

P =

�
0:0866 0:0006
0:0006 0:0839

�
:

Direct calculations derived from (25), (26) and (27) yields �1 = 0:0244;
�2 = 0:0832 and � = 0:0083: Then, the corresponding constants � and � in
Corollary 6 take the values: � = 0:2728 and � = 0:0496:
For the matrix A+�A the inequality (28) holds for  = 1 and � = 1:86:

Thus, by assuming that " 2 (0;min f�; �g) is equal to 0:0248 we arrive at the
following exponential upper bound for the solutions of (15):

kx(t; ')k � 14:7538 k'k0:3 e�0:0248t; 8t � 0:

6. Conclusions

In this paper, Lyapunov-Krasovskii functionals for the exponential sta-
bility of some linear continuous time di¤erence systems with discrete and
distributed delay are introduced. Delay-dependent conditions for the expo-
nential stability and exponential estimates for the solutions are derived. The
new obtained stability conditions are less conservative than existing ones. As
a consequence, the results reported in this contribution can help to improve
existing stability conditions of neutral type delay systems having this class
of continuous time di¤erence systems as di¤erence operators.
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8. Appendix

Proof. [Lemma 1]

(i) Function z(t;  ) satis�es for t � 0

d

dt
[z(t;  )� Az(t� h;  ))] = G(0)z(t;  )�G(�h)z(t� h;  )

�
Z 0

�h
_G(�)z(t+ �;  )d�:

Integrating the equality from 0 to t and using the fact thatZ 0

�h
_G(�)

�Z t+�

�

z(�;  )d�

�
d� = G(0)

Z t

0

z(�;  )d�

�G(�h)
Z t�h

�h
z(�;  )d� �

Z 0

�h
G(�) [z(t+ �;  )� z(�;  )] d� (35)

we obtain

z(t;  ) =

�
 (0)� A (�h)�

Z 0

�h
G(�) (�)d�

�
+ Az(t� h;  )

+

Z 0

�h
G(�)z(t+ �;  )d�: (36)

By de�nition

 (0) = A'(�h) +
Z 0

�h
G(�)'(�)d� = A (�h) +

Z 0

�h
G(�) (�)d�:

It then follows that z(t;  ) satis�es (1).
Assume now that x(t; '); t � 0; satis�es (1). Then, we have

x(t; ')� Ax(t� h; ') =

Z 0

�h
G(�)x(t+ �; ')d�;
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which implies that the di¤erence function x(t; ')� Ax(t� h; ') is con-
tinuously di¤erentiable and

d

dt
[x(t; ')� Ax(t� h; ')] = G(0)x(t; ')�G(�h)x(t� h; ')

�
Z 0

�h
_G(�)x(t+ �; ')d�:

This means that x(t; ') satis�es (3).
By de�nition function ' (�) coincides with  (�) for � 2 [�h; 0) ; and

x(0; ') = z(0;  ) =  (0) = A'(�h) +
Z 0

�h
G(�)'(�)d�:

(ii) For  2 PC ([�h; 0] ;Rn) ; the solution z(t;  ) of (3) satis�es (36). Now,
function y1(t; ~'1) satis�es

_y1(t; ~'1) = G(0)y2(t; ~'2)�G(�h)y2(t� h; ~'2)�
Z 0

�h
_G(�)y2(t+ �)d�:

Integrating the equality from 0 to t and taking into account the equality
(35) we get

y1(t; ~'1) =

�
~'1(0)�

Z 0

�h
G(�)~'2(�)d�

�
+

Z 0

�h
G(�)y2(t+ �; ~'2)d�;

hence, from (5), function y2(t; ~'2) satis�es

y2(t; ~'2) =

�
~'1(0)�

Z 0

�h
G(�)~'2(�)d�

�
+ Ay2(t; ~'2)

+

Z 0

�h
G(�)y2(t+ �; ~'2)d�: (37)

By de�nition ~'2(�) =  (�); � 2 [�h; 0] and ~'1 2 PC ([�h; 0] ;Rn) is
such ~'1(0) =  (0) � A (�h): It then follows from (36) and (37) that
y2(t; ~'2) = z(t;  ):
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Lemma 7. For matrices A;B;C and D the following inequality holds:�
uT vT

� � A
B

�
P
�
C D

� � u
v

�
� �

�
uT vT

�
�

�
��AT kCk+ �

� � I 0
0 0

�
+
�BT

 kDk+ �
� � 0 0

0 I

���
u
v

�
;

where � = 1
2

AT kDk+ 1
2

BT
 kCk and � > 0 satisfying P < �I:
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